逆矩阵定律和矩阵的秩

合集下载

逆矩阵公式和矩阵的秩

逆矩阵公式和矩阵的秩
§2.3 逆矩阵公式和矩阵的秩
一、逆矩阵公式 定义22(非奇异矩阵)
对于n阶矩阵A 若行列式|A|=0 则称A是奇异的否则称A为非奇异的
定义23(伴随矩阵)
Aij为A的元素aij的代数余子式,
A11
A
=
A12
A1n
A21
A22
An1
An
2
,则称A为A的伴随
矩阵.
A2n Ann
首页
1 2 3 1
3 1 2 4
1 2 1 3
1532 1000
3 7 7 7
1 4 4 4
7772 1000
3 7 0 0
1 4 0 0
7002
最后一矩阵为阶梯形矩阵 有两个非零行 故r(A)=2
下页
例4 设B为n阶非奇异矩阵 A为mn矩阵 试证 A与B之积的秩等于A的秩 即 r(AB)=r(A) (P60/2.18)
又如 B =100
102 r(B)=2
C =100
1 1 0
100
r(C)=3
上述矩阵都是满秩矩阵
下页
定理27 矩阵经初等变换后 其秩不变
例 1
求矩阵
A=
11 13
0 2 1 4
0 0 0 5
11
4 1
的秩

A = 1113
0 2 1 4
0 0 0 5
1141 1000
0 2 1 4
0 0 0 5
且A1 = 1 A , 其中A为矩阵A的伴随矩阵. A
证明: ()
因为AA = A E,当 A 0时,有A( A ) = E, A
又因为A A = A E,当 A 0时,有( A ) A = E, A

线性代数秩和逆

线性代数秩和逆

一、 矩阵的秩定义1 在一个n m ⨯矩阵A 中,任意选定k 行和k 列({}n m k ,min ≤),位于这些选定的行和列的交点上的2k 个元素按原来的次序所组成的k k ⨯矩阵的行列式,称为A 的一个k 阶子式。

例1 在矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0000500041201311A 中,选第3,1行和第4,3列,它们交点上的元素所成的2阶行列式155013=就是一个2阶子式。

又如选第3,2,1行和第4,2,1列,相应的3阶子式就是.10500420111=定义2 非零矩阵的不为零的子式的最高阶数称为该矩阵的秩,零矩阵的秩规定为0。

矩阵A 的秩记为()A rank 。

例2 证明:矩阵A 与其转置矩阵T A 有相同的秩。

例3 证明:阶梯形矩阵的秩等于它的非零行的个数。

证 设A 是一个阶梯形矩阵,不为零的行数是r 。

选取这r 个非零行以及各非零行第一个非零元素所在的列,由这些行和列交点上的元素所成的r 阶子式是一个上三角行列式,并且主对角线上的元素都不为零,因此它不等于零。

而A 的所有阶数大于r 的子式都至少有一行的元素全为零,因而子式为零。

所以()r A r a n k =。

由于矩阵的子式的阶数不超过矩阵的行数及列数,所以n m ⨯矩阵A 的秩()()n m A rank ,min ≤。

而如果()m A rank =,就称A 是行满秩的;如果()n A rank =,就称A 是列满秩的。

此外,如果A 的所有1+r 阶子式全为零,由行列式的定义可知,A 的2+r 阶子式也一定为零,从而A 的所有阶数大于r 的子式全都为零。

因此秩有下面等价的定义:定理1 n m ⨯矩阵A 的秩为r 充分必要条件是:在A 中存在一个r 阶子式不为零,且在()()n m A rank ,min <时,矩阵A 的所有1+r 子阶式都为零。

定理2 初等变换不改变矩阵的秩。

换句话说,等价的矩阵具有相同的秩。

证 设n m A ⨯经初等行变换变为n m B ⨯,且()()21,r B r a n k r A r a n k ==。

逆矩阵的性质及在考研中的应用

逆矩阵的性质及在考研中的应用

逆矩阵的性质及在考研中的应用矩阵是线性代数中的基本概念之一,而逆矩阵是矩阵理论中的重要组成部分。

在研究生入学考试中,逆矩阵的出现频率较高,是考生必须掌握的重要内容之一。

本文将介绍逆矩阵的基本性质以及在考研中的应用场景,旨在帮助考生更好地理解和掌握这一部分内容。

逆矩阵是矩阵的一种重要性质,其定义如下:设A是一个可逆矩阵,那么存在一个矩阵B,使得$AB=BA=I$,其中I是单位矩阵。

在这个定义中,矩阵B被称为A的逆矩阵。

$A = \begin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix}$计算行列式$det(A)$: $det(A) = |\begin{matrix} 2 & 3 \ 1 & 2 \end{matrix}| = 2 \times 2 - 3 \times 1 = 1$计算A的伴随矩阵A*: $A* = \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix}$计算A的逆矩阵A-¹: $A-¹ = \frac{1}{det(A)} \times A* =\frac{1}{1} \times \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix} = \begin{matrix} 2 & -3 \ -1 & 2 \end{matrix}$在考研中,逆矩阵的应用主要涉及以下几个方面:解方程:逆矩阵可以用来求解线性方程组。

