比的意义和
比的意义和基本性质
![比的意义和基本性质](https://img.taocdn.com/s3/m/74272162a45177232f60a212.png)
预习班数学——比的意义和基本性质一、基础知识1、比的意义(1)比的意义:两个数相除又叫做两个数的比。
a叫做比的前项,b叫做比的后项.前项a除以后项b所得的商叫做比值.(2)比的组成部分。
例如:2、比与除法、分数之间的关系。
3、比的基本性质(1)比的基本性质。
比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(2)比的基本性质的应用。
应用比的基本性质可以把一个比转化成最简单的整数比。
化简的方法和把一个分数化成最简分数的方法类似。
如:18︰27=(18÷9)︰(27÷9)=2︰34、三项连比的性质三项连比的性质是:(1)如果a∶b=m∶n,b∶c=n∶k,那么a∶b∶c=m∶n∶k.(2)如果k≠0,那么a ∶ b ∶c=ak ∶bk ∶ck=5、比的应用(1)按比例分配的意义。
把一个量按照一定的比来进行分配方法叫做按比例分配。
(2)按比例分配应用题的解法。
通常是把比转化为分数,即先求出各部分是整体的几分之几,然后根据分数乘法的意义求各部分的数量。
如:六(1)班学生45人,其中男生与女生人数的比是5︰4,这个班男生、女生各有多少人?①总人数平均分成的份数:5+4=9答:这个班男生有25人,女生有20人。
6、解题技巧指点化简比与求比值的相同点是方法可以通用,计算结果在形式上有时是一致的。
如:8:12,化简比和求比值的结果都可以写成.化简比与求比值的区别是:化简比求得的结果是一个最简整数比,可以写成真分数、假分数的形式,但是不能写成带分数、小数或整数;求比值的结果是“商”,是一个数,可以写成分数、小数或整数。
二、例题1、求同类量的比值例1、甲堆煤有3.5吨,乙堆煤有270千克,求甲堆煤比乙堆煤的比值。
2、求不同类量的比值例2、小华1.4小时步行12千米,求小华所行路程与时间的比值。
3、求连比例3、一杯咖啡有三种成份,其中糖和咖啡粉的比是2︰3,糖和水的比是5︰26,求这杯咖啡的糖︰咖啡粉︰水的连比。
六年级数学《比和比例》知识点
![六年级数学《比和比例》知识点](https://img.taocdn.com/s3/m/09f0e82c59fafab069dc5022aaea998fcd224061.png)
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
比的意义和基本性质
![比的意义和基本性质](https://img.taocdn.com/s3/m/47e8a24a4b73f242336c5ff2.png)
比的意义和基本性质 Prepared on 22 November 2020比的意义和基本性质(1)班级:姓名:【知识点详解】1.比的意义:两个数相除又叫做两个数的比。
(1)比的前项:在两个数的比中,比号前面的数叫做比的前项。
(2)比的后项:在两个数的比中,比号后面的数叫做比的前项。
(3)比值:比的前项除以后项所得的商,叫做比值。
2.连比:三个或三个以上的数也可以用比表示,这样的比叫做连比。
3.反比:如果一个比的前项和后项是另一个比的后项和前项,这两个比叫做互为反比。
如:a:b和b:a互为反比。
4.互为反比的两个比的比值互为倒数。
5.前项为0的比没有反比,因为比的后项不能为0。
6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外)比值不变,这叫做比的基本性质。
7.最简单的整数比:比的前项和后项是互质数的比,叫做最简单的整数比。
8.化简比:把两个数的比化成最简单的整数比,叫做化简比,也叫做比的化简。
9.把一个数量按照一定的比进行分配,这种方法通常叫做按比例分配。
典型例题精讲知识点一:求比值。
(1)求两个数比的比值,就是用比的前项除以比的后项。
(2) 比值和比都可以用分数形式来表示,(3) 比表示一种除法关系,比值是一个数值。
