云南省中考数学真题试卷

合集下载

2023年云南省中考数学试卷+答案解析

2023年云南省中考数学试卷+答案解析

2023年云南省中考数学试卷+答案解析(试卷部分)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.(3分)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作()A.﹣80米B.0米C.80米D.140米2.(3分)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.340×104B.34×105C.3.4×105D.0.34×1063.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=()A.145°B.65°C.55°D.35°4.(3分)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥5.(3分)下列计算正确的是()A.a2•a3=a6B.(3a)2=6a2C.a6÷a3=a2D.3a2﹣a2=2a26.(3分)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65 B.60 C.75 D.807.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.8.(3分)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3 B.﹣3 C.D.9.(3分)按一定规律排列的单项式:a,,,,,…,第n个单项式是()A.B.C.D.10.(3分)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=()A.4米B.6米C.8米D.10米11.(3分)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.12.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°二、填空题(本大题共4小题,每小题2分,共8分)13.(2分)函数y=的自变量x的取值范围是.14.(2分)五边形的内角和等于度.15.(2分)分解因式:x2﹣4=.16.(2分)数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为分米.三、解答题(本大题共8小题,共56分)17.(6分)计算:|﹣1|+(﹣2)2﹣(π﹣1)0+()﹣1﹣tan45°.18.(6分)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.19.(7分)调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游.这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥勒市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.20.(7分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.21.(7分)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A、B两种型号的帐篷.若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元.(1)求每顶A种型号帐篷和每顶B种型号帐篷的价格;(2)若该景区需要购买A、B两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A种型号帐篷数量不超过购买B种型号帐篷数量的,为使购买帐篷的总费用最低,应购买A种型号帐篷和B种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?22.(7分)如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且E、F分别在边BC、AD上,AE=AF.(1)求证:四边形AECF是菱形;(2)若∠ABC=60°,△ABE的面积等于,求平行线AB与DC间的距离.23.(8分)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.24.(8分)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.2023年云南省中考数学试卷+答案解析(答案部分)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.(3分)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作()A.﹣80米B.0米C.80米D.140米【分析】正数和负数可以表示具有相反意义的量,据此即可得出答案.【解析】解:∵向东走60米记作+60米,∴向西走80米可记作﹣80米,故选:A.【点评】本题考查正数与负数的实际意义,明确正数和负数是一对具有相反意义的量最为关键.2.(3分)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.340×104B.34×105C.3.4×105D.0.34×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:将340000用科学记数法表示为:3.4×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=()A.145°B.65°C.55°D.35°【分析】由对顶角相等可得∠3=∠1=35°,再由平行线的性质求解即可.【解析】解:如图,∵∠1=35°,∴∠3=∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:D.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.4.(3分)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥【分析】由主视图和俯视图确定是柱体,锥体还是球体,再由左视图确定具体形状.【解析】解:根据主视图和左视图、俯视图都为圆形判断出是球.故选:A.【点评】此题主要考查了由三视图判断几何体,3个视图的大致轮廓为圆形的几何体为球体.5.(3分)下列计算正确的是()A.a2•a3=a6B.(3a)2=6a2C.a6÷a3=a2D.3a2﹣a2=2a2【分析】根据同底数幂乘法、幂的乘方与积的乘方、同底数幂除法以及合并同类项的法则计算即可.【解析】解:A、a2•a3=a2+3=a5,原式计算错误,故选项不符合题意;B、(3a)2=9a2,原式计算错误,故选项不符合题意;C、a6÷a3=a6﹣3=a3,原式计算错误,故选项不符合题意;D、3a2﹣a2=2a2,计算正确,故选项符合题意.故选:D.【点评】本题考查了同底数幂乘法、幂的乘方与积的乘方、同底数幂除法以及合并同类项,解题的关键是熟练掌握相关的定义和法则.6.(3分)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65 B.60 C.75 D.80【分析】根据众数的定义解答即可,一组数据中出现次数最多的数据叫做众数.【解析】解:这组数据中,60出现的次数最多,故这组数据的众数为60.故选:B.【点评】本题考查了众数,熟记定义是解题的关键.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解析】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点评】本题主要考查了轴对称图形的概念,熟知:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.这条直线是它的对称轴.8.(3分)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3 B.﹣3 C.D.【分析】将点A的坐标代入反比例函数的关系式即可求出k的值.【解析】解:∵点A(1,3)在反比例函数y=(k≠0)图象上,∴k=1×3=3,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,将点A的坐标代入反比例函数的关系式是正确解答的关键.9.(3分)按一定规律排列的单项式:a,,,,,…,第n个单项式是()A.B.C.D.【分析】根据题干所给单项式总结规律即可.【解析】解:第1个单项式为a,即a1,第2个单项式为a2,第3个单项式为a3,...第n个单项式为a n,故选:C.【点评】本题考查数式规律问题,根据已知单项式总结出规律是解题的关键.10.(3分)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=()A.4米B.6米C.8米D.10米【分析】根据三角形中位线定理计算即可.【解析】解:∵点M,N分别是AC和BC的中点,∴AB=2MN=6(m),故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.11.(3分)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.【分析】根据“乙同学比甲同学提前4分钟到达活动地点”列方程求解.【解析】解:∵乙同学的速度是x米/分,则甲同学的速度是1.2x米/分,由题意得:,故选:D.【点评】本题考查了分式方程的应用,找到相等关系是解题的关键.12.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°【分析】根据圆周角定理解答即可,在同圆或等圆中,同弧所对的圆周角等于这条弧所对的圆心角的一半.【解析】解:∵∠A=∠BOC,∠BOC=66°,∴∠A=33°.故选:B.【点评】本题考查了圆周角定理,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.二、填空题(本大题共4小题,每小题2分,共8分)13.(2分)函数y=的自变量x的取值范围是x≠10.【分析】根据分式的分母不能为0即可求得答案.【解析】解:已知函数为y=,则x﹣10≠0即x≠10,故答案为:x≠10.【点评】本题考查函数自变量的取值范围,此为基础且重要知识点,必须熟练掌握.14.(2分)五边形的内角和等于540度.【分析】直接根据n边形的内角和=(n﹣2)•180°进行计算即可.【解析】解:五边形的内角和=(5﹣2)•180°=540°.故答案为:540.【点评】本题考查了n边形的内角和定理:n边形的内角和=(n﹣2)•180°.15.(2分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解析】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.16.(2分)数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为分米.【分析】根据勾股定理计算即可.【解析】解:由勾股定理得:圆锥的高为:=(分米),故答案为:.【点评】本题考查的是圆锥的计算,熟记勾股定理是解题的关键.三、解答题(本大题共8小题,共56分)17.(6分)计算:|﹣1|+(﹣2)2﹣(π﹣1)0+()﹣1﹣tan45°.【分析】利用绝对值的性质,有理数的乘方,零指数幂,负整数指数幂,特殊角的三角函数值进行计算即可.【解析】解:原式=1+4﹣1+3﹣1=4+3﹣1=6.【点评】本题考查实数的运算,实数的相关运算法则是基础且重要知识点,必须熟练掌握.18.(6分)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.【分析】求出BC=DC,根据全等三角形的判定定理证明即可.【解析】证明:∵C是BD的中点,∴BC=DC,在△ABC和△EDC中,,∴△ABC≌△EDC(SSS).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.19.(7分)调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游.这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥勒市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【分析】(1)把5个示范区的人数相加,求出总人数即可解决问题;(2)利用样本估计总体的思想解决问题即可.【解析】解:(1)30+18+15+24+13=100(人).故本次被抽样调查的员工人数是100人;(2)900×30.00%=270(人).故估计该公司意向前往保山市腾冲市的员工人数是270人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.【分析】(1)根据题意画出树状图,再由树状图求得所有等可能的结果即可;(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,再由概率公式求解即可.【解析】解:(1)画树状图如下:共有9种等可能的结果,分别为(A,A)、(A,B)、(A,C)、(B,A),(B,C),(B,B)、(C,A)、(C,B)、(C,C);(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(7分)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A、B两种型号的帐篷.若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元.(1)求每顶A种型号帐篷和每顶B种型号帐篷的价格;(2)若该景区需要购买A、B两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A种型号帐篷数量不超过购买B种型号帐篷数量的,为使购买帐篷的总费用最低,应购买A种型号帐篷和B种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【分析】(1)设每顶A种型号帐篷m元,每顶B种型号帐篷n元,根据若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元得:,即可解得答案;(2)设购买A种型号帐篷x顶,总费用为w元,由购买A种型号帐篷数量不超过购买B种型号帐篷数量的,可得x≤5,而w=600x+1000(20﹣x)=﹣400x+20000,根据一次函数性质可得答案.【解析】解:(1)设每顶A种型号帐篷m元,每顶B种型号帐篷n元,根据题意得:,解得:,∴每顶A种型号帐篷600元,每顶B种型号帐篷1000元;(2)设购买A种型号帐篷x顶,总费用为w元,则购买B种型号帐篷(20﹣x)顶,∵购买A种型号帐篷数量不超过购买B种型号帐篷数量的,∴x≤(20﹣x),解得x≤5,根据题意得:w=600x+1000(20﹣x)=﹣400x+20000,∵﹣400<0,∴w随x的增大而减小,∴当x=5时,w取最小值,最小值为﹣400×5+20000=18000(元),∴20﹣x=20﹣5=15,答:购买A种型号帐篷5顶,购买B种型号帐篷15顶,总费用最低,最低总费用为18000元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.22.(7分)如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且E、F分别在边BC、AD上,AE=AF.(1)求证:四边形AECF是菱形;(2)若∠ABC=60°,△ABE的面积等于,求平行线AB与DC间的距离.【分析】(1)根据平行四边形对角相等得到∠BAD=∠BCD,再根据AE、CF分别是∠BAD、∠BCD的平分线,可得到∠DAE=∠BCF,再根据平行四边形对边平行得到∠DAE=∠AEB,于是有∠BCF=∠AEB,得出AE∥FC,根据两组对边分别平行的四边形是平行四边形可证得四边形AECF 是平行四边形,最后根据一组邻边相等的平行四边形是菱形即可得证;(2)连接AC,根据平行四边形的性质和角平分线的定义可证得AB=EB,结合已知∠ABC=60°得到△ABE是等边三角形,从而求出AB=AE=EB=EC=4,∠BAE=60°,再证得∠EAC=30°,即可得到∠BAC=90°,根据勾股定理求出AC的长,从而得出平行线AB与DC间的距离.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AD∥BC,∵AE、CF分别是∠BAD、∠BCD的平分线,∴,,∴∠DAE=∠BCF,∵AD∥BC,∴∠DAE=∠AEB,∴∠BCF=∠AEB,∴AE∥FC,∴四边形AECF是平行四边形,∵AE=AF,∴四边形AECF是菱形;(2)解:连接AC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=EB,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=∠ABEA=60°,∵△ABE的面积等于,∴,∴AB=4,即AB=AE=EB=4,由(1)知四边形AECF是菱形,∴AE=CE=4,∴∠EAC=∠ECA,∵∠AEB是△AEC的一个外角,∴∠AEB=∠EAC+∠ECA=60°,∴∠EAC=∠ECA=30°,∴∠BAC=∠BAE+∠EAC=90°,即AC⊥AB,由勾股定理得,即平行线AB与DC间的距离是.【点评】本题考查了菱形的判定与性质,掌握一组邻边相等的平行四边形是菱形是此题的关键,理解平行线间的距离的定义,等边三角形的性质与判定.23.(8分)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.【分析】(1)通过证明△ABC∽△DAC,可得∠ACB=∠ACD,可证OA⊥DE,即可求解;(2)设BO=OC=OA=a,则BC=2a,由相似三角形的性质可求CD的长,即可求解.【解析】解:(1)AE与⊙O相切,理由如下:如图,连接OA,∵DA•AC=DC•AB,∴,∵BC是⊙O的直径,∴∠BAC=90°=∠ADC,∴△ABC∽△DAC,∴∠ACB=∠ACD,∵OA=OC,∴∠OAC=∠ACB=∠ACD,∴OA∥CD,∴∠OAE=∠CDE=90°,∴OA⊥DE,又∵OA为半径,∴AE与⊙O相切;(2)如图,∵OA∥CD,∴△AOE∽△DCE,∴,设BO=OC=OA=a,则BC=2a,∵BC=BE=2a,∴S△ABE =S△ABC,EO=3a,EC=4a,∴,∴CD=a,∵△ABC∽△DAC,∴,∴AC2=BC•CD=a2,∵△ABC∽△DAC,∴=()2=,∴S2=S1,∴m=.【点评】本题考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,灵活运用这些性质解决问题是解题的关键.24.(8分)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.【分析】(1)分一次函数和二次函数分别证明函数图象T与x轴总有交点即可;(2)当a=﹣时,不符合题意;当a≠时,由0=(4a+2)x2+(9﹣6a)x﹣4a+4,得x=﹣或x=,即x==2﹣,因a是整数,故当2a+1是6的因数时,是整数,可得2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,分别解方程并检验可得a=﹣2或a=﹣1或a=0或a=1.【解析】(1)证明:当a=﹣时,函数表达式为y=12x+6,令y=0得x=﹣,∴此时函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;当a≠时,y=(4a+2)x2+(9﹣6a)x﹣4a+4为二次函数,∵Δ=(9﹣6a)2﹣4(4a+2)(﹣4a+4)=100a2﹣140a+49=(10a﹣7)2≥0,∴函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;综上所述,无论a取什么实数,图象T与x轴总有公共点;(2)解:存在整数a,使图象T与x轴的公共点中有整点,理由如下:当a=﹣时,不符合题意;当a≠时,在y=(4a+2)x2+(9﹣6a)x﹣4a+4中,令y=0得:0=(4a+2)x2+(9﹣6a)x﹣4a+4,解得x=﹣或x=,∵x==2﹣,a是整数,∴当2a+1是6的因数时,是整数,∴2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,解得a=﹣或a=﹣2或a=﹣或a=﹣1或a=0或a=或a=1或a=,∵a是整数,∴a=﹣2或a=﹣1或a=0或a=1.【点评】本题考查二次函数的应用,涉及一次函数,二次函数与一元二次方程的关系,解题的关键是理解整点的意义.。