当方程组的系数矩阵是可逆矩阵时,我们可以通过逆矩阵快速求解方程组。

证明不等式:在证明某些矩阵不等式时,可以通过引入逆矩阵来简化证明过程。

求特征值和特征向量:在计算矩阵的特征值和特征向量时,需要先求出矩阵的逆矩阵。

解决优化问题:在数学优化中,逆矩阵往往作为系数矩阵的逆出现,对于一些约束优化问题,可以通过求解线性方程组来得到优化解。

矩阵的秩和逆矩阵

矩阵的秩和逆矩阵

另外, 当 A 0时,定义
A0 E, Ak A1 k . k为正整数
当 A 0, , 为整数时,有
A A A ,
A A .
性质5
A1
设A
A2
o
o
, As
分块对角阵?
若 Ai可逆i 1,2,, s,则A可逆,并有
A11
A1
A21
o
o
.
As1

1
3
4
所以 A 的逆矩阵是唯一的,即 B C A1.

EE E, E1 E,单位阵可逆, 其逆阵是单位阵

1
3
4
113 1 ຫໍສະໝຸດ 111 1 ,1
3
1 4
11
3 1 4 1
,
对角阵可逆, 其逆阵是对角元素的倒数的对角阵
2.逆矩阵的运算性质(5个)
r3 r2
0 0
2 0
5 1
2 1
1 1
0 1
r1 2r3 1 0 0 1 3 2 0 2 0 3 6 5
r2 5r3 0 0 1 1 1 1
1 2 3 1 0 0 0 2 5 2 1 0 0 2 6 3 0 1
A1
r2

1) 2
1 0
0 1
0 0
1 3
3 3
程上,再把第1个方程乘以-2加到第3个方程上,即有
- 5x1 - 5x2 5x3 5 - 2x1 - 2x2 2x3 2
5x1 4x2 3x3 4 2x1 - 5x2 4 x3 2
x2 8x3 9
7 x2 6x3 4
把原来三个方程用所得的新方程代替:
x1 x2 x3 1

考研数学矩阵知识点总结

考研数学矩阵知识点总结

考研数学矩阵知识点总结一、矩阵的基本概念矩阵是一个二维的数组,由m行n列的元素组成。

通常用大写字母A、B、C等表示矩阵,元素用小写字母a_ij、b_ij、c_ij等表示。

例如,一个3行2列的矩阵可以写成:A = [a11 a12][a21 a22][a31 a32]矩阵具有一些基本的性质,包括矩阵的相等、相加、相乘等。

两个矩阵A和B相等,当且仅当它们的对应元素相等,即a_ij=b_ij (i=1,2,…,m;j=1,2,…,n)。

两个矩阵A和B的和是一个矩阵C,其元素c_ij等于a_ij+b_ij。

两个矩阵A和B的乘积是一个矩阵C,其元素c_ij等于a_i1*b1_j+a_i2*b2_j+…+a_in*bn_j。

二、矩阵的运算矩阵的加法和乘法是矩阵运算中的基本操作,它们有一些基本的性质。

矩阵A、B和C满足结合律、分配律、交换律等。

具体的运算规则和性质如下:1. 矩阵的加法设A、B是相同阶数的矩阵,则矩阵的加法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C)。

矩阵的加法还满足分配律,即A(B+C)=AB+AC。

同时,零矩阵是矩阵加法的单位元素。

2. 矩阵的乘法设A是m行n列的矩阵,B是n行p列的矩阵,则矩阵的乘法满足结合律和分配律,即A(BC)=(AB)C,A(B+C)=AB+AC。

但矩阵的乘法不满足交换律,即AB≠BA。

同时,单位矩阵是矩阵乘法的单位元素。

三、特征值和特征向量特征值和特征向量是矩阵理论中的重要概念,它们在研究矩阵的性质和应用中具有重要的作用。

1. 特征值设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。

矩阵A的特征值可以通过求解矩阵的特征方程det(A-λE)=0来得到。

特征值和特征向量在矩阵的对角化、矩阵的相似性等方面有重要的应用。

2. 特征向量设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。

5矩阵的秩与逆矩阵

5矩阵的秩与逆矩阵
方法一: 用A

求。
初等变换法。 方法二:初等变换法。
⇒ A−1 = P1 P2 L Ps A可逆 ⇒ A 可逆,
−1
行变换 ⇒ P1 P2 L Ps A = E −1 ⇒ ( AM E ) → ( E M A ) −1 P1 P2 L Ps E = A 列变换 E
1 − 1 − 1 例1:求A = − 3 2 1 的逆。 2 0 1
0 1 a M a
n −2
0 0 1 M a
n −3
L 0 0 L 0 0 L 0 0 L M M L a 1
A
−1
=?
0 0 L 0 0 1 − a 1 0 L 0 0 −1 A = 0 − a 1 L 0 0 M M L M M M 0 0 0 L − a 1 方法三:用定义求。 方法三:用定义求。 a1 −1 例2:A = O , a1 L a n ≠ 0.求A . an
例 2.
1 E (i, j ) = E (i, j ); E (i ( k )) = E (i ( )); k −1 E (i, j ( k )) = E (i, j ( −k ))
−1
−1
证:
Q E (i , j ) E (i , j ) = E
∴ E ( i , j ) = E (i , j )
( )
A → A−1 &&&& &&&& E
( AM E ) = 1 − 1 − 1 M 1 0 0 1 − 1 − 1 M 1 0 0 1 M 0 1 0 → 0 − 1 − 2 M 3 1 0 − 3 2 2 0 2 3 M − 2 0 1 0 1 M 0 0 1