(4) 比值不能写成比的形式,但是它可以是分数,也可以是小数或整数。
(5) 比与分数、除法的关系为:a:b=a ÷b=ba (b ≠0) 【例1】:求比值。
(1)12: (2)41:13 (3):52【例2】:求比值(有单位名称的比:先统一单位名称再求比值)。
(提示:任何一个比的比值都不带有单位名称).(1)3km:4km (2)20分:时 (3)吨:250千克知识点二:化简比。
1.整数比的化简方法:把比的前项和后项同时除以它们的最大公因数。
【例3】(1)15:10 (2)180:1202.分数比的化简方法:(1)比的前项和后项中含有分数的,把比的前项和后项同时乘他们分母的最小公倍数,变成整数比,再进行化简;(2)利用求比值的方法也可以化简分数比,但结果必须写成比的形式。
比的意义是什么
![比的意义是什么](https://img.taocdn.com/s3/m/7dbd6dea29ea81c758f5f61fb7360b4c2e3f2a28.png)
比的意义是什么比(comparison)是人类思维中一种重要的认知方式,通过对事物之间的相似性和差异性进行比较,我们能够更好地理解事物的本质和特点。
比的意义在于帮助我们建立对事物的分类、评价和判断,提升我们的思维逻辑和分析能力。
一、比的分类和应用比可以分为数值比较和概念比较两种情况。
数值比较主要是基于事物的数量或者度量单位进行比较,而概念比较则是针对事物的特征和属性进行对比。
在生活中,我们经常会使用比来进行判断和评价。
比如我们通过对不同品牌的手机进行性能、外观、价格等方面的比较,来做出自己的购买决策。
又如在教育领域,学生们经常会被要求写比较作文,通过对比两个或者多个事物的特点和优劣,来培养他们的观察力、分析力和判断力。
二、比的作用和意义1. 增强认知能力:通过比较,我们能够更全面地了解事物的特点和本质,形成更准确和丰富的认知模型。
比如在学习外语时,我们可以通过比较母语和目标语的语法结构和表达方式,来加深对目标语的理解和掌握。
2. 深化思考能力:比较能够帮助我们发现事物之间的联系和差异,引发我们对事物的更深层次思考。
例如,在阅读两种不同风格的小说后,我们可以通过比较它们的情节设定、人物塑造等方面,探究作者的写作风格和创作意图。
3. 增进决策能力:通过比较不同选项的优势和劣势,我们可以更好地做出决策。
比如在职场中,我们可能会面临多个工作机会,通过比较不同公司的福利待遇、发展空间等因素,来选择最适合自己的职位。
4. 促进创新与进步:比较可以帮助我们发现问题和不足,并找到改进和创新的方向。
通过比较自己的表现和他人的优秀经验,我们可以找到优化自己的方法,不断提高个人能力和素质。
三、比的误用与注意事项尽管比的应用和意义十分广泛,但在使用比的过程中也需要注意一些误区和注意事项。
1. 要避免过分夸大比较结果:比较只是一种工具,它能够帮助我们更好地理解事物,但不一定能够完全揭示事物的本质和特点。
因此,在使用比的过程中,要保持客观和全面的态度,避免夸大比较结果的影响力。
比的意义与性质
![比的意义与性质](https://img.taocdn.com/s3/m/6911f5985ebfc77da26925c52cc58bd63086930f.png)
再如:赵凡3分钟走了330米,赵凡的行走路程与时间的比?
330∶3
返回
二、系统梳理
比各部分的名称。
25
∶160
=
25÷160
=
5 32
:: :
:
:: :
:
前比 后
比
项号 项
值
返回
二、系统梳理
求比值。
比的前项除以后项所得的商叫做比值。
人体血液中,红细胞的平均寿命是120天,血小 板的平均寿命是10天,红细胞与血小板的寿命比。
3.化简比
152∶8 =(152÷8)∶(88÷8)=19∶11 8
3 :9 8 16
=(
3 8
×16):(196 ×16)=
2∶3
0.25∶1.6 =(0.25×100 )∶(1.6×100 =)5∶32
三、综合应用
4. 某制药厂要配制一种葡萄糖注射液,葡萄糖与水的比是
1∶19。如果配制5000升这样的注射液,需要葡萄糖和水
各多少升?