2022年云南省中考数学试卷(解析版)

2022年云南省中考数学试卷(解析版)

2022年云南省中考数学试卷(真题)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题4分,共48分)(2022•云南)赤道长约为40000000m,用科学记数法可以把数字40000000(4分)1.表示为()A.4×107B.40×106C.400×105D.40000×103 2.(4分)(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.﹣10℃D.﹣20℃3.(4分)(2022•云南)如图,已知直线c与直线a、b都相交.若a∥b,∠1=85°,则∠2=()A.110°B.105°C.100°D.95°4.(4分)(2022•云南)反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限5.(4分)(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=()A.B.C.D.6.(4分)(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1 评委2 评委3 评委4 评委59.9 9.7 9.6 10 9.8数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6 B.9.7 C.9.8 D.9.97.(4分)(2022•云南)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥8.(4分)(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n 9.(4分)(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.10.(4分)(2022•云南)下列运算正确的是()A.+=B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a211.(4分)(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 12.(4分)(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是()A.=B.=C.=D.=二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2022•云南)若的意义,则实数x的取值范围为.14.(4分)(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为.15.(4分)(2022•云南)分解因式:x2﹣9=.16.(4分)(2022•云南)方程2x2+1=3x的解为.17.(4分)(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是.18.(4分)(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.三、解答题(本大题共6小题,共48分)19.(8分)(2022•云南)临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:(1)补全条形统计图;(2)若该小区有1820人,估计喜爱火腿粽的有多少人?20.(7分)(2022•云南)某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲.要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下,在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b.然后计算这两个数的和,即a+b.若a+b为奇数,则演奏《月光下的凤尾竹》;否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?21.(8分)(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD 的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.22.(8分)(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.23.(8分)(2022•云南)如图,四边形ABCD的外接圆是以BD为直径的⊙O.P 是⊙O的劣弧BC上的任意一点.连接PA、PC、PD,延长BC至E,使BD2=BC •BE.(1)试判断直线DE与⊙O的位置关系,并证明你的结论;(2)若四边形ABCD是正方形,连接AC.当P与C重合时,或当P与B重合时,把转化为正方形ABCD的有关线段长的比,可得=.当P 既不与C重合也不与B重合时,=是否成立?请证明你的结论.24.(9分)(2022•云南)已知抛物线y=﹣x2﹣x+c经过点(0,2),且与x 轴交于A、B两点.设k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,M 是抛物线y=﹣x2﹣x+c上的点,常数m>0,S为△ABM的面积.已知使S =m成立的点M恰好有三个,设T为这三个点的纵坐标的和.(1)求c的值;(2)直接写出T的值;(3)求的值.2022年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题只有一个正确选项,每小题4分,共48分)(4分)(2022•云南)赤道长约为40000000m,用科学记数法可以把数字40000000 1.表示为()A.4×107B.40×106C.400×105D.40000×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:40000000用科学记数法可表示为4×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.2.(4分)(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.﹣10℃D.﹣20℃【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C.【点评】本题考查了正数和负数,熟练掌握正数和负数可以用来表示具有相反意义的量是解题的关键.3.(4分)(2022•云南)如图,已知直线c与直线a、b都相交.若a∥b,∠1=85°,则∠2=()A.110°B.105°C.100°D.95°【分析】利用平行线的性质解答即可.【解答】解:∵∠1=85°,1=∠3,∴∠3=85°,∵a∥b,∴∠3+∠2=180°,∴∠2=180°﹣85°=95°.故选:D.【点评】本题主要考查了平行线的性质,对顶角相等,熟练掌握平行线的性质是解题的关键.4.(4分)(2022•云南)反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【解答】解:反比例函数y=,k=6>0,∴该反比例函数图象在第一、三象限,故选:A.【点评】本题考查反比例函数的性质、反比例函数的图象,解答本题的关键是明确当k>0,反比例函数图象经过第一、三象限.5.(4分)(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=()A.B.C.D.【分析】根据三角形的中位线定理,相似三角形的面积比等于相似比的平方解答即可.【解答】解:在△ABC中,D、E分别为线段BC、BA的中点,∴DE为△ABC的中位线,∴DE∥AC,DE=AC,∴△BED∽△BAC,∵=,∴=,即=,故选:B.【点评】本题主要考查了三角形的中位线定理和相似三角形的性质,熟练掌握这些性质和定理是解决本题的关键.6.(4分)(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1 评委2 评委3 评委4 评委59.9 9.7 9.6 10 9.8数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6 B.9.7 C.9.8 D.9.9【分析】根据中位数的定义即可得出答案.【解答】解:将数据从小到大排序为:9.6,9.7,9.8,9.9,10,中位数为9.8,故选:C.【点评】本题考查了中位数,掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数是解题的关键.7.(4分)(2022•云南)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个圆柱.【解答】解:此几何体为一个圆柱,故选:C.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.8.(4分)(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【分析】根据题目中的单项式,可以发现系数是一些连续的奇数,x的指数是一些连续的整数,从而可以写出第n个单项式.【解答】解:∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.【点评】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式系数和字母指数的变化特点.9.(4分)(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.【分析】利用垂径定理求得CE,利用余弦的定义在Rt△OCE中解答即可.【解答】解:∵AB是⊙O的直径,AB⊥CD,∴CE=DE=CD=12,∵AB=26,∴OC=13.∴cos∠OCE=.故选:B.【点评】本题主要考查了垂径定理,直角三角形的边角关系定理,熟练掌握直角三角形的边角关系定理是解题的关键.10.(4分)(2022•云南)下列运算正确的是()A.+=B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a2【分析】根据二次根式的加减法判断A选项;根据零指数幂判断B选项;根据积的乘方判断C选项;根据同底数幂的除法判断D选项.【解答】解:A选项,和不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=1,故该选项不符合题意;C选项,原式=﹣8a3,故该选项符合题意;D选项,原式=a3,故该选项不符合题意;故选:C.【点评】本题考查了二次根式的加减法,零指数幂,幂的乘方与积的乘方,同底数幂的除法,掌握a0=1(a≠0)是解题的关键.11.(4分)(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 【分析】由OB平分∠AOC,得∠DOE=∠FOE,由OE=OE,可知∠ODE=∠OFE,即可根据AAS得△DOE≌△FOE,可得答案.【解答】解:∵OB平分∠AOC,∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意,故选:D.