1.5矩阵的秩与方阵的逆

1.5矩阵的秩与方阵的逆

r3 k
1 0 E5 0 0 0
0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
c3 k
1 0 0 0 0
0 1 0 0
0 0 0 0 0 0 0 1 0 0 k 0 0 0 0 1
的秩.
1.5.1矩阵的秩及其求法
1 2 2 1 1 2 4 8 0 2 例4:设 A ,求矩阵 A 及矩阵 , b 2 4 2 3 3 3 6 0 6 4
B = (A, b) 的秩. 分析:对 B 作初等行变换变为行阶梯形矩阵,设 B 的行阶梯 形矩阵为 B ( A, b ) ,则 A 就是 A 的行阶梯形矩阵,因此可从
中同时看出R(A)及 R(B) .
1 2 2 1 2 4 8 0 解:B 2 4 2 3 3 6 0 6 1 1 2 2 r 0 0 ~ 3 0 0 4 0 0 2 1 1 2 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 记作 E5(3, 5) 0 0 1 0 0 1 0 0
r3 r5
0 0 c 3 c5 0 0 0 0 0 1
1 0 0 0 0
0 1 0 0
线性代数
1.5矩阵的秩与方阵的逆
1.5.1矩阵的秩及其求法
定义:在 m×n 矩阵 A 中,任取 k 行 k 列( k ≤ m,k≤n),位于这k 行 k 列交叉处的元素, 按照原来的位置构成的 一个k 阶行列式,称为矩 阵 A 的一个 k 阶子式.
k k C C 显然,m×n 矩阵 A 的 k 阶子式共有 m n

与矩阵的秩有关的结论

与矩阵的秩有关的结论

与矩阵的秩有关的结论矩阵的秩是矩阵理论中的一个重要的概念,它可以帮助我们了解矩阵的性质和特征,为矩阵的计算和应用提供了有力的工具。

在本文中,我们将介绍与矩阵的秩有关的一些重要结论和定理。

1.矩阵秩的定义矩阵的秩,也称为矩阵的秩数,是指矩阵中非零元素所在的行和列向量的最大线性无关组数。

其他的行和列向量都可以由这些线性无关组线性组合而成。

例如,在一个2行3列的矩阵中,如果其中有两行向量是线性相关的,那么它们中必然会有一行是另一行的倍数,因此这两行向量中只能算作一个线性无关组,矩阵的秩就是1。

如果这两行向量是线性无关的,那么它们就可以算作两个线性无关组,矩阵的秩则是2。

2.矩阵秩的性质矩阵秩具有以下性质:(1)矩阵的秩不会超过它的行数和列数的最小值,即rank(A) ≤ min(m, n)。

(2)矩阵的秩与它的转置矩阵的秩相同,即rank(A) = rank(AT)。

(3)如果矩阵A是由矩阵B和矩阵C左右拼接而成,那么矩阵A的秩至少是矩阵B和矩阵C的秩之和减去它们的公共部分的秩,即rank(A) ≥ rank(B) + rank(C) - rank(B ∩ C)。

(4)如果矩阵A是由矩阵B和矩阵C上下拼接而成,那么矩阵A的秩至少是矩阵B和矩阵C的秩之和,即rank(A) ≥ rank(B) +rank(C)。

(5)对于任意矩阵A、B和C,如果满足A = BC,那么rank(B) + rank(C) - rank(A) ≤ n,其中n是矩阵A的列数。

这些性质可以帮助我们更加深入地理解矩阵秩的本质和特点,并且提供了在矩阵计算和应用中进行推导和判断的依据。

3.矩阵秩与矩阵求逆多实际应用中的问题。

矩阵是否有逆,以及如何求出矩阵的逆,与矩阵的秩有密切的关系。

对于一个n阶可逆矩阵A,如果它的行列式不为0,那么它的秩必然是n,因为n阶可逆矩阵的秩就是n。

另外,我们还可以通过计算矩阵的伴随矩阵来求出矩阵的逆,公式为A^-1 = adj(A) / det(A),其中adj(A)是矩阵A的伴随矩阵,det(A)是矩阵A的行列式。