葡萄糖的体积占葡萄糖注射液的 1+11,9 水的体积 占葡萄糖注射液的 1+191。9
1
50000 ×
= 250(升)
1+19
19
50000 ×
= 4750(升)
1+19
答:需要葡萄糖250升,需要水4750升。
三、综合应用
5. 一种足球是由32块黑色五边形和白色六边形 皮块制成的, 其中黑、白皮块块数的比是 3∶5。黑色和白色皮块各有多少? 黑色皮块占3份,白色皮块占5份。 3+5=8 32 ÷ 8 × 3 = 12(块) 32 ÷ 8 × 5 = 20(块)
比的意义是什么
![比的意义是什么](https://img.taocdn.com/s3/m/fe82784b7dd184254b35eefdc8d376eeaeaa178b.png)
比的意义是什么比,是一种常见的思维方式和表达方式,广泛应用于我们的日常生活和各个领域。
无论是在学术研究、商业竞争还是人际交往中,比都具有重要的意义。
本文将探讨比的意义,揭示其在不同场景下的作用和影响。
一、比的定义与功能1.1 定义比,是对两个或多个事物进行对照和对比,从而找出相似之处和差异之处的思维方式。
通过比较,我们可以更好地理解事物的特点、优势和劣势。
1.2 功能比的功能通常包括以下几个方面:(1)辨析事物的特点和差异通过比较,我们可以辨析事物的不同特点,找出它们之间的差异之处。
例如,在购买商品时,我们经常通过比较价格、品质和服务等因素来选择最适合自己的产品。
(2)评估与选择比可以帮助我们评估不同选择之间的优劣。
无论是选购商品、选择职业还是做决策,我们都可以通过比较来找出最佳的选择。
(3)促进进步和创新比可以激发竞争,推动进步和创新的发展。
通过与他人进行比较,我们可以发现自己的不足之处,从而更好地提升自己。
同时,比较也可以为不同企业、团队或组织带来竞争压力,推动他们不断改进和创新。
(4)提高认知和理解通过比较,我们可以更好地认识和理解事物。
比如,通过比较不同的文化、习俗和思维方式,我们可以更好地了解不同国家和民族的特点和差异。
二、比的应用领域比的思维方式和表达方式广泛应用于不同的领域,如学术研究、商业竞争和人际交往等。
以下列举了一些典型的应用领域。
2.1 学术研究在学术研究领域,比常用于对照分析、类比推理和比较研究等方面。
研究者通过比较不同观点、理论或实验结果,来寻找事物的共性和规律,推动学科领域的发展。
比如,对不同历史事件的比较研究可以帮助我们更好地理解历史的发展规律。
2.2 商业竞争在商业竞争中,比是一种重要的竞争手段。
通过比较和分析市场情况、竞争对手的产品和服务,企业可以更好地进行定位和策划,寻找差异化竞争的优势。
比如,苹果公司通过与其他手机品牌的比较,不断改进自己的产品和服务,建立了强大的品牌影响力。
比的意义和基本性质
![比的意义和基本性质](https://img.taocdn.com/s3/m/3eda9c91b8f3f90f76c66137ee06eff9aff8494f.png)
比的意义和基本性质比的意义和基本性质1.比的意义:两个数的比表示两个数相除。
2.比的各部分名称。
(1)比号:“:”叫做比号,读作:“比”。
(2)比的前项和后项:在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
(3)比值:比的前项除以后项所得的商,叫做比值。
3.比和比值的关系:2既可以表示2:3,又可以表示联系:比和比值都可以用分数形式表示,如32:3的比值。
区别:比表示两个数量的倍数关系;比值是一个具体的数,可以是分数,也可以是小数或整数。
温馨提示:当比的后项为1时,1不能省略不写。
如2:1不能写成2,写成2就是2:1的比值。
4.比与分数、除法的关系。
(1)联系:比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商。
(2)区别:比表示两个数量的倍数关系,分数是一个数,除法是一种运算。
5.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
6.化简比:把两个数的比化成最简单的整数比。
