2020年安徽省阜阳市颍州区中考数学一模试卷及答案解析
安徽省阜阳市2019-2020学年中考数学一模试卷含解析
![安徽省阜阳市2019-2020学年中考数学一模试卷含解析](https://img.taocdn.com/s3/m/939729566f1aff00bfd51e17.png)
安徽省阜阳市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A 、B 、C 是直径为6cm 的⊙O 上的点,且AB=3cm ,AC=32 cm ,则∠BAC 的度数为( ) A .15°B .75°或15°C .105°或15° D .75°或105° 2.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7 B .2.5×10﹣6 C .25×10﹣7 D .0.25×10﹣53.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④4.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( ) A .90° B .120° C .150° D .180°5.在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( ) A .45° B .60°C .75°D .105° 6.点A (-2,5)关于原点对称的点的坐标是 ( )A .(2,5)B .(2,-5)C .(-2,-5)D .(-5,-2)7.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .8.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( ) A .55×105 B .5.5×104 C .0.55×105 D .5.5×1059.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x 人合买,这件物品y 元,则根据题意列出的二元一次方程组为( )A .8374x y x y =-⎧⎨=+⎩B .8+473x y x y =⎧⎨=-⎩C .3+847x y x y =⎧⎨=-⎩D .8+374x y x y =⎧⎨=-⎩10.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=1.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .11.下列调查中适宜采用抽样方式的是( )A .了解某班每个学生家庭用电数量B .调查你所在学校数学教师的年龄状况C .调查神舟飞船各零件的质量D .调查一批显像管的使用寿命12.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m < B .94m … C .94m > D .94m … 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.14.如图,在△ABC 中,BC=7,32AC =tanC=1,点P 为AB 边上一动点(点P 不与点B 重合),以点P 为圆心,PB 为半径画圆,如果点C 在圆外,那么PB 的取值范围______.15.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.16.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.17.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.18.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20.(6分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.21.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.22.(8分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.23.(8分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);②如图丙,在顶点G运动的过程中,若ACtGC,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=65,当t>2时,求EC的长度.24.(10分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。
2020年安徽省中考数学一模试卷(含答案解析)
![2020年安徽省中考数学一模试卷(含答案解析)](https://img.taocdn.com/s3/m/667aca90a8956bec0875e353.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
2020年安徽省中考数学模拟试卷含答案(2套)
![2020年安徽省中考数学模拟试卷含答案(2套)](https://img.taocdn.com/s3/m/815b6d38443610661ed9ad51f01dc281e53a56de.png)
2020年安徽省中考数学一模试卷姓名:—得分:—日期:一、选择题(本大题共10小题,共40分)1、(4分)-3的倒数是()A.-3B.3C.--D.-332、(4分)下列运算正确的是()A.a2+a2=a4B.(-b2)3=-b6C.2x«2x2=2x3D.(m-n)2=m2-n23、(4分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路"地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.44X108B.4.4X108C.4.4X109D.4.4X10104、(4分)如图是一个螺母零件的立体图形,它的左视图是()2%-1<5一5、(4分)不等式组3X-11>y的解集在数轴上表小正确的是()I-L.26、(4分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10 (1+x) 2=36.4B.10+10 (1+x) 2=36.4C.10+10 (1+x) +10 (l+2x) =36.4D.10+10 (1+x) +10 (1+x) 2=36.4 7、(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产 合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同C.甲的平均数小于乙的平均数 B.甲、乙的中位数相同D.甲的方差小于乙的方差8、(4分)如图,点C 在反比例函数y=j (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,% a AOB 的面积为1,则k 的值为( )A.1B.2C.3D.49、(4分)如图,点E 是矩形ABCD 的边AD 的中点,且BE1AC 于点F,则下列结论中错误的是( )C.ZDCF=ZDFC B S m 时=1S'CDF 3"宜曷=y10、(4分)在边长为2的正方形ABCD 中,对角线AC 与BD 相交于点0, P 是 BD 上一动点,过P 作EFHAC,分别交正方形的两条边于点E, F.设BP=x,ABEF的面积为y,则能反映y与x之间关系的图象为()二、填空题(本大题共4小题,共20分)11、(5分)面的平方根是.12、(5分)分解因式:2xy2+4xy+2x=.13、(5分)如图,AB是O0的弦,点C在过点B的切线上,且0C1OA,OC交AB于点P,已知ZOAB=22°,贝<JzOCB=.14、(5分)如图,在矩形ABCD中,AB=3,BC=4,动点M,N分别从A,C同时向B,D匀速移动,且两点的运动速度相同,当动点M到达B点时,M,N同时停止运动,过点N作NP1CD,交BD于P点,当ABMP为等腰三角形时, AM=.三、计算题(本大题共1小题,共8分)15、(8分)计算:(―1)2019—|—3|X亨+媚+兀。
2020年安徽省阜阳市中考数学一测试卷
![2020年安徽省阜阳市中考数学一测试卷](https://img.taocdn.com/s3/m/aab939ae376baf1ffd4fad09.png)
中考数学一测试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A. -a>cB. a>bC. ab>0D. a>-32.一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为()A. 5.2×105B. 5.2×10-5C. 5.2×10-4D. 52×10-63.如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A. 130°B. 50°C. 40°D. 25°4.在下列图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.5.成绩(次∕分钟)444546474849人数(人)113352A. 46,48B. 47,47C. 47,48D. 48,486.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上任意一点(与点B不重合),则∠BPC的度数为()A. 30°B. 45°C. 60°D. 90°7.如图,l1反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,l2反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A. 大于4吨B. 等于5吨C. 小于5吨D. 大于5吨8.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为AC=2km,BD=3km,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A. 