矩阵的秩与逆矩阵

矩阵的秩与逆矩阵

矩阵的秩与逆矩阵矩阵是线性代数中的重要概念,它在许多数学和工程领域的问题中发挥着关键作用。

在矩阵的运算中,矩阵的秩和逆矩阵是两个重要的概念。

本文将就矩阵的秩和逆矩阵这两个概念进行阐述和探讨。

一、矩阵的秩矩阵的秩是描述矩阵中行或列向量的线性无关性的概念。

矩阵的秩可以通过对矩阵进行一系列行变换或列变换,将矩阵化为行最简形或列最简形,然后数有多少个不全为零的行或列,即可得到秩的大小。

秩的大小与矩阵的性质以及所表示的线性方程组的解的情况密切相关。

对于一个m×n的矩阵A,其秩(rank)记作rank(A),它满足以下性质:1. rank(A) ≤ min(m, n),即矩阵的秩不会超过行数和列数的最小值。

2. 若rank(A) = m,即矩阵的秩等于行数,也就是说矩阵的行向量是线性无关的。

3. 若rank(A) = n,即矩阵的秩等于列数,也就是说矩阵的列向量是线性无关的。

二、逆矩阵逆矩阵是矩阵论中一个重要的概念,对于非奇异矩阵(可逆矩阵),它存在一个逆矩阵,使得其与原矩阵相乘得到单位矩阵。

逆矩阵在解线性方程组、求解矩阵方程以及矩阵求导等问题中具有重要应用。

对于一个n阶矩阵A,若存在一个n阶矩阵B,使得AB=BA=I,其中I为n阶单位矩阵,那么矩阵B就是矩阵A的逆矩阵,记作A^(-1)。

求矩阵的逆矩阵通常采用伴随矩阵法或初等变换法。

伴随矩阵法首先要求矩阵的行列式不为0,即非奇异矩阵。

若矩阵A是非奇异矩阵,其逆矩阵可以通过伴随矩阵进行如下计算:A^(-1) = (1/|A|) × adj(A),其中|A|为矩阵A的行列式,adj(A)为A的伴随矩阵。