【点评】本题考查全等三角形的判定,解题的关键是掌握全等三角形判定定理并会应用.12.(4分)(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是()A.=B.=C.=D.=【分析】根据实际植树400棵所需时间与原计划植树300棵所需时间相同,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:B.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2022•云南)若的意义,则实数x的取值范围为x≥﹣1 .【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.14.(4分)(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为(﹣1,5).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点A(1,﹣5)关于原点对称点为点B,∴点B的坐标为(﹣1,5).故答案为:(﹣1,5).【点评】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.15.(4分)(2022•云南)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.16.(4分)(2022•云南)方程2x2+1=3x的解为x1=1,x2=.【分析】方程利用因式分解法求出解即可.【解答】解:2x2+1=3x,2x2﹣3x+1=0,(x﹣1)(2x﹣1)=0,解得:x1=1,x2=.故答案为:x1=1,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:掌握十字相乘法解方程是本题的关键.17.(4分)(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是120°.【分析】根据题意可知,圆锥的底面圆的周长=扇形的弧长,即可列出相应的方程,然后求解即可.【解答】解:设这种圆锥的侧面展开图的圆心角度数是n,2π×10=,解得n=120,即这种圆锥的侧面展开图的圆心角度数是120°,故答案为:120°.【点评】本题考查圆锥的计算、一元一次方程的应用,解答本题的关键是明确圆锥的底面圆的周长=扇形的弧长.18.(4分)(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是40°或100°.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论.三、解答题(本大题共6小题,共48分)19.(8分)(2022•云南)临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:(1)补全条形统计图;(2)若该小区有1820人,估计喜爱火腿粽的有多少人?【分析】(1)先计算出抽样调查的总人数,用总人数减去喜欢其它三种粽子的人数即可,从而补全统计图;(2)根据样本估计总体计算即可.【解答】解:(1)抽样调查的总人数:70÷35%=200(人),喜欢火腿粽的人数为:200﹣70﹣40﹣30=60(人),补全条形统计图如图所示:(2)根据题意得:1820×=546(人),答:喜爱火腿粽的有546人,故答案为:546.【点评】本题主要考查了条形统计图和扇形统计图,体现了用样本估计总体的思想.20.(7分)(2022•云南)某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲.要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下,在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b.然后计算这两个数的和,即a+b.若a+b为奇数,则演奏《月光下的凤尾竹》;否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?【分析】(1)利用列表法解答即可;(2)利用计算概率的方法解答即可.【解答】解:(1)按游戏规则计算两个数的和,列表如下:从表中可以看出共有8种等可能;(2)我认为这个游戏公平,理由:从表中可以看出共有8种等可能,其中和为奇数与和为偶数的等可能性各有4种,所以P(和为奇数)=P(和为偶数),∴这个游戏公平.【点评】本题主要考查了列表法或树状图法,游戏的公平性,事件的概率,利用游戏规则正确列出表格是解题的关键.21.(8分)(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD 的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【分析】(1)由四边形ABCD是平行四边形,得∠BAE=∠FDE,而点E是AD 的中点,可得△BEA≌△FED(ASA),即知EF=EB,从而四边形ABDF是平行四边形,又∠BDF=90°,即得四边形ABDF是矩形;(2)由∠AFD=90°,AB=DF=3,AF=BD,得AF===4,S=DF•AF=12,四边形ABCD是平行四边形,得CD=AB=3,从而S△BCD 矩形ABDF=BD•CD=6,即可得四边形ABCF的面积S为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===4,∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=BD•CD=×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.22.(8分)(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.【分析】(1)根据购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元,可以列出相应的二元一次方程组,然后求解即可;(2)根据题意,可以写出W与a的函数关系式,根据甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,可以得到a的取值范围,再根据一次函数的性质,即可得到W的最小值.【解答】解:(1)设每桶甲消毒液价格为x元,每桶乙消毒液的价格为y元,由题意可得:,解得,答:每桶甲消毒液价格为45元,每桶乙消毒液的价格为35元;(2)由题意可得,W=45a+35(30﹣a)=10a+1050,∴W随a的增大而增大,∵甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,∴,解得17.5≤a≤20,∵a为整数,∴当a=18时,W取得最小值,此时W=1230,30﹣a=12,答:购买甲消毒液18瓶,乙消毒液12瓶时,才能使总费用W最少,最少费用是1230元.【点评】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组,写出相应的函数解析式,利用一次函数的性质求最值.23.(8分)(2022•云南)如图,四边形ABCD的外接圆是以BD为直径的⊙O.P 是⊙O的劣弧BC上的任意一点.连接PA、PC、PD,延长BC至E,使BD2=BC •BE.(1)试判断直线DE与⊙O的位置关系,并证明你的结论;(2)若四边形ABCD是正方形,连接AC.当P与C重合时,或当P与B重合时,把转化为正方形ABCD的有关线段长的比,可得=.当P 既不与C重合也不与B重合时,=是否成立?请证明你的结论.【分析】(1)可证明△BCD∽△BDE,从而得出∠BDE=∠BCD=90°,从而得出结论;(2)作ED⊥PD,交PC的延长线于E,可得出∠DPC=∠APD=45°,进而得出△PDE是等腰直角三角形,再证得△PAD≌△ECD,从而得出CE=AP,进一步得出结论.【解答】解:(1)DE与⊙O相切,理由如下:∵BD为⊙O的直径,∴∠BCD=90°,∵BD2=BC•BE,∴,∵∠CBD=∠DBE,∴△BCD∽△BDE,∴∠BDE=∠BCD=90°,∵点D在圆上,∴DE是⊙O的切线,即:DE与⊙O相切;(2)如图,=仍然成立,理由如下:作ED⊥PD,交PC的延长线于E,∴∠EDP=90°,∵四边形ABCD是正方形,∴CD=AD,∠ADC=90°,AC⊥BD,∴∠COD=∠AOD=90°,∠ADC=∠EDP,∴∠ADC﹣∠PDC=∠EDP﹣∠PDC,即:∠ADP=∠CDE,∵=,∴∠CPD=,同理可得:∠APD=,∴∠E=90°﹣∠DPE=90°﹣45°=45°,∴∠E=∠EPD,cos E==,∴DE=PD,,∴,在△PAD和△ECD中,,∴△PAD≌△ECD(SAS),∴PA=CE,∴.【点评】本题考查了圆周角定理及其推论,正方形性质等腰直角三角形判定和性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解决问题的关键作辅助线,构造全等三角形.24.(9分)(2022•云南)已知抛物线y=﹣x2﹣x+c经过点(0,2),且与x 轴交于A、B两点.设k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,M 是抛物线y=﹣x2﹣x+c上的点,常数m>0,S为△ABM的面积.已知使S =m成立的点M恰好有三个,设T为这三个点的纵坐标的和.(1)求c的值;(2)直接写出T的值;(3)求的值.【分析】(1)直接将(0,2)代入抛物线y=﹣x2﹣x+c中可得结论;(2)先配方成顶点式,写出顶点坐标,因为使S=m成立的点M恰好有三个,常数m>0,S为△ABM的面积,所以在x轴上方有一个点,其纵坐标为,下方有两个点,每一个点的纵坐标为﹣,可得T的值;(3)由题意可知:x=k是x2+x﹣2=0的解,则k2+k﹣2=0,得k2=2﹣k,直接代入降次可得结论.【解答】解:(1)把点(0,2)代入抛物线y=﹣x2﹣x+c中得:c=2;(2)由(1)知:y=﹣x2﹣x+2=﹣(x+)2+,∴顶点的坐标为(﹣,),∵使S=m成立的点M恰好有三个,常数m>0,S为△ABM的面积,∴其中一个点M就是抛物线的顶点,∴T=﹣×2+=﹣;(3)当y=0时,﹣x2﹣x+2=0,x2+x﹣2=0,∵k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,即x=k是x2+x﹣2=0的解,∴k2+k﹣2=0,∴k2=2﹣k,∴k4=(2﹣k)2=4﹣4k+3k2=4﹣4k+3(2﹣k)=10﹣7k,∵k8+k6+2k4+4k2+16=(10﹣7k)2+(2﹣k)(10﹣7k)+2(10﹣7k)+4(2﹣k)+16=100﹣140k+147k2+20﹣24k+21k2+20﹣14k+8﹣4k+16=164﹣182k+168(2﹣k)=500﹣350k,∴==.【点评】本题是二次函数的综合题,考查了二次函数的性质,配方法,抛物线与x轴的交点,抛物线与一元二次方程的关系,学会待定系数法求函数解析式,解题的关键是转化的思想,把问题转化为方程解决,属于中考压轴题.。

