信号完整性——反射

合集下载

信号完整性介绍

信号完整性介绍

信号完整性基础知识术语、符号和缩略语术语1.信号完整性(Signal Integrity)信号完整性是指信号在信号线上的质量。

信号具有良好的信号完整性是指当在需要的时候具有所必需达到的电压电平数值。

2.传输线(Transmission Line)传输线是一个网络(导线),并且它的电流返回到地或电源。

3.特性阻抗(Characteristic Impedance)组成信号传输回路的两个导体之间存在分布电感和分布电容,当信号沿该导体传输时,信号的跃变电压(V)和跃变电流(I)的比值称为特性阻抗(Z0),即Z0=V/I。

4.反射(Reflection)反射就是在传输线上的回波。

信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。

如果源端与负载端具有相同的阻抗,反射就不会发生。

5.串扰(Crosstalk)串扰是两条信号线之间的耦合。

信号线之间的互感和互容引起线上的噪声。

容性耦合引发耦合电流,而感性耦合引发耦合电压。

6.过冲(Overshoot)过冲就是第一个峰值或谷值超过设定电压。

对于上升沿是指最高电压,而对于下降沿是指最低电压。

过分的过冲能够引起保护二极管工作,导致过早地失效。

7.下冲(Undershoot)下冲是指下一个谷值或峰值。

过分的下冲能够引起假的时钟或数据错误(误操作)。

8.电路延迟指信号在器件内传输所需的时间(T pd)。

例如,TTL的电路延迟在3 ~ 20nS 范围。

9.边沿时间器件输出状态从逻辑低电平跃变到高电平所需要的时间(信号波形的10~90%),通常表示为上升沿(T r)。

器件输出状态从逻辑高电平下降到低电平所需要的时间(信号波形的90~10%),通常表示为下降沿(T f)。

10.占空比偏斜信号传输过程中,从低电平到高电平的转换时间与从高电平到低电平的转换时间之间的差别,称为占空比偏斜。

TTL和CMOS信号的占空比偏斜问题较为突出,主要是因为其输出的上升沿和下降沿延迟不同。

高速电路设计信号完整性的一些基本概念

高速电路设计信号完整性的一些基本概念

高速电路设计信号完整性的一些基本概念1、信号完整性(Signal Integrity):就是指电路系统中信号的质量,如果在要求的时间内,信号能不失真地从源端传送到接收端,我们就称该信号是完整的。

2、传输线(Transmission Line):由两个具有一定长度的导体组成回路的连接线,我们称之为传输线,有时也被称为延迟线。

3、集总电路(Lumped circuit):在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。

4、分布式系统(Distributed System):实际的电路情况是各种参数分布于电路所在空间的各处,当这种分散性造成的信号延迟时间与信号本身的变化时间相比已不能忽略的时侯,整个信号通道是带有电阻、电容、电感的复杂网络,这就是一个典型的分布参数系统。

5、上升/下降时间(Rise/Fall Time):信号从低电平跳变为高电平所需要的时间,通常是量度上升/下降沿在10%-90%电压幅值之间的持续时间,记为Tr。

6、截止频率(Knee Frequency):这是表征数字电路中集中了大部分能量的频率范围(0.5/Tr),记为Fknee,一般认为超过这个频率的能量对数字信号的传输没有任何影响。

7、特征阻抗(Characteristic Impedance):交流信号在传输线上传播中的每一步遇到不变的瞬间阻抗就被称为特征阻抗,也称为浪涌阻抗,记为Z0。

可以通过传输线上输入电压对输入电流的比率值(V/I)来表示。

8、传输延迟(Propagation delay):指信号在传输线上的传播延时,与线长和信号传播速度有关,记为tPD。

9、微带线(Micro-Strip):指只有一边存在参考平面的传输线。

10、带状线(Strip-Line):指两边都有参考平面的传输线。

11、趋肤效应(Skin effect):指当信号频率提高时,流动电荷会渐渐向传输线的边缘靠近,甚至中间将没有电流通过。

信号完整性分析

信号完整性分析

添加标题
添加标题
添加标题
添加标题
信号完整性分析在高速数字系统中 的应用
信号完整性分析在数字信号处理系 统中的应用
高速数字接口设计
应用场景:高速数字接口设计是信号完整性分析的重要应用场景之一
设计目标:保证信号传输的稳定性和可靠性
设计挑战:高速数字接口设计面临着信号传输速度、信号完整性、信号干扰等问题
建立信号完整 性分析的数学 模型
验证模型的准 确性和可靠性
优化模型,提 高分析结果的 准确性和可靠 性
仿真分析
仿真模型搭建:根 据实际电路搭建仿 真模型
仿真参数设置:设 置仿真参数,如频 率、阻抗等
仿真结果分析:分 析仿真结果,如信 号质量、时延等
仿真优化:根据仿 真结果进行优化, 如调整电路参数、 增加滤波器等
结果解读与优化建议
结果解读:根据分析结果,判断信号的完整性 优化建议:针对分析结果,提出针对性的优化方案 实施方案:根据优化建议,制定实施计划并执行 效果评估:对优化后的信号进行再次分析,评估优化效果
信号完整性分析的 应用场景
高速数字系统设计
信号完整性分析在数字电路设计中 的应用
信号完整性分析在数字通信系统中 的应用
信号完整性分析的 流程
确定分析目标
确定信号完整性分析的目标, 如提高信号传输质量、降低信 号干扰等
确定分析的范围,如系统级、 模块级、芯片级等
确定分析的指标,如信号传输 延迟、信号抖动、信号失真等
确定分析的方法,如仿真分析、 实验验证等
建立模型
确定信号完整 性分析的目标 和需求
收集和分析信 号完整性相关 的数据
添加副标题
信号完整性分析
汇报人:

信号完整性之初识信号反射

信号完整性之初识信号反射

信号完整性之初识信号反射版本号更改描述更改人日期1.0 第一次撰稿 eco2013-10-19 E-mial:zhongweidianzikeji@ QQ:2970904654反射产生的原因在《和信号完整性有关的几个概念》中我们已经简单的介绍了“反射”这厮。

在下认为“信号反射”在电路中是不可避免的,不论是高速电路还是低速电路。

而我们只能用一些办法去优化电路,去优化PCB的布局布线,从而降低反射的大小或者在信号反射时避免对电路的操作。

为什么信号反射无法完全消除,在高速和低速电路中都会存在,在下鄙见如下:V = 3x10^8 / sqrξ 式1其中:V是带状线中信号传播的速度(m/s),3x10^8是光速(m/s),ξ是介电常数。

由式1可知,信号的传播速度只与物质的介电常数有关,在基材相同的情况下,不论在高速电路中还是在低速电路中信号都会以相同的速度传播。

在基材为FR4的电路板中,介电常数ξ一般为4左右,由式1我们可以计算出信号的传播速度V = 3x10^8 / sqr(4) =1.5x10^8 m/s,转换单位后约为6in/ns,这就是为什么很多资料上喊信号在FR4材料中的传播速度为6in/ns(注:1mil = 0.0254mm; 1inch = 25.4mm。

对于这个单位转化,感兴趣的人一定要自己计算计算,享受过程可以让你更快乐更智慧哦)。

1.5x10^8 m/s(6in/ns)速度极快了吧,设想山间小溪,小溪中的水流以1.5x10^8 m/s流动,流动中突遇一石头便会荡起无数涟漪,迸射无数水花。

溪中这块石头意味着阻抗失配。

综上所述,我们姑且把这水流现象近似看作电路中的信号反射。

为了给大家一个直观的感受,在下从网上找了两张图片,见图1、图2。

很多时候有些东西是说不清道不明的,关键看大家如何去想,如何去悟。

我建议大家应该看着这个水流冥想一下。

图1 这就是电流图2 请想象成电流I’m sorry,说的太远。

信号完整性-反射

信号完整性-反射

假设传输线的末端是开路,1ns 后在线末端,测得开 路两端的总电压为两个波之和,即 0.84V +0.84V=1.68V。
再经过 1ns 后,0.84V 反射波到达源端,又一次遇到 阻抗突变。源端的反射系数是(10 - 50)/(10+50)=- 0.67, 这时将有 0.84V×(-0.67)=-0.56V 反射回线远端。当然, 这个新产生的波又会从远端反射回源端,即-0.56V 电压将 被反射回来。线远端开路处将同时测得四个波:从一次行 波中得到 2×0.84 V=1.68 V,从二次反射中得到的 2× (-0.56)=-1.12 V,故总电压为 0.56 V。
8.1 阻抗变化处的反射
无论什么原因使瞬态阻抗发生了改变,部分信号将沿 着与原传播方向相反的方向反射,而另一部分将继续传播, 但幅度有所改变。将瞬态阻抗发生改变的地方称为阻抗突 变,或简称突变。
反射信号的量值由瞬态阻抗的变化量决定,如图 8.2 所 示。如果第一个区域瞬态阻抗是 Z1,第二个区域是 Z2,则 反射信号与入射信号幅值之比为(后面的 8.10 式给出证明):
(8.9)
最终可得:
(8.10)
这就是反射系数的定义(即(8.1)式)。用同样的方法可 以很容易推导出传输系数 t。将根据(8.2)式得出的 V , refl 代入(8.7)式可得:
Vinc Vtrans Vinc Vtrans
Z1
Z1
Z2
对上式通分、化简后可得:
(8.11)
没有人知道到底是什么产生了反射电压?只是知道当 产生之后,只有这样交界面两侧的电压才可以相等,交界 面处的电压才是连续的。同样,在交界面两侧也存在电流 回路,电流也是连续的。这样,整个系统也才是平衡的(有 点唯心主义的解释)。

信号完整性分析--信号反射

信号完整性分析--信号反射

信号完整性:信号反射信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。

对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。

如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB 转角,接插件),信号都会发生反射。

那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射 电压和原传输信号电压的比值。

反射系数定义为:ρ= 1212Z Z Z Z +-。

其中:Z 1为变化前的阻 抗,Z 2为变化后的阻抗。

假设PCB 线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系 数为:ρ=3150********=+-,信号有1/3被反射回源端。