三、矩阵秩与逆矩阵的关系矩阵的秩和逆矩阵之间有着重要的联系。

对于一个n阶方阵A,若A是一个非奇异矩阵,则矩阵A的秩等于其行列式不为0,即rank(A)= n,同时A存在逆矩阵A^(-1)。

反之,若矩阵A存在逆矩阵A^(-1),则A为非奇异矩阵,其行列式不为0,即|A| ≠ 0,同时矩阵A的秩等于其阶数,即rank(A) = n。

逆矩阵秩和原矩阵的关系

逆矩阵秩和原矩阵的关系

逆矩阵秩和原矩阵的关系
在矩阵运算中,逆矩阵是一个非常重要的概念。

逆矩阵是指对于一个方阵A,如果存在一个方阵B,使得AB=BA=I,其中I是单位矩阵,那么B就是A的逆矩阵。

逆矩阵在矩阵求解、线性方程组求解等方面都有着广泛的应用。

在逆矩阵的求解过程中,我们会发现逆矩阵的秩和原矩阵的秩之间存在着一定的关系。

我们需要知道一个定理:如果一个矩阵A是可逆的,那么它的秩等于它的行数和列数中的较小值。

这个定理可以通过矩阵的初等变换来证明。

因为矩阵的初等变换不改变矩阵的秩,而对于一个可逆矩阵A,它可以通过一系列的初等变换变成一个单位矩阵,而单位矩阵的秩就是它的行数和列数中的较小值。

接下来,我们来看逆矩阵的秩和原矩阵的秩之间的关系。

假设A是一个n阶方阵,它的秩为r,那么我们可以得到一个结论:如果A 是可逆的,那么它的逆矩阵的秩也为r。

这个结论可以通过逆矩阵的定义来证明。

因为A是可逆的,所以它的秩为n,而逆矩阵B也是一个n阶方阵,那么它的秩也为n。

又因为AB=BA=I,所以B的列向量是A的行向量的线性组合,因此B的秩不会超过A的秩,即B 的秩不会超过r。

又因为B也是可逆的,所以它的秩也不会小于r,因此B的秩就等于r。

逆矩阵的秩和原矩阵的秩之间存在着一定的关系。

如果一个矩阵A
是可逆的,那么它的逆矩阵的秩也为它的秩。

这个结论在矩阵求解、线性方程组求解等方面都有着广泛的应用。

在实际应用中,我们可以通过计算矩阵的秩来判断它是否可逆,从而避免无效的计算。

求逆矩阵的方法与矩阵的秩(完整版)实用资料

求逆矩阵的方法与矩阵的秩(完整版)实用资料

求逆矩阵的方法与矩阵的秩(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)求逆矩阵的方法与矩阵的秩一、矩阵的初等行变换(由定理2.4给出的求逆矩阵的伴随矩阵法,要求计算矩阵A 的行列式A 值和它的伴随矩阵*A .当A 的阶数较高时,它的计算量是很大的,因此用伴随矩阵法求逆矩阵是不方便的.下面介绍利用矩阵初等行变换求逆矩阵的方法.在介绍这种方法之前,先给出矩阵初等行变换的定义.)定义2.13 矩阵的初等行变换是指对矩阵进行下列三种变换: (1) 将矩阵中某两行对换位置; (2) 将某一行遍乘一个非零常数k ;(3) 将矩阵的某一行遍乘一个常数k 加至另一行. 并称(1)为对换变换,称(2)为倍乘变换,称(3)为倍加变换. 矩阵A 经过初等行变换后变为B ,用A →B表示,并称矩阵B 与A 是等价的.(下面我们把)第i 行和第j,”;把第i行遍乘k k ”;第j 行的k 倍加至第i 为“ + k ”.例如,矩阵 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321c c c b b b a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321c c c a a a b b b ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321c c c b b b a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321kc kc kc b b b a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321c c c b b b a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321332211321c c c ka b ka b ka b a a a (关于初等矩阵内容请大家自己阅读教材)二、运用初等行变换求逆矩阵由定理2.7的推论“任何非奇异矩阵均能经过初等行变换化为单位阵”可知,对于任意一个n 阶可逆矩阵A ,经过一系列的初等行变换可以化为单位阵I ,那么用一系列同样的初等行变换作用到单位阵I 上,就可以把I 化成A -1.因此,我们得到用初等行变换求逆矩阵的方法:在矩阵A 的右边写上一个同阶的单位矩阵I ,构成一个n ⨯2n 矩阵 ( A , I ),用初等行变换将左半部分的A 化成单位矩阵I ,与此同时,右半部分的I 就被化成了1-A .即( A , I )初等行变换−→−−−( I , A -1 )例1 设矩阵 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--232311111③k ①,② ②+①k求逆矩阵A -1 . 解 因为[A , I ] =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100232010311001111 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----102010011220001111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---1212510002121110001111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----1212510010201012127011 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12125100102010221211001所以 A -1= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12125102221211所求逆矩阵A -1是否正确,可以通过计算乘积矩阵A A -1进行验证.如果A A -1=I 成立,则A -1正确,否则不正确.对给定的n 阶矩阵A ,用上述方法也可以判断A 是否可逆.即在对矩阵[ A , I ] 进行初等行变换的过程中,如果[ A , I ]中的左边的方阵出现零行,说明矩阵A 是奇异的,即0=A ,可以判定A 不可逆;如果[ A , I ]中的左边的方阵被化成了单位阵I ,说明A 是非奇异的,可以判定A 是可逆的,而且这个单位矩阵I 右边的方阵就是A 的逆矩阵A -1,它是由单位矩阵I 经过同样的初等行变换得到的.例2 设矩阵 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----116504612,问A 是否可逆? 解 因为[ A , I ] =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----100116010504001612→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----10317200121720001612 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1110000121720001612[ A , I ]中的左边的矩阵A 经过初等行变换后出现零行,所以矩阵A 是奇异的,A 不可逆.②+①(-1)③+①(-2) ②(1/2)③+② ①+③(-1) ②+③(-1) ①+②(下面利用矩阵求逆运算求解矩阵方程.)例3 解矩阵方程AX = B ,其中 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---423532211,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---453211解 [思路] 如果矩阵A 可逆,则在矩阵方程AX = B 等号的两边同时左乘A -1,可得A -1AX = A -1B , X = A -1B因此,先用初等行变换法判别A 是否可逆,若可逆,则求出A -1,然后计算A -1B ,求出X .因为 [ A , I ] = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100423010532001211→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----103210012110001211→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----11510001211001311→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----115100127010102001→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----115100127010102001所以 A 可逆,且 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----115127102X = A -1B = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----115127102⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---453211=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---429623三、矩阵的秩前面给出了利用矩阵行列式A 判别方阵A 是否可逆的方法,除了这种方法外,还可以利用矩阵A 的特征之一——矩阵的秩来判别方阵A 的可逆性.矩阵的秩是线性代数中非常有用的一个概念,它不仅与讨论可逆矩阵的问题有密切关系,而且在讨论线性方程组的解的情况中也有重要应用. 在给出矩阵的秩的概念之前,先要定义矩阵的子式.定义2.15 在矩阵A 中,位于任意选定的k 行、k 列交叉点上的2k 个元素,按原来次序组成的k 阶子阵的行列式,称为A 的一个k 阶子式.如果子式的值不为零.就称为非零子式.例4 设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--324423211123取其第一、二行与第二、四列交叉点上的4个元素按原次序组成行列式22212=称为A 的一个二阶子式,而且是它的非零子式.定义2.16 矩阵A 的非零子式的最高阶数称为矩阵A 的秩,记作r A ()或秩(A ) . 规定:零矩阵O 的秩为零,即r O ()= 0.例4中的矩阵已经有一个二阶非零子式,通过计算可知,矩阵A 的所有三阶子式均为零,(该矩阵没有四阶子式),所以 r A ()= 2 .例5 设A 为n 阶非奇异矩阵,求r A ().解 由于A 为非奇异矩阵,即A 对应的行列式0≠A ,所以A 有n 阶非零子式,故 r A ()= n .例5的逆命题亦成立,即对一个n 阶方阵A ,若r A ()= n ,则A 必为非奇异的. 因此n 阶方阵A 为非奇异的等价于r A ()= n . 称r A ()= n 的n 阶方阵为满秩矩阵.用定义求矩阵的秩,需要计算它的子式,计算量常常是较大的.利用教材中的定理2.10计算矩阵的秩是比较方便的.定理2.10 设A 为n m ⨯矩阵,则r A ()= k 的充分必要条件为:通过初等行变换能将A 化为具有k 个非零行的阶梯阵.例如,阶梯阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000001040053162,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--200140531因为A 的非零行有二行,而B 的非零行有三行,所以A 的秩等于2,B 的秩等于3,即r A ()= 2,r B ()= 3.那么一个矩阵经过初等行变换化成阶梯阵后,它的秩是否会发生变化呢?不会的.教材中的定理2.9已经说明这一点.定理2.9 矩阵经过初等行变换后,其秩不变. (证明见教材)定理2.10给了我们求矩阵的秩的一种简便方法,即利用初等行变换将一个矩阵A 化成阶梯阵,然后算出矩阵A 的秩.例6 设矩阵A =⎥⎦⎤⎢⎣⎡-01422502, B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----2110460235230411 求r A (),r B (),r AB ().解 因为 A = ⎥⎦⎤⎢⎣⎡-01422502②①+−→−−⎥⎦⎤⎢⎣⎡26402502 所以 r A ()= 2因为 B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----2110460235230411②①③①++−→−−32⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21104220317100411 ③②④②+-+-−→−−−()()21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----51600103200317100411④③+-−→−−−()12⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000103200317100411所以 r B ()= 3因为 AB = ⎥⎦⎤⎢⎣⎡-01422502⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----2110460235230411=⎥⎦⎤⎢⎣⎡---861016242048 AB =⎥⎦⎤⎢⎣⎡---861016242048②①+-−→−−−()2⎥⎦⎤⎢⎣⎡---5646180242048 所以 r AB ()= 2由例6可知,乘积矩阵AB 的秩不大于两个相乘的矩阵A , B 的秩,即 r AB ()≤ min{(),()}r A r B .例7 设矩阵 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----01211024221160310030 求r A ()和)(A r '.解 因为 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----01211024221160310030(,)①④−→−−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----10030024221160301211②①③①+-+-−→−−−()()32⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---10030040001403001211−−−→−-+-+)1()1(②④③②⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000040001003001211 所以 r A ()=3 同理可得 )(A r '=3由例7可知,矩阵A 与它的转置矩阵A '的秩相等. 可以证明例6,例7的结论具有一般性.定理2.11 设A 为m ⨯n 矩阵,则 (1) 0≤≤r A m n ()min{,}; (2) r A () = r A T ()第十三讲主要内容:矩阵的最大秩分解,QR分解6.3 矩阵的最大秩分解定理1 设,,则可经过有限次初等行变换把化为行最简形式其中,号的元素可以不为零,的第个列向量为,第i个元素为1,.引理分块矩阵经过一次初等行变换后化为矩阵,则证明,其中是相应的初等矩阵.,而。