云南省中考数学试卷含答案解析版

云南省中考数学试卷含答案解析版

2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x+a+5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AA AA =13,则AA +AA +AAAA +AA +AA = .4.(3分)使√9−A 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5A 上,若a 、b 都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.×105B.×106C.×107D.67×1088.(4分)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.(4分)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a610.(4分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.(4分)sin60°的值为()A.√3B.√32C.√22D.1212.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为和D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖13.(4分)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3A B.5√3C.3√3A D.3√314.(4分)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.21.(8分)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O 是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017?云南)2的相反数是﹣2 .【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017?云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7 .【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017?云南)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AA AA =13,则AA +AA +AA AA +AA +AA = 13 .【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE ∽△ABC ,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AA AA =AA +AA +AA AA +AA +AA =13. 故答案为:13.【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017?云南)使√9−A有意义的x的取值范围为x≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.【点评】考查了二次根式的意义和性质.概念:式子√A(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017?云南)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为2π+4 .【考点】MC:切线的性质;LE:正方形的性质;MO:扇形面积的计算.【分析】连接HO,延长HO交CD于点P,证四边形AHPD为矩形知HF为⊙O的直径,同理得EG为⊙O的直径,再证四边形BGOH、四边形OGCF、四边形OFDE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,根据阴影部分面积=12S⊙O+S△HGF可得答案.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√AA2+AA2=2√2则阴影部分面积=12S⊙O+S△HGF=12?π?22+12×2√2×2√2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017?云南)已知点A(a,b)在双曲线y=5A上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣15x+1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A (a ,b )在双曲线y=5A 上, ∴ab=5,∵a 、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B (a ,0)、C (0,b )两点的一次函数的解析式为y=mx+n . ①当a=1,b=5时,由题意,得{A +A =0A =5,解得{A =−5A =5, ∴y=﹣5x+5;②当a=5,b=1时,由题意,得{5A +A =0A =1,解得{A =−15A =1, ∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1. 故答案为y=﹣5x+5或y=﹣15x+1. 【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017?云南)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.×105B.×106C.×107D.67×108【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017?云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017?云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017?云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)?180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)?180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017?云南)sin60°的值为()A.√3B.√32C.√22D.12【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√3 2.故选B.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017?云南)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为和D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017?云南)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3)A.5√3A B.5√3C.3√3A D.3√3【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180AA180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=√3r,∵圆锥的体积等于9√3π∴9√3π=13πr2h,∴r=3,∴h=3√3故选(D)【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017?云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=180°−40°2=70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017?云南)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF .【解答】解:∵BE=CF ,∴BE+EC=CF+EC ,∴BC=EF ,在△ABC 与△DEF 中,{AA =AA AA =AA AA =AA∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017?云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4;(2)第n个等式是:(A+1)2−A2−12=A,证明:∵(A+1)2−A2−12=[(A+1)+A][(A+1)−A]−12=2A+1−12=2A 2=n,∴第n个等式是:(A+1)2−A2−12=A.【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017?云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017?云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x+20×≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,(1000A +2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017?云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=13.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017?云南)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=132,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=12AB=AE,Rt△ACD中,DF=12AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017?云南)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c即可解决问题.(2)设M(m,n),由题意12?3?|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意12?3?|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±√7,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017?云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017?云南)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.【考点】MR:圆的综合题.【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD?OP=OC2,根据已。

2022年云南省中考数学试卷(解析版)

2022年云南省中考数学试卷(解析版)