距C点1km处B. 距C点2km处C. 距C点3km处D. CD的中点处9.如图是北京2017年3月1日-7日的PM2.5浓度(单位:μg/m3)和空气质量指数(简称AQI)的统计图,当AQI不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的PM2.5浓度最高②这七天的PM2.5浓度的平均数是30μg/m3③这七天中有5天的空气质量为“优”④空气质量指数AQI与PM2.5浓度有关其中说法正确的是()A. ②④B. ①③④C. ①③D. ①④10.如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积是()A. 20B. 24C. 48D. 60二、填空题(本大题共6小题,共18.0分)11.若二次根式有意义,则x的取值范围为______.12.分解因式:a2b-4ab+4b=______.13.如图,△ABC是⊙O的内接正三角形,图中阴影部分的面积是12π,则⊙O的半径为______.14.关于x的一元二次方程ax2+2x+c=0(a≠0)有两个相等的实数根,写出一组满足条件的实数a,c的值:a=______,c=______.15.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段a.求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为2a.作法:如图,(1)作线段BC=a;(2)作线段BC的垂直平分线DE交BC于点F;(3)在射线FD上顺次截取线段FG=GA=a,连接AB,AC.所以△ABC即为所求作的等腰三角形.请回答:得到△ABC是等腰三角形的依据是:①______:②______.16.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:移植的棵数n3007001000500015000成活的棵数m280622912447513545成活的频率0.9330.8890.9120.8950.903根据表中的数据,估计这种树苗移植成活的概率为(精确到);如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约______万棵.三、解答题(本大题共13小题,共72.0分)17.计算:(π-2017)0+6cos45°+-|-3|.18.解不等式-≥-1,并把它的解集在数轴上表示出来.19.如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.20.已知x2-10xy+25y2=0,且xy≠0,求代数式-÷的值.21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?22.如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.(1)求证:四边形EBCF是平行四边形.(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的长.23.如图,在平面直角坐标系xOy中,直线y=kx+3(k≠0)与x轴交于点A,与双曲线y=(m≠0)的一个交点为B(-1,4).(1)求直线与双曲线的表达式;(2)过点B作BC⊥x轴于点C,若点P在双曲线y=上,且△PAC的面积为4,求点P的坐标.24.绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小组为了了解“共享单车”的使用情况,对本校教师在3月6日至3月10日使用单车的情况进行了问卷调查,以下是根据调查结果绘制的统计图的一部分:请根据以上信息解答下列问题:(1)3月7日使用“共享单车”的教师人数为人,并请补全条形统计图;(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如右图,其中喜欢mobike的教师有36人,求喜欢ofo的教师的人数.25.如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C作⊙O的切线交DE的延长线于点H.(1)求证:HC=HF;(2)若⊙O的半径为5,点F是BC的中点,tan∠HCF=m,写出求线段BC长的思路.26.已知y是x的函数,如表是y与x的几组对应值.x…-5-4-3-2012345…y… 1.969 1.938 1.875 1.7510-2-1.50 2.5…小明根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=-1对应的函数值y约为______;②该函数的一条性质:______.27.在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),对称轴与x轴交于点(3,0),且AB=4.(1)求抛物线C1的表达式及顶点坐标;(2)将抛物线C1平移,得到的新抛物线C2的顶点为(0,-1),抛物线C1的对称轴与两条抛物线C1,C2围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点B.若直线l与图形M有公共点,求k的取值范围.28.已知在Rt△BAC中,∠BAC=90°,AB=AC,点D为射线BC上一点(与点B不重合),过点C作CE⊥BC于点C,且CE=BD(点E与点A在射线BC同侧),连接AD,ED.(1)如图1,当点D在线段BC上时,请直接写出∠ADE的度数.(2)当点D在线段BC的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED与AC相交于点P,若AB=2,直接写出CP的最大值.29.在平面直角坐标系xOy中,点P的坐标为(a,b),点P的变换点P'的坐标定义如下:当a>b时,点P'的坐标为(-a,b);当a≤b时,点P'的坐标为(-b,a).(1)点A(3,1)的变换点A'的坐标是______;点B(-4,2)的变换点为B',连接OB,OB',则∠BOB'=______°;(2)已知抛物线y=-(x+2)2+m与x轴交于点C,D(点C在点D的左侧),顶点为E.点P在抛物线y=-(x+2)2+m上,点P的变换点为P'.若点P'恰好在抛物线的对称轴上,且四边形ECP'D是菱形,求m的值;(3)若点F是函数y=-2x-6(-4≤x≤-2)图象上的一点,点F的变换点为F',连接FF',以FF'为直径作⊙M,⊙M的半径为r,请直接写出r的取值范围.答案和解析1.【答案】A【解析】解:由数轴得,a<0<b<c,|a|>|c|>|b|,∴-a>c,故A正确;故选:A.根据数轴的性质,实数的性质计算即可.本题考查了实数和数轴,掌握数轴的性质,实数的性质是解题的关键.2.【答案】B【解析】解:0.000052=5.2×10-5,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°-50°=40°,故选:C.先根据平行线的性质,得出∠ABC,再根据三角形内角和定理,即可得到∠2.本题主要考查了平行线的性质以及垂线,解题时注意:两直线平行,同位角相等.4.【答案】A【解析】解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:A.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】C【解析】【解答】解:由于一共有15个数据,∴其中位数为第8个数据,即中位数为47,∵48出现次数最多,有5次,∴众数为48,故选:C.【分析】根据众数和中位数的定义求解可得.本题考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.【答案】B【解析】【分析】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.【解答】解:连接OB,OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=∠BOC=45°.故选B.7.【答案】D【解析】解:由图可得,当0<x<5时,收入小于成本;当x=5时,收入等于成本;当x>5时,收入大于成本.故选:D.交点(5,5000)表示当销售量为5吨时,销售收入和销售成本相等,要想赢利,收入图象必须在成本图象上方,从图象得出,当x>5时,收入大于成本.此题为一次函数与不等式的综合应用,搞清楚交点的实际意义和函数图象的相对位置是关键.8.【答案】B【解析】解:作出点A关于江边的对称点E,连接EB交CD于P,则PA+PB=PE+PB=EB.根据两点之间线段最短,可知当供水站在点P处时,供水管路最短.根据△PCE∽△PDB,设PC=x,则PD=5-x,根据相似三角形的性质,得=,即=,解得x=2.故供水站应建在距C点2千米处.故选:B.作出点A关于江边的对称点E,连接EB交CD于P,则PA+PB=PE+PB=EB.根据两点之间线段最短,可知当供水站在点P处时,供水管路最短.根据△PCE∽△PDB,利用相似三角形的对应边的比等于相似比求解.本题考查了相似三角形的应用及最短路线问题,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9.【答案】D【解析】解:由第一个图的纵坐标,得①3月4日的PM2.5浓度最高,故①符合题意;②=34.85μg/m3,故②不符合题意;③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意;④空气质量指数AQI与PM2.5浓度有关,故④符合题意;故选:D.根据折线统计图,可得答案.本题考查了折线统计图,观察统计图从图中获得有效信息是解题关键.10.【答案】C【解析】解:如图2所示,当OP⊥BC时,BP=CP=4,OP=3,所以AB=2OP=6,BC=2BP=8,所以矩形ABCD的面积=6×8=48.故选:C.根据点P的移动规律,当OP⊥BC时取最小值3,根据矩形的性质求得矩形的长与宽,易得该矩形的面积.