1矩阵的秩与逆矩阵

1矩阵的秩与逆矩阵

要解决的问题: 要解决的问题:
1 0 a b a b 1 0 ⇒ 0 =1 = = 0 0 c d 0 0 0 1 这是不可
能的。 能的。故 A不可逆。 不可逆。 不可逆
a −1 1 0 就不可逆。 A = 例如 A = c 0 0 就不可逆。
0 1 a ⋮ a
n −2
0 0 1 ⋮ a
n −3
⋯ 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ ⋮ ⋮ ⋯ a 1
A
−1
=?
A
−1
0 1 − a 1 = 0 −a ⋮ ⋮ 0 0
0 ⋯ 0 0 ⋯ 0 1 ⋯ 0 ⋮ ⋯ ⋮ 0 ⋯ −a
0 0 0 ⋮ 1
1. A
−1
2 1 − 1 2. B = 3.C = 0 1 − 2
− 2 1
2 1 1 1 −1 = − 2 1 2. B = 1 3
− 1 −1 1 1 2 3.C = 0 2 2 − 1
方法三:用定义求。 方法三:用定义求。 a1 −1 例2:A = ⋱ , a1 ⋯ a n ≠ 0.求A . an 猜:
−1 B= A ⋱ 1 对否?只须验证 AB = E . an 1 1 a1 a1 解: ∵ ⋱ = ⋱ ⋱ 1 1 an an 1 =E a1 −1 ∴A = ⋱ 1 an
(iv )( A )
T −1
−1
Байду номын сангаас
= (A ) ;

