梁的强度和刚度计算
桥式起重机主梁强度、刚度计算
桥式起重机箱形主梁强度计算一、通用桥式起重机箱形主梁强度计算(双梁小车型)1、受力分析作为室内用通用桥式起重机钢结构将承受常规载荷P G、P Q和P H三种基本载荷和偶然载荷P S,因此为载荷组合H。
其主梁上将作用有P G、P Q、P H载荷。
主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。
当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。
2、主梁断面几何特性计算上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。
④y ch 1 R (H 寸)12巴佗h 2)(cm )⑤ J x Bh 13 122F 1 y 1 2b(Hhi h 2)3 22F 2 y 3F 3 y (cm )12212 ⑥J yAB 3h 2B 22也2F 2(弓 b)2(cm 4)1212122 2图2-4注:此箱形截面垂直形心轴为 y-y 形心线,为对称形心线。
因上下翼 缘板厚不等,应以x '— X’为参考形心线,利用平行轴原理求水平形心线 x — X 位置y c 。
① 断面形状如图2-4所示,尺寸如图所示的H 、h i 、h 2、B 、b 、b o 等。
② FF i2F 2F 3[ F i Bh i , F 2 bh o , F 3 Bh ?]③ q Fr (kg/m )F 1 2F 2 F 3⑦W X J x/y c和J x/H y c(cm3)⑧W y J y B (cm3)3、许用应力为[]和[]4、受力简图Pi P2图2-5P i与P2为起重小车作用在一根主梁上的两个车轮轮压,由P Q和小车自重分配到各车轮的作用力为轮压。
如P i P2 P时,可认为P等于P Q和小车自重之和的四分之一5. 主梁跨中集中载荷(轮压P i 和P 2)产生最大垂直弯矩 M p注:建议当R M P 2时’采用P 宁计算为佳6. 跨中均布载荷(自重P G )产生最大垂直弯矩M q1P 3S i qS 2Mq 丁 晋(N • m )7. 主梁跨中垂直最大弯矩 M 垂M 垂 Mp Mq8. 主梁跨中水平惯性载荷产生弯矩 M 水图2-6Mp 込空(N • m)4RM P 2时简算Mp2P 号 (N • m)R P 2 P 时Mp2PS b(N • m)P i M P 2时,可近似取PP i P 2 2跨端最大剪力Q m axQmaxP1P2(1S 爰(1S 2r 2q 惯S (324竺)r(N • m)式中:r S 8c3 2l3 土2B 2 J 2y」2y ----------端梁截面的J y (cm 4)1P1P (小车自重P Q )乙——起重机大车驱动轮数Z ——总轮数1乙 q 惯q i 5 Z9. 主梁跨中截面弯曲强度计算[]IIs1.3410. 主梁跨端剪切强度计算J iy主梁端截面的J y (cm 4)P 1 P 2跨端最大剪应力Q maxSo[ ] [ ] ||TJ :[ ]|1「S o ――主梁跨端截面的静面矩(中性轴以上面积对中性轴的静面矩,各面积乘以形心至中性轴距离;cm 3)--- 腹板厚(cm )儿一一截面的水平惯性矩(cm 4)二、通用桥式起重机箱形主梁刚度计算 1.垂直静刚度f 垂l 为小车轮压至主梁支承处距离,见下图所示「1 l J 2图2-8(P l P 2)S 348EJ x[f](P i P 2)l(0.75S 2 I 2)12EJ[f]简算精算注:①P i 、P 2不乘以系数。
梁的强度和刚度计算
梁的强度和刚度计算强度是指梁抵抗外力的能力。
梁的强度计算一般包括了两个方面:弯曲强度和剪切强度。
其中,弯曲强度是指梁在受到弯曲作用时的承载能力,剪切强度是指梁在受到剪切力作用时的承载能力。
弯曲强度的计算通常基于弹性理论,其中最常用的方法是根据梁的截面形状和材料的弹性模量来计算梁的截面抵抗力矩。
弹性模量是材料的一种力学性质,它衡量了材料在受力后产生的应变程度。
根据梁的截面形状和边界条件,可以计算出梁在弯曲作用下的最大应力和最大应变。
将最大应力与材料的弯曲强度进行比较,就可以判断梁是否满足设计要求。
剪切强度的计算也是基于弹性理论。
梁在受到剪切力作用时,梁内部会发生剪切变形。
剪切强度的计算包括两个方面:剪切应力和剪切变形。
剪切应力是指剪切力对梁截面的作用,剪切变形是指梁截面产生的剪切位移。
剪切强度的计算要求同时满足两个条件:剪切应力小于材料的剪切强度,剪切变形小于允许的变形限制。
刚度是指梁在受到力作用后的变形程度。