2022年云南省中考数学试卷一、选择题(本大题共12小题,每小题只有一个正确选项,每小题4分,共48分)1.(4分)(2022•云南)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.40000×103 2.(4分)(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.﹣10℃D.﹣20℃3.(4分)(2022•云南)如图,已知直线c与直线a、b都相交.若a∥b,∠1=85°,则∠2=()A.110°B.105°C.100°D.95°4.(4分)(2022•云南)反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限5.(4分)(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC 的面积为S1,△EBD的面积为S2,则=()A.B.C.D.6.(4分)(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6B.9.7C.9.8D.9.97.(4分)(2022•云南)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥8.(4分)(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n 9.(4分)(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.10.(4分)(2022•云南)下列运算正确的是()A.+=B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a211.(4分)(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 12.(4分)(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是()A.=B.=C.=D.=二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2022•云南)若的意义,则实数x的取值范围为.14.(4分)(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为.15.(4分)(2022•云南)分解因式:x2﹣9=.16.(4分)(2022•云南)方程2x2+1=3x的解为.17.(4分)(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是.18.(4分)(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.三、解答题(本大题共6小题,共48分)19.(8分)(2022•云南)临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:(1)补全条形统计图;(2)若该小区有1820人,估计喜爱火腿粽的有多少人?20.(7分)(2022•云南)某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲.要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下,在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b.然后计算这两个数的和,即a+b.若a+b 为奇数,则演奏《月光下的凤尾竹》;否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?21.(8分)(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.22.(8分)(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.23.(8分)(2022•云南)如图,四边形ABCD的外接圆是以BD为直径的⊙O.P是⊙O的劣弧BC上的任意一点.连接P A、PC、PD,延长BC至E,使BD2=BC•BE.(1)试判断直线DE与⊙O的位置关系,并证明你的结论;(2)若四边形ABCD是正方形,连接AC.当P与C重合时,或当P与B重合时,把转化为正方形ABCD的有关线段长的比,可得=.当P既不与C重合也不与B重合时,=是否成立?请证明你的结论.24.(9分)(2022•云南)已知抛物线y=﹣x2﹣x+c经过点(0,2),且与x轴交于A、B 两点.设k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,M是抛物线y=﹣x2﹣x+c 上的点,常数m>0,S为△ABM的面积.已知使S=m成立的点M恰好有三个,设T为这三个点的纵坐标的和.(1)求c的值;(2)直接写出T的值;(3)求的值.2022年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题只有一个正确选项,每小题4分,共48分)1.(4分)(2022•云南)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.40000×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:40000000用科学记数法可表示为4×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(4分)(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.﹣10℃D.﹣20℃【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C.【点评】本题考查了正数和负数,熟练掌握正数和负数可以用来表示具有相反意义的量是解题的关键.3.(4分)(2022•云南)如图,已知直线c与直线a、b都相交.若a∥b,∠1=85°,则∠2=()A.110°B.105°C.100°D.95°【分析】利用平行线的性质解答即可.【解答】解:∵∠1=85°,1=∠3,∴∠3=85°,∵a∥b,∴∠3+∠2=180°,∴∠2=180°﹣85°=95°.故选:D.【点评】本题主要考查了平行线的性质,对顶角相等,熟练掌握平行线的性质是解题的关键.4.(4分)(2022•云南)反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【解答】解:反比例函数y=,k=6>0,∴该反比例函数图象在第一、三象限,故选:A.【点评】本题考查反比例函数的性质、反比例函数的图象,解答本题的关键是明确当k >0,反比例函数图象经过第一、三象限.5.(4分)(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC 的面积为S1,△EBD的面积为S2,则=()A.B.C.D.【分析】根据三角形的中位线定理,相似三角形的面积比等于相似比的平方解答即可.【解答】解:在△ABC中,D、E分别为线段BC、BA的中点,∴DE为△ABC的中位线,∴DE∥AC,DE=AC,∴△BED∽△BAC,∵=,∴=,即=,故选:B.【点评】本题主要考查了三角形的中位线定理和相似三角形的性质,熟练掌握这些性质和定理是解决本题的关键.6.(4分)(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6B.9.7C.9.8D.9.9【分析】根据中位数的定义即可得出答案.【解答】解:将数据从小到大排序为:9.6,9.7,9.8,9.9,10,中位数为9.8,故选:C.【点评】本题考查了中位数,掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数是解题的关键.7.(4分)(2022•云南)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个圆柱.【解答】解:此几何体为一个圆柱,故选:C.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.8.(4分)(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【分析】根据题目中的单项式,可以发现系数是一些连续的奇数,x的指数是一些连续的整数,从而可以写出第n个单项式.【解答】解:∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.【点评】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式系数和字母指数的变化特点.9.(4分)(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.【分析】利用垂径定理求得CE,利用余弦的定义在Rt△OCE中解答即可.【解答】解:∵AB是⊙O的直径,AB⊥CD,∴CE=DE=CD=12,∵AB=26,∴OC=13.∴cos∠OCE=.故选:B.【点评】本题主要考查了垂径定理,直角三角形的边角关系定理,熟练掌握直角三角形的边角关系定理是解题的关键.10.(4分)(2022•云南)下列运算正确的是()A.+=B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a2【分析】根据二次根式的加减法判断A选项;根据零指数幂判断B选项;根据积的乘方判断C选项;根据同底数幂的除法判断D选项.【解答】解:A选项,和不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=1,故该选项不符合题意;C选项,原式=﹣8a3,故该选项符合题意;D选项,原式=a3,故该选项不符合题意;故选:C.【点评】本题考查了二次根式的加减法,零指数幂,幂的乘方与积的乘方,同底数幂的除法,掌握a0=1(a≠0)是解题的关键.11.(4分)(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 【分析】由OB平分∠AOC,得∠DOE=∠FOE,由OE=OE,可知∠ODE=∠OFE,即可根据AAS得△DOE≌△FOE,可得答案.【解答】解:∵OB平分∠AOC,∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意,故选:D.【点评】本题考查全等三角形的判定,解题的关键是掌握全等三角形判定定理并会应用.12.(4分)(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是()A.=B.=C.=D.=【分析】根据实际植树400棵所需时间与原计划植树300棵所需时间相同,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:B.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2022•云南)若的意义,则实数x的取值范围为x≥﹣1.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.14.(4分)(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为(﹣1,5).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点A(1,﹣5)关于原点对称点为点B,∴点B的坐标为(﹣1,5).故答案为:(﹣1,5).【点评】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.15.(4分)(2022•云南)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.16.(4分)(2022•云南)方程2x2+1=3x的解为x1=1,x2=.【分析】方程利用因式分解法求出解即可.【解答】解:2x2+1=3x,2x2﹣3x+1=0,(x﹣1)(2x﹣1)=0,解得:x1=1,x2=.故答案为:x1=1,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:掌握十字相乘法解方程是本题的关键.17.(4分)(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是120°.【分析】根据题意可知,圆锥的底面圆的周长=扇形的弧长,即可列出相应的方程,然后求解即可.【解答】解:设这种圆锥的侧面展开图的圆心角度数是n,2π×10=,解得n=120,即这种圆锥的侧面展开图的圆心角度数是120°,故答案为:120°.【点评】本题考查圆锥的计算、一元一次方程的应用,解答本题的关键是明确圆锥的底面圆的周长=扇形的弧长.18.(4分)(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是40°或100°.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论.三、解答题(本大题共6小题,共48分)19.(8分)(2022•云南)临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:(1)补全条形统计图;(2)若该小区有1820人,估计喜爱火腿粽的有多少人?【分析】(1)先计算出抽样调查的总人数,用总人数减去喜欢其它三种粽子的人数即可,从而补全统计图;(2)根据样本估计总体计算即可.【解答】解:(1)抽样调查的总人数:70÷35%=200(人),喜欢火腿粽的人数为:200﹣70﹣40﹣30=60(人),补全条形统计图如图所示:(2)根据题意得:1820×=546(人),答:喜爱火腿粽的有546人,故答案为:546.【点评】本题主要考查了条形统计图和扇形统计图,体现了用样本估计总体的思想.20.(7分)(2022•云南)某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲.要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下,在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b.然后计算这两个数的和,即a+b.若a+b 为奇数,则演奏《月光下的凤尾竹》;否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?【分析】(1)利用列表法解答即可;(2)利用计算概率的方法解答即可.【解答】解:(1)按游戏规则计算两个数的和,列表如下:从表中可以看出共有8种等可能;(2)我认为这个游戏公平,理由:从表中可以看出共有8种等可能,其中和为奇数与和为偶数的等可能性各有4种,所以P(和为奇数)=P(和为偶数),∴这个游戏公平.【点评】本题主要考查了列表法或树状图法,游戏的公平性,事件的概率,利用游戏规则正确列出表格是解题的关键.21.(8分)(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【分析】(1)由四边形ABCD是平行四边形,得∠BAE=∠FDE,而点E是AD的中点,可得△BEA≌△FED(ASA),即知EF=EB,从而四边形ABDF是平行四边形,又∠BDF =90°,即得四边形ABDF是矩形;(2)由∠AFD=90°,AB=DF=3,AF=BD,得AF===4,S=DF•AF=12,四边形ABCD是平行四边形,得CD=AB=3,从而S△BCD=BD 矩形ABDF•CD=6,即可得四边形ABCF的面积S为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===4,∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=BD•CD=×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.22.(8分)(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.【分析】(1)根据购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元,可以列出相应的二元一次方程组,然后求解即可;(2)根据题意,可以写出W与a的函数关系式,根据甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,可以得到a的取值范围,再根据一次函数的性质,即可得到W的最小值.【解答】解:(1)设每桶甲消毒液价格为x元,每桶乙消毒液的价格为y元,由题意可得:,解得,答:每桶甲消毒液价格为45元,每桶乙消毒液的价格为35元;(2)由题意可得,W=45a+35(30﹣a)=10a+1050,∴W随a的增大而增大,∵甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,∴,解得17.5≤a≤20,∵a为整数,∴当a=18时,W取得最小值,此时W=1230,30﹣a=12,答:购买甲消毒液18瓶,乙消毒液12瓶时,才能使总费用W最少,最少费用是1230元.【点评】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组,写出相应的函数解析式,利用一次函数的性质求最值.23.(8分)(2022•云南)如图,四边形ABCD的外接圆是以BD为直径的⊙O.P是⊙O的劣弧BC上的任意一点.连接P A、PC、PD,延长BC至E,使BD2=BC•BE.(1)试判断直线DE与⊙O的位置关系,并证明你的结论;(2)若四边形ABCD是正方形,连接AC.当P与C重合时,或当P与B重合时,把转化为正方形ABCD的有关线段长的比,可得=.当P既不与C重合也不与B重合时,=是否成立?请证明你的结论.【分析】(1)可证明△BCD∽△BDE,从而得出∠BDE=∠BCD=90°,从而得出结论;(2)作ED⊥PD,交PC的延长线于E,可得出∠DPC=∠APD=45°,进而得出△PDE 是等腰直角三角形,再证得△P AD≌△ECD,从而得出CE=AP,进一步得出结论.【解答】解:(1)DE与⊙O相切,理由如下:∵BD为⊙O的直径,∴∠BCD=90°,∵BD2=BC•BE,∴,∵∠CBD=∠DBE,∴△BCD∽△BDE,∴∠BDE=∠BCD=90°,∵点D在圆上,∴DE是⊙O的切线,即:DE与⊙O相切;(2)如图,=仍然成立,理由如下:作ED⊥PD,交PC的延长线于E,∴∠EDP=90°,∵四边形ABCD是正方形,∴CD=AD,∠ADC=90°,AC⊥BD,∴∠COD=∠AOD=90°,∠ADC=∠EDP,∴∠ADC﹣∠PDC=∠EDP﹣∠PDC,即:∠ADP=∠CDE,∵=,∴∠CPD =,同理可得:∠APD =,∴∠E=90°﹣∠DPE=90°﹣45°=45°,∴∠E=∠EPD,cos E ==,∴DE=PD ,,∴,在△P AD和△ECD中,,∴△P AD≌△ECD(SAS),∴P A=CE,∴.【点评】本题考查了圆周角定理及其推论,正方形性质等腰直角三角形判定和性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解决问题的关键作辅助线,构造全等三角形.24.(9分)(2022•云南)已知抛物线y=﹣x2﹣x+c经过点(0,2),且与x轴交于A、B 两点.设k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,M是抛物线y=﹣x2﹣x+c上的点,常数m>0,S为△ABM的面积.已知使S=m成立的点M恰好有三个,设T为第21页(共23页)这三个点的纵坐标的和.(1)求c的值;(2)直接写出T的值;(3)求的值.【分析】(1)直接将(0,2)代入抛物线y=﹣x2﹣x+c中可得结论;(2)先配方成顶点式,写出顶点坐标,因为使S=m成立的点M恰好有三个,常数m>0,S为△ABM的面积,所以在x 轴上方有一个点,其纵坐标为,下方有两个点,每一个点的纵坐标为﹣,可得T的值;(3)由题意可知:x=k是x2+x﹣2=0的解,则k2+k﹣2=0,得k2=2﹣k,直接代入降次可得结论.【解答】解:(1)把点(0,2)代入抛物线y=﹣x2﹣x+c中得:c=2;(2)由(1)知:y=﹣x2﹣x+2=﹣(x +)2+,∴顶点的坐标为(﹣,),∵使S=m成立的点M恰好有三个,常数m>0,S为△ABM的面积,∴其中一个点M就是抛物线的顶点,∴T =﹣×2+=﹣;(3)当y=0时,﹣x2﹣x+2=0,x2+x﹣2=0,∵k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,即x=k是x2+x﹣2=0的解,∴k2+k﹣2=0,∴k2=2﹣k,∴k4=(2﹣k)2=4﹣4k+3k2=4﹣4k+3(2﹣k)=10﹣7k,∵k8+k6+2k4+4k2+16=(10﹣7k)2+(2﹣k)(10﹣7k)+2(10﹣7k)+4(2﹣k)+16=100﹣140k+147k2+20﹣24k+21k2+20﹣14k+8﹣4k+16=164﹣182k+168(2﹣k)=500﹣350k,第22页(共23页)∴==.【点评】本题是二次函数的综合题,考查了二次函数的性质,配方法,抛物线与x轴的交点,抛物线与一元二次方程的关系,学会待定系数法求函数解析式,解题的关键是转化的思想,把问题转化为方程解决,属于中考压轴题.第23页(共23页)。

