第六章 反比例函数

合集下载

第六章 反比例函数6.1反比例函数

第六章 反比例函数6.1反比例函数
称y是x的反比例函数。
注意:变量x,y都不能等于0.
基础练习
下列函数表达式中,x表示自变量,哪些是反比 例函数?若是,请指出相应的k值。
(1)y
=
4
x
(2)
y
=
-
1
2x(3)yFra bibliotek=1-x
(4)xy = 1
(5)y
=
x
2
(6) y = 2x-1
反比例函数的三种表示形式
1、 xy = k 2、 y = kx -1 3、 y = k (k为常数,k ≠0)
如果 y =kx(k为常数,k≠0),
那么 y是x的正比例函数.
问题1:若每天背10个单词,那么所掌握的 单词总y(个)与时间x(天)之间的 关系函数式为 。
问题2:小明原来掌握了150个单词,以后每 天背10个单词,那么他所掌握单词总 量y(个)与时间x(天)之间的关系式为
问题3: 九年级英语全册约有单词1200个,小 明同学计划用x(天)全部掌握,那么平 均每天需要记忆的单词量y(个)与时 间x(天)之间的关系式为 。
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可能性的理解)
物理中的数学
例1:电流I、电阻R、电压U之间满足关系式
U=IR。在照明电路中,正常电压U=220V。

北师大版数学九年级上册第六章反比例函数复习教案

北师大版数学九年级上册第六章反比例函数复习教案
突破方法:引导学生通过观察坐标点,分步骤绘制图像,并强调曲线在第二、四象限的单调递增特点。
(2)反比例函数在实际问题中的应用:学生在将反比例函数应用于实际问题中时,往往难以正确设定变量和建立模型。
突破方法:通过典型例题的讲解和练习,引导学生如何从问题中抽象出反比例关系,并建立数学模型。
(3)反比例函数与其他函数的区分:学生容易混淆反比例函数与其他函数的性质和图像。
同学们,今天我们将要复习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程不变,速度与时间成反比的情况?”(如:固定距离,速度越快,所需时间越短)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
另外,学生在将反比例函数应用于实际问题中时,有时会感到困惑,不知道如何从问题中抽象出反比例关系。针对这个问题,我计划在接下来的教学中,设计更多具有实际背景的问题,引导学生逐步学会如何从问题中提炼出反比例函数模型,提高他们解决实际问题的能力。
在小组讨论环节,我发现学生们积极参与,讨论氛围浓厚,但部分小组在分享成果时,表达不够清晰。为了提高学生的表达能力,我打算在今后的教学中,多给予他们展示和表达的机会,并适时给予指导和鼓励,帮助他们更好地展示比例函数复习教案
一、教学内容
本节课为北师大版数学九年级上册第六章“反比例函数”的复习教案。教学内容主要包括以下几部分:
1.反比例函数的定义与性质:回顾反比例函数的定义,即y=k/x(k为常数,k≠0),以及其性质,如图像关于原点对称、在每个象限内的符号等。
2.反比例函数的图像:复习反比例函数图像的特点,如曲线在第一、三象限单调递减,在第二、四象限单调递增,以及图像与坐标轴无交点等。

八年级下册数学第六章反比例函数知识点

八年级下册数学第六章反比例函数知识点

八年级下册数学第六章反比例函数知识点
八年级下册数学第六章主要学习反比例函数的知识。

以下是该章节的主要内容:
1. 反比例函数的定义:如果两个变量的乘积为定值,那么它们之间就存在反比例的关系,可以表示为y = k/x,其中k为常数。

2. 反比例函数的图像特点:反比例函数的图像是一个直角双曲线,对称于一、三象限的原点。

函数的图像与y轴和x轴都有渐近线。

3. 反比例函数的性质:反比例函数的定义域为除去x=0的所有实数,值域也为除去y=0的所有实数。

4. 反比例函数的性质:随着x的增大,y的值趋近于0;随着x的减小,y的值趋近于无穷大。

5. 反比例函数的应用:反比例函数常用于解决与速度、密度、浓度、比例等问题,如速度和时间、材料的用量和产品的质量等。

6. 反比例函数的图像变换:通过对反比例函数进行平移、伸缩和翻转等操作,可以得到新的反比例函数的图像。

以上是八年级下册数学第六章反比例函数的主要知识点。

希望对你有帮助!。

第六章反比例函数(教案)

第六章反比例函数(教案)
c.增减性理解:通过具体数值分析,如当x>0时,k>0和k<0的情况下,y的增减性变化,让学生能够清晰地理解并应用这一性质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个变量的乘积保持不变的情况?”(如:在固定面积的土地上,种植的作物密度与每株作物的占地面积成反比。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
第六章反比例函数(教案)
一、教学内容
本节课选自《数学》八年级下册,对应章节为第六章“反比例函数”。教学内容主要包括以下三个方面:
1.反比例函数的定义:引导学生理解反比例函数的概念,掌握其一般形式y=k/x(k≠0)。
2.反比例函数的性质:探讨反比例函数的图像特点,如图像为双曲线,以及在不同象限内的增减性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y=k/x(k≠0)的函数,它描述了两个变量之间的反比关系。反比例函数在解决实际问题中具有重要作用,如物理中的电流、电压关系等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
-反比例函数在实际问题中的应用,如何从描述中抽象出反比例关系,并建立函数模型。
-对反比例函数增减性的理解,尤其是在不同象限内如何判断其变化趋势。
举例:
a.图像的双曲线特性:通过绘制图像和观察,帮助学生理解反比例函数图像为何是双曲线,并解释渐近线的含义。
b.实际问题中的应用:给出具体情境,如“某商品的价格与购买数量成反比”,指导学生如何将问题描述转化为数学表达式,即y=k/x的形式。

2024年北师大版九年级上册教学第六章 反比例函数第六章 反比例函数

2024年北师大版九年级上册教学第六章 反比例函数第六章 反比例函数

一、单元学习主题本单元是“数与代数”领域“函数”主题中的“反比例函数”.二、单元学习内容分析1.课标分析《标准2022》指出数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.“函数”主要研究变量之间的关系,探索事物变化的规律;借助函数可以认识方程和不等式.“数与代数”领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发展几何直观和运算能力.在本章的学习中学生结合实例,进一步了解函数的概念和三种表示法,能举出函数的实例;能结合图象对简单实际问题中的函数关系进行分析,并确定简单实际问题中函数自变量的取值范围,并会求出函数值;能用适当的函数表示法刻画简单实际问题中变量之间的关系;结合对函数关系的分析,能对变量的变化情况进行初步讨论;结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式;能画出反比例函数的图象,根据图象和表达式y=k(k≠0)探索并理解k>0和k<0时,图x象的变化情况;能用反比例函数解决简单实际问题.反比例函数;6.2反比例函数的图象与性质;6.3反比例函数的应用.函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.函数的教学要通过对现实问题中变量的分析,建立两个变量之间变化的依赖关系,让学生理解用函数表达变化关系的实际意义.在本章的学习过程中,通过直观、操作、观察、概括和交流等活动方式,对函数的三种表示方法进行整合,逐步形成对函数概念的整体性认识;逐步提高从函数图象中获取信息的能力,提高几何直观水平;逐步形成用函数观点处理问题的意识,进一步感悟数形结合的思想.三、单元学情分析学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数及其性质,可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,这对后续学习(如二次函数等)会产生积极影响.本章通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念,通过例题和学生列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.四、单元学习目标1.经历从具体问题情境中抽象出反比例函数概念的过程,进一步感受函数的模型思想;探索反比例函数的性质,体会研究函数的一般性方法.2.结合具体情境体会反比例函数的意义,理解反比例函数的概念,能根据已知条件确定反比例函数的表达式.3.能画出反比例函数的图象,根据图象和表达式理解反比例函数的性质,体会数形结合的思想和分类的思想.4.能用反比例函数解决简单实际问题,发展应用意识.5.在反比例函数学习的过程中,进一步发展勇于探究与合作交流的精神.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难、由浅入深、循序渐进,突出基础知识、基本技能,渗透人人学习数学、人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分:基础性课后作业和拓展性课后作业.。

浙教版初中八年级下册数学精品教学课件 第六章 反比例函数 6.1 反比例函数

浙教版初中八年级下册数学精品教学课件 第六章 反比例函数 6.1 反比例函数
知识点1 反比例函数的概念 重点
1.反比例函数:把函数(为常数,)叫做反比例函数,其中是自变量,是关于的函数,叫做比例系数,如就是反比例函数,其中比例系数.
2.自变量的取值范围是的一切实数,的取值范围是的一切实数.
概念深化反比例函数的三种表达式若变量与成反比例,则,也可以写成的形式,自变量的指数是,也可以写成的形式.
第6章 反比例函数
6.1 反比例函数
学习目标
1.了解两个变量成反比例的意义,理解反比例函数的概念.2.会判断一个函数是否为反比例函数.3.会求简单实际问题中的反比例函数表达式.4.会用待定系数法求反比例函数的表达式.5.结合具体情境理解比例系数的几何意义.6.会通过已知自变量的值求相应反比例函数的值,运用已知反比例函数的值求相应自变量的值来解决一些简单的问题.
典例2 写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.
(1)底边为的三角形的面积随底边上的高的变化而变化;
解:(1)根据三角形的面积公式可得,,不是反比例函数.
(2)一艘轮船从相距的甲地驶往乙地,轮船的速度与航行时间的关系;
(,∴两个变量之间的函数表达式为,是反比例函数.
(3)在检修长的管道时,每天能完成,剩下的未检修的管道长随检修天数的变化而变化.
典例4服装厂承揽一项生产1600件夏凉小衫的任务,计划用天完成.
(1)写出每天生产夏凉小衫(件)与生产时间(天)之间的函数关系式;
解:(1)根据题意,得,所以;
(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?
(2)当时,,解得. 故需要16天能够完成任务.
(3)在(2)的基础下,由于气温提前升高,商家与服装厂商议调整计划,决定提前 6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?