梁的刚度决定了梁的承载能力和结构的稳定性。
刚度的计算通常考虑梁的弹性变形和塑性变形两个方面。
弹性变形是指梁在小荷载下的弯曲变形,主要涉及梁的截面形状、材料的弹性模量和梁的长度等因素。
塑性变形是指梁在大荷载下的弯曲变形,主要涉及梁的屈服强度、截面形状和材料的塑性性质等因素。
根据梁的受力情况,可以计算出梁的弯曲刚度和剪切刚度。
弯曲刚度表示梁在受到弯曲作用时的抵抗变形能力,剪切刚度表示梁在受到剪切力作用时的抵抗变形能力。
在梁的强度和刚度计算中,需要根据具体的工程要求和设计规范进行。
梁的截面形状、材料的性质和受力情况都会对强度和刚度的计算结果产生影响。
因此,工程师需要根据具体情况选择适当的计算方法和模型进行计算。
同时,还需要进行合理的验算和对比,确保梁的设计满足强度和刚度的要求。
梁的强度和刚度计算.
梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。
(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算:单向弯曲时f W M nx x x ≤=γσ (5-3)双向弯曲时f W M W M ny y y nx x x ≤+=γγσ (5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。
为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。
需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。
(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。
工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。
截面上的最大剪应力发生在腹板中和轴处。
在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。
因此,设计的抗剪强度应按下式计算v w f It ≤=τ (5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩;I ——毛截面惯性矩;t w ——腹板厚度;f v ——钢材的抗剪强度设计值。
图5-3 腹板剪应力当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。
型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。
梁的刚度计算范文
梁的刚度计算范文梁的刚度是指材料在受到外力作用时的抵抗变形的能力。
在工程中,刚度是一个非常重要的参数,它决定了梁的强度和稳定性。
梁的刚度计算可以通过不同的方法进行,下面将介绍两种常用的计算方法:简支梁的刚度计算和悬臂梁的刚度计算。
一、简支梁的刚度计算简支梁是指两个端点都可以转动的梁,它的刚度可以通过弯曲刚度来计算。
弯曲刚度是指单位长度下的梁的抵抗弯曲变形的能力。
1.简支梁的弯曲刚度公式简支梁的弯曲刚度可以通过以下公式进行计算:EI=(WL^3)/(48D)其中,EI为弯曲刚度,W为作用在梁上的力或负荷,L为梁的长度,D为梁的挠度。
2.弯曲刚度的单位和性质弯曲刚度的单位是N.m^2,它的数值越大,梁的刚度越高。
弯曲刚度与梁的材料属性有关,即与材料的弹性模量E和惯性矩I有关。
E表示材料的刚度,单位为N/m^2,I表示梁的惯性矩,单位为m^4、弯曲刚度EI 的数值越大,表示材料的刚度越高。
二、悬臂梁的刚度计算悬臂梁是指只有一个端点可以转动的梁,它的刚度可以通过挠度和力矩进行计算。
1.悬臂梁的挠度计算悬臂梁的挠度是指梁在受到外力作用时的弯曲变形。
悬臂梁的挠度可以通过以下公式进行计算:δ=(FL^3)/(3EI)其中,δ为悬臂梁的挠度,F为作用在梁上的力或负荷,L为梁的长度,E为梁的弹性模量,I为梁的惯性矩。
2.悬臂梁的刚度计算悬臂梁的刚度可以通过力矩和挠度的比值来计算:K=M/δ其中,K为悬臂梁的刚度,M为悬臂梁上的力矩,δ为悬臂梁的挠度。
总结:梁的刚度是指梁在受到外力作用时的抵抗变形的能力。
梁的刚度可以通过弯曲刚度和挠度进行计算。
简支梁的刚度可以通过弯曲刚度进行计算,悬臂梁的刚度可以通过力矩和挠度的比值进行计算。
两种方法都可以用来计算梁的刚度,根据具体的梁结构和受力情况选择适当的计算方法。
8.3.5 梁的刚度计算
8.3.5 梁的刚度计算梁的刚度计算,通常是校核其变形是否超过许用挠度[ f ]和许用转角[θ],可以表述为:≤y f []max≤θθ[]max式中y max 和θmax 为梁的最大挠度和最大转角。