本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出BP=CP=4,OP=3.11.【答案】x≥-2【解析】解:根据题意得,x+2≥0,解得x≥-2.故答案为:x≥-2.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.12.【答案】b(a-2)2【解析】解:a2b-4ab+4b=b(a2-4a+4)=b(a-2)2考查了对一个多项式因式分解的能力.本题属于基础题,当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应先提公因式,再用完全平方公式.本题考查因式分解的概念,注意必须将式子分解到不能分解为止.完全平方公式:a2±2ab+b2=(a±b)2.13.【答案】6【解析】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,设⊙O的半径为r,∵阴影部分的面积是12π,∴=12π,解得:r=6,故答案为:6.根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.14.【答案】1 1【解析】解:∵关于x的一元二次方程ax2+2x+c=0(a≠0)有两个相等的实数根,∴△=22-4ac=0,∴ac=1,即当a=1时,c=1.故答案为:1;1.根据方程的系数结合根的判别式,即可得出△=4-4ac=0,取a=1找出c值即可.本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.15.【答案】线段垂直平分线上的点到线段两个端点的距离相等有两条边相等的三角形是等腰三角形【解析】解:根据题意知,∵DE垂直平分BC,∴AB=AC,∴△ABC是等腰三角形,其依据是:①线段垂直平分线上的点到线段两个端点的距离相等;②有两条边相等的三角形是等腰三角形,故答案为:线段垂直平分线上的点到线段两个端点的距离相等、有两条边相等的三角形是等腰三角形.根据垂直平分线的性质和等腰三角形的判定即可得出答案.本题主要考查作图-复杂作图,熟练掌握垂直平分线的性质和等腰三角形的判定是解题的关键.16.【答案】0.9 5【解析】解:由表格数据可得,随着样本数量不等增加,这种幼树移植成活率稳定的0.9左右,故这种幼树移植成活率的概率约为0.9.∵该地区计划成活4.5万棵幼树,∴那么需要移植这种幼树大约4.5÷0.9=5万棵故本题答案为:0.9;5.利用表格中数据估算这种幼树移植成活率的概率即可.然后用样本概率估计总体概率即可确定答案.此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.17.【答案】解:原式=1+6×+2-3=3.【解析】利用零指数幂、立方根以及特殊角的三角函数值分别化简求出答案.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、立方根、绝对值等考点的运算.18.【答案】解:去分母,得:2(2x+1)-3(5x-1)≥-6.去括号,的:4x+2-15x+3≥-6.移项、合并,得:-11x≥-11.系数化为1,的:x≤1.不等式的解集在数轴上表示如下:.【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.【答案】证明:∵CE⊥AD,BF⊥AD,∴∠CED=∠BFD=90°.∴CE∥BF.∴∠DBF=∠DCE.∵CD=CA,CE⊥AD,∴∠ACE=∠DCE.∴∠ACE=∠DBF.【解析】依据CE⊥AD,BF⊥AD,可得CE∥BF,即可得出∠DBF=∠DCE.根据∠ACE=∠DCE,即可得到∠ACE=∠DBF.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.20.【答案】解:原式==,∵x2-10xy+25y2=0,∴(x-5y)2=0.∴x=5y,∴原式==.【解析】根据分式的混合运算把原式化为最简分式,由已知条件得到x=5y,代入即可得到结果.本题考查了分式的化简求值,熟练掌握分式的混合运算的法则是解题的关键.21.【答案】解:设用于练习的宣纸的单价是x元∕张.由题意,得,解得x=0.2.经检验,x=0.2是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.【解析】设用于练习的宣纸的单价是x元∕张,根据等量关系:,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,可得方程,再解方程即可求解.本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.找到关键描述语,分析题意,找到合适的等量关系是解决问题的关键.22.【答案】(1)证明:∴∠A=∠CDF=∠ABC=90°,AB=DC,AD=BC,在Rt△BAE和Rt△CDF中,,∴Rt△BAE≌Rt△CDF,∴∠1=∠F,∴BE∥CF,又∵BE=CF,∴四边形EBCF是平行四边形.(2)解:∵Rt△BAE中,∠2=30°,AB=,∴AE=AB•tan∠2=1,,∠3=60°,在Rt△BEC中,,∴AD=BC=4,∴ED=AD-AE=4-1=3.【解析】(1)由Rt△BAE≌Rt△CDF,推出∠1=∠F,推出BE∥CF,又BE=CF,即可证明四边形EBCF是平行四边形;(2)Rt△BAE中,∠2=30°,AB=,求出AE、BE,在Rt△BEC中,求出BC,由此即可解决问题.本题考查矩形的性质、平行四边形的判定.解直角三角形,锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:(1)∵直线y=kx+3(k≠0)与双曲线y=(m≠0)都经过点B(-1,4),∴-k+3=4,m=-1×4.∴k=-1,m=-4.∴直线的表达式为y=-x+3,双曲线的表达式为;(2)由题意,得点C的坐标为C(-1,0),直线y=-x+3与x轴交于点A(3,0).∴AC=4.∵,∴y P=±2.∵点P在双曲线上,∴点P的坐标为P1(-2,2)或P2(2,-2).【解析】(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;(2)根据直线解析式求得点A坐标,由求得点P的纵坐标,继而可得答案.本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.24.【答案】解:(1)3月7日使用“共享单车”的教师人数为:20(1+50%)=30人,补全条形统计图如图所示.(2)36÷45%=80. 80×(1-45%-15%)=32(人).答:喜欢ofo的教师有32人.【解析】(1)根据题意列式计算即可得到结论;(2)根据题意列式计算即可得到结论.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】(1)证明:连接OC,如图1.∵CH是⊙O的切线,∴∠2+∠1=90°,∵DE⊥AB,∴∠3+∠4=90°,∵OB=OC,∴∠1=∠4,∴∠2=∠3,又∵∠5=∠3,∴∠2=∠5,∴HC=HF.(2)求解思路如下:思路一:连接OF,如图2.①OF过圆心且点F是BC的中点,由垂径定理可得BC=2CF,∠OFC=90°;②由∠6与∠1互余,∠2与∠1互余可得∠6=∠2,从而可知tan∠6=m;③在Rt△OFC中,由,可设OF=x,CF=mx,由勾股定理,得x2+(mx)2=52,可解得x的值;④由BC=2CF=2mx,可求BC的长.思路二:连接AC,如图3.①由AB是⊙O的直径,可得△ACB是直角三角形,知∠6与∠4互余,又DE⊥AB可知∠3与∠4互余,得∠6=∠3;②由∠6=∠3,∠3=∠2,可得∠6=∠2,从而可知tan∠6=m;③在Rt△ACB中,由,可设AC=x,BC=mx,由勾股定理,得x2+(mx)2=102,可解得x的值;④由BC=mx,可求BC的长.【解析】(1)连接OC,办法证明∠2=∠5即可;(2)思路一:①OF过圆心且点F是BC的中点,由垂径定理可得BC=2CF,∠OFC=90°;②由∠6与∠1互余,∠2与∠1互余可得∠6=∠2,从而可知tan∠6=m;③在Rt△OFC中,由,可设OF=x,CF=mx,由勾股定理,得x2+(mx)2=52,可解得x的值;④由BC=2CF=2mx,可求BC的长.思路二:①由AB是⊙O的直径,可得△ACB是直角三角形,知∠6与∠4互余,又DE⊥AB 可知∠3与∠4互余,得∠6=∠3;②由∠6=∠3,∠3=∠2,可得∠6=∠2,从而可知tan∠6=m;③在Rt△ACB中,由,可设AC=x,BC=mx,由勾股定理,得x2+(mx)2=102,可解得x的值;④由BC=mx,可求BC的长.本题考查切线的性质、垂径定理、解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.【解析】解:(1)如右图所求;(2)①x=-1对应的函数值y约为1.5;②当x<2时,y随x的增大而减小,(答案不唯一);故答案为:1.5,当x<2时,y随x的增大而减小.(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.27.【答案】解:(1)∵抛物线C1的对称轴与x轴交于点(3,0),∴抛物线C1的对称轴为直线x=3.又∵AB=4,∴A(1,0),B(5,0).∴解得∴抛物线C1的表达式为y=x2-6x+5.即y=(x-3)2-4.∴抛物线C1的顶点为D(3,-4).(2)∵平移后得到的新抛物线C2的顶点为(0,-1),∴抛物线C2的表达式为y=x2-1.∴抛物线C1的对称轴x=3与抛物线C2的交点为E(3,8)①当直线l过点B(5,0)和点D(3,-4)时,得解得k BD=2.②当直线l过点B(5,0)和点E(3,8)时,得解得k BE=-4,∴结合函数图象可知,k的取值范围是-4≤k≤2且k≠0.【解析】(1)利用对称轴与x轴交于点(3,0),AB=4可得A,B坐标,将A,B坐标代入y=x2+bx+c可得解析式,化为顶点式可得顶点坐标;(2)利用平移后的C2的顶点为(0,-1),可得抛物线C2的解析式,易得抛物线C1的对称轴x=3与抛物线C2的交点E,当直线l过点B(5,0)和点D(3,-4)时,代入本题主要考查了二次函数的性和二次函数图象与几何变换,利用代入法求交点是解答此题的关键.28.