北师大版数学九年级上册的第六章第一节《反比例函数》教案

北师大版数学九年级上册的第六章第一节《反比例函数》教案

北师大版数学九年级上册的第六章第一节《反比例函数》教案一. 教材分析北师大版数学九年级上册的第六章第一节《反比例函数》是本章的第一节内容,也是学生继学习正比例函数后的又一函数类型。

本节课主要让学生了解反比例函数的概念、性质及其图象,培养学生运用函数观点解决实际问题的能力。

教材通过引入反比例函数的概念,让学生在已有的正比例函数知识基础上,进一步拓展对函数的理解。

二. 学情分析学生在学习本节课之前,已经学习了正比例函数的相关知识,对函数的概念、图象和性质有一定的了解。

但九年级学生的抽象思维能力仍需培养,对于反比例函数的理解可能仍存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,通过合适的教学方法,帮助学生更好地理解和掌握反比例函数。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能够绘制反比例函数的图象,并能分析实际问题中的反比例关系。

3.培养学生的抽象思维能力,提高学生运用函数观点解决问题的能力。

四. 教学重难点1.反比例函数的概念及其性质。

2.反比例函数图象的特点。

3.运用反比例函数解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,培养学生运用函数观点解决问题的能力。

2.启发式教学法:教师引导学生思考,通过提问、讨论等方式,帮助学生自主探索反比例函数的知识。

3.直观教学法:利用多媒体课件、板书等手段,展示反比例函数的图象和性质,增强学生的直观感受。

六. 教学准备1.多媒体课件:制作反比例函数的图象、性质等相关内容的多媒体课件。

2.教学板书:准备反比例函数的定义、性质等相关内容的板书。

3.练习题:准备适量的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体课件展示反比例函数在实际生活中的应用,如商场打折、比例尺等,引导学生关注反比例关系。

提问:这些实际问题中是否存在某种数学规律?2.呈现(10分钟)教师引导学生回顾正比例函数的知识,然后给出反比例函数的定义。

新浙教版初二数学第六章_《反比例函数》各节知识点及典型例题

新浙教版初二数学第六章_《反比例函数》各节知识点及典型例题

第六章 《反比例函数》各节知识点及典型例题第1节 反比例函数 第二节 反比例函数的图象和性质 第三节 反比例函数的应用五大知识点:1、反比例函数的定义和表达式2、反比例函数的图象和性质3、反比例函数的应用【课本相关知识点】1、一般地,形如 的函数叫做反比例函数,其中x 是自变量,y 是x 的函数,k 叫做反比例系数。

自变量x 的取值范围是★★2、反比例函数有三种表达形式:(1)y=k x(k ≠0);(2)y=kx -1(k ≠0);(3)xy=k (k ≠0) 3、判断具体情景中的两个变量是否成反比例函数关系,关键看这两个变量的积是否为一个 的常数。

4、根据实际问题中的条件确定反比例函数的表达式时,一般采用 法。

5、要确定一个反比例函数y=kx的表达式,只需求出 ,若已知一对 的对应值,就可以由此求出比例系数,然后写出所求的反比例函数。

【典型例题】【题型一】判断一个函数是不是反比例函数例1、下列函数表达式中,y 是关于x 的反比例函数的有( )①y=21x -;③ y=x -;④ y=13x -;⑤ y=1x ;⑥ y=23x +;⑦ y=32x -;⑧ -2xy=1A .2个B .3个C .4个D .5个 补充一下:对于是反比例函数的,写出其反比例系数 例2、关于函数y=12x -,以下说法正确的是( ) A .y 是x 的反比例函数 B .y 是x 的正比例函数 C .y 是x-2的反比例函数 D .以上都不对 【题型二】求反比例函数表达式例1、已知y=y 1-y 2,y 1与x 成反比例,y 2与x 2成正比例,且当x=﹣1时,y=﹣5;当x=1时,y=1,求y 与x 之间的函数表达式。

例2、已知一面积为20的梯形,其上、下底长度之比为1:3,试写出梯形的高线h 和上底长a 之间的函数表达式,并说明你所写的函数是什么函数。

例3、(2013安顺)若y=(a+1)22a x-是反比例函数,则a 的值是 ,该反比例函数为例4、如图,点P (3a ,a )是反比例函y = kx (k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )A .y =3xB .y =5xC .y =10xD .y =12x【题型三】应用反比例函数解决实际生活问题例1、近视眼镜的镜片度数(y 度)与镜片焦距x (米)成反比例,已知﹣400度近视眼镜镜片的焦距为﹣0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为例2、某地去年电价0.8元/千瓦时,年用量为1亿千瓦时,本年度计划将电价调至0.55至0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y 亿千瓦时与(x-0.4)元成反比例,且当x=0.65,y=0.8 (1)求y 与x 之间的函数解析式(2)若每千瓦时电的成本价是0.3元,则电价调至多少元时,今年电力部门的收益将比去年增加20%?【收益=用电量×(实际电价-成本价)】例3、某地计划用120~180天(含120与180天)建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?【课本相关知识点】1、画反比例函数图象的一般步骤为:列表、描点、连线2、图象特征:反比例函数y=kx(k ≠0)的图象是由两个分支组成的 。

第六章反比例函数的概念及基本性质

第六章反比例函数的概念及基本性质

反比例函数的概念及基本性质教学目标掌握反比例函数的概念、性质、图象,熟悉反比例函数与一次函数的关系 重难点分析重点:1、反比例函数的概念; 2、反比例函数的图形特征。

难点:1、求反比例函数的解析式; 2、根据图形特征比较大小。

知识点梳理1、反比例函数的概念:一般地,如果两个变量x ,y 之间的关系可以表示成xk y =(k 为常数,0≠k )的形式,那么称y 是x 的反比例函数。

一般形式:xk y = (k 为常数,)注意:(1)等号左边是函数y ,等号右边是一个分式,分子是不为零的常数k(也叫做比例系数k),分母中含有自变量x ,且x 的指数是1,若写成1-=kx y 。

则x 的指数是-1。

(2)比例系数是反比例函数定义的一个重要组成部分。

(3)自变量x 的取值范围是的一切实数。

(4)函数y 的取值范围也是一切非零实数。

2、待定系数法求反比例函数的解析式。

3、反比例函数图象(双曲线)的画法:(1)列表;(2)描点;(3)连线。

4、反比例函数的性质:(1)当0>k 时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是说,在每个象限内,y 随x 的增大而减小;(2)当0<k 时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升.也就是说,在每个象限内,随的增大而增大。

知识点1:反比例函数的概念【例1】判断下列说法是否正确1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小 【 】 2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数 【 】 3.如果一个函数不是正比例函数,就是反比例函数 【 】 4.y 与2x 成反比例时,y 与x 并不成反比例 【 】 5.y 与x 2成反比例时,y 与x 也成反比例 【 】 6.已知y 与x 成反比例,又知当2=x 时,3=y ,则y 与x 的函数关系式是6xy = 【 】 【随堂练习】1、已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________。