如果传输信号的电压是3.3V 电压,反射电压就是1.1V 。

纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。

阻抗增加有限值:反射电压上面的例子已经计算过了。

这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V 电压,另一部分是在反射电压1.1V ,那么反射点处的电压为二者之和,即4.4V 。

阻抗减小有限值:仍按上面的例子,PCB 线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射 系数为 ρ=50305030+-=-0.25,反射电压为 3.3*(-0.25)V= -0.825V 。

此时反射点电压为3.3V+(-0.825V )=2.475V 。

开路:开路相当于阻抗无穷大,反射系数按公式计算为1。

即反射电压3.3V 。

反射点处电压为6.6V 。

可见,在这种极端情况下,反射点处电压翻倍了。

短路:短路时阻抗为0,电压一定为0。

视频分配器中提高信号完整性的方法,信号完整性,串扰,反射,阻抗匹配

视频分配器中提高信号完整性的方法,信号完整性,串扰,反射,阻抗匹配

视频分配器中提高信号完整性的方法,信号完整性,串扰,反射,阻抗匹配处理高速电子系统的信号完整性问题一直是比较难于处理的,特别是越来越多的芯片的工作频率超过了100 MHz,信号的边沿越来越陡(已达到ps级) ,这些高速器件性能的提高更增加了系统设计的难度。

同时,高速系统的体积不断减小使得PCB板的密度迅速提高。

信号完整性问题已经成为新一代高速产品设计中越来越值得注意的问题。

信号完整性问题的产生信号完整性(SI)是指信号在电路中以正确的时序和电压作出响应的能力。

从广义上讲,信号完整性问题表现为反射、串扰、地弹和延迟等。

反射反射现象的原因是信号传输线的两端没有适当的阻抗匹配。

信号功率的一部分经传输线传给了负载,另一部分则向源端反射。

布线的几何形状、不适当的端接、经过连接器的传输及电源平面不连续等因素均会导致信号反射。

串扰信号串扰是没有电气连接的信号线之间的感应电压和感应电流产生的电磁耦合现象。

这种耦合会使信号线起到天线的作用,其电容性耦合引发耦合电流,感性耦合引发耦合电压,并且随着时钟速度的升高和设计尺寸的减小而加大。

由于信号线上的交变信号电流通过时,会产生交变磁场,处于磁场中的其它信号线会感应出信号电压。

在低频段,导线间的耦合可以建立为耦合电容模型;在高频段,可以建立为LC集中参数导线或传输线模型。

另外,PCB板层的参数、信号线间距、驱动端和接收端的电气特性以及信号线端接方式对串扰都有一定的影响。

地弹主要是源于电源路径以及IC封装所造成的分布电感的存在。

当系统的速度愈快,同时转换逻辑状态的I/O引脚个数愈多时,会产生较大的瞬态电流,导致电源线上和地线上电压波动和变化,这就是平时所说的接地反弹。

接地反弹噪声会造成系统的逻辑运作产生误动作。

延迟延迟是指信号在PCB板的导线上以有限的速度传输,信号从发送端到达接收端的传输延迟。

信号的延迟会对系统的时序产生影响,在高速数字系统中,传输延迟主要取决于导线的长度和导线周围介质的介电常数。

电路板级的信号完整性问题和仿真分析

电路板级的信号完整性问题和仿真分析

电路板级的信号完整性问题和仿真分析摘要:今天随着电子技术的发展,电路板设计中的信号完整性问题已成为PCB设计者必须面对的问题。

信号完整性指的是什么?信号在电路中传输的质量。

由于电子产品向高速、微型化的发展,导致集成电路开关速度的加快,产生了信号完整性问题。

常见的问题有反弹、振铃、地弹和串扰等等。

这些问题将会对电路板设计产生怎样的影响?通过理论分析探讨,找到解决它们的一些途径。

传统的PCB设计是在样机中去测试问题,极大的降低了产品设计的效率。

使用EDA工具分析,可以将问题在计算机中进行暴露处理,降低问题的出现,提高产品的设计效率。

这里以Altium Designer 6.0工具为例,介绍分析解决部分信号完整性问题的方法。

关键词:信号完整性 Altium Designer 6.0 仿真分析[中图分类号] O59 [文献标识码] A [文章编号] 1000-7326(2012)04-0125-0320世纪初叶,科学家先后发明了真空二极管和三极管,它代表人类进入了电子技术时代。

随后半导体晶体管和集成电路的出现,将电子技术推向了一个新的时期。

特别是IC芯片的发展,使电子产品越来越趋向于小型化、高速化、数字化。

但同时却给电子设计带来一个新的问题:体积减小导致电路的布局布线密度变大,而同时信号的频率也在迅速提高,如何处理越来越快的信号。

这就是我们硬件设计中遇到的最核心问题:信号完整性。

为什么我们以前在学校学习和电子制作中没有遇到呢?那是因为在模拟电路中,采用的是单频或窄频带信号,我们关心的只是电路的信噪比,没有去考虑信号波形和波形畸变;而在数字电路中,电平跳变的信号上升时间比较长,一般为几个纳秒。