在机械工程中,一般对梁的挠度和转角都进行校核;而在土木工程中,常常只校核挠度,并且以许用挠度与跨长的比值lf []作为校核的标准,即: ≤l lf y []max (8.17) 土木工程中的梁,强度一般起控制作用,通常是由强度条件选择梁的截面,再校核刚度。
例8.9 简支梁受力如图8.11所示,采用22a 号工字钢,其弹性模量=E 200GPa ,=l f 400[]1,试校核梁的刚度。
解:由附录查表可得=I 3400cm z 4,=EIy ql 3845max 4。
于是 =<=⨯⨯⨯⨯==⨯⨯l f l EI ql y 600400[]1138438420010MPa 340010mm 554N/mm 6000mm 344max 333所以梁的刚度满足要求。
下面介绍提高梁弯曲刚度的一些措施。
在不改变荷载的条件下,梁的变形与抗弯刚度EI 成反比,与跨长的n 次幂(n 可取1、2、3或4)成正比。
所以,提高弯曲刚度的一些措施有:(1)增大EI 。
这方面可以考虑采用惯性矩较大的工字形、槽形、箱形等截面形状。
须指出的是,高强钢与普通钢的弹性模量相差无几,所以采用高强钢对提高刚度的作用并不明显。
(2)调整跨长或改变结构。
减小跨长对变形的影响较为明显,如龙门吊车大梁就采用了两端外伸的结构形式。
此外,增加约束形成超静定梁,也能显著减小梁的变形,同时还可以提高弯曲强度。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)。
梁的强度与刚度
• 弹性最大弯矩
M e Wn f y
• 塑性铰弯矩
M pn Wpn f y
• 截面形状系数 F WPn /Wn
• 梁的《规范》计算方法
✓ 以部分截面发展塑性(1/4截面)为极限承载力状态
✓ 单向弯曲
M x(y)
f
W x( y) xn( yn)
✓双向弯曲 M x M y f xWxn yWyn
a ——集中荷载沿梁跨度方向的支承长度,吊车梁可取a
为50mm;
hy ——自吊车梁轨顶或其它梁顶面至腹板计算高度上边
缘的距离。
四、折算应力
• 钢材处于复杂应力状态,应按下式计算折算
应力:
eq
2
2 c
c
3 2
1 f
——
In —— 梁净截面惯性矩;
y1 ——所计算点至梁中和轴的距离; ——计算折算应力的强度设计值增大系数
梁的强度与刚度
一、梁的强度
• 梁在荷载作用下将产生弯应力、剪应力,在集
中荷载作用处还有局部承压应力,故梁的强度 应包括:抗弯强度、抗剪强度、局部成压强度, 在弯应力、剪应力及局部压应力共同作用处还 应验算折算应力。
1、抗弯强度
• 弹性阶段:以边缘屈服为最大承载力
• 弹塑性阶段:以塑性铰弯矩为最大承
✓ 式中:γ为塑性发展系数,按P163,表5.1 • b1/t≥13及直接承受动力荷载时γ=1.0
二、抗剪强度
• 工字形和槽形截面梁中,由于截面的壁厚远
小于截面的高度和宽度,故可假设剪应力的
大小沿壁厚不变;又因壁的两侧表面皆为自 由面,故又可认为剪应力的方向与周边相切。 根据这两个假设可推导得剪应力的计算公式:
VS I xtw
钢梁验算1
跨度为7m 的H200*100*11*7的HRB345的工字钢,两端锚栓固接,均布荷载为30KN/M,验算梁的强度、刚度、整体稳定性和局部稳定性。
2max 1183.75/8M ql KN M ==max 11052F ql KN ==12200100117h b t t ⨯⨯⨯=⨯⨯⨯3274112001421007100 3.5 1.89361012x I mm ⨯〈-〉=⨯⨯⨯〈-〉+=⨯〈〉3364710011200142 1.1873101212y I mm ⨯⨯〈-〉=⨯+=⨯〈〉 7531.893610 1.89361020022x x I W mm h ⨯===⨯〈〉 6431.187310 2.70841010022y y I W mm h ⨯===⨯〈〉 5186186100796.511 1.15121024S =⨯⨯+⨯⨯=⨯ 10072111863446A =⨯⨯+⨯=74.1287x i ==18.562y i ==1. 强度验算:在弯矩x M 作用下:x x nx M f W γ≤ 此处f =3102/N mm 2. 抗剪强度:v wVS f It τ=≤ 1w t t =;x I I = 3. 局部承压强度:若梁两端之间受集中力作用,则需要验算,而此处受力为均布力,则无需验算。