(1)整数比的化简方法:比的前项和后项同时除以它们的最大公因数。
(2)分数比的化简方法:比的前项和后项同时乘它们分母的最小公倍数,先转化成整数比,再进行化简;也可以利用求比值的方法化简。
(3)小数比的化简方法:先用恰当的方法转化成整数比,再进行化简。
【诊断自测】1.填空。
(1)甲是乙的23,甲和乙的比是(),乙和甲的比是()。
(2)5÷8=():()=()()(3)比的后项不能为()。
(4)把43:1.125化成最简单的整数比是(),比值是()。
(5)把25克糖放入100克水中,糖和糖水的质量比为()。
2.求比值。
53:411.2:3.61.5t:240kg 12:1513.求下列各比中的未知数。
113:x=3x:0.6=1099:x=434.化简下面各比。
9:126.5:1.354:1580.3:920.75:2【考点突破】类型一:已知一个数的几分之几等于另一个数的几分之几,求这两个数的比。
比的意义解析
![比的意义解析](https://img.taocdn.com/s3/m/32d6fccc690203d8ce2f0066f5335a8102d26627.png)
比的意义解析
比是一种常用的语法结构,在中文中被广泛使用。
本文将对比
的意义进行解析。
比的基本意义是用来表示两个事物之间的关系。
比分为正比和
反比两种情况。
1. 正比:当两个事物之间存在一种相似、一致或平衡的关系时,可以使用正比。
例如:
- 研究时间与成绩的正比关系:研究时间越长,成绩越好。
- 工作投入与收入的正比关系:工作投入越大,收入越多。
- 功夫深与福报深的正比关系:功夫越深,福报越深。
2. 反比:当两个事物之间存在一种相反或对立的关系时,可以
使用反比。
例如:
- 速度与时间的反比关系:速度越快,到达目的地所需的时间
越短。
- 价格与需求的反比关系:价格越高,需求越低。
- 努力与困难的反比关系:努力越多,面临的困难越少。
除了表示两个事物之间的关系外,比还可以用来进行比较。
比
较可以是对同一类事物进行对比,也可以是对不同类事物进行对比。
例如:
- 对同一类事物进行对比:
- 苹果和橙子的味道比较,苹果的酸度较高。
- 这两本书的内容比较,那本书的信息更详实。
- 对不同类事物进行对比:
- 中文和英文的难度比较,中文的发音较复杂。
- 游泳和跑步的适宜程度比较,游泳对关节的冲击更小。
总之,比作为一种语法结构,可以帮助我们表达事物之间的关
系和进行比较。
在运用比时,我们需要根据具体情况选择合适的表
达方式,确保表达准确清晰。
比的意义知识点
![比的意义知识点](https://img.taocdn.com/s3/m/9a7ddcd46aec0975f46527d3240c844769eaa0d0.png)
比的意义知识点比的概念是人们在日常生活中经常用到的一种比较手段,通过比较不同事物之间的差异和相似之处,我们能够更好地理解和认识世界。
比的意义不仅仅体现在数学中,也贯穿于各个学科和领域中,有助于我们对事物的分析和评价。
下面将从不同角度介绍比的意义知识点。
一、比的概念和基本形式比是指将两个或多个事物进行对比并进行评价的一种方法。
在比的过程中,我们通常会选取一个基准对象,然后与其他对象进行比较。
比的基本形式有两种:一种是绝对比较,即将事物与某个标准进行比较,如将一个人的身高与平均身高进行比较;另一种是相对比较,即将两个事物相互进行比较,如将两个人的身高进行比较。
二、比的作用和意义1.帮助我们认识和了解事物:通过比较不同事物的特点和差异,我们能够更全面地了解事物的本质和特点。
比的过程可以帮助我们发现事物的优点和不足,从而更好地认识和了解事物。
2.帮助我们做出选择和决策:在面对多种选择时,比较不同选项的优势和劣势可以帮助我们做出更好的选择和决策。
通过比较,我们可以找到最适合自己的选项,并避免盲目决策。
3.促进思维的发展:比的过程需要我们进行思考和分析,从而促进了我们的思维发展。
通过比较,我们可以培养批判性思维和逻辑思维能力,提高问题解决的能力。
4.推动事物的发展和进步:比的过程中,我们可以通过分析和评价找到事物的不足之处,并提出改进的方法和思路。