【答案】解:(1)如图1,连接AE,∵在Rt△BAC中,∠BAC=90°,AB=AC,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠BCE=90°.∴∠3=45°.∴∠B=∠3.又∵AB=AC,BD=CE,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠DAE=∠BAC=90°.∴△DAE是等腰直角三角形.∴∠ADE=45°.(2)补全图形,如图2所示,结论成立.证明:如图,连接AE,∵在Rt△BAC中,∠BAC=90°,AB=AC,∴∠B=∠1=45°.∵CE⊥BC,∴∠BCE=90°.∴∠2=45°.∴∠B=∠2.又∵AB=AC,BD=CE,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠DAE=∠BAC=90°.∴△DAE是等腰直角三角形.∴∠ADE=∠3=45°.(3)由(1)知,△ADE是等腰直角三角形,∵AB=2,∴AC=2,当AP最小时,CP最大,即:DE⊥AC时,AP最小,∵∠ADE=45°,∠ACB=45°,∴AD⊥BC,AD=BC=×AB=,在Rt△ADP中,AP=AD=1,∴CP=AC-AP=1.即:CP的最大值为1.(2)直接根据题意画出图形,同(1)的方法即可得出结论;(3)先判断出PC最大,即可得出AP最小,利用点到直线的距离最小,得出AC⊥DE 时,AP最小,最后利用等腰直角三角形的性质即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,极值的确定,解本题的关键是构造全等三角形,判断出△ADE是等腰直角三角形,是一道中等难度的中考常考题.29.【答案】(-3,1)90°【解析】解:(1)∵点A(3,1),3>1,∴点A的对应点A'的坐标是(-3,1).∵B(-4,2),-4<2,∴点B的变换点为B'的坐标为(-2,-4).过点B作BC⊥y轴,垂足为C,过点B′作B′D⊥y轴,垂足为D.∵B(-4,2)、B′(-2,-4),∴OC=B′D=2,BC=OD=4.在Rt△BCO和Rt△ODB′中,∴Rt△BCO≌Rt△ODB′.∴∠BOC=∠B′.∵∠B′+∠B′OD=90°,∴∠B′OD+∠BOC=90°.∴∠BOB'=90°.故答案为:(-3,1);90°.(2)由题意得y=-(x+2)2+m的顶点E的坐标为E(-2,m),m>0.∵点P在抛物线y=-(x+2)2+m上,∴设点P的坐标为(x,-(x+2)2+m).①若x>-(x+2)2+m,则点P'的坐标为P'(-x,-(x+2)2+m).∵点P'恰好在抛物线的对称轴上,且四边形ECP'D是菱形,∴∴m=8,符合题意.②若x≤-(x+2)2+m,则点P'的坐标为P'((x+2)2-m,x).∵点P'恰好在抛物线的对称轴上,且四边形ECP'D是菱形,∴综上所述,m=8或m=2或m=3.(3)设点F的坐标为(x,-2x-6).当x>-2x-6时,解得:x>-2,不和题意.当x≤-2x-6时,解得:x≤-2,符合题意.∵点F的坐标为(x,-2x-6),且x≤-2x-6,∴点F′的坐标为(2x+6,x).∴FF′===.∴当x=-时,FF′有最小值,FF′的最小值==,当x=-4时,FF′有最大值,EF′的最大值=2.∴FF′的取值范围为:≤FF′≤2.∵r=FF′,∴r的取值范围是≤r≤.(1)依据对应的定义可直接的点A′和B′的坐标,然后依据题意画出图形,过点B 作BC⊥y轴,垂足为C,过点B′作B′D⊥y轴,垂足为D.接下来证明Rt△BCO≌Rt△ODB′.由全等三角形的性质得到∠BOC=∠B′,然后可求得∠BOB′=90°;(2)抛物线y=-(x+2)2+m的顶点E的坐标为E(-2,m),m>0.设点P的坐标为(x,-(x+2)2+m).①若x>-(x+2)2+m,则点P'的坐标为P'(-x,-(x+2)2+m).然后依据点P'恰好在抛物线的对称轴上,且四边形ECP'D是菱形,可得得到股阿奴m,x 的方程组,从而可求得m的值;②若x≤-(x+2)2+m,则点P'的坐标为P'((x+2)2-m,x),同理可列出关于x、m的方程组,从而可求得m的值;(3)设点F的坐标为(x,-2x-6).依据题意可得到点点F′的坐标为(2x+6,x),然后依据两点间的距离公式可得到FF′的长度与x的函数关系式,从而可求得FF′的取值范围,然后可求得r的取值范围.本题主要考查的是二次函数的综合应用,解答本题主要应用了对应点的定义、全等三角形的性质和判定、菱形的性质、两点间的距离公式,依据两点间的距离公式得到FF′与x的函数关系式是解题的关键.。
2020年安徽省阜阳市中考数学模拟试卷及答案解析
![2020年安徽省阜阳市中考数学模拟试卷及答案解析](https://img.taocdn.com/s3/m/68ef3e400740be1e640e9a35.png)
2020年安徽省阜阳市中考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.若正六边形外接圆的半径为4,则它的边长为()A.2B.C.4D.3.已知关于x的一元二次方程x2﹣x+a2﹣1=0的一个根为0,则a的值为()A.1B.﹣1C.±1D.4.如图,AB是⊙O的直径,点C,D是圆上两点,若∠AOC=126°,则∠CDB等于()A.27°B.37°C.54°D.64°5.如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤56.将抛物线y=x2向左平移5个单位长度,再向上平移6个单位长度,所得抛物线相应的函数表达式是()A.y=(x+5)2+6B.y=(x+5)2﹣6C.y=(x﹣5)2+6D.y=(x﹣5)2﹣6 7.已知Rt△ABC中,∠C=90°,∠A=30°,AC=10.将直线CB绕着点C顺时针方向旋转,旋转过程中与边AB交于点D.当旋转15度时△ACD的面积为()A.25B.25C..50D.508.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,最多有一个交点;三条直线相交,最多有三个交点;四条直线相交,最多有6个交点,像这样,11条直线相交,最多交点的个数是()A.40个B.50个C.55个D.66个9.下列说法中错误的有()①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③相等的圆周角所对的弧相等;④等弧所对的弦相等;⑤等弦所对的弧相等.A.1个B.2个C.3个D.4个10.如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿A﹣D ﹣C的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿B﹣C﹣D ﹣A的路径向点A运动,当Q到达终点时,P停止移动,设△PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是()A.B.C.D.二.填空题(共4小题,满分20分,每小题5分)11.(5分)在实数范围内定义一种运算“*”,其运算法则为a*b=a2﹣ab.根据这个法则,。
安徽省2020年中考数学第一次模拟考试试题含答案解析
![安徽省2020年中考数学第一次模拟考试试题含答案解析](https://img.taocdn.com/s3/m/02b1f11e3c1ec5da51e27001.png)
2020年中考数学第一次模拟考试【安徽卷】
数学
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符
合题目要求的)
1.|﹣9|的值是
A.9 B.﹣9
C.
1
9D .﹣
1
9
2.计算:(﹣a3)2÷a2=
A.﹣a3B.a3
C.a4D.a7
3.如图,是一个水平放置的几何体,它的俯视图是
A.B.
1。
【附5套中考模拟试卷】安徽省阜阳市2019-2020学年中考第一次质量检测数学试题含解析
![【附5套中考模拟试卷】安徽省阜阳市2019-2020学年中考第一次质量检测数学试题含解析](https://img.taocdn.com/s3/m/acf74123011ca300a7c39014.png)
安徽省阜阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.72.-10-4的结果是()A.-7 B.7 C.-14 D.133.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A .B .C .D .4.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.1 9B.16C .13D.235.如图,二次函数2y ax bx=+的图象开口向下,且经过第三象限的点P.若点P的横坐标为1-,则一次函数()y a b x b=-+的图象大致是()A.B.C.D.6.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)25 26 27 28天数1123则这组数据的中位数与众数分别是( ) A .27,28B .27.5,28C .28,27D .26.5,277.(2011•雅安)点P 关于x 轴对称点为P 1(3,4),则点P 的坐标为( ) A .(3,﹣4) B .(﹣3,﹣4) C .(﹣4,﹣3) D .(﹣3,4) 8.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-19.下列美丽的壮锦图案是中心对称图形的是( )A .B .C .D .10.下列说法不正确的是( ) A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330 B .(1﹣10%)x =330 C .(1﹣10%)2x =330D .(1+10%)x =33012.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( ) A .这组数据的平均数是6,中位数是6 B .这组数据的平均数是6,中位数是7 C .这组数据的平均数是5,中位数是6D .