具体公式为:c w Ff It ψσ=≤4. 刚度:[]υυ≤ 35[]384x ql l EI l υυ=≤ 一般,前面验算满足,则该点满足 5. 整体稳定性:对于双轴对称的工字形截面:x b x M f W σϕ=≤24320235]b b b x yy Ah W f ϕβηλ=⨯⨯+⨯ 345y f = 算b β要用到ξ,2 2.45 2.0lt bhξ==b β取:①:荷载作用在工字钢的上翼缘0.95b β=②:荷载作用在工字钢的下翼缘 1.33b β=对双轴对称工字钢:0b η=下面是我算的两个,但都不满足:1. 强度验算:625183.75109703101 1.894110x x nx M N mm f W γ⨯==='⨯⨯ 2. 整体稳定性:取0.95b β=得0.226240.6b ϕ=x b xM W σϕ=显然,强度验算不满足,则稳定性肯定不满足。
梁的刚度计算
梁的刚度计算The Standardization Office was revised on the afternoon of December 13, 2020梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。
(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算: 单向弯曲时f W M nxx x≤=γσ(5-3)双向弯曲时f W M W M nyy y nx x x≤+=γγσ(5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。
为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。
需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。
(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。
工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。
截面上的最大剪应力发生在腹板中和轴处。
在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。
因此,设计的抗剪强度应按下式计算v wf It VS≤=τ(5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度;f v ——钢材的抗剪强度设计值。
桥式起重机主梁强度、刚度计算
桥式起重机箱形主梁强度计算一、通用桥式起重机箱形主梁强度计算(双梁小车型)1、受力分析作为室用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。
其主梁上将作用有G P 、Q P 、H P 载荷。
主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。
当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。
2、主梁断面几何特性计算上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。
图2-4注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。
因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。
① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。
② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /)④ 321232021122.)21(2)2(F F F h F h h F h H F Fy F y ii c +++++-=∑⋅∑=(cm ) ⑤ 223322323212113112212)(212y F Bh y F h h H b y F Bh J x ⋅++⋅+--+⋅+= (4cm ) ⑥ 202032231)22(21221212bb F h b B h B h J y ++++= (4cm )⑦ c X X y J W /=和c X y H J -/(3cm ) ⑧ 2BJ W yy =(3cm ) 3、许用应力为 ][σ和 ][τ。
4、受力简图1P 与2P 为起重小车作用在一根主梁上的两个车轮轮压,由Q P 和小车自重分配到各车轮的作用力为轮压。
梁的强度和刚度计算.
梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。
(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算:单向弯曲时f W M nx x x ≤=γσ (5-3)双向弯曲时f W M W M ny y y nx x x ≤+=γγσ (5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。
为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。
需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。
(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。
工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。
截面上的最大剪应力发生在腹板中和轴处。
在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。
因此,设计的抗剪强度应按下式计算v w f It ≤=τ (5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩;I ——毛截面惯性矩;t w ——腹板厚度;f v ——钢材的抗剪强度设计值。
图5-3 腹板剪应力当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。
型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。
梁的强度和刚度计算
梁的强度和刚度计算1.梁的强度计算梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。
(1)梁的抗弯强度作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下:梁的抗弯强度按下列公式计算:单向弯曲时f W M nx x x ≤=γσ (5-3)双向弯曲时f W M W M ny y y nx x x ≤+=γγσ (5-4)式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny ——梁对x 轴和y 轴的净截面模量;y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到;f ——钢材的抗弯强度设计值。
为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。
需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。
(2)梁的抗剪强度一般情况下,梁同时承受弯矩和剪力的共同作用。
工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。
截面上的最大剪应力发生在腹板中和轴处。
在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。
因此,设计的抗剪强度应按下式计算v w f It ≤=τ (5-5)式中:V ——计算截面沿腹板平面作用的剪力设计值;S ——中和轴以上毛截面对中和轴的面积矩;I ——毛截面惯性矩;t w ——腹板厚度;f v ——钢材的抗剪强度设计值。
图5-3 腹板剪应力当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。
型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。
梁的强度与刚度计算.
第八章梁的强度与刚度第二十四讲梁的正应力截面的二次矩第二十五讲弯曲正应力强度计算(一)第二十六讲弯曲正应力强度计算(二)第二十七讲弯曲切应力简介第二十八讲梁的变形概述提高梁的强度和刚度第二十四讲纯弯曲时梁的正应力常用截面的二次矩目的要求:掌握弯曲梁正应力的计算和正应力分布规律。
教学重点:弯曲梁正应力的计算和正应力分布规律。
教学难点:平行移轴定理及其应用。
教学内容:第八章平面弯曲梁的强度与刚度计算§8-1 纯弯曲时梁的正应力一、纯弯曲概念:1、纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。
2、剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。
二、纯弯曲时梁的正应力:1、中性层和中性轴的概念:中性层:纯弯曲时梁的纤维层有的变长,有的变短。
其中有一层既不伸长也不缩短,这一层称为中性层。
中性轴:中性层与横截面的交线称为中性轴。
2、纯弯曲时梁的正应力的分布规律:以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。