北师大版本数学九年级上册第六章反比例函数知识点解析含习题练习

北师大版本数学九年级上册第六章反比例函数知识点解析含习题练习

第01讲_反比例函数图象和性质知识图谱反比例函数的概念知识精讲一.反比例函数反比例函数的概念:形如函数kyx=(k为常数,0k≠)叫做反比例函数,其中k叫做比例系数,x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.二.成反比例关系两个相关联的变量,一个量随着另一个量的增加而减少或一个量随着另一个量的减少而增加,且它们的乘积相同,那么这两个量就成反比例关系.三点剖析一.反比例函数反比例函数的概念:形如函数kyx=(k为常数,0k≠)叫做反比例函数,其中k叫做比例系数,x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.二.成反比例关系两个相关联的变量,一个量随着另一个量的增加而减少或一个量随着另一个量的减少而增加,且它们的乘积相同,那么这两个量就成反比例关系.三.易错点1.注意自变量的取值范围2.注意区分反比例函数与成反比例关系北师大版本数学九年级上册第六章反比例函数反比例函数例题1、下列函数中,能表示y 是x 的反比例函数的是()A.y=12x B.y=11x - C.y=2xD.【答案】A【解析】根据反比例函数的定义判断即可.y=12x 表示y 是x 的反比例函数,A 正确;y=11x -不能表示y 是x 的反比例函数,C 错误;y=2x 是正比例函数,C 错误;不能表示y 是x 的反比例函数,D 错误,故选:A .例题2、若2(1)zay a x -=+是反比例函数,则a 的取值为()A.1B.﹣1C.±lD.任意实数【答案】A【解析】∵此函数是反比例函数,∴21021a a +≠⎧⎨-=-⎩,解得a=1.随练1、已知函数y 与1x +成反比例,且当2x =-时,3y =-.(1)求y 与x 的函数关系式;(2)当12x =时,求y 的值.【答案】(1)31y x =+(2)2【解析】该题考查的是反比例函数.(1)设1k y x =+,把()2,3--代入得,3k =,∴31y x =+.(2)把12x =,代入解析式得:2y =.随练2、下面的函数是反比例函数的是()A.31y x =+B.22y x x=+ C.2xy = D.2y x=【答案】D 【解析】该题考查的是反比例函数定义.反比例函数形如()0ky k x=≠,本题中,A 为一次函数;B 为二次函数;C 为一次函数;D 为反比例函数,故本题选D .随练3、若函数11m y x -=(m 是常数)是反比例函数,则m =____________,解析式为_____________.【答案】2;1y x=【解析】由反比例函数的定义可知11m -=,所以2m =,1y x=.随练4、某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为___________,是___________函数.【答案】wy x=;反比例【解析】由题意可得wy x=,是反比例函数.成反比例关系例题1、已知y 与x 成反比例,当3x =时,4y =,那么3y =时,x 的值等于()A.4B.4- C.3D.3-【答案】A【解析】因为y 与x 成反比例,所以可设k y x =(0k ≠),因为当3x =时,4y =,所以43k =,即12k =,所以12y x =,当3y =时,4x =,故答案为A 选项.例题2、下列各问题中,两个变量之间的关系不是反比例函数的是()A.小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m /s )之间的关系B.菱形的面积为48cm 2,它的两条对角线的长为y (cm )与x (cm )的关系C.一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的密度ρ之间的关系D.压力为600N 时,压强P 与受力面积S 之间的关系【答案】C【解析】暂无解析反比例函数的图象和性质知识精讲一.反比例函数的图像和性质反比例函数的图像:反比例函数ky x=(k 为常数,0k ≠)的图象由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图象关于x 轴对称,也关于y 轴对称.反比例函数的性质:反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线;当0k >时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大.反比例函数的对称性:反比例函数关于坐标原点中心对称,关于y x =±这两条直线轴对称.二.反比例函数k 的几何意义反比例函数k y x =(k 为常数,0k ≠)中比例系数k 的几何意义,即过双曲线ky x=上任意一点引x 轴、y 轴垂线,所得矩形面积为k .三点剖析一.考点:反比例函数的图像和性质,反比例函数k 的几何意义.二.重难点:反比例函数k 的几何意义.三.易错点:1.k 的几何意义求出面积时注意k 的正负;2.反比例函数图像隐藏的对称性.反比例函数的图象和性质例题1、关于反比例函数y=﹣2x,下列说法正确的是()A.图象过(1,2)点B.图象在第一、三象限C.当x >0时,y 随x 的增大而减小D.当x <0时,y 随x 的增大而增大【答案】D【解析】∵k=﹣2<0,所以函数图象位于二四象限,在每一象限内y 随x 的增大而增大,图象是轴对称图象,故A 、B 、C 错误.例题2、己知k >0,则函数y =kx ,ky x=-的图象大致是()A. B. C. D.【答案】C【解析】暂无解析例题3、已知(﹣1,y 1)(﹣2,y 2)(12,y 3)都在反比例函数y=﹣2x的图像上,则y 1,y 2,y 3的大小关系是_________.【答案】y 3<y 2<y 1【解析】∵反比例函数y=﹣2x中,k=﹣2<0,∴函数图像的两个分支分别位于二、四象限,且在每一象限内,y 随x 的增大而增大.∵﹣2<﹣1<0,12>0,∴点A (﹣2,y 2),B (﹣1,y 1)在第二象限,点C (12,y 3)在第四象限,∴y 3<y 2<y 1.例题4、点(a ﹣1,y 1)、(a+1,y 2)在反比例函数y=kx(k >0)的图象上,若y 1<y 2,则a 的范围是____________.【答案】﹣1<a <1【解析】∵k >0,∴在图象的每一支上,y 随x 的增大而减小,①当点(a ﹣1,y 1)、(a+1,y 2)在图象的同一支上,∵y 1<y 2,∴a ﹣1>a+1,解得:无解;②当点(a ﹣1,y 1)、(a+1,y 2)在图象的两支上,∵y 1<y 2,∴a ﹣1<0,a+1>0,解得:﹣1<a <1.随练1、对于反比例函数y=kx(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而减小C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上【答案】D【解析】A、当k>0时,在每个单调区间内,y随x增大而减小,∴A不正确;B、当k<0时,在每个单调区间内,y随x增大而增大,∴B不正确;C、当k>0时,该函数图象在第一、三象限,∴C不正确;D、∵1×2=2=2×1,∴若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上,即D正确.随练2、反比例函数y=1mx-的图象如图所示,以下结论正确的是()①常数m<1;②y随x的增大而减小;③若A为x轴上一点,B为反比例函数上一点,则S△ABC=12m-;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.A.①②③B.①③④C.①②③④D.①④【答案】D【解析】由图象可知,反比例函数1myx-=在一、三象限,则1﹣m>0,得m<1,故①正确;由图象可知,反比例函数1myx-=在每个象限内y随x的增大而减小,故②错误;求不出三角形的面积,故③错误;因为反比例函数的图象关于原点对称,故若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,故④正确;由上可得,结论正确的是①④,故选D.反比例函数k的几何意义例题1、如图,在平面直角坐标系中,点P是反比例函数y=kx(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C.32D.﹣32【答案】A【解析】∵点P 是反比例函数y=kx(x >0)图象上的一点,分别过点P 作PA ⊥x 轴于点A ,PB ⊥y 轴于点B .若四边形OAPB 的面积为3,∴矩形OAPB 的面积S=|k|=3,解得k=±3.又∵反比例函数的图象在第一象限,∴k=3.例题2、如图,已知反比例函数ky x=(k 为常数,k≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B .若△AOB的面积为1,则k =________.【答案】-2【解析】依据比例系数k 的几何意义可得两个三角形的面积都等于1||12k =,解得k =-2.例题3、如图,点A 、B 是双曲线y=2x上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若S 阴影=1,则S 1+S 2=()A.2B.3C.4D.5【答案】A 【解析】∵点A 、B 是双曲线y=2x上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 2=2+2﹣1×2=2.随练1、如图,在反比例函数y=(x >0)的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=.【答案】.【解析】由题意,可知点P 1、P 2、P 3、P 4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S 1=1×(2﹣1)=1,S 2=1×(1﹣)=,S 3=1×(﹣)=,∴S 1+S 2+S 3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P 1向x 轴、y 轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.随练2、如图,点A 、B 在反比例函数y=kx(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM=MN=NC ,△AOC 的面积为6,则k 的值为_________.【答案】4【解析】设OM=a ,∵点A 在反比例函数y=k x,∴AM=k a,∵OM=MN=NC ,∴OC=3a ,∴S △AOC =12•OC •AM=12×3a ×k a =32k=6,解得k=4.随练3、如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.【答案】(1)4;y x yx=-=-;(2)6【解析】(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S△OBC=×BO×x C=×3×4=6.反比例函数的应用知识精讲一.利用反比例函数解决实际生活问题用反比例函数来解决实际问题的步骤:由实验获得数据用描点法画出图象根据所画图象判断函数类型用待定系数法求出函数解析式用实验数据验证三点剖析一.考点:反比例函数的应用.二.重难点:反比例函数的应用.三.易错点:注意自变量取值范围要符合实际意义.利用反比例函数解决实际生活问题例题1、某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷【答案】D【解析】如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,∴y随x的增大而减小,∴A,B错误,设y=kx(k>0,x>0),把x=50时,y=1代入得:k=50,∴y=50 x,把y=2代入上式得:x=25,∴C错误,把x=50代入上式得:y=1,∴D正确.例题2、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.【答案】R≥3.6【解析】设反比例函数关系式为:I=k R,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=36 R,当I≤10时,则36R≤10,R≥3.6.例题3、环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y (mg/L )与时间x (天)的变化规律如图所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y 与时间x 成反比例关系.(1)求整改过程中硫化物的浓度y 与时间x 的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L ?为什么?【答案】(1)当0≤x ≤3时,y=﹣2x +10;当x >3时,y=12x;(2)能;理由如下:令y=12x=1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L .【解析】(1)分情况讨论:①当0≤x ≤3时,设线段AB 对应的函数表达式为y=kx +b ;把A (0,10),B (3,4)代入得b=103k+b=4⎧⎨⎩,解得:k=-2b=10⎧⎨⎩,∴y=﹣2x +10;②当x >3时,设y=m x,把(3,4)代入得:m=3×4=12,∴y=12x;综上所述:当0≤x ≤3时,y=﹣2x +10;当x >3时,y=12x;(2)能;理由如下:令y=12x=1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L .随练1、某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为()A.100y x =B.100y x=C.100100y x=-D.100y x=-【答案】B【解析】由题意可得100y x =,故答案为B 选项.随练2、家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R (k Ω)随温度t (℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加k Ω.(1)求当10≤t ≤30时,R 和t 之间的关系式;(2)求温度在30℃时电阻R 的值;并求出t ≥30时,R 和t 之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6k Ω?【答案】(1)10≤t≤30时,R=;(2)当温度为30℃时,R=2;R=t ﹣6;(3)温度在10℃~45℃时,电阻不超过6kΩ【解析】(1)∵温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,∴可设R 和t 之间的关系式为R=,将(10,6)代入上式中得:6=,k=60.故当10≤t ≤30时,R=;(2)将t=30℃代入上式中得:R=,R=2.∴温度在30℃时,电阻R=2(k Ω).∵在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加k Ω,∴当t ≥30时,R=2+(t ﹣30)=t ﹣6;(3)把R=6(k Ω),代入R=t ﹣6得,t=45(℃),所以,温度在10℃~45℃时,电阻不超过6kΩ.拓展1、下列函数关系式中,一定是反比例函数的是()A.32+2y x = B.27y x=-+ C.1k y x += D.2y x =-【答案】D【解析】该题考查的是反比例函数的概念.只有形如()0k y k x=≠的才是反比例函数,故答案选D .2、函数y=k x的图象经过点(2,3),则k=()A.2B.3C.6D.﹣6【答案】C【解析】∵函数y=k x 的图象经过点(2,3),∴2k =3,解得k=6.3、当m =________时,函数y =(m -2)x |m|-3是反比例函数.【答案】-2【解析】暂无解析4、若函数25(2)k y k x -=-(k 为常数)是反比例函数,则k 的值是______,解析式为_______________.【答案】2-;14y x -=-【解析】由反比例函数定义可知251k -=-且20k -≠,所以2k =-,14y x -=-.5、某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为___________,是___________函数.【答案】w y x =;反比例【解析】由题意可得w y x=,是反比例函数.6、如图,已知直线y =k 1x (k 1≠0)与反比例函数2k y x=(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是() A.(-1,-2)B.(-1,2)C.(1,-2)D.(-2,-1)【答案】A【解析】∵直线y =k 1x (k 1≠0)与反比例函数2k y x=(k 2≠0)的图象交于M ,N 两点,∴M ,N 两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).7、函数y=k x 与y=﹣kx 2+k (k ≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【解析】由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y 轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y 轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y 轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y 轴的正半轴上,本图象与k的取值相矛盾,故D错误.8、函数y=ax(a≠0)与y=ax在同一坐标系中的大致图像是()A.B.C.D.【答案】D【解析】A、由反比例函数的图象可知a>0,由正比例函数的图象可知a<0,二者相矛盾,故本选项错误;B、由反比例函数的图象可知a<0,由正比例函数的图象可知a>0,二者相矛盾,故本选项错误;C、由反比例函数的图象可知a>0,由正比例函数的图象可知a<0,二者相矛盾,故本选项错误;D、由反比例函数的图象可知a>0,由正比例函数的图象可知a>0,二者一致,故本选项正确.9、如图,在平面直角坐标系中,点P在函数y=6x(x>0)的图像上.过点P分别作x轴、y轴的垂线,垂足分别为A、B,取线段OB的中点C,连结PC并延长交x轴于点D.