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A .100米B .100-米C .200米D .200-米【答案】B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A .45.7810⨯B .357.810⨯C .257810⨯D .578010⨯【答案】A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3.下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4在实数范围内有意义,则x的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A .正方体B .圆柱C .圆锥D .长方体【答案】D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6.一个七边形的内角和等于()A .540︒B .900︒C .980︒D .1080︒【答案】B【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x 环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁【答案】A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A .8.已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .72【答案】C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF 平分BAC ∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF 是等腰ABC 底边BC 上的高,∴AF 平分BAC ∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A .2nx B .()1nn x-C .1n nx +D .()1nn x+【答案】D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .爱B .国C .敬D .业【答案】D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不是轴对称图形,不符合题意;B 、图形不是轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A .45B .35C .43D .3413.如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4514.分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公二、填空题16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是.【答案】1c >/1c<【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.【答案】120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题20.计算:12117sin3062-⎛⎫++---⎪⎝⎭.21.如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AEBAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22.某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长. ∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、25.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线2x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M27.如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析∴点O在线段AD的中垂线上,=,∵CA CD∴点C在线段AD的中垂线上,⊥,∴OC AD。

2022年云南省中考数学真题卷(含答案解析)

2022年云南省中考数学真题卷(含答案解析)
∴ ,OC= =13,
∴ .
故选:B.
【点睛】此题考查的是垂径定理,锐角三角函数的定义,熟练掌握垂径定理,锐角三角函数的定义是解答此题的关键.
10.下列运算正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】根据合并同类二次根式判断A,根据零次幂判断B,根据积的乘方判断C,根据同底数幂的除法判断D.
A. 110°B. 105°C. 100°D. 95°
【答案】D
【解析】
【分析】利用平角的定义,平行线的性质:两直线平行,同位角相等,即可得出答案.
【详解】解:如下图,
∵∠1=85°,
∴∠3=180°-85°=95°,
∵a b,∠3=95°,
∴∠2=∠3=95°.
故选:D.
【点睛】此题主要考查了平角的定义和平行线的性质,解题的关键是正确掌握平行线的性质.
【答案】B
【解析】
【分析】设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.
【详解】解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,
根据题意,可列方程: ,
故选:B.
【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.
(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;
(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?
【答案】(1)见解析,(a,b)所有可能出现的结果总数有8种;
(2)游戏公平,理由见解析
【解析】
【分析】(1)列表列出所有等可能结果即可;

中考数学试题及答案云南

中考数学试题及答案云南

中考数学试题及答案云南一、选择题1. 在某个等差数列中,前三项的和为7,公差为2,求这个数列的第n项。

A. 4n-5B. 2n+1C. 2n-3D. 4n+7答案:A2. 如果两个角互为补角,那么它们的和是多少?A. 90°B. 180°C. 270°D. 360°答案:B3. 设一个正方体的边长为a,那么这个正方体的表面积是多少?A. a²B. 2a²C. 4a²D. 6a²答案:D4. 一个三角形的两个内角分别为60°和90°,那么第三个角是多少?A. 30°B. 45°C. 60°D. 90°答案:D5. 一张长方形的长是5cm,宽是2cm,它的面积是多少?A. 5cmB. 7cmC. 10cmD. 12cm答案:C二、填空题1. 若12 ÷ x = 3,那么x的值是多少?答案:42. 若一个矩形的长比宽大4cm,且它的周长为18cm,那么它的面积是多少?答案:28cm²3. 若一个等差数列的首项是2,公差是3,那么其中的第5项是多少?答案:144. 若一个正方形的边长为xcm,它的周长是多少?答案:4x5. 设一个三角形的两条边长分别为4cm和6cm,夹角为90°,那么它的面积是多少?答案:12cm²三、解答题1. 小明有一些苹果,他分给小红后,自己还剩下三分之一。

如果他分给小红的苹果数是12个,那么小明原本有多少个苹果?解析:设小明原本有x个苹果,根据题意可以得到方程x - 12 = (2/3)x。

解这个方程可以得到x = 36。

因此,小明原本有36个苹果。

2. 已知一个等差数列的首项是5,公差是3,求该数列的前n项和。

解析:首先,根据等差数列的通项公式an = a1 + (n-1)d,可以得到这个数列的通项公式为an = 5 + 3(n-1)。

2023年云南省中考数学真题(解析版)

2023年云南省中考数学真题(解析版)