3、纯弯曲时梁的正应力的计算公式:(1)、任一点正应力的计算公式:(2)、最大正应力的计算公式:其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。
说明:以上纯弯曲时梁的正应力的计算公式均适用于剪切弯曲。
§8-2 常用截面的二次矩平行移轴定理一、常用截面的二次矩和弯曲截面系数:1、矩形截面:2、圆形截面和圆环形截面:圆形截面圆环形截面其中:3、型钢:型钢的二次矩和弯曲截面系数可以查表。
二、组合截面的二次矩平行移轴定理1、平行移轴定理:截面对任一轴的二次矩等于它对平行于该轴的形心轴的二次矩,加上截面面积与两轴之间的距离平方的乘积。
I Z1=I Z+a2A2、例题:例1:试求图示T形截面对其形心轴的惯性矩。
解:1、求T形截面的形心座标yc2、求截面对形心轴z轴的惯性矩第二十五讲弯曲正应力强度计算(一)目的要求:掌握塑性材料弯曲正应力强度计算。
混凝土梁刚度标准值
混凝土梁刚度标准值一、引言混凝土梁是建筑结构中常见的构件,其承载重要的荷载作用,因此对其刚度的要求十分严格。
本文将从混凝土梁的定义、刚度的影响因素、刚度的计算方法以及相关标准等方面,提供一个全面、具体、详细的混凝土梁刚度标准值。
二、混凝土梁的定义混凝土梁是由混凝土浇筑成的长条形构件,其主要作用是承受横向荷载。
混凝土梁通常由两端的支座和中间的跨度组成,其截面形状有矩形、圆形、T形等多种类型。
三、混凝土梁刚度的影响因素混凝土梁的刚度受到多种因素的影响,包括以下几个方面:1. 混凝土强度:混凝土的强度与梁的刚度成正比。
因此,混凝土梁的刚度要求通常会随着混凝土强度的提高而提高。
2. 钢筋配置:在混凝土梁中加入钢筋可以提高其承载能力和刚度。
因此,钢筋配置的多少、分布和直径等因素也会影响混凝土梁的刚度。
3. 梁截面形状:不同形状的截面对混凝土梁的刚度有不同的影响。
一般来说,矩形截面比圆形截面更容易保证刚度的稳定。
4. 跨度长度:混凝土梁的刚度随着跨度长度的增加而降低。
因此,在设计混凝土梁时需要根据跨度长度来确定刚度的要求。
5. 荷载大小:荷载的大小对混凝土梁的刚度也有影响。
在设计混凝土梁时需要考虑所承受的荷载大小以及荷载的作用方式(集中荷载、分布荷载等)。
四、混凝土梁刚度的计算方法混凝土梁的刚度可以通过以下公式计算得出:EI = (bh^3)/12其中,E为混凝土的弹性模量,I为梁的惯性矩,b为梁的宽度,h为梁的高度。
在实际设计中,需要考虑梁的跨度、荷载大小和作用方式、钢筋配置等因素,进行综合计算,得出混凝土梁的刚度。
五、相关标准以下为国内相关标准对混凝土梁刚度的要求:1. GB 50010-2010《混凝土结构设计规范》该标准规定了混凝土结构的设计原则、荷载计算、构件设计和施工等方面的内容。
其中,对混凝土梁的刚度进行了详细的规定,包括刚度的计算方法、刚度的标准值等。
2. JGJ 3-2010《建筑结构荷载规范》该标准规定了建筑结构承受荷载的要求和规范。
梁的刚度计算
B
C
载荷变形。
= ++
0.2 m F1 =1KN
A
D
B
F2 =2KN C
1B
F1L2 16EI
2B 0
w1C
1Ba
F1L2a 16EI
w2C
F2a3 3EI
图1
PF11
aC B
3B
ML 3EI
LaF2 3EI
w3C
3Ba
F2 La 2 3EI
图2
FP22
叠加求复杂载荷下的变形
A
L
M PF22
0.423104 (弧度)
wC
F1L2a 16EI
F2a3 3EI
F2 a 2 L 3EI
5.19106 m
校核刚度
wmax L
L
wmax
/
L
wC
/
L
5.1 9 1 06 0.4
1.3 1 05
L
1 05
max 0.423104 0.001
三、提高梁的刚度的措施 由梁在简单荷载作用下的变形表和前面的变形计算可看: 梁的挠度和转角除了与梁的支座和荷载有关外还取决于 下面三个因素:
同类材料只能提高强度,不能提高刚度。 不同类的材料,“E”和“G”都相差很多(钢E=200GPa ,
铜E=100GPa),故可选用不同类的材料以达到提高刚度的目的。 但是,改换材料,其原料费用也会随之发生很大的改变!
工程力学
E=210GPa,工程规定C点的[δ/L]=0.00001,B点的[ ]=0.001弧
度,试校核此杆的刚度.
L=0.4m
a =0.1m
A
D
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例7-2 18号工字钢制成的简支梁如图所示。试求D截面上a、b两 点处的正应力。 解:(1)求D截面的弯矩: MD=30kN.m (2)确定中性轴位置 和截面惯性矩: 查型钢表 IZ=1660cm4 (3)求D截面a、b两点的正应力: 180 y a yb 10 .7 79.3mm; 2 M D ya 30 10 3 79 .3 10 3 a 143 .3MPa; 8 z 1660 10
max
105 0 0
M max
d , b(截面尺寸取整!)