则△APD的面积为______.【解析】∵PB ⊥y 轴,PA ⊥x 轴,∴S 矩形APBO =|k|=6,在△PBC 与△DOC 中,90PBC COD BC OC PCB OCD ⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴△PBC ≌△DOC ,∴S △APD =S 矩形APBO =6.10、如图,点A 是反比例函数图象上y=K X一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则k=__________.【答案】﹣3【解析】设点A 的坐标为(m ,n ),∵AB ⊥y 轴,CD ⊥y 轴,∴AB ∥CD ,又∵BC ∥AD ,∴四边形ABCD 为平行四边形.S 平行四边形ABCD =AB •OB=﹣m •n=3,∴k=mn=﹣3.11、如图,点A 是反比例函数y 1=1x (x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数y 2=k x(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为___________.【答案】5【解析】延长BA ,与y 轴交于点C ,∵AB ∥x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x (x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =2,即2k ﹣12=2,解得:k=5.12、如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=______.【答案】3【解析】连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=kx(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=12四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=12△OBE的面积=32,∴k=313、如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数myx的图象交于A(2,3)、B(﹣3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.【答案】(1)y=x+1;y=6x;(2)OP=1.【解析】(1)∵反比例函数y=mx的图象经过点A(2,3),∴m=6.∴反比例函数的解析式是y=6 x,∵B点(﹣3,n)在反比例函数y=6x的图象上,∴n=﹣2,∴B(﹣3,﹣2),∵一次函数y=kx+b的图象经过A(2,3)、B(﹣3,﹣2)两点,∴23 32k bk b+=⎧⎨-+=-⎩,解得:11 kb=⎧⎨=⎩,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C(0,1),OC=1,根据题意得:S△ABP=12PC×2+12PC×3=5,解得:PC=2,则OP=OC+CP=1+2=3或OP=CP﹣OC=2﹣1=1.14、甲、乙两地间的公路长为300km,一辆汽车从甲地去乙地,汽车在途中的平均速度为(/)v km h,到达时所用的时间为()t h,那么t是v的______函数,v关于t的函数关系式为_____________.【答案】反比例;300 tv =【解析】由题意得300tv=,是反比例函数.15、如图,点A在反比例函数6yx=图象第一象限的分支上,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,若△OAD与△BCD的面积相等,则点A的横坐标是()B.2 D.【答案】A【解析】连接OC,分别过点A、C作x、y轴的平行线交于E点,CE交x轴于F点,如图:由反比例的性质可知,A 、B 两点关于中心O 对称,即OA =OB ,又∵△ACB 为等腰直角三角形,∴CO ⊥AB ,且OC =OA .设直线AB 的解析式为y =ax (a >0),则OC 的解析式为1y x a=-,设点A (m ,am ),点C (an ,﹣n ),∵OA =OC ,即m 2+(am )2=(an )2+n 2,解得n =±m ,∵A 在第一象限,C 在第三象限,∴n =m >0,即C (am ,﹣m ).∵AE ∥x 轴,CE ∥y 轴,∴∠CDF =∠CAE ,∠CFD =∠CEA =90°,∴△CDF ∽△CAE ,∴CF CD CE CA=,又∵△OAD 与△BCD 的面积相等,△OAD 与△BOD 的面积相等,∴S △ABD =2S △BCD ,∴2AD CD=,∵AC =AD +CD ,∴13CF CD CE CA ==,∵点A (m ,am ),点C (am ,﹣m ),∴点E (am ,am ),点F (am ,0),∴0()11()13CF m CE am m a --===--+即a =2.∵点A (m ,am )在反比例函数6y x=的图象上,且a =2,∴2m 2=6,解得m =,∵m >0,∴m =,∴点A 所以选A .16、如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟,据了解,该材料在加热过程中温度y 与时间x 成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.(1)分别求出该材料加热过程中和停止加热后y 与x 之间的函数表达式,并写出x 的取值范围;(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?【答案】(1)y=9x+15(05x ≤≤),y=(x≥5);(2)对该材料进行特殊处理所用的时间为分钟.【解析】(1)设加热过程中一次函数表达式为y=kx+b (k ≠0),∵该函数图象经过点(0,15),(5,60),∴,解得,∴一次函数的表达式为y=9x+15(0≤x ≤5),设加热停止后反比例函数表达式为y=(a ≠0),∵该函数图象经过点(5,60),∴=60,解得:a=300,∴反比例函数表达式为y=(x ≥5);(2)∵y=9x+15,∴当y=30时,9x+15=30,解得x=,∵y=,∴当y=30时,=30,解得x=10,10﹣=,所以对该材料进行特殊处理所用的时间为分钟.第02讲_反比例函数的代几综合知识图谱反比例函数的代数综合知识精讲一.反比例函数与方程和不等式如图,双曲线与直线相交,则方程12k k x b x =+的解为交点的横坐标12x x 、;不等式12k k x b x+>的解为120x x x x ><<或.二.反比例函数与一次函数已知反比例函数与一次函数的一个交点,求函数解析式,只要把交点坐标分别代入到两个解析式即可.当反比例函数与正比例函数相交时,交点关于原点对称,即1212,x x y y =-=-.三点剖析一.考点:反比例函数与代数综合二.重难点:反比例函数与代数综合三.易错点:1.注意反比例函数解析式中0k ≠;2.反比例函数与一次函数结合经常会出现要解分式方程的情况,注意分式方程增根的情况;3.利用图像解反比例函数与不等式的问题.与方程,不等式综合例题1、如图,反比例函数y 1=的图象与正比例函数y 2=k 2x 的图象交于点(2,1),则使y 1>y 2的x 的取值范围是()A.0<x <2B.x >2C.x >2或﹣2<x <0D.x <﹣2或0<x <2【答案】D 【解析】∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵A (2,1),∴B (﹣2,﹣1),∵由函数图象可知,当0<x <2或x <﹣2时函数y 1的图象在y 2的上方,∴使y 1>y 2的x 的取值范围是x <﹣2或0<x <2.故选D .例题2、已知直线y=x ﹣3与函数2y x =的图象相交于点(a ,b ),则代数式a 2+b 2的值是()A.13B.11C.7D.5【答案】A【解析】根据题意得b=a ﹣3,b=2a,所以a ﹣b=3,ab=2,所以a 2+b 2=(a ﹣b )2+2ab=32+2×2=13.故选A .例题3、求一元二次方程x 2+3x ﹣1=0的解,除了课本的方法外,我们也可以采用图象的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=的图象,则两图象交点的横坐标即该方程的解.类似地,我们可以判断方程x 3﹣x ﹣1=0的解的个数有()A.0个B.1个C.2个D.3个【答案】B 【解析】由x 3﹣x ﹣1=0得:x 3﹣x=1方程两边同时除以x 得:x 2﹣1=,在同一坐标系中作出y=x 2﹣1和y=的图象为:观察图象有一个交点,∴可以判断方程x 3﹣x ﹣1=0的解的个数有1个,随练1、小兰画了一个函数y=1a x -的图像如图,那么关于x 的分式方程1a x -=2的解是()A.x=1B.x=2C.x=3D.x=4【答案】A【解析】由图可知当x=3时,y=0,即13a -=0,解得a=3,当31x-=2时,解得x=1.随练2、如图所示,已知A (12,y 1),B (2,y 2)为反比例函数y=1x图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是()A.(12,0) B.(1,0) C.(32,0) D.(52,0)【答案】D 【解析】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12,∴A (12,2),B (2,12),∵在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP|<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩,解得:k=﹣1,b=52,∴直线AB 的解析式是y=﹣x+52,当y=0时,x=52,即P (52,0),1、反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是()A.t<B .t>C .t≤D .t≥【答案】【解析】将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x 2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t >.与一次函数综合例题1、已知反比例函数k y x=(k≠0)和一次函数y =x -6.(1)若一次函数与反比例函数的图象交于点P (2,m ),求m 和k 的值;(2)当k 满足什么条件时,两函数的图象没有交点.【答案】(1)m =-4;k =-8(2)k <-9【解析】(1)把点P (2,m )代入y =x -6,得m =-4,所以P (2,-4).将点P (2,-4)代入反比例函数k y x =,得k =-8;(2)根据,6,k y x y x ⎧=⎪⎨⎪=-⎩解得6k x x =-,∴260x x k --=,∵两图象没有交点,∴()()26410k --⨯⨯-<,即k <-9.例题2、如图,在直角坐标系中,直线y =mx 与曲线n y x =相交于A (-1,a ),B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1.(1)求m,n的值;(2)求直线AC的解析式.【答案】(1)m=-2;n=-2(2)y=-x+1【解析】(1)∵直线y=mx与曲线nyx=相交于A(-1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(-1,2),将A(-1,2)代入y=mx,nyx=可得m=-2,n=-2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(-1,2)、C(1,0)∴2k bk b-+=⎧⎨+=⎩,解得k=-1,b=1,∴直线AC的解析式为y=-x+1.例题3、已知反比例函数5myx-=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.【答案】(1)m<5(2)-1【解析】(1)∵在反比例函数5myx-=图象的每个分支上,y随x的增大而增大,∴m-5<0,解得:m<5;(2)将y=3代入y=-x+1中,得x=-2,∴反比例函数5myx-=图象与一次函数y=-x+1图象的交点坐标为(-2,3),将(-2,3)代入5myx-=得532m-=-,解得1m=-.随练1、已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=1x的交点,且AP=2AB,则满足条件的点P的个数是()A.0个B.1个C.2个D.3个【答案】B【解析】如图,设P(m,1m),B(﹣1,n),直线x=﹣1与x轴交于C,∵A(﹣2,0),∴OA=2,OC=1,∴AC=1,BC∥y轴,∴12 AB ACAP AO==,∴P1,P3在y轴上,这样的点P 不存在,点P 4在AB 之间,不满足AP=2AB ,过P 2作P 2Q ⊥x 轴于Q ,∴P 2Q ∥B 1C ,∴1212AB AC AP AQ ==,∴1122m =--,∴m=﹣4,∴P (﹣4,﹣14),∴满足条件的点P 的个数是1,随练2、图中给出的直线1y k x b =+和反比例函数2k y x=的图像,判断下列结论正确的个数有()①2k >b >1k >0;②直线1y k x b =+与坐标轴围成的△ABO 的面积是4;③方程组12y k x b k y x =+⎧⎪⎨=⎪⎩的解为11x 6y 1=-⎧⎨=-⎩,22x 2y 3=⎧⎨=⎩;④当-6<x <2时,有21k k x b x +>A.1个B.2个C.3个D.4个【答案】C【解析】暂无解析随练3、如图,双曲线x m y =与直线b kx y +=相交于点M ,N ,且点M 的坐标为(1,3),点N 的纵坐标为-1.根据图象信息可得关于x 的方程x m =b kx +的解为()A.1=x B.1=x 或3-=x C.3=x D.1-=x 或3=x 【答案】B【解析】暂无解析随练4、如图,一次函数y=kx+b 的图象与反比例函数y=m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.【答案】(1)y=2x-;y=﹣x ﹣1(2)x <﹣2或0<x <1【解析】(1)∵A (﹣2,1)在反比例函数y=m x的图象上,∴1=2m -,解得m=﹣2.∴反比例函数解析式为y=2x-,∵B (1,n )在反比例函数h 上,∴n=﹣2,∴B 的坐标(1,﹣2),把A (﹣2,1),B (1,﹣2)代入y=kx+b ,得212k k b b -==-++⎧⎨⎩,解得:11b k =--=⎧⎨⎩,∴一次函数的解析式为y=﹣x ﹣1;(2)由图象知:当x <﹣2或0<x <1时,一次函数的值大于反比例函数.随练5、如图,在平面直角坐标系中,边长为2的正方形ABCD 关于y 轴对称,边AD 在x 轴上,点B 在第四象限,直线BD 与反比例函数y=m x的图象交于点B 、E .(1)求反比例函数及直线BD 的解析式;(2)求点E 的坐标.【答案】(1)y=﹣2x ;y=﹣x ﹣1(2)E (﹣2,1)【解析】(1)边长为2的正方形ABCD 关于y 轴对称,边在AD 在x 轴上,点B 在第四象限,∴A (1,0),D (﹣1,0),B (1,﹣2).∵反比例函数y=m x 的图象过点B ,∴1m =﹣2,m=﹣2,∴反比例函数解析式为y=﹣2x,设直线BD 的解析式为y=kx+b ,∵y=kx+b 的图象过B 、D 点,∴-2-k+b=0k b +=⎧⎨⎩,解得=-1b=-1k ⎧⎨⎩.直线BD 的解析式y=﹣x ﹣1;(2)解方程组2y=-x y=-x 1⎧⎪⎨⎪-⎩,解得-2y=1x =⎧⎨⎩或x=1y=-2⎧⎨⎩,∵B (1,﹣2),∴E (﹣2,1).随练6、定义运算max{a ,b}:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b}=b .如max{﹣3,2}=2.(1)max{,3}=____________;(2)已知y 1=1k x 和y 2=k 2x+b 在同一坐标系中的图象如图所示,若max{1k x ,k 2x+b}=1k x,结合图象,直接写出x 的取值范围;(3)用分类讨论的方法,求max{2x+1,x ﹣2}的值.【答案】(1)3(2)﹣3≤x <0或x≥2(3)当2x+1≥x ﹣2时,max{2x+1,x ﹣2}=2x+1,当2x+1<x ﹣2时,max{2x+1,x ﹣2}=x ﹣2.【解析】(1)3}=3.故答案为:3;(2)∵max{1k x ,k 2x+b}=1k x,∴1k x≥k 2x+b ,∴从图象可知:x 的取值范围为﹣3≤x <0或x≥2;(3)当2x+1≥x ﹣2时,max{2x+1,x ﹣2}=2x+1,当2x+1<x ﹣2时,max{2x+1,x ﹣2}=x ﹣2.反比例函数与几何综合知识精讲一.反比例函数与三角形综合一般为定点与动点构成特殊三角形情况,利用等腰三角形,直角三角形,等边三角形,等腰直角三角形等固有特殊性质,进行求解,并且注意考虑到多种结论的情况.二.反比例函数与四边形综合四边形与反比例函数的综合问题与三角形部分基本上相同,不同的是涉及到平行四边形等特殊四边形的时候经常会出现两个顶点两个动点的情况需要进行分类讨论.三.反比例函数与面积问题反比例函数涉及到的面积问题一般都为三角形面积和矩形面积问题,对于三角形面积我们可以对三角形进行分割再去求解,对于矩形面积问题,我们要注意k 值的几何意义和正负的讨论.三点剖析一.反比例函数与三角形综合一般为定点与动点构成特殊三角形情况,利用等腰三角形,直角三角形,等边三角形,等腰直角三角形等固有特殊性质,进行求解,并且注意考虑到多种结论的情况.二.反比例函数与四边形综合四边形与反比例函数的综合问题与三角形部分基本上相同,不同的是涉及到平行四边形等特殊四边形的时候经常会出现两个顶点两个动点的情况需要进行分类讨论.三.反比例函数与面积问题反比例函数涉及到的面积问题一般都为三角形面积和矩形面积问题,对于三角形面积我们可以对三角形进行分割再去求解,对于矩形面积问题,我们要注意k 值的几何意义和正负的讨论.四.易错点:1.涉及到特殊三角形与动点问题时,一般都为多个解,注意不要漏解2.在求三角形和四边形面积用坐标表示线段长度时,注意正负号的问题.与三角形综合例题1、在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数y=2x 的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为()A.2个B.4个C.5个D.6个【答案】D。