元件间的布线不会影响电路的信号,所以都没有去考虑信号完整性问题。

但是今天,随着GHz时代的到来,很多IC的开关速度都在皮秒级别,同时由于对低功耗的追求,芯片内核电压越来越低,电子系统所能容忍的噪声余量越来越小,那么电路设计中的信号完整性问题就突现出来了。

信号完整性名词解释

信号完整性名词解释

信号完整性名词解释1、什么是信号完整性(Singnal Integrity)?信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。

信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。

主要的信号完整性问题包括反射、振荡、地弹、串扰等。

常见信号完整性问题及解决方法:问题可能原因解决方法其他解决方法过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略振荡阻抗不匹配在发送端串接阻尼电阻2、什么是串扰(crosstalk)?串扰(crosstalk)是指在两个不同的电性能之间的相互作用。

产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。

通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。

振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。

串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。

容性耦合引发耦合电流,而感性耦合引发耦合电压。

PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。

3、什么是电磁兼容(EMI)?电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。

印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。

信号完整性

信号完整性

3.2 信号完整性仿真3.2.1 信号完整性基础高速PCB的信号线必须按照传输线理论去设计,否则就会产生反射、串扰、过冲和下冲等问题而严重影响信号的完整性。

信号完整性是指信号在电路中以正确的时序和电压作出响应的能力。

如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。

反之,当信号不能正常响应时,就出现了误触发、阻尼振荡、过冲、欠冲等时钟间歇振荡和数据出错等信号完整性问题。

当频率超过50MHz或信号上升时间Tr小于6倍传输线延时时,系统的设计必然面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。

以下是印象信号完整性的一些现象。

①反射反射就是信号在传输线上的回波现象。

此时信号功率没有全部传输到负载处,有一部分被反射回来了。

在高速的PCB中导线必须等效为传输线,按照传输线理论,如果源端与负载端具有相同的阻抗,反射就不会发生了。

如果二者阻抗不匹配就会引起反射,负载会将一部分电压反射回源端。

根据负载阻抗和源阻抗的关系大小相同,反射电压可能为正,也可能为负。

如果反射信号很强,叠加在原信号上,很可能改变逻辑状态,导致接受数据错误。

如果在时钟信号上可能引起时钟沿不单调,进而引起误触发。

一般布线的几何形状、不正确的线端接、经过连接器的传输以及电源平面的不连续等因素均会导致此类反射。

;另外常有一个输出多个接收,这时不同的布线策略产生的反射对每个接收端的影响也不相同,所以布线策略也是影响反射的一个不可忽视的因素。

②串扰在所有的信号完整性问题中,串扰现象是非常普遍的。

串扰可能会出现在芯片内部,也可能出现在电路板、连接器、芯片封装以及线缆上。

串扰是指在两个不同的电性能之间的相互作用。

产生串扰被称为Aggressor,而另一个收到串扰的被称为Victim。

通常,一个网络既是入侵者,又是受害者。

振铃和地弹都属于信号完整性问题中单信号线的现象,串扰则是自同一块PVB板上的两条信号线与地平面引起的,故也称为三线系统。

信号完整性

信号完整性
信号在传输线中是以材料中的光速向前传输的,会同时使用信号路径和返回路径。信号的电 压总是指信号路径和返回路径相邻两点的电压差。 在传输的某一瞬间,传输线中只有某一区域存在电压变化,这一区域会随着时间向前推进。 电压的存在会产生电场,两导体电流的回路又会产生磁场。
信号的传输速度取决于电场合磁场建立
因素 线宽 介质厚度 介电常数 绿油厚度 铜箔厚度
趋势 线宽越大,阻抗越小 介质越厚,阻抗越大 值越大,阻抗越小
越厚,阻抗越小 越厚,阻抗越小
原因 电流越分散,电感越小;电容越大(电力线越集中在介质中)
互感减小,电感就增大;间距增大,电容减小 单位长度电容越大,对电感没有影响
如果末端负载开路,则末端的瞬态阻抗为无穷大 ,此时反射系数值为1,在末路端将产生一
个和入射波大小相等、极性相同,向源端传播的返回波。在这种情况下,反射点处电压翻倍
(2)负载端短路
如果传输线的末端与返回路径短路,则末端阻抗为0,此时反射系数为-1,传输系数为0,在
末端将产生一个和入射波大小相等、极性相反,流向返回路径的信号。反射点处电压为0
Lloop=La - Lab+ Lb - Lab = La + Lb - 2Lab 影响回路电感大小的最重要一项就是两支路的互感,互感越大回路电感越小。因此,想要减 小回路电感,就需要让信号路径和返回路径越靠近。
趋肤效应:高频电流流过导体时,电流会趋向导体表面分布。高频时,导体的阻抗主要由回 路电感产生的感抗大小决定,导体中的电流回沿回路阻抗即电感最小路径重新分布。
微带线返回电流分布示意图
带状线返回电流分布示意图
1.7 有损传输线及其模型
实际上传输线中的信号都是有损耗的,并不能都传送到末端。传输线的损耗和以下一些因素