2023年云南省初中学业水平考试数学(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1. 中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作( )A. 80−米B. 0米C. 80米D. 140米【答案】A【解析】【分析】此题主要用正负数来表示具有意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可.【详解】解∶∵向东走60米记作60+米,�向西走80米可记作80−米,故选A .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负是解题的关键.2. 云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为( )A. 434010×B. 53410×C. 53.410×D. 60.3410× 【答案】C【解析】【分析】根据科学记数法的记数方法,340000写成10n a ×其中01a <≤,故得到答案.【详解】解:533.04040001=×.故答案:C .【点睛】本题考查了科学记数法的定义,准确确定a 和n 的值是本题的解题关键.3. 如图,直线c 与直线a b 、都相交.若,135a b ∠=°∥,则2∠=( ) 为A. 145°B. 65°C. 55°D. 35°【答案】D【解析】 【分析】根据平行线的性质,对顶角相等,即可求解.【详解】解:如图所示,∵a b ∥,1335==°∠∠∴2335∠=∠=°,故选:D .【点睛】本题考查了对顶角相等,平行线的性质,熟练掌握平行线的性质是解题的关键.4. 某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A. 球B. 圆柱C. 长方体D. 圆锥【答案】A【解析】 【分析】根据球体三视图的特点确定结果.【详解】解:根据球体三视图的特点:球体的三视图都是大小相等的圆,确定该几何体为球.故选:A .【点睛】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.5. 下列计算正确的是( )A. 236a a a ⋅=B. 22(3)6a a =C. 632a a a ÷=D. 22232a a a −=【答案】D【解析】【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ×⋅==,故A 错误; 2222(3)39a a a ==,故B 错误;63633a a a a −÷==,故C 错误;()22223312a a a a −=−=,故D 正确.故本题选:D .【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.6. 为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学迸行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为( )A. 65B. 60C. 75D. 80【答案】B【解析】【分析】根据众数的定义求解即可.【详解】解:在65,60,75,60,80中,出现次数最多的是60,∴这组数据的众数是60,故选;B【点睛】本题考查了众数,众数是指一组数据中出现次数最多的数据,掌握众数的定义是解题的关键. 7. 中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A.B. C. D. 【答案】C【解析】【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A 、B 、D 选项都不是轴对称图形,符合轴对称图形的只有C 选项;故选C .【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.8. 若点()1,3A 是反比例函数(0)ky k x =≠图象上一点,则常数k 的值为( )A. 3B. 3−C. 32 D. 32−【答案】A【解析】【分析】将点()1,3A 代入反比例函数(0)ky k x =≠,即可求解.【详解】解:�点()1,3A 是反比例函数(0)ky k x =≠图象上一点,∴133k =×=,故选:A .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9. 按一定规律排列的单项式:2345,a ,第n 个单项式是( ) A.B. 1n −C. nD. 1n −【答案】C【解析】,字母为a ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第n n ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.10. 如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =( )A. 4米B. 6米C. 8米D. 10米【答案】B【解析】 【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米), 故选∶B .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11. 阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( ) A. 1.24800400x x −= B. 1.24800400x x −= C. 40080041.2x x −= D. 80040041.2x x−= 【答案】D【解析】【分析】设乙同学的速度是x 米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设设乙同学的速度是x 米/分,可得:80040041.2x x−= 故选∶ D .【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.12. 如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=°,则A ∠=( )A. 66°B. 33°C. 24°D. 30°【答案】B【解析】【分析】根据圆周角定理即可求解.【详解】解:∵ BC BC =,66BOC ∠=°, ∴1332A BOC ∠=∠=°,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题(本大题共4小题,每小题2分,共8分)13. 函数110y x =−的自变量x 的取值范围是________.【答案】10x ≠【解析】 【分析】要使110−x 有意义,则分母不为0,得出结果. 【详解】解:要使110−x 有意义得到100x −≠,得10x ≠.故答案为:10x ≠.【点睛】本题考查了函数自变量取值范围,分式有意义的条件,理解分母不为零是解决问题的关键.14. 五边形的内角和是________度.【答案】540【解析】【分析】根据n 边形内角和为()2180n −×°求解即可.【详解】五边形的内角和是()52180540−×°=°.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n −×°是解题关键.15. 分解因式:24m −=_____.【答案】(2)(2)m m +−【解析】【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m −+−,故填(2)(2)m m +−【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.16. 数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为________分米.【解析】【分析】根据勾股定理得,圆锥的高2=母线长2−底面圆的半径2得到结果.【详解】解:由圆锥的轴截面可知:圆锥的高2=母线长2−底面圆的半径2圆锥的高=.【点睛】本题考查了圆锥,勾股定理,其中对圆锥的高,母线长,底面圆的半径之间的关系的理解是解决本题的关键.三、解答题(本大题共8小题,共56分)17. 计算:1201|1|(2)(1)tan 453π− −+−−−+−°. 【答案】6【解析】【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案. 【详解】解:1201|1|(2)(1)tan 453π− −+−−−+− ° 14131=+−+−6=.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.18. 如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【解析】【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC = = =,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键. 19.调查主题某公司员工的旅游需求 调查人员某中学数学兴趣小组 调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游,这5个示范区为:A .保山市腾冲市;B .昆明市石林彝族自治县;C .红河哈尼族彝族自治州弥物市;D .大理白族自治州大理市;E .丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【答案】(1)100人(2)270人【解析】【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.【小问1详解】本次被抽样调查的员工人数为:3030.00%=100÷(人),所以,本次被抽样调查的员工人数为100人;【小问2详解】90030.00%=270×(人),答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.20. 甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A,种植茄子为B,种植西红柿为C,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.【答案】(1)9 (2)1 3【解析】【分析】(1)根据题意列出树状图,即可得到答案;(2)根据(1)列出的情况,找到甲、乙两名同学选择种植同一种蔬菜的情况,得出概率.【小问1详解】解:由题意得:共有9种情况,分别是:()()()()()()()()(),,,,,,,,,A A A B A C B A B B B C C A C B C C 、、、、、、、、.【小问2详解】解:由(1)得其中甲、乙两名同学选择种植同一种蔬菜的情况有()()(),,,A A B B C C 、、,共3种, 31==93P , ∴甲、乙两名同学选择种植同一种蔬菜的概率为13【点睛】本题考查了树状图法求概率的问题,解题的关键是画出树状图.21. 蓝天白云下,青山绿水问,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A B 、两种型号的帐篷.若购买A 种型号帐篷2顶和B 种型号帐篷4顶,则需5200元;若购买A 种型号帐篷3顶和B 种型号帐篷1顶,则需2800元.(1)求每顶A 种型号帐篷和每顶B 种型号帐篷的价格;(2)若该景区需要购买A B 、两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,为使购买帐篷的总费用最低,应购买A 种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元 (2)当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买A 种型号帐篷数量不超过购买B 种型号帐篷数量13,列出一元一次不等式,得出A 种型号帐篷数量范围,再根据一次函数的性质,取A 种型号帐篷数量的最大值时总费用最少,从而得出答案.【小问1详解】解:设每顶A 种型号帐篷的价格为x 元,每顶B 种型号帐篷的价格为y 元.根据题意列方程组为:24520032800x y x y += += ,解得6001000x y = = , 答:每顶A 种型号帐篷价格为600元,每顶B 种型号帐篷的价格为1000元.【小问2详解】解:设A 种型号帐篷购买m 顶,总费用为w 元,则B 种型号帐篷为(20)m −顶,由题意得6001000(20)40020000w m m m =+−=−+, 其中()1203m m ≤−,得5m ≤, 故当A 种型号帐篷为5顶时,总费用最低,总费用为()6005100020518000w=×+×−=, 答:当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关键.22. 如图,平行四边形ABCD 中,AE CF 、分别是BAD BCD ∠∠、的平分线,且E F 、分别在边BC AD 、上,AE AF =.(1)求证:四边形AECF 是菱形;(2)若60ABC ∠=°,ABE的面积等于,求平行线AB 与DC 间的距离.【答案】(1)证明见解析(2)的的【分析】(1)先证AD BC ∥,再证AE FC ,从而四边形AECF 是平行四边形,又AE AF =,于是四边形AECF 是菱形;(2)连接AC ,先求得60BAE DAE ABC ∠∠∠===°,再证AC AB ⊥,9030ACB ABC EAC ∠∠∠=°−=°=AB AC =,得AB AC =,再证AE BE CE ==,从而根据面积公式即可求得AC=.【小问1详解】证明:∵四边形ABCD 是平行四边形,�AD BC ∥,BAD BCD ∠∠=,�BEA DAE ∠∠=,�AE CF 、分别是BAD BCD ∠∠、的平分线,∴BAE DAE ∠∠==12BAD ∠,BCF ∠=12BCD ∠,�DAE BCF BEA ∠∠∠==,�AE FC ,�四边形AECF 是平行四边形,∵AE AF =,∴四边形AECF 是菱形;小问2详解】解:连接AC ,∵AD BC ∥,60ABC ∠=°,�180120BAD ABC ∠∠=°−=°,�60BAE DAE ABC ∠∠∠===°,�四边形AECF 是菱形,【�EAC ∠=1230DAE ∠=°,�90BAC BAE EAC ∠∠∠=+=°,�AC AB ⊥,9030ACB ABC EAC ∠∠∠=°−=°=,�AE CE =,tan 30tan AB ACB AC °=∠=AB AC=,∴AB AC =, �BAE ABC ∠∠=,�AE BE CE ==,∵ABE 的面积等于∴21122ABC S AC AB AC AC AC =⋅===∴平行线AB 与DC 间的距离AC =【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.23. 如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S .(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值. 【答案】(1)EA 与O 相切,理由见解析(2)23【解析】【分析】(1)EA 与O 相切,理由如下:连接OA ,先证BAC ADC ∽得ABO DAC ∠∠=,又证ABO BAO DAC ∠∠∠==,进而有90OAD OAC DAC ∠∠∠=+=°,于是即可得EA 与O 相切;(2)先求得2EAC ABE S S = ,再证EAB ECA ∽,得222EAC ABE S AC S AB == ,从而有2232BC AC =,又BAC ADC ∽,即可得解.【小问1详解】解:EA 与O 相切,理由如下:连接OA ,∵BC 是O 的直径,直线EA 与CD 垂直,∴90BAC ADC ∠∠==°,�DA AC DC AB ⋅=⋅, ∴DA DCAB AC =,∴BAC ADC ∽∴ABO DAC ∠∠=,�OA OB =,�ABO BAO DAC ∠∠∠==,∵90BAC BAO OAC ∠∠∠=+=°,�90OAD OAC DAC ∠∠∠=+=°,�OA DE ⊥,�EA 与O 相切;【小问2详解】解:∵BC BE =,∴122EAC ABE S S S == ,1EAC ABC S S S == , ∴2EAC ABES S = ,∵OA DE ⊥,�90OAB BAE OAE ∠∠∠+==°,�90BAC ∠=°,OBA OBA ∠∠=,�90OBA ECA ∠∠+=°,�EAB ECA ∠∠=,�E E ∠∠=,∴EAB ECA ∽, ∴222EAC ABE S AC S AB == , �2212AB AC = 又�90BAC ∠=°, �2222221322BC AC AB AC AC ++===, ∴2223AC BC = �BAC ADC ∽, �222123ADC BAC S S AC m S S BC==== . 【点睛】本题考查了直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定,勾股定理,熟练掌握直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定以及勾股定理等知识是解题的关键.24. 数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++−−+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.【答案】(1)见解析 (2)0a =或1a =−或1a =或2a =−【解析】【分析】(1)分12a =−与12a ≠−两种情况讨论论证即可; (2)当12a =−时,不符合题意,当12a ≠−时,对于函数2(42)(96)44y a x a x a =++−−+,令0y =,得2(42)(96)440a x a x a ++−−+=,从而有4421a x a −=+或12x =−,根据整数a ,使图象T 与x 轴公共点中有整点,即x 为整数,从而有211a +=或211a +=−或212a +=或212a +=−或213a +=或213a +=−或216a +=或216a +=−,解之即可.【小问1详解】 解:当12a =−时,420a +=,函数2(42)(96)44y a x a x a =++−−+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =−,∴一次函数126y x =+与x 轴的交点为102− ,; 当12a ≠−时,420a +≠,函数2(42)(96)44y a x a x a =++−−+为二次函数,∵2(42)(96)44y a x a x a =++−−+,∴()2(96)(42)444a a a ∆+−−−+228110836643232a a a a =−++−−214049100a a −+=()20107a =≥−, ∴当12a ≠−时,2(42)(96)44y a x a x a =++−−+与x 轴总有交点,∴无论a 取什么实数,图象T 与x 轴总有公共点;【小问2详解】 解:当12a =−时,不符合题意, 当12a ≠−时,对于函数2(42)(96)44y a x a x a =++−−+,令0y =,则2(42)(96)440a x a x a ++−−+=,∴()()()2144210a x a x +−−+= ,∴()()21440a x a +−−=或210x +=的∴4421a x a −=+或12x =−, ∵6221x a =−+,整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数, ∴211a +=或211a +=−或212a +=或212a +=−或213a +=或213a +=−或216a +=或216a +=−,解得0a =或1a =−或12a =(舍去)或32a =−(舍去)或1a =或2a =−或52a =(舍去)或72a =−(舍去),∴0a =或1a =−或1a =或2a =−.【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键.。