北师大版数学九年级上册第六章《反比例函数》课件

北师大版数学九年级上册第六章《反比例函数》课件

y=x-1;
课堂练习
1.下面的函数是反比例函数的是( D )
A.y=3x+1 C. y=2x
B.y=x2+2x D. y=2x
2.当路程s一定时,速度v与时间t之间的
函数关系是( B )
A.正比例函数
B.反比例函数
C.一次函数
D.无法确定
3.近视眼镜的度数y(度)与镜片焦距x(m)
成反比例,已知400度近视眼镜镜片的焦距
2.一般地,反比例函数有以下三种表达式: (注意 k ≠ 0)
y k, x
ykx1, xyk.
(二)合作探究
下列问题中,变量间的对应关系可用怎样的函数关 系式表示?这些函数有什么共同特点?
(1)京沪铁路全程为1318km,乘坐某次列车所用时 间t(单位:h)随该列车平均速度v(单位:km/h)的变 化而变化;
当R越来越小呢?
当R越来越大时,I越来越小;反之I越来越大. (3)变量I是R的函数吗?为什么?
由关系式可知二者是反比例函数关系.
练习 1.如果两个变量x、y之间的关系可以表示成___y_=__kx __
(k为常数,k≠0)的情势,那么就把y叫做x的反比例函 数,其中自变量x的取值范围是___x_≠_0____.
其中v是自变量,t是v的函数;x是自变量,y是x的函
数;n是自变量,S是n的函数. 上面的函数关系式,都具有y=kx 的情势,其中k是常 数.
归纳结论: 一般地,如果两个变量x,y之间可以表示成 y=kx (k为常数且k≠0)的情势,那么称y是x的反比例函数.
例 已知y是x的反比例函数,当x=2时,y=6.
探究新知
知识模块 反比例函数的概念及应用 (一)自主探究
电流I,电压U,电阻R之间满足关系式 U=IR .当

北师大版九年级上数学《第6章 反比例函数》教案教案

北师大版九年级上数学《第6章 反比例函数》教案教案

北师大版九年级上数学《第6章反比例函数》教案教案一. 教材分析《第6章反比例函数》是北师大版九年级上数学的重要内容,本章主要让学生了解反比例函数的定义、性质及图象,掌握反比例函数的计算方法,并能解决一些实际问题。

通过本章的学习,学生能更好地理解函数的概念,培养其数学思维能力。

二. 学情分析九年级的学生已经学习了函数、方程等基础知识,具备一定的逻辑思维能力和数学解题技巧。

但部分学生对抽象的函数概念理解不够深入,对反比例函数的图象和性质认识不足。

因此,在教学过程中,需要关注学生的认知差异,引导学生从实际问题中发现反比例函数的规律,提高其数学应用能力。

三. 教学目标1.理解反比例函数的定义,掌握反比例函数的计算方法。

2.了解反比例函数的性质和图象,能运用反比例函数解决实际问题。

3.培养学生的数学思维能力,提高其数学素养。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

3.反比例函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。

2.引导发现法:引导学生发现反比例函数的规律,培养学生独立思考的能力。

3.合作学习法:分组讨论,共同探究反比例函数的应用,提高学生的团队协作能力。

4.实践操作法:让学生动手绘制反比例函数的图象,加深对反比例函数的理解。

六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节。

2.准备反比例函数的图象和性质的PPT,用于呈现和讲解。

3.准备一些实际问题,用于拓展环节。

4.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,如:在一定时间内,行驶的路程与速度成反比。

引导学生从实际问题中发现反比例函数的规律,激发学生的学习兴趣。

2.呈现(15分钟)利用PPT展示反比例函数的图象和性质,讲解反比例函数的定义和计算方法。

让学生直观地感受反比例函数的特点,理解反比例函数的概念。

北师大版九年级上册第六章反比例函数第六章:反比例函数课程设计 (2)

北师大版九年级上册第六章反比例函数第六章:反比例函数课程设计 (2)

北师大版九年级上册第六章反比例函数第六章:反比例函数课程设计一、课程目标1.了解什么是反比例函数,掌握反比例函数的定义,符号化表示和特征。

2.掌握反比例函数图像的基本特征,熟练绘制反比例函数图像。

3.熟练掌握如何求解反比例函数的解析式。

4.掌握题目中反比例函数的应用,提高问题的抽象思维能力,培养解决实际问题的能力。

二、课程内容1. 知识点讲解1.反比例函数的定义和符号化表示。

2.反比例函数的基本特征,特别是渐进线的特征。

3.反比例函数的图像,如何准确地绘制反比例函数的图像。

4.反比例函数解析式的求解方法。

5.反比例函数在实际问题中的应用,如何把实际问题建模为反比例函数问题。

2. 课堂练习1.绘制给定反比例函数的图像。

2.求解给定反比例函数的解析式。

3.在实际问题中应用反比例函数,如何将问题转化为反比例函数问题。

4.同步练习课本上的习题,巩固所学知识点。

三、课程安排第一课时1.引入反比例函数的定义和符号化表示,让学生初步了解反比例函数的特征。

2.介绍反比例函数的图像以及如何在坐标系中绘制反比例函数图像。

3.给出一些常见反比例函数的例子,让学生通过图像来加深对反比例函数的理解。

4.操练如何求解反比例函数的解析式。

第二课时1.通过讲解反比例函数的基本特征,如渐进线的性质,让学生从多个角度来理解反比例函数。

2.给出一些反比例函数模板,让学生能够快速准确地绘制反比例函数图像。

3.给出一些反比例函数的实际问题,通过分析实际问题来将问题转化为反比例函数问题以便求解。

第三课时1.从应用反比例函数的角度出发,介绍反比例函数在实际生活中的应用,如何将问题建模成反比例函数问题。

2.针对学生的不同问题出题,让学生自己来设计反比例函数,从而让他们更加深刻地理解应用反比例函数的方法。

3.抽象一些反比例函数应用问题,让学生通过解决实际问题来培养自己的问题解决能力。

四、教学方法1.讲授式教学:通过讲解反比例函数的概念、特征、图像和应用问题的方法,来向学生介绍反比例函数的基本知识。

九年级上册数学第六章 第1讲 反比例函数定义

九年级上册数学第六章 第1讲 反比例函数定义

反比例函数【知识要点】一.反比例函数的定义1.反比例函数的概念 一般地,)0(≠=k k xk y 为常数,叫做反比例函数,即y 是x 的反比例函数. 注意:(1)常数k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:①y = xk (0k ≠) ②(0)x y k k ⋅=≠ ③1(0)y kx k -=≠ 2.判断两个变量是否是反比例函数关系有两种方法。

(1)按照反比例函数的定义判断;(2)看两个变量的乘积是否为定值,特别是对于实际生活中两个量,判断它们是否是反比例函数.【典型例题】例1. 写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数.(1)已知平行四边形的面积是212cm ,它的一边是,acm ,这边上的高是,hcm a 与h 的函数关系;(2)压强P 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离S 的函数关系;(4)某乡粮食总产量为M 吨,那么该乡每人平均拥有粮食y (吨)与该乡人口数x 的函数关系例2.①若函数223()mm y m m x --=+是反比例函数,求其函数解析式;②已知函数2(1)k y k x-=+是反比例函数,求其解析式;③a 取哪些值时,222714123a a y a a x--=+是反比例函数?求函数解析式?例3.①已知变量y 与x 成反比例,当3=x 时,6-=y ;求(1) y 与x 之间的函数关系式;(2)当 3=y 时,x 的值.②已知y 与x -2成反比例,当x =4时,y =3,求当x =5时,y 的值.③若1y 与x 成正比例,2y 与2x 成反比例,y =1y +2y 当时,当2x =时,15y =;当3x =时,y 的值为13,求y 与x 的函数关系式.例4.①某广场有一段25m 的旧围栏,用线段AB 表示,现打算利用该围栏的一部分(或全部)为一边围建一块面积为2100m 的长方形草坪.CDEF 已知整修旧围栏的价格是1.75元米,新建围栏的价格是4.5元米,设利用旧围栏的长度为(),x m 所需的总费用为y元. (1) 求y 与x 之间的函数关系式,并写出自变量的取值范围;(2) 若计划修建费为150元,则应利用旧围栏多少米?(3) 若计划修建费为120元,则能否完成该围栏的修建任务?请说明理由.②已知ABC ∆是边长为的等边三角形,点,E F 分别在CB 和BC 的延长线上,且0120,EAF ∠=设,.BE x CF y ==求y 与x 的函数关系式;【课堂练习】1.下列式子表示y 是x 的反比例函数的有( ) ①25;y x = ②1;3y x = ③;3y π= ④1;1y x =- ⑤17;y x -= ⑥5(2) 1.x y -= .A 1个 .B 2 .C 3个 .D 42.若函数21(1)m m y m x +-=+是反比例函数,则m 的值为( )A.0B.-1C.0或-1D.0或13.下列各变量之间的关系属于反比例函数关系式的有( )①当路程一定时,汽车行驶的平均速度v 与行驶时间t 时间的关系;②当电压一定时,电路中的电阻R 与通过的电流强度I 之间的函数关系;③当矩形面积一定时,矩形的两邻边a 与b 之间的函数关系;④当受力一定时,物体受到的压强P 与受力面积S 之间的函数关系.A .①②③ B.②③④ C.①③④ D.①②③④4.若y 与3x -成反比例,x 与4z成正比例,则y 是z 的( ) A.正比例函数 B.反比例函数 C.一次函数 D.不能确定5.已知12y y y =+,其中1y ,2y 都是x 的函数,1y 与2x 成正比例,2y 与1x -成反比例,且当2x =时,1y ,2y 的值都等于8,-求函数y 关于x 的表达式,并写出自变量x 的取值范围;6.无论a 为什么实数,函数21(23)y a a x -=++一定是反比例函数,你认为对吗?说明你的理由.二.函数的图像(1)当0k >时,两支曲线分别位于第一、三象限;(2)当0k <时,两支曲线分别位于第二、四象限内;例1. 在同一坐标系中,画出8y x=和2y x =的图象,并求出交点坐标.例2.若双曲线k y x =与直线3122y x =--只有一个交点, 求k 的值.例3.如图13-8-7已知一次函数8+-=x y 和反比例函数x k y =图象在第一象限内有两个不同的公共点A 、B .(1)求实数k 的取值范围;(2)若ΔAOB 的面积S =24,求k 的值.例4. 已知:点(1,3)在函数(0)k y x x =>的图象上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数(0)k y x x=>的图象又经过,A E 两点,点E 的横坐标为.m 解答下列问题: (1)求k 的值;(2)求点C 的横坐标(用m 表示);(3)当045ABD ∠=时,求m 的值.。