比的过程可以激发我们的创新意识,推动事物的发展和进步。
三、比的应用领域比的方法在各个学科和领域中都有广泛的应用,如:1.经济学:通过比较不同国家或地区的经济指标,我们可以了解各个国家或地区的经济发展状况,从而为经济决策提供参考。
2.教育学:通过比较不同教学方法和教育制度的优劣,我们可以找到最适合学生发展的教育方式,提高教育质量。
3.文学艺术:比的方法可以用于对文学作品和艺术作品进行评价和分析,帮助我们更好地理解和欣赏作品的魅力。
4.体育竞技:比的方法在体育竞技中起着重要的作用,通过比较不同选手或团队的表现,我们可以评价他们的技术水平和竞技能力。
比的意义和基本性质
![比的意义和基本性质](https://img.taocdn.com/s3/m/09598d98b04e852458fb770bf78a6529647d3589.png)
比的意义和基本性质比是一种常见的概念和工具,广泛应用于数学、科学、统计学、经济学等领域。
它的基本性质和意义在这些领域中起着重要作用。
本文将介绍比的基本性质和探讨它的意义。
同时,我们将从比的定义和基本性质出发,探索它在实际生活中的应用和重要性。
首先,我们来阐述比的定义和基本性质。
比是将两个量进行比较的方式。
我们通常用符号“:”来表示比。
在数学中,比是将两个数分别用分子和分母表示,并用冒号隔开的形式进行表示。
比可以是整数比如1:2,也可以是有理数比如3/4:5/6,甚至可以是无理数如π:1。
比的分子和分母往往表示着两个事物的量度或数量关系。
比的基本性质包括比的可加性、比的等比性和比的反比性。
比的可加性指的是如果两个比相等,那么它们的和也相等。
比的等比性表示如果两个比的分子和分母成比例,那么它们本身也成比例。
比的反比性则表示如果两个比是反比关系,即一个比的分子和另一个比的分母成比例,那么它们的倒数也成比例。
比具有重要的应用和意义。
首先,在数学中,比是比例的基础。
比例是一种重要的数学概念,广泛应用于数学题目和实际问题中。
比的等比性和反比性在解决比例问题时起着关键作用,可以帮助我们确定未知量的值。
其次,在科学和统计学中,比的概念和计算方法也非常重要。
科学研究和统计分析中经常需要比较不同样本、群体或数据的差异或关系。
比的应用可以帮助我们进行数据分析和结果解释,发现规律和趋势。
此外,在经济学中,比的概念更是不可或缺。
经济学中经常进行价格比较、成本比较、效益比较等,这些比较都起到了决策和评估的作用。
比可以帮助我们在不同选择之间作出理性的决策,优化资源配置,提高经济效益。
在实际生活中,比也具有很大的意义。
我们经常会进行各种事物的比较,如品质比较、性价比比较、能力比较等。
比的应用帮助我们做出选择和判断,提高生活质量和满足感。
最后,需要指出的是,比作为一种工具和概念,可以帮助我们更好地理解和应用数学、科学、统计学和经济学等领域的知识。
比的意义是什么
![比的意义是什么](https://img.taocdn.com/s3/m/47b514aa541810a6f524ccbff121dd36a32dc4aa.png)
比的意义是什么比是我们日常生活中常常进行的一种行为,通过将事物相互对照,我们可以更好地认识和理解它们。
比的意义不仅仅局限于对事物的简单对比,还可以从中得到更多有价值的信息。
在各个领域,比都发挥着重要的作用,本文将探讨比的意义以及它在不同领域的应用。
1. 形成正确的判断比有助于我们形成正确的判断。
当我们将两个或多个事物进行对比时,可以更全面地了解它们的优势和不足,并从中得出结论。
例如,在购买商品时,我们会比较不同品牌的产品以确定最适合我们需求的一个。
通过比较,我们可以选择质量更好、价格更合适的产品,为自己做出正确的消费决策。
2. 促进个人成长比可以促进个人成长。
当我们将自己与其他人进行比较时,可以发现自己的差距和不足之处,从而找到提升自己的方向和动力。
比如,当我们看到他人在某一领域取得较好的成绩时,我们会受到启发,努力追赶并超越他们。
通过不断地与他人进行比较,我们可以提高自己的能力和竞争力。