信号完整性反射经典课件

信号完整性反射经典课件

8.1 阻抗变化处的反射
无论什么原因使瞬态阻抗发生了改变,部分信号将沿 着与原传播方向相反的方向反射,而另一部分将继续传播, 但幅度有所改变。将瞬态阻抗发生改变的地方称为阻抗突 变,或简称突变。
反射信号的量值由瞬态阻抗的变化量决定,如图 8.2 所 示。如果第一个区域瞬态阻抗是 Z1,第二个区域是 Z2,则 反射信号与入射信号幅值之比为(后面的 8.10 式给出证明):
分界面两侧电压相同的条件: (8.2)
区域 1,分界处总电流由两个电流回路决定,它们传播 方向相反,回路方向也相反。入射电流方向是顺时针,反 射电流方向是逆时针。区域 1 分界面处净电流为 Iin的,等于 Itrans。分别从分 界面两侧看进去,电流相同的条件是:
8.3 电阻性负载的反射
特性阻抗是纯电阻性质,它只是反映出上面电压电流 的同相特点。它的值与频率几乎无关,各种频率的信号都 会发生反射。传输线的终端匹配有三种最重要的特殊情况。 现假设传输线的特性阻抗是 50Ω,信号由源端沿传输线到 达有特殊终端的远端。
首先,如果传输线的终端为开路,即传输线的末端没 有连接任何终端,则末端的瞬态阻抗是无穷大。这时,反 射系数为(无穷-50)/(无穷+50)=1。
假如没有产生返回源端的反射电压,同时又要维持分 界面两侧的电压和电流相等,就需要关系式 V1=V2,I1=I2。 而 I1=V1/Z1,I2=V2/Z2 同时成立,显然,当两个区域的阻抗不 同时,这四个关系式绝不可能同时成立。
为了使整个系统协调稳定,区域 1 中产生了一个反射 回源端的电压。它的唯一目的就是吸收入射信号和传输信 号之间不匹配的电压和电流,如图 8.3 所示。
(8.3) 每个区域中的阻抗值为该区域中电压与电流的比值:
(8.4) (8.5)

信号完整性问题概述 信号完整性问题概述

信号完整性问题概述 信号完整性问题概述

查看文章信号完整性分析2009-06-08 10:32信号完整性问题概述信号完整性(Signal Integrity ,简称SI )是指信号在电路中以正确对信号线上信号质量的描述。

如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC ,反之,当信号不能正常响应时,就出现了信号完整性问题。

信号完整性问题主要表现为5个方面:延迟、反射、串扰、同步切换mass_ping的空间延迟——延迟是指信号在PCB板的导线上以有限的速度传输,信号从在一个传输延迟。

信号的延迟会对系统的时序产生影响,在高速数字系的长度和导线周围介质的介电常数。

反射——当PCB板上导线(高速数字系统中称为传输线)的特征阻抗与收端后有一部分能量将沿着传输线反射回去,使信号波形发生畸变,如果在传输线上来回反射,就会产生振铃和环绕振荡。

串扰——由于PCB板上的任何两个器件或导线之间都存在互容(mutua 件或一根导线上的信号发生变化时,其变化会通过互容和互感影响其度取决于器件及导线的几何尺寸和相互距离。

同步切换噪声——当PCB板上的众多数字信号同步进行切换时(如CPU 于电源线和地线上存在阻抗,会产生同步切换噪声,在地线上还会出和地弹的强度也取决于集成电路的IO特性、PCB板电源层和地平面层布局和布线方式。

电磁兼容性——同其它的电子设备一样,PCB也有电磁兼容性问题布线方式有关。

为什么要做信号完整性分析过去,在系统时钟低于50MHz的电路板设计中,信号完整性(SI)问题修改就可消除SI问题或将其影响降至最低。

但是随着集成电路输出开关信号完整性已经成为高速数字PCB设计必须关心的问题之一。

元器件和上的布局、高速信号的布线等因素,都会引起信号完整性问题,导致系作。

越来越多的设计工程师发现SI问题的成因不仅仅是高速设计。

真正的而是驱动器上升和下降时间的缩短。

随着工艺技术的进步及IC制造商们所生产的标准元件具有更小的裸片尺寸和越来越快的边缘速率。

信号完整性:反射是如何产生的?

信号完整性:反射是如何产生的?

信号完整性:反射是如何产生的?
 有小伙伴看完之前的文章说,不够深入浅出,想了想,再写一篇,力图简单易懂的说明白反射是如何形成的。

 要说明白反射,需要涉及前文提到过阻抗及匹配的概念,形象来说,如下图,如同拼图游戏一般,红色方块太大,或者太小都放不进空格中,会产生信号完整性问题;只有匹配上,才能正好放进去,没有反射。

 具体的,前文说到了特性阻抗,我们熟知实际电路中最大功率传输定理是关于负载与电源相匹配时,负载能获得最大的功率。

迁移到高速电路中,其表现是:激励电路特性与传输线特性极大地影响了从一个装置传送到另一个装置信号的完整性。

 具体来说,在高速电路中要想把信号能量从源端全部有效的传送到负载端,必须使传输线特征阻抗与信号的源端阻抗和负载阻抗匹配,否则信号会发生反射,导致信号波形的畸变等一系列问题。