【九年级数学】第6章 反比例函数

【九年级数学】第6章 反比例函数

第六章反比例函数1.探索简单实例中的数量关系和变化规律,了解常量、变量的意义.2.结合实例,了解函数的概念和三种表示法,能举出函数的实例.3.能结合图象对简单实际问题中的函数关系进行分析.4.能确定简单实际问题中函数自变量的取值范围,并会求出函数值.5.能用适当的函数表示法刻画简单实际问题中变量之间的关系.6.结合对函数关系的分析,能对变量的变化情况进行初步讨论.7.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.(k≠0)探索并理解k>0和k<0时,图象的变化情况.8.能画出反比例函数的图象,根据图象和表达式y=kx9.能使用反比例函数解决简单实际问题.1.经历从具体问题情境中抽象出反比例函数概念的过程,进一步感受函数的模型思想.2.探索反比例函数的性质,体会研究函数的一般性方法.1.在反比例函数学习的过程中,进一步发展勇于探索与合作交流的精神.2.根据图象和表达式理解反比例函数的性质,体会数形结合的思想和分类的思想.函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型,学生曾在七年级下册和八年级上册学习过“变量之间关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数及其性质,可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,这对后续学习会产生积极影响.本章通过具体情境的分析,概括出反比例函数的表达式,明确反比例函数的概念,通过例题和学生列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.结合实例经历列表、描点、连线等活动,理解函数的三种表示方法,逐步明确研究函数的一般要求,反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的一般形式,反比例函数的性质提供了思维活动的空间,通过对反比例函数y=k(k>0和k<0)图象的全面观察和比较,发现反比例函数自身的规律,结合语言表述,在相互交流中发展从图x象中获取信息的能力,同时可以使学生更牢固地掌握反比例函数的性质.本章最后讨论了反比例函数的某些应用,包括在实际中的应用和在数学内部的应用.在这些数学活动中,注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系.【重点】反比例函数图象及其性质;利用反比例函数解决简单的生活问题.【难点】根据具体情况对变量的情况进行讨论.1.注重反比例函数概念的形成过程和对概念意义的理解.在反比例函数概念形成的过程中,应充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解,教学中要提供直观背景,其主要作用是:①展现产生反比例函数的现实原型,提供可概括性材料,引导学生主动参与并感受数学概念的形成过程;②在获得反比例函数概念之后,现实原型将成为概念的某种直观解释或实际意义,通过举例、说理、讨论等活动,力求使学生体验如何用数学的眼光来审视某些实际现象,思考其数学意义.2.要注意和函数的有关知识的衔接,与一次函数进行类比,掌握函数的三种表示法,深化对函数概念的理解.反比例函数概念的形成,是从感性认识到理性认识转化的过程,概念一旦建立后,即已摆脱其原型成为数学对象(有经验支撑的数学知识).要通过对函数图象的观察和分析,掌握反比例函数的主要性质,体验“用数学眼(k≠0)具光来研究某些数学现象”,深化函数模型思想,进一步发展我们的抽象思维能力.另外,反比例函数y=kx有丰富的数学含义,应转向对其数学意义的理解,从而可以进行更深层次的研究.1反比例函数1课时2反比例函数的图象与性质2课时3反比例函数的应用1课时1反比例函数经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念.从现实情境和已有知识经验出发,经历抽象反比例函数的过程,让学生建立初步的符号感,发展学生的抽象思维能力.1.通过创设情境,让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯.2.在小组讨论中充分体会合作交流的重要性,培养合作意识,提高合作技能.【重点】反比例函数的概念及应用.【难点】根据已知条件确定反比例函数的表达式.【教师准备】求函数值的统计表.【学生准备】复习函数的相关知识.导入一:我们知道,导体中的电流I,与导体的电阻R、导体两端的电压U之间满足关系式U=IR,当U=220 V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20 40 60 80 100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?[设计意图]从学生身边的生活和已有知识出发,创设情境,目的是让学生感受到生活当中处处有数学,激发学生对学习数学的兴趣和愿望,同时也为抽象反比例函数概念做铺垫.导入二:我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b,其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的函数.这就是本节课我们要揭开的奥秘.1.复习旧知在某变化过程中有两个变量x,y,若给定其中一个变量x的值,y都有唯一确定的值与它相对应,则称y是x的函数.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(支)的关系式是y=0.4n,这是一个正比例函数.等腰三角形的顶角的度数y度与底角的度数x度的关系为y=180-2x,y是x的一次函数.2.问题探索问题1【课件1】导入一中的电流、电阻、电压之间是否存在函数关系?.解:(1)I=220R(2)从左到右依次填:11,5.5,3.67,2.75,2.2.利用表格数据提供的信息,并参照对关系式的分析,可以得出当电阻R越来越大时,电流I越来越小;当R 越来越小时,I越来越大.(3)当给定一个R的值时,相应地确定了一个I值,因此I是R的函数.[知识拓展]舞台灯光可以在很短时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果就是通过改变电阻来控制电流的变化实现的.因为当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮.问题2【课件2】京沪高速铁路全长约为1318 km,列车沿京沪高速铁路从上海驶往北京,列车行完全程所需要的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?【师生活动】先让学生进行小组合作交流,再在全班范围内进行问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看成函数,了解所讨论的函数的表示形式.【归纳规律】上述实例所列出的等式,它们是函数吗?是正比例函数,还是一次函数?如果不是一次函数,你能总结自变量和因变量之间的函数关系吗?一般地,如果两个变量x,y之间的对应关系可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y=kx(k≠0)中可知x作为分母,所以x不能为零.[设计意图]让学生自己举例、总结规律、抽象概念,便于学生理解和掌握反比例函数的概念,同时培养和提高学生的总结归纳能力和抽象思维能力.【做一做】1.一个矩形的面积为20 cm2,相邻的两条边长为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2 hm2,人口数量n逐年发生变化,那么该村人均占有耕地面积m(hm2/人)是全村人口数n的函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2 -1 -1212 1 3y 23 2 -1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[设计意图]这一过程目的是强化学生对反比例函数概念的理解,体会反比例函数的实际意义,并且让学生感受自己探索发现的知识与实际生活有着密切的联系并能解决实际问题,从而获得学习的成就感,激发学生的学习兴趣.[知识拓展](1)反比例函数的一般式:y=kx(k为常数,k≠0).反比例函数的变形式:①y=kx-1(x的指数为-1,k 为常数,k≠0);②xy=k(k为常数,k≠0).(2)取值范围:①比例系数k≠0;②自变量x是一切非0实数;③函数值y也是一切非0实数.(3)判断方法:要判断一个函数是不是反比例函数,就看它能不能写成y=kx(k为常数,k≠0)的形式.下列各式表示y是x的反比例函数的是()A.x+y=-2B.y=-12xC.y=x3D.y=-2x+1〔解析〕 A.y=-2-x,是一次函数;B.y=-12x =-12x,本选项符合题意;C.y=x3,y是x的正比例函数;D.y=-2x+1,y是x的一次函数.故选B.1.一般地,如果两个变量x ,y 之间的关系可以表示成 的形式,那么y 是x 的 ,这个函数中自变量x 的取值范围是 .答案:y =k x(k 为常数,k ≠0) 反比例函数 x ≠0 2.下列函数解析式中,y 是x 的反比例函数的是 ( )A .y =x 2B .y =-32xC .y =1x+1 D .y =1x2答案:B3.反比例函数y =k x(k ≠0),若x =√3时,y =4,则k 等于 ( ) A.√3 B.4 C.4√3 D.4√3答案:C4.当a = 时,函数y =(a +2)x a 2-5是反比例函数.答案:21 反比例函数1.复习旧知2.问题探索形如:y =k x(k 为常数,k ≠0)的函数叫y 是x 反比例函数 ①k ≠0②x ≠0→x >0或x <0 ③y ≠0→y >0或y <0 【做一做】一、教材作业【必做题】教材第150页随堂练习的1,2题. 【选做题】教材第151页习题5.1的4题.二、课后作业【基础巩固】1.下列函数中,y 是x 的反比例函数的是 ( )A .y =-2xB .y =-k xC .y =-2xD .y =-x 22.下列函数关系是反比例函数的是( )A .三角形的底边为一常数,则三角形的面积y 与三角形的高x 间的函数关系B .力F 为一常数,则力所做的功W 与物体在力的方向上移动的距离s 间的函数关系C .矩形的面积为一常数,则矩形的长y 与宽x 间的函数关系D .当圆锥的底面积为一常数,圆锥的体积V 与圆锥的高h 的函数关系 3.已知函数y =m+3x 1-m 2-3m是反比例函数,则m 的值为 ( )A.-3B.0C.-3或0 D .24.已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是 ( )A .成正比例B .成反比例C .有可能成正比例,也有可能成反比例D .无法确定5.已知y 是x 的反比例函数,下表给出了x 与y 的一些值,由表知函数表达式为 .根据函数表达式完成下表.x -13 6 8 y3-326.若y 与x 2+1成反比例,且x =1时,y =2,则函数的解析式为 . 【能力提升】7.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =2时,y =-4;当x =-1时,y =5,求出y 与x 的函数关系式.【拓展探究】8.某工作人员打算利用不锈钢制作一个面积为0.8 m 2的矩形模具,设矩形模具的长为y m,宽为x m . (1)写出y 与x 的函数关系式,并说明y 与x 之间是什么函数关系;(2)若使模具长比宽多1.6 m,已知每米这种不锈钢条的价格为6元,制作这个模具共花多少钱? 【答案与解析】1.C(解析:A,D 是正比例函数,B 中k 未说明不等于0,只有C 符合定义.)2.C3.B(解析:由1-m 2-3m =1,求出m =-3或0,又m +3≠0,∴m =0.)4.B5.y =6x-6 2 -2 1 346.y =4x 2+17.解:∵y 1与x 成正比例,∴设y 1=k 1x ,∵y 2与x 成反比例,∴设y 2=k 2x,∴y =k 1x +k 2x.由x =2时,y =-4;x =-1时,y =5得{2k 1+k22=-4,-k 1-k 2=5,解得k 1=-1,k 2=-4,∴y =-x-4x.8.解:(1)分析题意,由矩形的长y 与宽x 之间的关系,可得yx =0.8,即y =0.8x,∴y 是x 的反比例函数. (2)由题意知y =x +1.6,∴x +1.6=0.8x,整理得x 2+1.6x-0.8=0,解得x 1=0.4,x 2=-2(不符合题意,舍去).当x =0.4时,x +1.6=2.∴(0.4+2)×2×6=28.8(元).∴制作这个模具共花28.8元.1.反比例函数知识是对函数学习的进一步深化,与先前的知识有着密切的联系.所有本课时的教学过程中,对以往函数知识的简要回顾取得了良好效果,不但建立起新旧知识的联系,也为继续深入研究反比例函数奠定了知识基础和方法基础.2.把生活中存在的反比例函数关系的事例进行导入和教学,拉近了生活和数学学习的距离,帮助学生感受到反比例函数的知识就在我们的生活之中,就在我们的身边.在反比例函数的关系式y =k x(k 为常数,k ≠0)中,忽略了强调k ≠0而出错.反比例函数是生活中一种重要的函数关系式,在教学的过程中,要给学生更多的时间去发现和总结生活中这样的关系式.对于综合性比较强的课堂练习,要给予学生及时的提示和点拨.随堂练习(教材第150页)1.解:(1)是反比例函数,k =5. (2)是反比例函数,k =0.4. (3)不是反比例函数(是正比例函数). (4)是反比例函数(可写为y =2x),k =2.2.解:例如:①已知一个矩形的面积为20 cm 2,它的长y (cm)是宽x (cm)的反比例函数;表达式为y =20x.②一本书30万字,读完它所用时间t 是每天所读字数a (万字)的反比例函数;表达式为t =30a.(答案不唯一) 习题6.1(教材第150页) 1.解:根据题意,y 与x 之间满足y =1200x ,y 是x 的反比例函数.2.解:根据题意,y 与x 之间满足y =2S x,y 是x 的函数,y 是x 的反比例函数.3. 解:(1)(3)(4)是.理由如下:(1)xy =-13,即y =-13x ,满足反比例函数的概念,其中k =-13. (2)y =5-x ,即y =-x +5,是一次函数. (3)y =-25x满足反比例函数的概念,其中k =-25. (4)y =2a x(a ≠0)满足反比例函数的概念,其中k =2a. 4.解:表中依次填:5,54,59,516,15,536,549,564.(1)变量R 是变量I 的函数. (2)R =PI2,∴R 不是I 的反比例函数.已知反比例函数y =kx (k 为常数,k ≠0)的图象经过点A (2,3).(1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由.