3. 促进团队合作比在团队合作中也起到重要作用。
当团队成员将自己的工作成果进行比较时,可以了解彼此的工作质量和效率,有利于发现问题和改进工作方法。
通过比较,团队成员可以互相学习,共同进步,并最终达成更好的团队成果。
因此,比可以促进团队合作,提高工作效率。
4. 激发创新比可以激发创新。
通过比较,我们可以了解同行业的其他公司或机构的做法,并从中获得灵感和启发。
比如,在市场竞争激烈的行业中,企业通过比较竞争对手的产品和服务,不断创新和改进自己的产品,以赢得更多的市场份额。
因此,比可以激发创新,推动行业的发展。
5. 促进学术研究比对于学术研究也具有重要意义。
通过比较已有的研究成果,研究者可以了解前人的研究方法、理论与结论,并在此基础上进行进一步的研究。
比较研究的结果可以验证或修正已有的理论,拓宽学术领域的研究范围,并为解决新问题提供思路和路径。
因此,比对于学术研究的进展和创新非常重要。
6. 增进人际关系比可以增进人际关系。
比的意义和性质
![比的意义和性质](https://img.taocdn.com/s3/m/893c1557ba68a98271fe910ef12d2af90342a84f.png)
【知识概要】
1、(1)比的意义: 、 是两个数或两个同类的量,为了把 和 相比较,将 与 相除,叫做 与 的比(ratio)。记作 : ,或者写成 ,其中 ;读作 比 ,或者 与 的比。
(2) 叫做比的, 叫做比的。前项 除以后项 所得的商叫做。
(3)比、分数和除法三者之间的关系是:
4、写出比值:3千克:1400克=, 450秒:0.5时=。
5、化简::4=3:124:12=12:
6、 中,阴影部分面积与空白部分面积的比是。
【精解名题】
例1、(1) :x= (2)x: =
例2、小强有3支新铅笔,旧铅笔个数是新铅笔个数的 ;有5支新钢笔,恰是旧钢笔个数的 ;求小强铅笔总个数与钢笔总个数的比。
4、0.2: 化成最简整数比为1.()
二、填空题:
1、比的意义: 、 是两个数或两个同类的量,为了把 和 相比较,将 与 相除,叫做 与 的比。记作,或者写成,其中 叫做比的, 叫做比的。前项 除以后项 所得的商叫做。
2、求比值:250米:450分米
3、( ):28=20:( )= =1.25
4、两个人的身高比是4:3,高个的160厘米,矮个的是米。
3、甲乙两人需修路1千米。已知甲的速度是12米/天,乙的速度是14米/天,问甲单独修完这条路所需时间与乙单独修完这条路所需时间之比的比值。
【自我测试】
一、判断题:
1、如果a:b=11:12,那么a=11,b=12.()
2、23厘米:23米的比值是1:100.()
3、如果a:b=2:3,那么(a+2):(b+2)=4:5()
例3、根据比的性质,求解下列各式的x。
(1)111:x=3:4 (2)x: =3:8
比的意义和性质
![比的意义和性质](https://img.taocdn.com/s3/m/291911dc58f5f61fb636660b.png)
(3) 分数比 ——比的前、后项都乘它们分母 的最小公倍数→整数比→最简比。
化简比
一个小数和一个分数组成的比,怎样化解?
5 0.125 : 8 1 5 : 8 8 1 5 ( 8) : ( 8) 8 8
1: 5
化简比
一个小数和一个分数组成的比,怎样化解?
0.125 : 0.625
(一)、基本练习 1、判断下列各题。
(1) 16 ︰4的最简比是4。 (2) 5︰2.5 的比值是2。 ( ( ) )
(3) 6 ︰0.3 的最简比是20 ︰1。 ( )
(4)比的前项和后项都乘或都除以 相同的数,比值不变。 (
)
3. 生产一批零件,甲单独做6时完成,乙 单独做8时完成。 (1)甲完成任务的时间与乙完成任务的时间 的最简比是( 3 ) ︰ (4 )
化简比
0.75︰2 = 75︰200 = 15︰40 = 3︰ 8
不管哪种方法,最后的结果应该是一个 最简的整数比,而不是一个数。
化简比
0.75︰2
=(0.75×100)︰(2×100)
= 75︰200
= (75÷25)︰(200÷25)
怎样化解小数比?