这组数据的平均数是5,中位数是7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.14.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________. 15.圆锥的底面半径是4cm ,母线长是5cm ,则圆锥的侧面积等于_____cm 1. 16.若2x+y=2,则4x+1+2y 的值是_______.17.一组数据7,9,8,7,9,9,8的中位数是__________ 18.已知直角三角形的两边长分别为3、1.则第三边长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A 高中,B 中技,C 就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.(2)利用样本估计该校初三学生选择“中技”观点的人数.(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).20.(6分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.求证:AB 为⊙C 的切线.求图中阴影部分的面积.21.(6分)如图所示,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点.求线段MN 的长.若C 为线段AB 上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN 的长度吗?并说明理由.若C 在线段AB 的延长线上,且满足AC-CB=b(cm),M 、N 分别为AC 、BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.22.(8分)如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,且»»=AC BD,过点O 作OE ⊥AC 于点E ⊙O 的切线AF 交OE 的延长线于点F ,弦AC 、BD 的延长线交于点G .(1)求证:∠F =∠B ;(2)若AB =12,BG =10,求AF 的长. 23.(8分)如图,已知一次函数的图象与反比例函数的图象交于A,B 两点,点A 的横坐标是2,点B 的纵坐标是-2。
2020年安徽省中考数学一模试卷 (含解析)
![2020年安徽省中考数学一模试卷 (含解析)](https://img.taocdn.com/s3/m/8c084bdd844769eae109eda8.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。
2020-2021学年安徽省阜阳市中考数学第一次模拟试题及答案解析
![2020-2021学年安徽省阜阳市中考数学第一次模拟试题及答案解析](https://img.taocdn.com/s3/m/797f18e9b84ae45c3b358cea.png)
最新安徽省阜阳市中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分,在每小题给出的选项中,只有一个符合题)1.﹣2016的相反数是()A.﹣2016 B.2016 C.﹣D.2.下列运算正确的是()A.2x+3y=5xy B.x2•x3=x6C.x5÷x=x4D.(x﹣y)2=x2﹣y23.如图是平放在水平桌面上的未拆封的桶装方便面,它的俯视图是()A.B.C.D.4.百合花的花粉的直径约0.000000087米,这里0.000000087用科学记数法表示为()A.8.7×10﹣7B.8.7×10﹣8C.8.7×10﹣9D.0.87×10﹣85.化简(﹣)的结果是()A.xB.C.D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.某兴趣小组10名学生在一次数学测试中的成绩如表(满分150分)分数(单位:分)105 130 140 150人数(单位:人) 2 4 3 1下列说法中,不正确的是()A.这组数据的众数是130 B.这组数据的中位数是130C.这组数据的平均数是130 D.这组数据的方差是112.58.一元二次方程x2=7的正数解最接近的整数是()A.1 B.2 C.3 D.49.如图,AB是半径为R的⊙O内接正n边形的边长,则阴影部分的面积为()A.﹣R2sin B.﹣R2sinC.﹣R2sin D.﹣R2sin10.如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.使代数式有意义的x的取值范围是______.12.如图,a∥b,一块等腰直角三角板的直角顶点落在直线b上,一个锐角顶点落在直线a 上,若∠1=25°,则∠2=______.13.顺达旅行社为吸引游客到黄山景区旅游,推出如下收费标准:若某公司准备组织x(x>25)名员工去黄山景区旅游,则公司需支付给顺达旅行社旅游费用y(元)与公司参与本次旅游的员工人数x(人)之间的函数表达式是______.14.如图,在菱形ABCD中,AB=6,∠A=60°,点E、F分别在AB,BC上,且AE=BF,下列结论中:①△DEF是等边三角形;②∠CDF=2∠ADE;③四边形DEBF的面积是9;④若AE=AB,则DE=2.一定正确的结论是______(把所有正确结论的序号都写在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:()﹣2﹣2cos30°+(π+2016)0﹣|﹣2|16.某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:品名西兰花胡萝卜批发价(元/kg) 2.8 1.6零售价(元/kg) 3.8 2.5如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元.四、(本大题共2小题,每小题8分,满分16分)17.如图,一次函数y1=﹣x+5的图象与反比例函数y2=(x>0)的图象相交于点A(m,4)和点B(4,n).(1)求m,n的值和反比例函数的表达式;(2)根据图象,直接写出函数值y2>y1对应的自变量x的取值范围.18.在边长为1个单位长度的小正方形组成的网格中建立如图所示的平面直角坐标系,并给出了格点△ABC(顶点是网格线的交点).(1)画出△ABC绕坐标原点O顺时针旋转90°得到的格点△A1B1C1;(2)直接写出点A在旋转变换过程中所经过的路径长(不用说理).五、(本大题共2小题,每小题10分,满分20分)19.如图,在海中距离小岛M海里范围内有暗礁,一轮船自南向北航行,它在A处测得小岛M位于北偏西30°方向上,且A,M之间的距离为60海里.若轮船继续向正北方向航行,有无触礁的危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿北偏东多少度方向航行,才能安全通过这一海域?20.如图,在△ABC中,AC=BC,∠CAB=30°,过点C作CD⊥AC交AB于点D,⊙O是△ACD 的外接圆.(1)求证:BC是⊙O的切线;(2)CE平分∠ACD交⊙O于点E,若CD=1,求AE的长.六、(本题满分12分)21.为备战体育中考,李明同学就自己平时1分钟跳绳的训练成绩,做了认真统计,并将训练成绩绘出了如下的频数分布表和频数分布直方图(不完整).(规定:1分钟跳绳120个以下成绩为D等;120﹣140个为C等;140﹣160个为B等;160个以上为A等)根据以上信息,解答下列问题:(1)李明同学一共记录了______次平时测试的成绩;(2)补全频数分布表和频数分布直方图;(3)李明同学从篮球运球、足球运球、掷实心球、坐位体前屈、1分钟跳绳、立定跳远等六个项目中任选两项作为自己的考试项目,求恰好含有1分钟跳绳项目的概率.一分钟跳绳成绩分布表成绩等次频数(人)频率D 5 0.1C 10 0.2B 25 0.5A 10 0.2合计50 1.00七、(本题满分12分)22.如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.八、(本题满分14分)23.如图,抛物线y=a(x﹣1)2﹣n与直线y=2x+b相交于点A(﹣1,0)和点B(m,12).(1)试确定该二次函数的表达式;(2)若抛物线y=a(x﹣1)2﹣n的顶点为C,求△ABC的面积;(3)若点P是抛物线y=a(x﹣1)2﹣n上点C﹣点B部分(不含点B和点C)的一动点,当四边形ABPC的面积达到最大时,求点P的坐标.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分,在每小题给出的选项中,只有一个符合题)1.﹣2016的相反数是()A.﹣2016 B.2016 C.﹣D.【考点】相反数.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:∵2006+(﹣2006)=0,∴﹣2016的相反数是:2006.故选:B.2.下列运算正确的是()A.2x+3y=5xy B.x2•x3=x6C.x5÷x=x4D.(x﹣y)2=x2﹣y2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式.【分析】A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用同底数幂的除法法则计算得到结果,即可作出判断;D、原式利用完全平方公式化简得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=x5,错误;C、原式=x4,正确;D、原式=x2﹣2xy+y2,错误,故选C3.如图是平放在水平桌面上的未拆封的桶装方便面,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上面看所得到的图形,比较即可.【解答】解:俯视图是从物体的上面往下看,可以得出俯视图(里面的圆周不是实线)是:,故选D.4.百合花的花粉的直径约0.000000087米,这里0.000000087用科学记数法表示为()A.8.7×10﹣7B.8.7×10﹣8C.8.7×10﹣9D.0.87×10﹣8【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000087用科学记数法表示为8.7×10﹣8.