〔解析〕 (1)把点A 的坐标代入已知函数解析式,通过解方程即可求得k 的值.(2)只要把点B ,C 的坐标分别代入函数解析式,适合函数关系式的点在该函数图象上.解:∵反比例函数y =k x的图象经过点A (2,3), ∴3=k 2,解得k =6, ∴函数的解析式为y =6x.(2)把B ,C 两点的坐标代入y =6x,有6≠-6,2=63, ∴点B 不在该函数图象上,点C 在该函数图象上.[解题策略] 确定反比例函数的表达式,常见类型有:已知图象上一点的坐标、已知一对函数值、已知一个图形的面积求表达式,另外还有根据实际问题求表达式.已知函数y =(m 2-2m )x m2+m -1.(1)m 为何值时,y 是x 的反比例函数? (2)m 为何值时,y 是x 的正比例函数?解:(1)根据反比例函数的定义可知m 2+m-1=-1,且m 2-2m ≠0, 解得m =-1.所以m =-1时函数y =(m 2-2m )x m 2+m -1是反比例函数.(2)当m 2+m-1=1,且m 2-2m ≠0, 即m =1或-2时,此函数是正比例函数.已知变量x ,y 满足(x-2y )2=(x +2y )2+10,则x ,y 是否成反比例关系?如果不是,请说明理由;如果是,请求出比例系数.〔解析〕 直接去括号,进而合并同类项得出y 与x 的函数关系式即可. 解:∵(x-2y )2=(x +2y )2+10, ∴x 2-4xy +4y 2=x 2+4xy +4y 2+10, 整理得出8xy =-10, ∴y =-54x,∴x ,y 成反比例关系,比例系数为-54.2反比例函数的图象与性质1.能画出反比例函数的图象,进一步掌握画函数图象的步骤.2.理解和掌握反比例函数的性质.通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力,同时尝试用类比和由特殊到一般的思维方法.归纳反比例函数的一些性质特征,由图象的画法和分析,体验数学活动中的探索性和创造性、感受双曲线的数学美,并通过图象的直观教学激发学习兴趣.【重点】反比例函数的图象画法和性质.【难点】借助于图象理解反比例函数的性质.第课时进一步熟悉画函数图象的主要步骤,会画反比例函数的图象,能够利用反比例函数的图象解决一些实际问题.激励学生在探索反比例函数的图象的过程中,积极展开思考,理解并掌握反比例函数的图象特点.调动学生的主观能动性, 积极参与教学活动,促使学生在学习中培养良好的情感态度与合作、交流的意识,提高观察、分析、解决问题的能力.【重点】反比例函数的图象.【难点】对反比例函数图象是平滑双曲线的理解及对图象特征的分析.【教师准备】几个反比例函数图象的投影图片、教材相关图片的投影等.【学生准备】直尺,坐标纸;复习函数图象的作图过程与方法.导入一:【提出问题】还记得一次函数y=kx+b(k≠0)的图象吗?那么反比例函数的图象又会是什么样子呢?你想知道吗?导入二:同学们还记得正比例函数图象的特点吗?那么反比例函数图象又是怎样的呢?正比例函数解析式y=kx(k≠0)图象经过(0,0)与(1,k)当k>0时,图象经过第一、三象限;当k<0时,图象经过第二、四象限画反比例函数y=4x的图象1.列表:x…-8-4-3-2-1-121212348…y=4x …-12-1-43-2-4-884243112…描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:用光滑的曲线顺次连接各点,即可得到函数y =4x的图象(如下图).强调:列表时,自变量的值可以选取绝对值相等而符号相反的一对一对的数值,这样既可简化计算,又便于描点.2.如果在列表时所选取的数值不同,那么图象的形状是否相同?连线时能否连成折线?为什么必须用光滑的曲线连接各点?曲线的发展趋势如何?3.让学生尝试作出反比例函数y =-4x的图象.学生采用相同的步骤和方法完成作图,教师巡视,指导一段时间后,请学生在黑板上画出图象. 4.观察函数y =4x和y =-4x的图象,它们有什么相同点和不同点?图象分别都是由两支曲线组成的,它们都不与坐标轴相交,两个函数图象都是轴对称图形,它们都有两条对称轴.5.反比例函数的性质.再让学生观察反比例函数图象,提问:(1)当k >0时,双曲线的两个分支各在哪个象限? (2)k <0时,双曲线的两个分支各在哪个象限?【总结】 (1)当k >0时,双曲线的两个分支分别分布在第一、三象限内;当k <0时,双曲线的两个分支分别分布在第二、四象限内.(2)两个分支都无限接近但永远不能达到x轴和y轴.[知识拓展]反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点对称,由于反比例函数中自变量x≠0,函数值y≠0,因此它们的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不会与坐标轴相交.反比例函数y=k(k≠0)的图象是由两支曲线(双曲线)组成的,当k>0时,两支曲线分别位于第一、三象限内;x当k<0时,两支曲线分别位于第二、四象限内.的图象位于()1.反比例函数y=1xA.第一、三象限内B.第一、二象限内C.第二、四象限内D.第三、四象限内答案:A(k≠0)的图象,当k>0时,两支曲线分别位于第、象限内;当k<0时,2.反比例函数y=kx两支曲线分别位于第、象限内.答案:一三二四(k≠0)的图象是两支,又称,这两个分支不连续,都无限接近但永远不3.反比例函数y=kx会到达和.答案:关于原点对称的曲线双曲线x轴y轴上的两点,且x1>x2>0,则y1y2.(填“>”“=”或“<”)4.若A(x1,y1),B(x2,y2)是双曲线y=3x答案:<第1课时(k≠0)的图象函数y=kx①k>0②k<0一、教材作业【必做题】教材第153页随堂练习.【选做题】教材第154页习题6.2的3题.二、课后作业【基础巩固】1.如图,是我们学过的反比例函数图象,它的函数解析式可能是()A.y=x2B.y=4xC.y=-3x D.y=12x2.反比例函数y=kx(k<0)的大致图象是()3.已知点(1,1)在反比例函数y=kx(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是()4.如图,已知A 是反比例函数y =kx(k ≠0)的图象上一点,AB ⊥x 轴于点B ,且ΔABO 的面积是3,则k 的值是( )A.3B.-3C.6 D .-65.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,且AB ∥x 轴,C ,D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .【能力提升】6.关于反比例函数y =4x的图象,下列说法正确的是 ( ) A.必经过点(1,1)B.两个分支分布在第二、四象限内 C .两个分支关于x 轴对称D.两个分支关于原点成中心对称7.函数y =2x 与函数y =-1x 在同一坐标系中的大致图象是下图中的 ( )【拓展探究】8.如图所示,A ,C 是函数y =1x的图象上任意两点,过A 作y 轴的垂线,垂足为B ,记Rt ΔAOB 的面积为S 1;过C 作y 轴的垂线,垂足为D ,记Rt ΔOCD 的面积为S 2,则 ( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .不能确定9.在平面直角坐标系xOy 中,反比例函数y =k x(k ≠0)的图象与y =3x的图象关于x 轴对称,且反比例函数y =k x的图象经过A (1,n ),试确定n 的值. 【答案与解析】 1.B 2.B3.C(解析:∵点(1,1)在反比例函数y =k x(k 为常数,k ≠0)的图象上,∴k =1×1=1,∴此反比例函数的图象在第一、三象限内,∴C 正确.故选C.)4.C(解析:根据题意可知S ΔAOB =12|k |=3,又因为反比例函数的图象位于第一象限,k >0,则k =6.故选C .) 5.2(解析:过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线y =1x上,∴四边形AEOD 的面积为1,∵点B 在双曲线y =3x上,且AB ∥x 轴,∴四边形BEOC 的面积为3,∴四边形ABCD 的面积为3-1=2.) 6.D 7.B8.C(解析:由反比例函数y =k x(k ≠0)中比例系数k 的几何意义可以推出Rt ΔAOB 与Rt ΔOCD 的面积都等于12|k |=12.故选C .)9.解:因为反比例函数y =k x的图象与y =3x的图象关于x 轴对称,则k =-3,故反比例函数y =k x的解析式为y =-3x.因为点A (1,n )在反比例函数y =-3x的图象上,所以n =-3.研究反比例函数的方法同先前研究函数的方法有着高度的一致,在这里利用学生对以往研究函数的方法,比较顺利地解决了画反比例函数图象、分析反比例函数特点的探索活动,取得了事半功倍的效果.在学生画反比例函数图象的时候,老师担心学生画不准、画不好,过早地把一些提示话语传递给了学生,没有等学生可能出现问题之后,显得对学生放手不够,过多地干预了学生的自主探究活动.应该重点强调反比例函数y=kx(k≠0)中比例系数k的值对函数图象的影响,并帮助学生通过规律性的总结,熟记反比例函数图象的特点.调整部分难度过大、综合性过强的训练试题,设置习题的目的以巩固知识、强化记忆为主.随堂练习(教材第153页)解:图(1)是反比例函数y=-2x的图象.因为图象的两分支位于第二、四象限.习题6.2(教材第154页)1.解:列表如下:x-6 -3 -1 1 3 6y=6x-1 -2 -6 6 2 1y=-6x1 2 6 -6 -2 -1描点、连线,如图所示.2.解:不对,因为反比例函数中的x,y的值都不能为0,所以反比例函数的图象不可能与坐标轴相交.3.解:列表:x…-3 -2 -1 1 2 3 …y=2x …-23-1 -2 2 123…y=x-1 …-4 -3 -2 0 1 2 …描点、连线,图象如图所示.可见y=2x与y=x-1的图象交于点(-1,-2)和点(2,1).在同一坐标系中的大致图象可能是下图中的若ab<0,则正比例函数y=ax和反比例函数y=bx()〔解析〕∵ab<0,∴a,b为异号,分两种情况:(1)当a>0,b<0时,正比例函数y=ax的图象过原点、第一、三象限,反比例函数图象在第二、四象限内,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限内,选项C符合.故选C.某地资源总量Q一定,该地人均资源享有量x与人口数n的函数关系图象是().∵Q为一定值,∴x是n的反比例函数,其图象为双曲线.又∵x>0,n>0,∴〔解析〕∵由题意,得Q= xn,∴x= Qn图象在第一象限内.故选B.第课时(k≠0)随着k值的不同在不同象限的增减性.掌握反比例函数y=kx激励学生在探索反比例函数图象性质的过程中,积极展开思考,理解并掌握反比例函数图象的性质.调动学生的主观能动性, 积极参与教学活动,促使学生在学习中培养良好的情感态度与合作、交流的意识,提高观察、分析、抽象的能力.(k≠0)随着k值的不同在不同象限的增减性.【重点】反比例函数y=kx(k≠0)随着k值的不同在不同象限的增减性.【难点】反比例函数y=kx【教师准备】反比例函数基本图象的投影图片.(k≠0)图象所处的不同象限.【学生准备】复习上一课时学过的k值不同,反比例函数y=kx导入一:(k≠0)中,k的值对函数的性质有什么影响呢?在反比例函数y=kx导入二:【提出问题】1.作函数图象的一般步骤是什么?2.一次函数图象是什么?它具有怎样的性质?3.我们知道反比例函数的图象是双曲线,那么它又具有怎样的性质呢?带着这个疑问我们一起走入今天的课堂.【师生活动】教师提出问题,找学生回答,并引出本节新课的内容.[设计意图]通过创设问题情境,引导学生复习一次函数的性质,激发学生参与课堂学习的热情,为学习反比例函数的性质奠定基础.[过渡语]研究反比例函数的性质,我们必须借助于反比例函数的图象.出示教材图6-4.【问题思考】(1)三个函数解析式的k值有什么特点?(2)当x取值-2,-4,-6时,y值是怎样变化的?(3)在第一象限内,随着x值的增大,y值是怎样变化的?(4)在第三象限内,随着x值的增大,y值是怎样变化的?【小结】当k>0时,函数图象位于第一、三象限内,在每个象限内,y的值随x值的增大而减小.出示教材图6-5.【问题思考】(1)三个函数解析式的k值有什么特点?(2)当x取-6,-4,-2时,y值是怎样变化的?(3)在第二、四象限内,随着x值的增大,y的值是怎样变化的?【小结】当k<0时,函数图象位于第二、四象限内,在每个象限内,y的值随着x值的增大而增大.二、想一想在一个反比例函数图象上任取两点P,Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2,S1与S2有什么关系?为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章反比例函数2.反比例函数的图象与性质(三)-----复习K的几何意义一、学生知识状况分析函数是研究现实世界变化规律的一个重要数学模型,学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等相关知识,对函数的概念和研究函数的方法有了初步的认识和了解.特别是在学习一次函数时,学生已经掌握了如何画一次函数的图象,探究过一次函数的性质,积累了一定的活动经验和方法感悟,在此基础上学习反比例函数的图象与性质,可以让学生进一步领悟函数的概念,进一步积累探究函数图象和性质的方法,为后续探究二次函数的图像和性质做好知识上和方法上的铺垫.二、教学任务分析《反比例函数的图象与性质》安排在北师大版教材九年级上册,共分两课时,但针对我所教6班的基k>础,共分解为三课时,本节课是第三课时.在前两课时中,学生已经学会如何画反比例函数的图象,并对0 k<时函数图象的特点有了初步的认识,发现函数的自身规律,本节课主要是在前面的基础上,通过复和0习反比例函数图象K的几何意义,在质疑、讨论、交流中增强学生对图象的感知能力,加深对反比例函数知识与技能目标:根据反比例函数图象和解析表达式探索并理解反比例函数的主要性质.提高学生观察、分析能力和对图象的感知水平,领会研究函数的一般要求.过程和方法目标:让学生经历知识的探究过程,通过全面的观察和比较,积累数学方法和活动经验.逐步提高观察和归纳分析能力,体验数形结合和分类讨论的数学思想.情感、态度和价值观目标:经历小组合作与交流活动,在质疑、追问、讨论中达成共识,发展合作能力和语言表达能力.在教学目标的基础上制定如下的教学重点、教学难点:重点:探索反比例函数的主要性质.---K的几何意义难点:理解反比例函数性质的探索过程,从“数”和“形”两方面综合考虑问题.三、教学过程分析本节课设计了五个教学环节:第一环节:前置作业;第二环节:合作探究;第三环节:挑战自我、再探新知;第四环节:归纳总结第五环节:分层作业第一环节:前置作业 内容:(一)反比例函数定义1、形如y=kx(k 是常数,k ≠0)的函数称为 ,其中x 是 ,y 是 .自变量x 的取值范围是 。