可逆矩阵和秩关系

可逆矩阵和秩关系

可逆矩阵和秩关系
可逆矩阵是指存在一个矩阵的逆矩阵,能够使得二者相乘得到单位矩阵。

而矩阵的秩是指矩阵中非零行的个数,也可以用列向量的线性相关性来表示。

那么,可逆矩阵和秩之间有什么关系呢?
首先,一个矩阵是可逆的,当且仅当它的秩等于它的行数(或者列数)。

这可以通过矩阵的性质来证明。

具体来说,一个矩阵的秩等于它的行向量或列向量的极大线性无关组的大小。

如果一个矩阵的秩等于它的行数(或者列数),那么说明它的行向量或列向量可以组成一个最大的线性无关组,它们的线性组合可以生成整个矩阵空间。

因此,矩阵的列向量或行向量构成了一个基,从而可以求出矩阵的逆矩阵。

反之,如果一个矩阵的秩小于它的行数(或者列数),那么它的行向量或列向量就不能组成一个最大的线性无关组,它们的线性组合只能生成一个子空间,而不能生成整个矩阵空间。

因此,这个矩阵就不可逆。

综上所述,可逆矩阵和秩之间的关系是密切相关的。

一个矩阵的可逆性取决于它的秩是否等于它的行数(或者列数)。

这个结论在矩阵理论和线性代数中都是非常重要的,有很多应用。

- 1 -。

第七章第3节逆矩阵矩阵的秩

第七章第3节逆矩阵矩阵的秩

1 det A 3 2
所以矩阵A可逆
1
3
1 1 3
1 2 2 1 3 1
0 1 1 0 0 1 0 0
1 3
1 2 A11 1 1 3
1 3 A21 0 1 3
A31 1 3 1
3 2 A12 5 2 3
A22 1 2 3
2 0 B 2 1 1
解 记原矩阵方程为 AXB=C,因为
1 4 A 6 1 2
所以,矩阵 A、B 都可逆
在原方程两边同时左乘 A-1,右乘 B-1,得
1 2 4 3 1 1 1 0 1 1 X A CB 6 1 1 0 1 2 1 2 1 / 4 0
性质
*
A21 A22 A2 n
*
An1 An 2 Ann
*
注意足标的 变化
Aij 为元素 aij 的
代数余子式
A A A A A E
A A

n 1
推论:如果A是n阶方阵,则
2、逆矩阵存在的充分必要条件 方阵A可逆 推论:如果A可逆,则
det A 0
A
1
1 A
* A A1 A
例1 判断下面的矩阵是否可逆,如果可逆,则求逆矩阵
3 1 1 (1) A 3 1 2 2 1 3
解 因为
2 1 1 2 (2) B 0 0 3 6
0 1 2 1
0 3 4 2
所有高于 r 阶的子式都为零。
例如
1 2 3 A 2 2 1 3 4 4
因为 所以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首页
上页
返回
下页
结束

例5 设 A 是n阶矩阵 A 的伴随矩阵,n 2,
n, 证明:r( A ) = 1,
0,
若 r( A) = n; 若 r( A) = n 1; 若 r( A) n 1.
证: (1) 若 r( A) = n, 则 A 0.
AA = A E,
A A = A n ,
P60/ 2.19
A 0, r( A ) = n.
首页
上页
返回
下页
结束

(2) 若 r( A) = n 1, 则 A 中至少有一个n-1阶子式不为0,而 A中元素都是 A 的n-1阶子式,所以 A中至少有一个元素不为0, 则 r( A ) 1. 又由 r( A) = n 1, 知 A = 0, 则 AA = A E = 0 则 r( A) r( A ) n, r( A ) n r( A) = n (n 1) = 1, 综上, r( A ) = 1.
1 A
A
=
ad
1
bc
d c
b a
首页
上页
返回
下页
结束

例 1
求矩阵
A
=
1 2 3
0 1 2
105
的逆矩阵
101 解 因为| A|= 2 1 0 =20 所以A可逆 又因为
3 2 5
所以
A*
=A*AAA=111231
AA1121 AA2131 AA1222 AA2232 AA1323 AA2333
最后一矩阵为阶梯形矩阵 有三个非零行 故r(A)=3
首页
上页
返回
下页
结束

阶梯形矩阵的秩等于非零行的行数

3
求矩阵 A=1132
3 1 2 4
1 2 1 3
32
1 5
的秩

A=1132
3 1 2 4
1 2 1 3
32
1 5
10
0 0
3 7 7 7
1 4 4 4
72
7 7
1000
3 7 0 0
(3) 若 r( A) n 1, 则 A 中所有n-1阶子式全为0, 则 A 中元素全为0,即 A = 0, r( A ) = 0.
首页
上页
返回
下页
结束

§2.3 逆矩阵公式和矩阵的秩
一、逆矩阵公式
定义22(非奇异矩阵)
对于n阶矩阵A 若行列式|A|=0 则称A是奇异的否则称A
为非奇异的
定义23(伴随矩阵)
Aij为A的元素aij的代数余子式,
A11
A
=
A12
A1n
A21
A22
An1
An
2

则称A为A的伴随矩阵.
A2n Ann
首页
些行和列的交叉处的元素 保持它们原来的相对位置所构成 的k阶行列式 称为矩阵A的一个k阶子式
2 1 2 3
例如
已知
A=
4 2
1 0
3 1
52
选定第一三两行及第二四两列
得 2 阶子式10
3 2
首页
上页
返回
下页
结束