 之前,还有在网上读到其他大牛写的文章,对阻抗及反射的关系写得很形象易懂,大概是说,将电流类比于水流,而将水位的高度看作为电压,这跟我们初高中接触的物理知识是一致的。

水流的速度看作是信号的频率,假设,河道中水的宽度为阻抗,那幺河道宽阻抗必然越小,这应该很好理解,。

信号完整性中的反射问题原理

信号完整性中的反射问题原理
i(z, t)z = Gu(z, t) + Cu(z, t)t + c ∂i(z,t) ∂t
这就是均匀传输线方程,也称电报方程。
对于时谐电压和电流, 可用复振幅表示为
u(z, t)=Re[U(z)e jωt]
(1.1.4a)
i(z, t)=Re[I(z)e jωt]
(1.1.4b)
将上式代入(1- 1- 3)式, 即可得时谐传输线方程
1.3 传输线的工作特性参数
1.3.1 特性阻抗 Z0
将传输线上导行波的电压与电流之比定义为传输线的特性阻抗, 用 Z0 来表示, 其倒数 称为特性导纳, 用 Y0 来表示。
特性阻抗一般表达式为
Z0 =
R + jwL C + jwC
对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为
(1.3.1)
=A1e+αzcos(ωt+βz)+A2e-αz cos(ωt-βz)
i(z, t)=i+(z, t)+i-(z, t)
(1.2.5)
= 1/Z0 [A1e+αzcos(ωt+βz)+A2e-αz cos(ωt-βz)]
由上式可见, 传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿-z 方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。
现在来确定待定系数, 由图 1-1(a)可知, 传输线的边界条件通常有以下三种: 1. 已知终端电压 U l 和终端电流 I l ; 2. 已知始端电压 U i 和始端电流 I I ; 3. 已知信源电动势 Eg 和内阻 Zg 以及负载阻抗 Z l 。
讨论第一种情况

高速电路信号完整性分析与设计四--反射分析

高速电路信号完整性分析与设计四--反射分析

源端 图 4.2 负载端 理想传输线模型及相关参数
理想传输线 L 被内阻为 R0 的数字信号驱动源 VS 驱动,传输线的特性阻抗为 Z0,负载阻抗 为 RL。理想的情况是当 R0=Z0=RL 时,传输线的阻抗是连续的,不会发生任何反射,但能量 一半消耗在源内阻 R0 上,另一半消耗在负载电阻 RL 上(传输线无直流损耗,即无耗传输线) 。 如果负载阻抗大于传输线的特性阻抗,Z0<RL 那么负载端多余的能量就会反射回源端, 由于负载端没有吸收全部能量,称为欠阻尼。如果负载阻抗小于传输线的特性阻抗,即 Z0> RL,负载试图消耗比当前源端提供的能量更多的能量,称为过阻尼。欠阻尼和过阻尼都会产 生反向传播的波形,某些情况下在传输线上会形成驻波(有三种情况,将在下面进行讨论) 。 当 Z0=RL 时,负载完全吸收到达的能量,没有任何信号反射回源端,称为临界阻尼。从系统 设计的角度来看,由于临界阻尼情况很难满足,所以最可靠适用的方式轻微的过阻尼,因为 这种情况没有能量反射回源端。 负载端阻抗与传输线阻抗不匹配会在负载端(B 点)反射一部分信号回源端(A 点) ,反 射电压信号的幅值由负载反射系数ρL 决定,见下式:
4
的直线,并延伸到负载特性曲线。与负载线的交点定义了 t= TD 时负载端的电压和电流,其 中 TD 是传输线的时间延迟。交替使用的斜率 1/Zo 和-1/Zo 重复这个过程,直到传输线矢量 到达负载线与源端线的交点。传输线矢量与负载及源头 I-V 曲线的交点给出了稳态的电压和 电流值。
图 4.6 用于计算非线性负载多次反射的 Bergeron 图
Байду номын сангаас
OSCILLOSCOPE
Design file: UNNAMED0.TLN Designer: fzpc BoardSim/LineSim, HyperLynx 7.000 6.000 5.000 4.000 Probe Probe Probe Probe 1:U(A0) 2:U(B0) 3:RS(A0).1 4:RS(A0).2

信号完整性基础之反射

信号完整性基础之反射

信号完整性基础之反射反射是引起SI的一个最基本因素,信号在传输线传播过程中,一旦它所感受到的传输线瞬时阻抗发生变化,那么就必将有发射发生。

反射是由于传输线瞬时阻抗变化而引起的下面就从理论角度来分析一下反射的机理、反射系数和传输系数的计算配个简易图来加以说明图中褐色的为电路板上的大面积铺铜层(GND或者PWR),它是信号的返回路径。

