直线与圆相交弦长问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、直线与圆相交弦长问
题
一、知识储备
性质1:直线与圆相交,则圆心到直
线的距离d =|Aa +Bb +C |A 2+B 2
<r ;
性质2:由⎩⎪⎨⎪⎧ Ax +By +C =0(x -a )2+(y -b )2=r 2消元得到一元二次方程的判别式Δ>
0;
性质3:若直线l 与圆C 交于A ,B
两点,设弦心距为d ,半径为r ,弦长为|AB |,则有⎝ ⎛⎭⎪⎫|AB |22+d 2=r 2, 二、典例练习 [例] 已知圆的方程为x 2+y 2=8,圆内有一点P (-1,2),AB 为过点P 且
倾斜角为α的弦.
(1)当α=135°时,求AB 的长;
(2)当弦AB 被点P 平分时,写出直线
AB 的方程. 解析:法一: 法二:
[练习]已知圆C 和y 轴相切,圆心C
在直线x -3y =0上,且被直线y =x
截得的弦长为27,求圆C 的方程. 解析:
[练习已知某圆圆心在x 轴上,半径长为5,且截y 轴所得线段长为8,求该圆的标准方程.
解析:
三、类题通法 求直线与圆相交时弦长的两种方法
(1)几何法:如图1,直线
l 与圆C 交于A ,B 两点,
设弦心距为d ,圆的半
径为r ,弦长为|AB |,
则有⎝ ⎛⎭⎪⎫|AB |22+d 2=r 2,即|AB |=2r 2-d 2. (2)代数法:如图2所示,将直线方程
与圆的方程联立,设直线与圆的两交
点分别是A (x 1,y 1),B (x 2,y 2),则|AB |
=(x 1-x 2)2+(y 1-y 2)2=
1+k 2|x 1-x 2|=1+1k
2|y 1-y 2|(直线l 的斜率k 存在). 二、直线与圆相交弦长问
题 一、知识储备 性质1:直线与圆相交,则圆心到直
线的距离d =A 2+B
2<r ; 性质2:由⎩⎪⎨⎪⎧ Ax +By +C =0(x -a )2+(y -b )2=r 2消元得到一元二次方程的判别式Δ>0; 性质3:若直线l 与圆C 交于A ,B 两点,设弦心距为d ,半径为r ,弦长为|AB |,则有⎝ ⎛⎭
⎪⎫|AB |22+d 2=r 2, 二、典例与练习
[例] 已知圆的方程为x 2+y 2=8,圆
内有一点P (-1,2),AB 为过点P 且倾斜角为α的弦. (1)当α=135°时,求AB 的长;
(2)当弦AB 被点P 平分时,写出直线AB 的方程.
[解] (1)法一:(几何法)如图所示,过点O 作OC ⊥AB .由已知条件得直线的斜率为k =tan 135°=-1,
∴直线AB 的方程为y -2
=-(x +1),
即x +y -1=0. ∵圆心为
(0,0),
∴|OC |=|-1|2
=22.∵r =22, ∴|BC |=8-⎝ ⎛⎭⎪⎫222=302,∴|AB |=2|BC |=30. 法二:(代数法)当α=135°时,直线
AB 的方程为y -2=-(x +1),即y =-x +1,代入x 2+y 2=8,
得2x 2-2x -7=0.∴x 1+x 2=1,x 1x 2
=-72
, ∴|AB |=
1+k 2|x 1-x 2| =(1+1)[(x 1+x 2)2-4x 1x 2]=
30. (2)如图,当弦AB 被点P 平分时,OP ⊥AB , ∵k OP =-2,∴k AB =12, ∴直线AB 的方程为y -2=12(x +1),即x -2y +5=0. [练习已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程. 解:设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴
圆心到直线y =x 的距离为|2m |2
=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. [练习已知某圆圆心在x 轴上,半径长为5,且截y 轴所得线段长为8,求该圆的标准方程.
[解]法一:如图所示,由题设|AC|=r=5,|AB|=8,∴|AO|
=4.在Rt△AOC中,|OC|
=|AC|2-|AO|2
=52-42=3.设点C坐标
为(a,0),则|OC|=|a|=3,
∴a=±3.∴所求圆的方程为(x+3)2+y2=25,或(x-3)2+y2=25.
法二:由题意设所求圆的方程为(x-a)2+y2=25.
∵圆截y轴线段长为8,∴圆过点A(0,4).代入方程得a2+16=25,∴a =±3.∴所求圆的方程为(x+3)2+y2=25,或(x-3)2+y2=25.
三、类题通法
求直线与圆相交时弦长的
两种方法
(1)几何法:如图1,直线l
与圆C交于A,B两点,设弦心距为d,圆的半径为r,弦长为|AB|,则有⎝
⎛
⎭
⎪
⎫
|AB|
22
+d2=r2,即|AB|=2r2-d2.
(2)代数法:如图2所示,
将直线方程与圆的方程联
立,设直线与圆的两交点
分别是A(x1,y1),B(x2,y2),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1
-x2|=1+1
k2|y1-y2|(直线l的斜率k存在).