故选:B.5.化简(﹣)的结果是()A.xB.C.D.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=x,故选A6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,然后把每个不等式用数轴表示即可.【解答】解:,解①得x≥﹣2,解②得x<1,利用数轴表示为:.故选B.7.某兴趣小组10名学生在一次数学测试中的成绩如表(满分150分)分数(单位:分)105 130 140 150人数(单位:人) 2 4 3 1下列说法中,不正确的是()A.这组数据的众数是130 B.这组数据的中位数是130C.这组数据的平均数是130 D.这组数据的方差是112.5【考点】方差;加权平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义分别求出这组数据的众数、中位数、方差和平均数,再选择即可.【解答】解;在这一组数据中130出现次数最多,故众数是130,故A正确;这组数据的中位数是÷2=130(分),故B正确;平均数是(2×105+130×4+3×140+1×150)÷10=130(分),故C正确;S2=[22+42+32+2]=195(分),故D错误;故选D.8.一元二次方程x2=7的正数解最接近的整数是()A.1 B.2 C.3 D.4【考点】解一元二次方程-公式法;估算无理数的大小.【分析】先利用直接开平方法解方程得到方程的正数解为x=,然后利用无理数的估算求解.【解答】解:x=±,所以方程的正数解为x=,而4<7<9,所以2<<3,所以方程x2=7的正数解最接近的整数为3.故选C.9.如图,AB是半径为R的⊙O内接正n边形的边长,则阴影部分的面积为()A.﹣R2sin B.﹣R2sinC.﹣R2sin D.﹣R2sin【考点】正多边形和圆;扇形面积的计算;解直角三角形.【分析】首先连接OA,OB,过点O作OC⊥AB于点C,由AB是半径为R的⊙O内接正n边形的边长,利用三角形函数的性质,可求得△OAB的面积,继而求得扇形OAB的面积,即可求得答案.【解答】解:连接OA,OB,过点O作OC⊥AB于点C,则∠AOB=,∴∠AOC=∠AOB=,∴OC=OA•cos∠AOC=R•cos,AC=OC•sin∠AOC=R•sin,∴AB=2AC=2Rsin,∴S△OAB=AB•OC=×R•cos×2Rsin=R2sin,∵S扇形OAB=,∴S阴影=﹣R2sin.故选A.10.如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据点Q的位置分两种情况讨论,当点Q在AB上运动时,求得y与x之间函数解析式,当点Q在BC上运动时,求得y与x之间函数解析式,最后根据分段函数的图象进行判断即可.【解答】解:由题得,点Q移动的路程为2x,点P移动的路程为x,∠A=∠C=60°,AB=BC=2,①如图,当点Q在AB上运动时,过点Q作QD⊥AC于D,则AQ=2x,DQ=x,AP=x,∴△APQ的面积y=×x×x=(0<x≤1),即当0<x≤1时,函数图象为开口向上的抛物线的一部分,故(A)、(B)排除;②如图,当点Q在BC上运动时,过点Q作QE⊥AC于E,则CQ=4﹣2x,EQ=2﹣x,AP=x,∴△APQ的面积y=×x×(2﹣x)=﹣+x(1<x≤2),即当1<x≤2时,函数图象为开口向下的抛物线的一部分,故(C)排除,而(D)正确;故选(D)二、填空题(本大题共4小题,每小题5分,满分20分)11.使代数式有意义的x的取值范围是x≥﹣2 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2+x≥0,解得x≥﹣2.故答案为:x≥﹣2.12.如图,a∥b,一块等腰直角三角板的直角顶点落在直线b上,一个锐角顶点落在直线a 上,若∠1=25°,则∠2= 65°.【考点】平行线的性质.【分析】先由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故答案为:65°.13.顺达旅行社为吸引游客到黄山景区旅游,推出如下收费标准:若某公司准备组织x(x>25)名员工去黄山景区旅游,则公司需支付给顺达旅行社旅游费用y(元)与公司参与本次旅游的员工人数x(人)之间的函数表达式是y=﹣20x2+1500x .【考点】根据实际问题列二次函数关系式.【分析】根据题意表示出实际旅游费用×x=总旅游费用,进而得出答案.【解答】解:由题意可得:y=[1000﹣20(x﹣25)]x=﹣20x2+1500x.故答案为:y=﹣20x2+1500x.14.如图,在菱形ABCD中,AB=6,∠A=60°,点E、F分别在AB,BC上,且AE=BF,下列结论中:①△DEF是等边三角形;②∠CDF=2∠ADE;③四边形DEBF的面积是9;④若AE=AB,则DE=2.一定正确的结论是①③④(把所有正确结论的序号都写在横线上).【考点】菱形的性质;等边三角形的判定.【分析】连接BD,由菱形的性质可证明△ADE≌△BDF,得出DE=DF,再证出∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形即可得出△DEF是等边三角形,从而判断①正确;根据已知条件不能得出∠CDF=2∠ADE,从而判断②错误;过点D作DM⊥AB于M,根据等腰三角形三线合一的性质得出AM=AB=3.在Rt△ADM中,利用勾股定理求出DM==3,则四边形DEBF的面积=△ABD的面积=×6×3=9,从而判断③正确;若AE=AB,可知BF=2,在Rt△EDM中,利用勾股定理求出DE===2,从而判断④正确.【解答】解:连结BD.∵在菱形ABCD中,AB=6,∠A=60°,∴AB=AD=BC=CD=6,∠C=∠A=60°,∴△ABD与△BCD都是等边三角形,∴DA=DB,∠DAE=∠DBF=60°,又AE=BF,∴△ADE≌△BDF,∴DE=DF,∠ADE=∠BDF,∴∠EDF=∠ADB=60°,∴△DEF是等边三角形,①正确;过点D作DM⊥AB于M,则AM=AB=3.在Rt△ADM中,DM===3,∵△ADE≌△BDF,∴四边形DEBF的面积=△ABD的面积=×6×3=9,③正确;若AE=AB,可知BF=AE=2,∴EM=1.在Rt△EDM中,DE===2,④正确.只有②是错误的.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:()﹣2﹣2cos30°+(π+2016)0﹣|﹣2|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=4﹣2×+1﹣(2﹣)=4﹣+1﹣2+=3.16.某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:品名西兰花胡萝卜批发价(元/kg) 2.8 1.6零售价(元/kg) 3.8 2.5如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元.【考点】二元一次方程组的应用.【分析】通过理解题意可知本题的两个等量关系,西兰花的重量+胡萝卜的重量=60,2.8×西兰花的重量+1.6×胡萝卜的重量=1200,根据这两个等量关系可列出方程组.【解答】解:设西兰花的重量是xkg,豆角的重量是ykg,依题意有,解得:,20×(3.8﹣2.8)+40×(2.5﹣1.6)=20×1+40×0.9=20+36=56(元).答:他当天全部卖完这些西兰花和胡萝卜可获得利润56元.四、(本大题共2小题,每小题8分,满分16分)17.如图,一次函数y1=﹣x+5的图象与反比例函数y2=(x>0)的图象相交于点A(m,4)和点B(4,n).(1)求m,n的值和反比例函数的表达式;(2)根据图象,直接写出函数值y2>y1对应的自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据点A(m,4)和点B(4,n)都在一次函数y1=﹣x+5的图象上即可求出m和n的值,进而求出反比例函数系数k的值;(2)根据图形即可求出函数值y2>y1对应的自变量x的取值范围.【解答】解:(1)∵点A(m,4)和点B(4,n)都在一次函数y1=﹣x+5的图象上,∴,∴,∴点A坐标为(1,4),点B坐标为(4,1),又∵点A(1,4)在反比例函数y2=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y2=(x>0);(2)函数值y2>y1对应的自变量x的取值范围是0<x<1或x>4.18.在边长为1个单位长度的小正方形组成的网格中建立如图所示的平面直角坐标系,并给出了格点△ABC(顶点是网格线的交点).(1)画出△ABC绕坐标原点O顺时针旋转90°得到的格点△A1B1C1;(2)直接写出点A在旋转变换过程中所经过的路径长(不用说理).【考点】作图-旋转变换.【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,即可得到△A1B1C1;(2)点A在旋转变换过程中所经过的路径是以O点为圆心,OA为半径,圆心角为90度的弧,然后根据弧长公式计算点A在旋转变换过程中所经过的路径长即可.【解答】解:(1)如图,点△A1B1C1为所作;(2)点A在旋转变换过程中所经过的路径长==π.五、(本大题共2小题,每小题10分,满分20分)19.如图,在海中距离小岛M海里范围内有暗礁,一轮船自南向北航行,它在A处测得小岛M位于北偏西30°方向上,且A,M之间的距离为60海里.若轮船继续向正北方向航行,有无触礁的危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿北偏东多少度方向航行,才能安全通过这一海域?【考点】解直角三角形的应用-方向角问题.【分析】过点M作南北线的垂线,垂足为N,根据三角函数即可求得MN的长度,比较与30海里的大小即可确定有无危险;若继续航行有危险,则设安全航行方向为AQ,过点M作ME⊥AQ于点E,在直角△AME中,利用三角函数即可求得∠MAQ的度数,进而求得∠NAQ的度数.