云南省中考数学试题及答案

云南省中考数学试题及答案

云南省中考数学试题及答案第一部分:选择题(共30题,每题4分,共120分)1. 已知正整数a、b满足a×b=12,且a-b=2,则a的值是()A. 3B. 4C. 5D. 62. 下图是尺规作图的过程,已知l1、l2互相垂直,求∠A的度数.(作图省略)A. 30°B. 45°C. 60°D. 75°3. 若函数y=2x+1的图象与函数y=4x-1的图象交于点P,则点P的坐标是()A. (1, 1)B. (-1, -1)C. (1, 3)D. (3, 1)......28. 若a是正数,那么下列等式中等式的解集与其他三个不相同的是()A. log2a+log3a=1B. log2a-log3a=1C. log2a+log3a=0D. log2a-log3a=029. 在旋转图形中的三对相互垂直的线段分别画一段高于旋转图形的相同长度的线段,最得到的图形有()A. 一个螺旋形B. 一个大小与原图形相同的圆形C. 一个大小与原图形不同的螺旋形D. 一个大小与原图形相同的螺旋形30. 已知两组数(1, 3, 5, a, 9)和(a, b, 4, 6, 8),其中a、b都是整数,数56在两组数中都不存在,则下列说法正确的是()A. a=2, b=7B. a=7, b=2C. a=2, b=4D. a=7, b=4第二部分:非选择题(共6题,每题15分,共90分)31. 某市今年的人口是30万人,年增长率为3%,那么该市在5年后的人口是多少人?32. 如图所示,阴影部分是一个边长为4cm的正方形,求圆的半径r.(图略)33. 定义两个集合的“⊕”运算如下:集合A⊕集合B是有集合A中只出现一次和集合B中只出现一次的数构成的集合,例如,{2, 3} ⊕{1, 3, 4}={2, 4},已知A⊕B={1, 5},那么A={ },B={ }.(填写满足题意的数)34. 图中两个扇形的圆心角分别是108°和60°,则阴影部分的面积所占的圆的面积的比例是多少?35. 如图所示,AB是一条直线,P、Q、R、S是直线上的四点,PA=3cm,BP=6cm,RS=12cm,连接A、B分别与连接P、S交于点M,连接Q、R交于点N,则线段MN的长度是多少?36. 一架飞机从甲地飞往乙地,在甲地飞行了2小时时,的飞机使用的剩余燃料是整个航程用油量的1/5,而飞机飞行的前一小时里使用的油量是整个航程用油量的1/3,这架飞机飞行了多长时间到达乙地?答案:1. C2. C3. A ...... 28. C 29. C 30. D31. 331500人32. r=2cm33. A={2, 5},B={3, 4}34. 7 : 935. 9cm36. 3小时本文为云南省中考数学试题及答案,共包含30道选择题和6道非选择题,旨在帮助考生更好地复习和备考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013云南省中考数学真题试卷和答案一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)﹣6的绝对值是()A.﹣6 B.6C.±6 D.2.(3分)下列运算,结果正确的是()A.m6÷m3=m2B.3mn2•m2n=3m3n3C.(m+n)2=m2+n2D.2mn+3mn=5m2n2 3.(3分)图为某个几何体的三视图,则该几何体是()A.B.C.D.4.(3分)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元5.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.A C=BDC.A C⊥BD D.▱ABCD是轴对称图形6.(3分)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是()A.相离B.外切C.相交D.内切7.(3分)要使分式的值为0,你认为x可取得数是()A.9B.±3 C.﹣3 D.38.(3分)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)25的算术平方根是.10.(3分)分解因式:x3﹣4x=.11.(3分)在函数中,自变量x的取值范围是.12.(3分)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).13.(3分)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=.14.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、解答题(本大题共9个小题,满分58分)15.(4分)计算:sin30°+(﹣1)0+()﹣2﹣.16.(5分)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.17.(6分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.组别 A B C D E时间t(分钟)t<40 40≤t<60 60≤t<80 80≤t<100 t≥100人数12 30 a 24 12(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)求各组人数的众数及B组圆心角度数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.19.(7分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.20.(6分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?21.(7分)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE 是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.22.(7分)某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.23.(9分)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.答案一、选择题1-4 BBDB 5-8 ACDA二、填空题9、510、x(x+2)(x﹣2)11、x≥﹣1且x≠012、13、44°14、三、解答题15、解:原式=+1+4﹣=5.解答:解:(1)∵AB=AD,∠A=∠A,∴若利用“AAS”,可以添加∠C=∠E,若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE,若利用“SAS”,可以添加AC=AE,或BE=DC,综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或∠EBC=∠CDE或AC=AE 或BE=DC);故答案为:∠C=∠E;(2)选∠C=∠E为条件.理由如下:在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).17、解答:解:(1)如图所示:.(2)结合坐标系可得:A'(5,2),B'(0,6),C'(1,0).18、解答:解:(1)12÷10%=120(人);(2)a=120﹣12﹣30﹣24﹣12=42;(3)众数是12人;(4)每天体育锻炼时间不少于1小时的学生人数是:2400×=1560(人).19、解答:解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)(2)所有等可能的情况数为9种,其中是x2﹣3x+2=0的解的为(1,2),(2,1)共2种,则P是方程解=.解答:解:过点A作AD⊥BC于D,根据题意得∠ABC=30°,∠ACD=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴CA=CB.∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC中,∠ACD=60°,∴CD=AC=×100=50(海里).故船继续航行50海里与钓鱼岛A的距离最近.21、解答:解:(1)∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S矩形ADBE=BD•AD=3×4=12.22、解答:解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.解答:解:(1)设直线EC的解读式为y=kx+b,根据题意得:,解得,∴y=x+1,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0).∵四边形ABCD是等腰梯形,C(2,3),∴点D的坐标为(0,3).(2)设过A(﹣1,0)、D(0,3)、C(2,3)三点的抛物线的解读式为y=ax2+bx+c,则有:,解得,∴抛物线的关系式为:y=x2﹣2x+3.(3)存在.①作线段AC的垂直平分线,交y轴于点P1,交AC于点F.∵OA=OE,∴△OAE为等腰直角三角形,∠AEO=45°,∴∠FEP1=∠AEO=45°,∴△FEP1为等腰直角三角形.∵A(﹣1,0),C(2,3),点F为AC中点,∴F(,),∴等腰直角三角形△FEP1斜边上的高为,∴EP1=1,∴P1(0,2);②以点A为圆心,线段AC长为半径画弧,交y轴于点P2,P3.可求得圆的半径长AP2=AC=3.连接AP2,则在R t△AOP2中,OP2===,∴P2(0,).∵点P3与点P2关于x轴对称,∴P3(0,﹣);③以点C为圆心,线段CA长为半径画弧,交y轴于点P4,P5,则圆的半径长CP4=CA=3,在Rt△CDP4中,CP4=3,CD=2,∴DP4===,∴O P4=OD+DP4=3+,∴P4(0,3+);同理,可求得:P5(0,3﹣).综上所述,满足条件的点P有5个,分别为:P1(0,2),P2(0,),P3(0,﹣),P4(0,3+),P5(0,3﹣).。

相关文档
最新文档