2、反比例函数的三种表现形式是 .其中k 是常数,k ≠0.3、注意:(1) (2) (3) (二)反比例函数的图象与性质1、反比例函数图象是 ;2、完成下列表格: 3. K 的几何意义:知识点1:如图1、在一个反比例函数xky =(k ≠0)图象任取一点,过这一点分别作x 轴、y 轴的平行线(或垂线),与坐标轴围成的矩形面积总等于 。

知识点2:如图2、过双曲线xky =(k ≠0)图象上任意一点,向两坐标轴作平行线(或垂线),一条平行线(或垂线)于坐标轴、原点所围成的三角形的面积为图1图2第二环节:合作探究 内容1.如图,在平面直角坐标系中,点A 是双曲线y =3x (x >0)上的一个动点,过点A 作x 轴的垂线,交x 轴于点B ,点A 运动过程中△AOB 的面积将会( )A .逐渐增大B .逐渐减小C .先增大后减小D .不变反比例函数 解析式 K 的符号图象 (双曲线) 位置 (象限) 增减性 对称性 y=k x(k ≠0) k>0k<02.如图,过反比例函数y =2x (x >0)图象上任意两点A ,B 分别作x 轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1,S 2,比较它们的大小,可得( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2D .S 1、S 2的大小关系不能确定3.(鄂州中考)点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .± 34.如图,设点P 是函数y =2x 在第一象限的图象上的任意一点,点P 关于原点的对称点为点P ′,过点P 作PA 平行于y 轴,过点P ′作P ′A 平行于x 轴,PA 与P ′A 交于点A ,则△PAP ′的面积( ) A .随P 点的变化而变化 B .等于1 C .等于2 D .等于45.如图,点A 是反比例函数y =kx 图象上的一点,过点A 作AB ⊥x 轴,垂足为点B ,点C 为y 轴上的一点,连接AC ,BC.若△ABC 的面积为3,则k 的值是( )A .3B .-3C .6D .-66.(选做)如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数y =1x的图象上,则点E 的坐标是( ) A.⎝⎛⎭⎪⎫5+12,5-12 B.⎝ ⎛⎭⎪⎫3+52,3-52 C.⎝⎛⎭⎪⎫5-12,5+12 D.⎝ ⎛⎭⎪⎫3-52,3+527.(黔西南中考)如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为点B、C,矩形ABOC的面积为4,则k=____________.8.(陕西中考)如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为____________.9.如图,直线y=mx与双曲线y=kx交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是____________.10.(临沂中考)如图,反比例函数y=4x的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的表达式为____________.设计意图:1.通过几个小题目的练习,及时运用、巩固所学的知识,使学生加深对反比例函数性质中K的理解.2.运用变式训练,拓展学生思维的广度,渗透分类讨论的数学思想.3.课堂上以小组比赛,合作讲解等形式,让每个学生都融入到积极地投入到知识的学习中,表达与倾听中,调动每个学生的主观能动性,夯实基础.第三环节:挑战自我、再探新知;内容:1、下列图形中,阴影部分面积最大的是()2、(2016通辽)如图,点A和点B都在反比例函数xy4的图象上,且线段AB过原点,过点A作x是线段OB上的动点,连接CP。

设△ACP的面积为S,则下列说法正确的是(C.2<S<4D.2≤S≤42题xCAOBP3题xDCBOA4题xyECBOAD3、ABC 的边AB//x 轴,点A 在双曲线xy 5=(x<0)上,点AC 中点D 在X 轴上,△ABC 的面积为8,则k= ;4ABCD 的顶点A x 轴上,点B 在y 四边形BCDE ( x 8 C. x y 9-= 5 6题5、(2016本溪)如图,点A,C 为反比例函数xky =(x<0)图象上的点,过点A,C 作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B,D ,连接OA,AC,OC,线段OC 交AB 于点E,点E 恰好为OC 的中点,当△AEC 的面积为23时,k 的值为( )A. 4B. 6C. -4D. -66、(2015辽阳)如图,点A 是双曲线xy 6-=在第二象限分支上的一动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=120°,点C 在第一象限,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线xky =上运动。

则K 的值为( ) A. 1 B. 2 C. 3 D. 4设计意图:巩固所学知识,加深对反比例函数性质的综合应用. 第四环节:归纳总结 内容:本节课你学到了反比例函数的哪些新知识? 你有哪些感悟和收获? 你还有想继续探究的问题吗? 你对小组成员有什么评价和建议呢? 教学策略:引导学生对自己的学习过程进行提炼、反思,从知识上和方法上进行总结.设计意图:引导学生关注数学的学习过程,及时总结、反思、交流,同时重视小组内的合作和交流,倾听小组成员的评价、建议,取长补短,共同提高.第五环节:分层作业A 层:1、如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4x y =-和2x y =的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC 、则△ABC 的面积为( )A 、3B 、4C 、5D 、6图1 B CD O PA y x图2 图32、(2015长春)如图,在平面直角坐标系中,点P 在函数6(0)y x x=>的图象上,过点P 分别作x 轴、y 轴的垂线,垂足分别为A B 、,取线段OB 的中点C ,连结PC 并延长交x 轴于点D ,则APD △的面积为 . B 层:3、如图5,反比例函数(x >0)的图象与矩形OABC 的边长AB 、BC 分别交于点E 、F 且AE=BE ,则△OEF 的面积的值为 .教学策略:让学生根据自身的学习情况,自主选择适合的题目。

及时反馈。

设计意图:设置不同层次、具有选择性的题目,供不同的学生选择,实现“不同的人在数学上得到不同的发展”. 四、教学设计反思1.教学设计中,特别注重了比例函数性质的探索过程,通过问题的引领让生更全面的对函数进行观察和比较,给学生创设了充足的讨论时间和空间,鼓励学生用自己的语言对观察和概括的结论进行充分的表达和描述.2.学生能做的让学生做,学生能说的让学生来说,教学设计中关注了学生主体作用的发挥,教师进行适时的引领和点拨,教学中教师要用鼓动性的语言,激发学生探究的热情,点燃学生学习的激情. 3.本节课学生的参与度较高,教师要了解学生参与活动中情感与智力的参与程度,及时进行多角度的积极评价,帮助学生建立自信,发挥评价的教育功能.。

相关文档
最新文档