= 3︰ 8
比的前、后项都扩大相同的倍数→整数比→最简比。
30÷10 =(30÷10)÷(10÷10) =3÷1 16÷25
=64 ÷ 100 =0.64 =3
=(16×4)÷(25 × 4)
商不变的性质:在除法里,被除数和除数同时乘
(或除以)一个相同的数(0除外),商不变。
把下列分数约成最简分数:
8 84 2 20 20 4 5
1 11 11 11 121 121 11 11
比和比例知识点归纳完整版
![比和比例知识点归纳完整版](https://img.taocdn.com/s3/m/e5c7ec487c1cfad6195fa7eb.png)
比和比例知识点归纳标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]比和比例知识点归纳1、比的意义和性质比的意义:两个数相除又叫做两个数的比。
例如:9 : 6 = 1.5前比后比项号项值比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。
应用比的基本性质可以化简比。
习题:一、判断。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2、比的基本性质和商的基本性质是一致的。
()3、10克盐溶解在100克水中,这时盐和盐水的比是1:10. ()4、比的前项乘5,后项除以1/5,比值不变。
()5、男生比女生多2/5,男生人数与女生人数的比是7:5. ()6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。
()7、2/5既可以看做分数,也可以看做是比。
()二、应用题。
1.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。
那么男生比女生多多少人3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。
红糖和白糖各有多少千克4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。
甲、乙两车间各有多少人?5.有一块长方形地,周长100米,它的长与宽的比是3∶2。
这块地有多少平方米?6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?外项2、比例的意义和性质:比例的意义:表示两个比相等的式子叫做比例。
例如:9 :6 = 3 : 2内项比例的基本性质:在比例中两个内项的积等于两个外项的积。
应用比例的基本性质可以解比例。
3、比和分数、除法的关系:习题:一、填空(1)两个数相除又叫做两个数的()。
(2)在5:4中,比的前项是(),后项是(),比值是()(3)8:9读作:(),这个比还可以写成()。
比的意义和性质
![比的意义和性质](https://img.taocdn.com/s3/m/eb69f417cc7931b765ce1512.png)
比的意义一、预习检查:1. 某车间有男工人5人,女工人8人,男工人数是女工人数的 ?女工人数是男工人数的 ?2. 分数与除法有什么关系?分数是 而除法是二、新授1、比的意义: 两个数相 就是两个数的 .2、练习:判断,下面数量间的关系是表示两个数的比吗?① 甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。
( )② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。
( )③ 足球比赛,甲队和乙队的比分是3比2。
( )3、 比的写法、比的各部分名称。
“ ”是比号,读作“ ”。
比号前面的数,叫做比的 ,比号后面的数叫做比的 。
比的 除以 所得的 ,叫做 。
例如:4、比与除法、分数的关系。
联系:a:b= a ÷b=ba (1)比与除法的关系:A 、观察上面的式子,比的前项相当于什么? ,后项相当于什么? 比值相当于什么? 。
B 、比的后项能不能是零?为什么?C 、比值通常用分数表示....,也可以用小数或整数表示.......。
(2)比与分数的关系。
A 、根据分数与除法的关系,可以推知比与分数有什么关系? a) 两个数的比也可以写成分数的形式。
例如15:10,可写成1015,读作15比10。
结合上面的填表:例1:1、求下面各比的比值:75 :25 480 :0.4 12 :42练习:5 :9 2.8 :0.7 5.2 :2.6 4/15 :8/52、填一填(1)4÷5=8÷( )=( )÷15=2÷( )(2)3 :( )=24, ( ) : 8=0.5比的基本性质一、复习 1、商不变的性质在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变2、分数的基本性质分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。
3、观察下面的等式,你能发现什么规律?3:4=6:8=9:12 3:4=(3×2):(4×2)=6:8 3:4=(3×3):(4×3)=9:129:12=(9÷3):(12÷3)=4:3 6:8=(6÷2):(8÷2)=3:44、看谁的眼睛看得准?(根据比的基本性质判断下面各题)(1)4:15=(4×3):(15÷3)=12:5 ( )(2)1/3 :1/2 =( ×6):( ×6)=2:3 ( )(3)10:15=(10÷5):(15÷3) ( )5、比的前项和后都__________相同的数(0除外),______大小不变,这叫做比的基本性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比的基本性质:
比的前项和后项同时乘或除以相同的数(0除外), 比值不变。 运用比的基本性质就可以化简比。
化简比是指比的前项和后项是互质数。
☞ 试一试
化简下列各比
_ (1)18 :12=(18÷_6 ):(12 ÷ 6_ )= 3:2
_ (2) 1 :5 ( 1 ×1_2):( 5 × _12)=3:10
比值可 以用分 数、小 数或整 数表示
判断:下面数量间的关系是表示两个数的 比吗?