(3)确定梁的 许可荷载
M max M Wz P ; M Qmax [Q ] [ ] A [ P ](取[ P ]为[ P ] . ) h/2
b h2 bh3 2 y1bdy ( y ); I z , 2 4 12
η沿截面高度按 抛物线规律变化。
Q h2 6Q h 2 2 ( y ) 3 ( y 2 ); 2I z 4 bh 4
h 6Qh 2 3 Q y , 0; y 0, max ; 3 2 4bh 2 bh
返回 下一张 上一张 小结
二、正应力公式的推导:
(一)变形几何关系:
取梁微段dx考虑变形 几何关系,得应变规律:
S yd y ; dx d
当M>0时:y>0,ε>0,为受拉区;y<0,ε<0,为受压区。 (二)物理关系: y 由假设2及虎克定律,梁横 E E 截面上的正应力变化规律为: 此式表明:梁横截面上任一点的正应力,与该点距中性轴 (z轴)的距离y成正比,而与该点距y轴的距离z无关。正应 力沿截面高度呈直线规律分布。中性层处y=0,ζ=0;上下边 缘处有ymax,故有ζmax。 返回 下一张 上一张 小结
b 143 .3MPa;
返回 下一张 上一张 小结
第二节 梁横截面上的剪应力
一、矩形截面梁: 矩形截面梁任意截面上剪力Q 都与对称轴重合。对狭长横截面上 剪应力的分布规律可作两个假设: (1)横截面上各点均与该面上Q 同向且平行; (2)剪应力沿截面宽度均匀分布。 从梁微段中取窄条cdmn分析:
N1 * 1dA
A
M M dM Sz ; N2 Sz ; Iz Iz
N 2 dT 0;
dT ' bdx;
x 0, N
'
1
dMSz dM , Q, ' ; dxI z b dx
QS z ; I zb
返回 下一张 上一张 小结
W1 z 763 763 146 .7cm3 ;W2 z 86.7cm3 ; y1 5.2 y2 8.8
(三)静力学关系: 纯弯曲梁上各点只有正应力,微面积dA上法 向合力dN=σdA。截面上各微内力形成沿X轴的空 间平行力系。可简化成三个内力分量:Nx、My、Mz。
E M y zdA 0 zydA 0; —中性轴是截面的形心主轴。
N d 0
返回 下一张 上一张 小结
所有开口薄壁截面的剪应 力均符合“剪应力流”规 律。 2. T字型截面: T字型截面与工字型截面 * QS z 相似,最大剪应力仍发生在截 Izd 面中性轴上。其腹板上应力为:
3. 圆形及环形截面: 圆形与薄壁环形截面其最大竖向剪应力 也都发生在中性轴上,并沿中性 4Q max 轴均匀分布,其值为: 圆形截面 3 A1 薄壁环形截面 2 Q max A2 式中:Q—截面上的剪力 A1、A2—圆形、薄壁环形截面的面积
max
M max ymax M max ; Iz Wz
令W z Iz ; ymax
Wz ___ 抗弯截面系数(模量),反映截面抵抗弯曲变形的能力;单位:m3 , mm 3 . bh2 D 3 D 3 矩形截面:Wz ;圆形截面:Wz ; 环形截面:Wz (1 4 ); 各种型钢查表。 6 32 32
返回 下一张 上一张 小结
例7-3:矩形截面简支梁如图,已 知:l=2m,h=15cm,b=10cm,h1=3cm, q=3kN/m.试求A支座截面上K点 的剪应力及该截面的最大剪应力. 解:1、求剪力:QA=3kN
bh3 10 15 3 z 2810 cm4 12 12 S z * yc 10 4.5 5.25 236 cm3
max 3Q 3 ; 2A 2
( 平均剪应力)
由剪切虎克定律η=Gγ,知剪应变 沿截面高度也按抛物线规律变化,引起 截面翘曲。但变形很小,可忽略不计。
返回 下一张 上一张 小结
二、其它形状截面的剪应力:
1. 工字形截面梁: 工字形截面是由上、下翼缘及中间腹板组成的。 1)腹板上的剪应力:腹板为狭长矩形,承担截面绝大部分剪应力。 故中性轴处有最大剪应力 QS z max Q 或 max max h1d zd
例7-5 图示为T形截面的铸铁梁。已知: y1=5.2cm,y2=8.8cm,P1=10.8kN,P2=4.8kN, a=1m,铸铁许用拉应力[+]=30MPa,许用压 应力[-]=60MPa,试校核梁的正应力强度。 解:(1)作出梁的弯矩图,可知: MC=3.0KN.m; MD=-4.8KN.m (2)梁的两个抗弯截面模量为:
例7-4 倒T形截面外伸梁如图, l=600mm,b=30mm,P1=24kN,
已知:
P2=9kN, y1=72mm, Iz=573cm4,
试求 梁横截面上的最大剪应力。 解:1. 求最大剪力: 在CB梁段。 1 1 S z A* yo by12 30 72 2 77800 mm 2 ; 2 2 2. 求最大剪应力:
返回 下一张 上一张 小结
正应力公式的使用范围:①纯弯曲梁;②弹性范围(ζ≤ζp); ③平面弯曲(截面有对称轴,形状不限);④细长梁的横力弯曲。 (一般l/h>5为细长梁,其计算误差满足工程精度要求δ<5%。)
例7-1 图示悬臂梁。试求C截面上a、b两点的正应力和该截面最大拉、压应力。 解:(1)计算C截面的弯矩M M c 2 P 2 1.5 3KN m (2)确定中性轴位置,并计算惯性矩 bh3 12 18 3 z 5830 cm4 12 12 18 ya 3 6cm; yb 3cm. (3)求a、b两点的正应力 2 M c ya 3 10 3 0.06 a 3.09 MPa; 8 z 5830 10 M c yb 3 10 3 0.03 b 1.54 MPa; 8 z 5830 10 h 18 ymax 9cm; (4)求C截面最大拉应力+max和最大压应力 -max 2 2 M c ymax 3 10 3 9 10 2 max 4.63 MPa max ; z 5830 10 8 (在截面上下边缘。) 返回 下一张 上一张 小结
横截面上只有弯矩而没有剪力 的弯曲称作纯弯曲。
如图简支梁,AC、DB段为横 力弯曲;CD段为纯弯曲。 本章研究梁的应力和变形计算, 解决梁的强度和刚度计算问题。
返回 下一张 上一张 小结
第一节 梁横截面上的正应力
为推导梁横截面上的正应力,考虑纯弯曲情况。 用三关系法:实验观察→平面假设; 几何关系→变形规律, 物理关系→应力规律, 静力学关系→应力公式。 一、实验观察与分析: ①横线仍为直线,但倾斜角度d; ②纵线由直变弯,仍与横线正交, 凸边伸长, 凹边缩短; ③横截面相对于纵向伸长区域缩 短,纵向缩短区域伸长。 假设:①平面假设—变形前 后横 截面保持平面不变; ②单向受力假设—纵向纤维之间互不挤压仅伸长或缩短。 中性层—长度不变的纤维层; 中性轴—中性层与横截面的交线。
E
yd 0 —中性轴Z必通过形心。
M z ydA M
E 2 y dA M
My z —纯弯曲梁横截面上任一点正应力计算公式
1 M —纯弯曲梁的 ; E z 变形计算公式
Iz—截面对其中性轴的惯性矩; M—截面上的弯矩; y—所求正应力点到中性轴的距离。 为避免符号错误,计算中各量以绝对值代入,ζ符号依点 所处区域直接判断。(根据弯矩方向,中性轴将截面分为受 拉区和受压区;M>0,上压下拉;M<0,上拉下压。) 式中:
对称截面梁的正应力强度条件: max
M max [ ] __ 弯曲许用应力,查表确 Wz
定。
非对称截面梁的正应力强度条件: max
M max [ ] __ 弯曲许用应力,查表确 定。 Wz 返回 下一张 上一张 小结
二、剪应力强度条件: max
Q k [ ] __ 材料的许用剪应力,试 A
验确定。
Q 3 4 矩形截面:k ;圆形截面:k ; 环形截面:k 2; 各种型钢查表或k 1( max max )。 2 3 h1d
三、梁的强度计算: 一般情况下,细长梁多为横力弯曲,横截面上同时存在弯矩 和剪力,应同时满足正应力和剪应力强度条件。由此可进行三方 面的强度计算: (1)强度校核: max 105 % max 105 % (2)选择截面: Wz
2、求K点剪应力:
QA S z 3 10 3 236 10 3 k 0.252 MPa 4 1 zb 2810 10 10 10
3、求最大剪应力:
max
Q 1.5 3 10 3 1.5 0.3MPa 2 A 15 10 10
返回 下一张 上一张 小结
式中:Q—横截面上的剪力; h1—腹板高度; Iz— 截面对z轴惯性矩; d—腹板厚度; Szmax—中性轴一侧面积对中性轴的惯性矩; (对于型钢,Szmax:Iz 的值可查型钢表确定)