绿色和红色是传输线,S1比较宽,S2较窄,很明显在S1和S2的交接处出现了阻抗不连续,根据阻抗计算公式应该是Rs1<Rs2。

那么信号传输到这里的时候,从反射的定义来看应该是发生了反射。

那么究竟有多少信号被反射了呢?又有多少信号通过了界面进入S2了呢?这里就涉及到了反射的计算,即反射系数的计算和传输系数的计算在交界面,虽然阻抗发生了变化,但是电压和电流一定都是连续的这个结论一定要能理解,电压和电流不可能出现一个断裂即在交界面的左边一点和右边一点,他们的电压和电流都是相等的这里的一点点就像微积分中的那么一小点在分界面的左边一点点S1中有:Rs1=V1/I1 (1)在分界面的右边一点点S2中有:Rs2=V2/I2 (2)其中的V1、V2分别为分界面两侧的电压,I1和I2为分界面两侧的电压由上面的电压和电流连续性得知:V1=V2,I1=I2 (3)分析上面的三组方程,如果没有反射,他们是不可能同时成立的因为Rs1和Rs2是不相等的所以可以判定在分界面必定存在反射回源端的信号反射电压设为Vf,反射电流为If进入S2的电压为Vt,电流为It(称他们为传输电压和传输电流)信号电压为Vi,电流为Ii(称之为输入电压,从分界面看)电压关系有:Vi+Vf=Vt电流关系有:Ii-If=It这又是很关键的两个关系式因为Vi/Ii=Rs1Vf/If=Rs1Vt/It=Rs2把这三个关系式代入到上面的两个电压和电流关系方程中可以得到Vi/Rs1-Vf/Rs1=Vt/Rs2=(Vi+Vf)/Rs2(Vi-Vf)/Rs1=(Vi+Vf)/Rs2反射系数X定义为反射电压和输入电压的比值,即Vf/Vi可求的X=(Rs2-Rs1)/(Rs1+Rs2)传输系数Y定义为传输电压和输入电压的比值,即Vt/Vi经过X式小变形即可求得可求的Y=2Rs2/(Rs1+Rs2)反射是经常遇到的SI问题,我们只能无限地缩小它,却不能完全消除它,在波形能够接受的情况下尽量做到最大限度的抑制反射,这就是我们要做的工作。

信号完整性-9~10反射117页PPT

信号完整性-9~10反射117页PPT

36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
Hale Waihona Puke xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
信号完整性-9~10反射
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点对点拓扑常用端接方法
� 源端串联端接 � 远端并联端接 � 戴维南端接 � RC端接
源端串联端接
源端串联端接
>
OSCIห้องสมุดไป่ตู้LOSCOPE
Design file : 001.TLN Designer : wdchen HyperLynx V 7.5 Pr o b e Pr o b e Pr o b e Pr o b e 1: 5: 1: 5: U( A0 ) U( B0 ) U( A0 ) U( B0 ) ( at ( at ( at ( at pi pi pi pi n) n) n) n)
- 1. 000 0. 000 5. 000 10. 000 15. 000 20. 000 25. 000 Tim e (ns) 30. 000 35. 000 40. 000 45. 000 50. 000
Date: Wednesday Apr. 15, 2009 Time: 14:41:37 Show Latest Waveform = YES, Show Previous Waveform = YES
8. 000
8. 000
7. 000 7. 000 6. 000
6. 000
5. 000
5. 000
4. 000 V o l t a g e -V V ol t a g e -V -
4. 000
3. 000
3. 000
2. 000
2. 000
1. 000
1. 000
0. 000
0. 000
- 1. 000 0. 000 5. 000 10. 000 15. 000 20. 000 25. 000 Tim e (n s) 30. 000 35. 000 40. 000 45. 000 50. 000
传输线的阻抗
� 特性阻抗 均匀传输线,在任何一处受到的瞬态阻 抗是相同的,称为特征阻抗 Z0 它是传输线的固有特征,仅与材料特性、 介电常数和单位长度电容有关,而与传输线 长度无关。
传输线的阻抗
Z0 =
R + jω L = ZS ZP G + jωC
� 在低频情况下,比如信号频率 小于1KHz时,特性阻抗为: � 当信号频率很高,比如大于 100MHz时,简化为:
远端并联端接
>
>
OSCILLOSCOPE
Design file : 001.TLN Designer : wdchen HyperLynx V 7.5 Pr o b e Pr o b e Pr o b e Pr o b e 1: 5: 1: 5: U( A0 ) U( B0 ) U( A0 ) U( B0 ) ( at ( at ( at ( at pi pi pi pi n) n) n) n)
Date: Wednesday Apr . 15, 2009 Time: 14:43:46 Show Latest W aveform = YES, Show Previous Waveform = YES
远端并联端接
通过电阻R将传输线的末 端下拉到地。电阻R的值 必须同传输线的特征阻抗 Z0匹配,以消除信号的反 射。 优点: 设计和应用简便易行 缺点: 终端匹配电阻会带来直 流功率消耗,切会改变 输出电平
8. 000
8. 000
7. 000
7. 000
6. 000
6. 000
5. 000
5. 000
4. 000 V o l t a g e -V V o l t a g e -V -
4. 000
3. 000
3. 000
2. 000
2. 000
1. 000
1. 000
0. 000
0. 000
- 1. 000 0. 000 5. 000 10. 000 15. 000 20. 000 25. 000 Tim e (n s) 30. 000 35. 000 40. 000 45. 000 50. 000
>
OSCILLOSCOPE
Design file : 001 .TLN Designer : wdchen HyperLynx V 7.5 Pr obe Pr obe Pr obe Pr obe 1: 5: 1: 5: U( A0 ) U( B0 ) U( A0 ) U( B0 ) ( at ( at ( at ( at pi pi pi pi n) n) n) n)
c 1 v= = • 12in / ns ε r µr ε r µr
传输线信号的延时
� 几乎所有介质材料μ 为1,FR4材料ε在4-4.5 之间,通常取4,得到经验法则: 多数传输线中信号速度:V= 6 in/ns � 延时与互联线长度关系为: TD=Len/V
传输线的阻抗
� 瞬态阻抗:信号每时传输时受到的阻抗 等于线上所加电压与电流的比值 � 零阶模型中:Z=1 / CL V
1 1 1 + = R1 R2 Z 0
优点: 终端匹配电阻同时作 为上拉电阻和下拉电 阻来使用,提高了系 统的噪声容限。
缺点: 无论逻辑状态是高还是低,在 VCC到地之间都会有一个常量的 直流电流,导致终端匹配电阻 中有静态的直流功耗。
戴维南端接
>
OSCILLOSCOPE
Design file : 001.TLN Designer : wdchen HyperLynx V 7.5 Pr o b e Pr o b e Pr o b e Pr o b e 1: 5: 1: 5: U( A0 ) U( B0 ) U( A0 ) U( B0 ) ( at ( at ( at ( at pi pi pi pi n) n) n) n)
� Signal Integrity – Simplified By Eric Bogatin