【解答】解:过点M作南北线的垂线,垂足为N(如图),由题意知:AM=60,∠MAN=30°,∴.∴如果轮船继续向正北方向航行,有触礁危险.为了安全,应改变航行方向,并且保证M点到航线的距离不小于海里.设安全航行方向为AQ,过点M作ME⊥AQ于点E.由题意知:AM=60,ME=,∴sin∠MAE=,∴∠MAE=45°,∴∠NAQ=∠MAE﹣∠MAN=45°﹣30°=15°.答:轮船自A处开始至少沿东偏南15°方向航行,才能安全通过这一海域.20.如图,在△ABC中,AC=BC,∠CAB=30°,过点C作CD⊥AC交AB于点D,⊙O是△ACD 的外接圆.(1)求证:BC是⊙O的切线;(2)CE平分∠ACD交⊙O于点E,若CD=1,求AE的长.【考点】切线的判定;三角形的外接圆与外心.【分析】(1)连接OC,根据CD⊥AC得出AD是⊙O的直径再由等腰三角形的性质得出∠OAC=∠OCA=30°,故∠COB=60°.根据三角形内角和定理得出∠OCB=90°,由此可得出结论;(2)连接DE,由角平分线的性质得出∠ACE=∠DCE,故可得出=,AE=DE,再由勾股定理即可得出结论.【解答】(1)证明:连接OC,∵CD⊥AC,∴AD是⊙O的直径.∵OA=OC,∴∠OAC=∠OCA=30°,∴∠COB=60°.∵AC=BC,∠CAB=30°,∴∠B=30°,∴∠OCB=90°,∴BC是⊙O的切线;(2)解:连接DE,在Rt△ACD中,∵∠CAD=30°,CD=1,∴AD=2CD=2,∵CE平分∠ACD交⊙O于点E,∴∠ACE=∠DCE,∴=,∴AE=DE.设AE=x,由勾股定理得,x2+x2=22,解得x=,即AE=.六、(本题满分12分)21.为备战体育中考,李明同学就自己平时1分钟跳绳的训练成绩,做了认真统计,并将训练成绩绘出了如下的频数分布表和频数分布直方图(不完整).(规定:1分钟跳绳120个以下成绩为D等;120﹣140个为C等;140﹣160个为B等;160个以上为A等)根据以上信息,解答下列问题:(1)李明同学一共记录了50 次平时测试的成绩;(2)补全频数分布表和频数分布直方图;(3)李明同学从篮球运球、足球运球、掷实心球、坐位体前屈、1分钟跳绳、立定跳远等六个项目中任选两项作为自己的考试项目,求恰好含有1分钟跳绳项目的概率.一分钟跳绳成绩分布表成绩等次频数(人)频率D 5 0.1C 10 0.2B 25 0.5A 10 0.2合计50 1.00【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据D等次的频数和频率即可求出一共记录的总次数;(2)根据频数、频率与总数之间的关系分别求出C的频率和A、B等次的人数,从而补全频数分布表和频数分布直方图;(3)根据题意先画出树状图,表示出所有的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意得:=50(次),答:李明同学一共记录了50次平时测试的成绩;故答案为:50;(2)C的频率是=0.2,B的频数是:50×0.5=25(人);A的频数是:50×0.2=10(人);补图如下:成绩等次频数(人)频率D 5 0.1C 10 0.2B 25 0.5A 10 0.2合计50 1.00(3)用树状图分析:(①表示篮球运球、②表示足球运球、③表示掷实心球、④表示坐位体前屈、⑤表示1分钟跳绳、⑥表示立定跳远),根据题意画图如下:一共有30种不同的情况,恰好含有1分钟跳绳的有10种,则P(恰好含有1分钟跳绳)==.七、(本题满分12分)22.如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.【考点】相似三角形的判定;直角三角形斜边上的中线.【分析】(1)利用平行分线段成比例定理得出==,进而得出△ABC≌△GBC(SAS),即可得出答案;(2)分别利用第一种情况:若∠CDB=∠CPB,第二种情况:若∠PCB=∠CDB,进而求出相似三角形即可得出答案.【解答】(1)证明:∵BF∥DE,∴==,∵AD=BD,∴AC=CG,AE=EF,在△ABC和△GBC中:,∴△ABC≌△GBC(SAS),∴AB=BG;(2)解:当BP长为或时,△BCP与△BCD相似;∵AC=3,BC=4,∴AB=5,∴CD=2.5,∴∠DCB=∠DBC,∵DE∥BF,∴∠DCB=∠CBP,∴∠DBC=∠CBP,第一种情况:若∠CDB=∠CPB,如图1:在△BCP与△BCD中,∴△BCP≌△BCD(AAS),∴BP=CD=2.5;第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:∵∠CBD=∠CBP,∴△BPC∽△BCD,∵CH⊥BG,∴∠ACB=∠CHB=90°,∠ABC=∠CBH,∴△ABC∽△CBH,∴=,∴BH=,BP=.综上所述:当PB=2.5或时,△BCP与△BCD相似.八、(本题满分14分)23.如图,抛物线y=a(x﹣1)2﹣n与直线y=2x+b相交于点A(﹣1,0)和点B(m,12).(1)试确定该二次函数的表达式;(2)若抛物线y=a(x﹣1)2﹣n的顶点为C,求△ABC的面积;(3)若点P是抛物线y=a(x﹣1)2﹣n上点C﹣点B部分(不含点B和点C)的一动点,当四边形ABPC的面积达到最大时,求点P的坐标.【考点】二次函数综合题.【分析】(1)把A点代入直线解析式可求得b的值,再把B点坐标代入直线解析可求得B 点坐标,利用待定系数法可求得二次函数的表达式;(2)可先求得C点坐标,再利用待定系数法可求得直线BC的解析式,设直线BC与x轴交于点D,可求得D点的坐标,从而可求得△ABC的面积;(3)当直线BC向右平移与抛物线有唯一的公共点时,四边形ABPC的面积最大,可设平移后的直线解析式为y=4x+h,联立抛物线与该方程整理得到一元二次方程,方程有唯一解可求得方程的解,可求得P点坐标.【解答】解:(1)∵点A(﹣1,0)在直线y=2x+b上,∴0=﹣2+b,解得b=2,∴一次函数解析式为y=2x+2,∵点B(m,12)在直线y=2x+2上,∴2m+2=12,解得m=5,∴B点坐标为(5,12),∵抛物线y=a(x﹣1)2﹣n过A、B两点,∴把A、B两点坐标代入可得,解得,∴抛物线表达式为:y=(x﹣1)2﹣4;(2)如图1,设直线BC与x轴交于点D,由(1)可知C点坐标为(1,﹣4),设直线BC为y=kx+c,根据题意可得,解得,∴直线BC解析式为y=4x﹣8,令y=0,可解得x=2,∴D点坐标为(2,0),则AD=3,∴S△ABC=S△ABD+S△ACD=×3×4+×3×12=24;(3)当直线BC向右平移与抛物线有唯一的公共点时,四边形ABPC的面积最大,∵直线BC解析式为y=4x﹣8,∴可设平移后的直线解析式为y=4x+h,根据题意可得方程组有唯一的解,∴方程x2﹣6x﹣3﹣h=0有唯一的解,∴(﹣6)2﹣4×1×(﹣3﹣h)=0,解得h=﹣12,此时方程x2﹣6x+9=0的唯一解为x=3,当x=3时,代入抛物线可知y=0,∴P点坐标为(3,0),即当P点坐标为(3,0)时,四边形ABPC的面积最大.2016年9月24日。
2020年安徽省中考数学一模试卷(有答案解析)
![2020年安徽省中考数学一模试卷(有答案解析)](https://img.taocdn.com/s3/m/df65854e4028915f804dc2ee.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,,b,按照从小到大的顺序排列A. B.C. D.3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示A. B. C. D.4.若是关于x的一元一次方程的解,则的值是A. B. C. 8 D. 45.如图,,A在DE上,C在GF上为等边三角形,其中,则度数为A. B. C. D.6.二次函数的图象如图所示,现有以下结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为A. B. C. D.8.如图,中,BD是的平分线,交BC于E,,,则AB长为A. 6B. 8C.D.9.如图,在等腰中,,,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发,以的速度沿方向运动到点C停止,若的面积为,运动时间为,则下列最能反映y与x之间函数关系的图象是A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角中,,,,将绕点B按逆时针方向旋转,得到点E为线段AB中点,点P是线段AC上的动点,在绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是______.11.把多项式分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式______.14.如图,在等腰中,,,点D在底边BC 上,且,将沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:16.九章算术是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为,,.请画出关于原点O对称的;直接写出把绕点O顺时针旋转后,点C旋转后对应点的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第个图形中有1个正方形;第个图形有个小正方形;第个图形有个小正方形;第个图形有小正方形;根据上面的发现我们可以猜想:______用含n的代数式表示;请根据你的发现计算:;.19.如图,在同一平面内,两条平行高速公路和间有一条“Z”型道路连通,其中AB段与高速公路成角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离结果保留根号.20.如图,AC是的直径,AB与相切于点A,四边形ABCD是平行四边形,BC交于点E.证明直线CD与相切;若的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且,AF是的平分线,交BC于点F,交DE于点G.求证:;.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表所示.大中小载重吨台201512运费元辆150012001000司机及领队往返途中的生活费单位:元与货车台数单位:台的关系如图所示.为此,公司支付领队和司机的生活费共8200元.求出y与x之间的函数关系式及公司派出货车的台数;设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为元,求W与小型货车台数P之间的函数关系式.不写自变量取值范围;若本次派出的货车每种型号不少于3台且各车均满载.求出大、中、小型货车各多少台时总运费最少及最少运费?由于油价上涨,大、中、小三种型号货车的运费分别增加500元辆、300元辆、a元辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.求证:;求证:∽;如图2,若AD、BC所在直线互相垂直,求的值。