定义25(矩阵的秩) 设A为mn矩阵 如果A中不为零的子式最高阶数为r 即
存在r阶子式不为零 而任何r1阶子式皆为零 则称r为矩阵A 的秩 记作秩(A)=r或r(A)=r
AAA333=2311=705222222222211
A1
=
|
1 A|
A*
=
1 2
5 10 7
2 2 2
121
=
5/ 2 5 7/2
1 1 1
111//22
首页
上页
返回
下页
结束

例2 设A为三阶矩阵, A = 1 ,求 (2A)1 2A
解:
A = 1 0知
A 可逆,且 A1 =
1 A ,所以
||A00A00||==|=|AA|A|II
E
首页
上页
返回
下页
结束

定理2.6 n阶方阵A可逆当且仅当 A 0
且A1 = 1 A , 其中A为矩阵A的伴随矩阵. A
证明: () A可逆,则有A1,使AA1 = E 两边取行列式,得AA1 = A A1 = 1 因此,A 0
首页
上页
返回
下页
当A=O时 规定r(A)=0
例如
已知 A=100
2 1 0
3 0 1
100
1 因为0
0
2 1 0
3 0 =10 1
所以 r(A)=3
又如 B =100
102 r(B)=2
C =100
1 1 0
100
r(C)=3
上述矩阵都是满秩矩阵
首页
上页
返回
下页
结束

定理27 矩阵经初等变换后 其秩不变
例 1
上页
返回
下页
结束

定理2.5 设n阶矩阵A的伴随矩阵为A*,则
证明
AA* = A*A = A E
因为
a11 a21
an1
a12 a22
an2
a1n a2n
ann
A11 A12
A1n
A21 A22
A2n
An1 An2
Ann
=|A00|
0 | A| 0
AA
A
首页
上页
返回
下页
结束

A11
A1
=
1 A,其中A A
=
ቤተ መጻሕፍቲ ባይዱA 12
A 1n
A21 A
22
An1
A n
2
A 2n
A nn
其中A为A的伴随矩阵,
A 为行列式 A中元素a 的代数余子式.
ij
ij
逆矩阵的求法二:伴随矩阵法




对 二 阶 方 阵A
=
a c
b d
当 A = ad bc 0时,有A1 =
---------作为定理来用
首页
上页
返回
下页
结束

几个常用性质:P60
(5) max{r( A),r(B)} r( A, B) r( A) r(B) (6) r( A B) r( A) r(B) (7) r( AB) min{r( A),r(B)} (8) 若AB = 0,则r( A) r(B) n
求矩阵 A=1113
0 2 1 4
0 0 0 5
11
4 1
的秩

A = 1113
0 2 1 4
0 0 0 5
11
4 1
1000
00 20 1 0 45
12
1 0
1000
0 1 0 0
0 0 5 0
11
4 0
由定理25知 A的秩等于经初等变换后所求出的最后一
矩阵的秩 而最后一矩阵的秩显然等于3 故r(A)=3
当A=O时 规定r(A)=0
矩阵的秩的简单性质 (1)r(A)=r(AT) (2)对于mn矩阵A 有0r(A)min(m, n) 当r(A)=min(m, n)时 称矩阵A为满秩矩阵
首页
上页
返回
下页
结束

定义212(矩阵的秩) 设A为mn矩阵 如果A中不为零的子式最高阶数为r 即
存在r阶子式不为零 而任何r1阶子式皆为零 则称r为矩阵A 的秩 记作秩(A)=r或r(A)=r
|A00|=|
AA| IE
AAAAAA111111n21n21
AA2211 AA2222 AA22nn
AAAAAAnnnnnn12n12naaaaaa12n12n111111
aa1122 aa2222 aann22
aaaaaa1n21n2nnnnnn==||A00A00||
00 ||AA|| 00
结束

定理2.6 n阶方阵A可逆当且仅当 A 0
且A1 = 1 A , 其中A为矩阵A的伴随矩阵. A
证明: ()
因为AA = A E,当 A 0时,有A( A ) = E, A
又因为A A = A E,当 A 0时,有( A )A = E, A
所以A( A ) = ( A ) A = E,所以A1 = 1 A
A
A = A A1 = A1
又 (2 A)1 = 1 A1, A1 = 1 = 1 ,于是
2
A
(2A)1 2A = 1 A1 2 A1 = 3 A1
2
2
= ( 3)3 A = 27
2
8
首页
上页
返回
下页
结束

二、矩阵的秩
定义24(k阶子式) 设A是mn矩阵 从A中任取k行k列(kmin(m, n)) 位于这
思考 A的秩与最后一个阶梯形矩阵的非零行有什么关系?
首页
上页
返回
下页
结束

阶梯形矩阵的秩等于非零行的行数
例 2
求矩阵 A=112
1 3 1
1 3 2
122
的秩

A=
1 2 1
1 3 1
1 3 2
122
100
1 5 2
1 1 1
212
100
1 5 3
1 1 0
122 100
1 1 0
1 5 3
122
1 4 0 0
72
相关文档
最新文档