传输线延时TD>信号上升时间 RT的20%。 如果RT=1ns,最大延时0.2ns,最大长度1.2in。 粗略法则:Lenmax <RT 完美时序 ——时钟产生和分发设计指南 线路延时必须至少比时钟上升时间快六倍
R Z0 = G Z0 = L C
特性阻抗的本质
� 高频的交流信号在传输时,信号和它的回 流之间存在变化的电场,从而引发变化的 磁场,电磁场的能量大部分集中在导体和 回流平面之间的介质中, 阻抗就是传输 线和介质共同作用结果下的阻止电磁场变 化传播的固有特性,因而只和传输线的宽 度,厚度,离参考平面的距离,以及介质 的介电常数有关
信号完整性分析
反射的理论分析和仿真
传输线
� 传输线是一种新的理想电路元件 � 简单的说,传输线是由两条有一定长度的 导线组成。如信号在走线上的传输时间大 于电平跳变上升/下降时间的一半,则该走 线判定为传输线。 � 两个特征:特性阻抗,延时
传输线中的信号速度
� 导线周围的材料、信号在传输线导体 周围形成的电磁场的建立速度和传播 速度,共同决定了信号的传播速度。
OSCILLOSCOPE
Design file: 001.TLN Designer: wdchen HyperLynx V7.5 Pr o b e Pr o b e Pr o b e Pr o b e 1: 5: 1: 5: U( A0 ) U( B0 ) U( A0 ) U( B0 ) ( at ( at ( at ( at pi pi pi pi n) n) n) n)
Date: Wednesday Apr. 15, 2009 Time: 14:51:51 Show Latest Waveform = YES, Show Previous Waveform = YES
RC端接
RC端接是并联端接的变异,在地和 端接电阻之间添加了一个电容器以隔 断恒定的直流电流。 R的值同传输线 的特征阻抗 Z0匹配以消除反射。 C值 需要确保在时钟周期的高电平或低电 平期间电容器没有明显的放电现象。 优点: 电容阻隔了直流通路,因此节省 了功率消耗,恰当地选取电容的 值,可以确保负载端的信号波形 接近理想的方波,同时信号的过 冲与下冲又都很小。 缺点: 电容值的选择十分复杂
Date: Wednesday Apr . 15, 2009 Time: 14:48:11 Show Latest Waveform = YES, Show Previous Waveform = YES
戴维南端接
戴维宁等效电路在线路 端使用一个上拉/下拉电 阻对。 两个电阻的并联 组合等于线路的阻抗
返回路径
反射
� 单一网络的信号质量,引起振铃。 � 产生: 信号沿互联线传播时受到的瞬态阻抗发生 变化。 如线的末端、拐角、过孔、 T型线、插接 件、封装处。
反射
� 设计目的: 尽可能保持信号受到的阻抗恒定。 � 方法: 1:保持走线阻抗恒定 2:根据设计调整阻抗
反射形成机理
反射系数: 传输系数:
>
OSCILLOSCOPE
Design file : 001.TLN Designer : wdchen HyperLynx V 7.5 Pr o b e Pr o b e Pr o b e Pr o b e 1: 5: 1: 5: U( A0 ) U( B0 ) U( A0 ) U( B0 ) ( at ( at ( at ( at pi pi pi pi n) n) n) n)
8. 000
8. 000
7. 000
7. 000
6. 000
6. 000
5. 000
5. 000
4. 000
4. 000 V ol t a g e -V -
V o l t a g e -V -
3. 000
3. 000
2. 000
2. 000
1. 000
1. 000
相关文档
最新文档