(1)甲数是9,乙数是7,甲数和乙数的比是9 比7;乙数和甲数的比是7比9。 (是 )
(2)拖拉机45分耕了2公顷地,工作总量和工 作时间的比是2比45。 (是 )
(3)足球比赛,甲队和乙队的比分是3比0。 ( 不是 )
试一试:说出下面每个比的前项和后 项,并求出比值。
(1)240 : 20
13
(2) :
84
比与除法、分数有哪些联系?
类别
相当于
比 前项 比号 后项
除法 被除数 除号 除数
分数 分子 分数线 分母
区别 比值 一种关系
商 分数值
一种运算
一种数也可以 表示一种关系
除法有商不变性质、分数有分数的基 本性质,想一想:比是不是也有性质?
在3个以上整数的连比中, 比号不表示除号(30:60: 120 ≠30÷60÷120)
1.8 : 2.7
6 :18 :36
下面哪一杯糖水甜一些?
(1)
(2)
糖与水的比是2:50
糖与水的比是3:50
我们人体上有很多有趣的比:
将拳头滚一周,它的长度与脚底长度的 比大约是1:1,身高与双臂平伸的比大约 是1:1,成年人身高与头长的比大约是 7:1,腿长与头长的比大约是4 :1,男人 肩宽与头长的比大约是2 :1,一个人血 液与体重的比大约是1 : 13,人的脚印 的长与人的身高的比是1 : 7 ……
本节课你学到了什么?说一说。
谢谢!
西师版数学六年级上册
认识比
执教者:杨桥小学 江承丽
姓名 从家到学校的路程(M) 从家到学校的时间(分) 例1
张丽
240
5
李兰
200
4
同类量的 比
①张丽用的时间是李兰的几倍?
5
5÷4=
4
张丽和李兰所用的时间比是5比4。
②李兰用的时间是张丽的分之几?
4 4÷5= 5
李兰和张丽所用的时间比是4比5。
③张丽从家到学校的路程是李兰从
46 4
6
比的前项和后项要 同时除以它们的最 大公因数
比的前项和后项同 时乘它们两个分母 的最小公倍数
_ _ _ _ (3)30 :60 :120=(30 ÷30 ): (60÷30 ):(120 ÷30)= 1:2:3
巩固练习
(1) 8 :20 15 :10
2 1 :2
45
0.25:1 2
(3)25 :35 :50
家到学校的几倍?
6
240÷200=
5
张丽和李兰所行路程的比是
240比200。
④李兰从家到学校的路程是张丽从家 到学校的几分之几?
5
200÷240=
6
李兰和张丽所行路程的比是200比240。
姓名 从家到学校的路程(M) 从家到学校的时间(分) 例1
张丽
240
5
李兰
200
4
⑤张丽从家到学校每分钟走多少米?
240÷5=48(米)
不 同
张丽所行路程和时间的比是 240比5。
类 量
⑥李兰从家到学校每分钟走多少米?
的 比
200÷4=50(米)
李兰所行路程和时间的比是200比4。
比的意义
200÷4 = 200:40 两数相除又叫做这两个数的比 200 : 40 = 200÷4=50
前项 比号 后项
比值
想一想:如何求比值?