2020年安徽省阜阳市颍上县中考数学一模试卷
![2020年安徽省阜阳市颍上县中考数学一模试卷](https://img.taocdn.com/s3/m/7940f382941ea76e59fa0436.png)
中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.如果x的倒数是,那么x的值为()A. B. C. 1 D.2.下列运算正确的是()A. B. C. 2a-3a=-a D. a2•a3=a63.下面的多项式中,能因式分解的是()A. a2-6a+8B. a2-2a+4C. 4a2+b2D. -a2-16b24.如图所示几何体的俯视图是()A.B.C.D.5.不等式组的解等于()A. 1<x<2B. x>1C. x<2D. x<1或x>26.某校准备开设特色活动课,各科目的计划招生人数和报名人数,列前三位的如下表所示:若计划招生人数和报名人数的比值越大,表示学校开设该科目相对学生需要的满足指数就越高.那么根据以上数据,满足指数最高的科目是()A. 足球B. 小制作C. 英语口语D. 中国象棋7.已知点A(2,a),B(-3,b)都在反比例函数上,则()A. a<b<0B. a<0<bC. b<a<0D. b<0<a8.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.B.C.D.9.如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A. 2B. 3C. 4D. 510.若点A(a,b),B(,c)都在反比例函数y=的图象上,且-1<c<0,则一次函数y=(b-c)x+ac的大致图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.十九大报告指出:十八大以来,我国就业状况持续改善,城镇新增就业年均一千三百万人以上,一千三百万人用科学记数法表示为______人.12.某工程队承建30千米的管道铺设工程,预计工期为60天,设施工x天时未铺设的管道长度是y千米,则y关于x的函数关系式是______.13.如图,四边形ABCD的顶点都在⊙O上,BC∥AD,AB=AD,∠BOD=160°,则∠CBO的度数是______.14.如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于______.三、计算题(本大题共1小题,共8.0分)15.我国古代的优秀数学著作《九章算术》有一道“竹九节”问题,大意是说:现有-一根上细下粗共九节的竹子,自上而下从第2节开始,每一节与前一节的容积之差都相等,且最上面三节的容积共9升,最下面三节的容积共45升,求第五节的容积,及每一节与前一节的容积之差.请解答上述问题.四、解答题(本大题共8小题,共82.0分)16.解不等式:,并将它的解集在数轴上表示出来.17.观察下列关于自然数的等式:1×7=42-32①;2×8=52-32②;3×9=62-32③;…根据上述规律解决下列问题:(1)完成第四个等式:4×______=______;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.18.如图,已知图①和图②中的每个小正方形的边长都为1个单位长度.(1)将图①中的格点△ABC(顶点都在网格线交点处的三角形叫格点三角形)向上平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图②中画出一个以点C为位似中心与格点△ABC位似的格点△A2B2C,且△A2B2C与△ABC的位似比为2:1.19.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.20.如图,一次函数y=kx+b的图象与x轴交于点A,与双曲线(x>0)交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n-4,1)是该双曲线上的一点,且∠PBC=∠ABC.(1)直接写出n的值;(2)求一次函数的解析式.21.为了解八年级500名学生的身体素质情况,体育老师从中随机抽取50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出如下频数分布表和频数分布直方完成下列问题:(1)请把上面的频数分布表和频数分布直方图补充完整;(2)这个样本数据的中位数落在第______组;次数在140≤x<160这组的频率为______;(3)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;x≥120合格,试问该年级合格的学生有多少人?22.已知某种商品的进价为每件30元该商品在第x天的售价是y1(单位:元/件),销量是y2(单位:件),且满足关系式,y2=200-2x,设每天销售该商品的利润为w元.(1)写出w与x的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?23.如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.(1)若a=3,b=4,求DE的长;(2)直接写出:CD=______(用含a,b的代数式表示);(3)若b=3,,求a的值.答案和解析1.【答案】A【解析】解:由题意,得x=-.故选:A.根据倒数的定义,可得答案.本题考查了倒数的定义,熟练掌握倒数的意义是解题的关键.2.【答案】C【解析】解:A.=2,故A错误;B.=-4,故B错误;C.2a-3a=-a,故C正确;D.a2•a3=a5,故D错误,故选:C.分别运用二次根式的意义、立方根的意义以及幂的乘方法则运算即可.本题考查了二次根式、立方根以及同类项和同底数幂相乘,熟练掌握公式是解题的关键.3.【答案】A【解析】解:A、a2-6a+8=(a-2)(a-4),能分解因式,故本选项符合题意;B、a2-2a+4不能分解因式,故本选项不符合题意;C、4a2+b2不能分解因式,故本选项不符合题意;D、-a2-16b2不能分解因式,故本选项不符合题意;故选:A.根据因式分解的方法逐个判断即可.本题考查了因式分解的定义和方法,能熟记因式分解的方法是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解,因式分解的方法有:提取公因式法,公式法,因式分解法等.4.【答案】D【解析】解:根据俯视图的特征,应选D.故选:D.注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.5.【答案】A【解析】解:,由①得,x>1;由②得,x<2,故此不等式组的解集为:1<x<2.故选:A.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】A【解析】解:由表知,小制作:;英语口语:;足球:计划招生90人,报名数不在前三名,即少于200人,所以比值大于,即大于0.45;中国象棋:报名200人,计划数不在前三名,即少于60人,所以比值小于,即小于0.3;∴足球科目的满足指数最高(即比值最大);故选:A.所列表中中国象棋计划人数不在前三名内,所以计划人数≤60,足球报名数不在前三名,所以,报名人数≤200,求出各科目计划都生人数和报名人数的比值,找出最大即可得出结论.此题是推理与论证,解答此题的关键是由已知计算出各特色活动课相对学生需要的满足程度进行比较.7.【答案】B【解析】【分析】本题考查了反比例函数图象上点的坐标特征,熟练掌握象限的特点是解题的关键.根据k=-6<0,得到该函数的图象在二四象限,结合点A和点B的横坐标符号,即可得到答案.【解答】解:反比例函数,k=-6<0,∴反比例函数在二四象限,∵2>0,-3<0,∴点A(2,a)在第四象限,点B(-3,b)在第二象限,∴a<0<b,故选:B.8.【答案】C【解析】解:在菱形ABCD中,OC=AC,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=BD,∴阴影部分的面积=AC•BD-OC•EF=AC•BD.∴此点取自阴影部分的概率==,故选:C.根据菱形的对角线互相平分求出OC,再根据翻折的定义判断出EF是△BCD的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半求出EF,最后根据阴影部分的面积等于两个菱形的面积的差列式计算即可得解.本题考查了几何概率,菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,要注意菱形的面积等于对角线乘积的一半的应用.9.【答案】B【解析】解:在△ABC中,∵AB=3,BC=4,AC=5,∴AB2+BC2=25=AC2.∴△ABC为直角三角形,且∠B=90°.∵四边形ADCE是平行四边形,∴OD=OE,OA=OC=2.5.∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD是△ABC的中位线.∴.∴DE=2OD=3;故选:B.由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.本题考查了平行四边形的性质,勾股定理的逆定理以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.10.【答案】D【解析】解:∵B(,c)在反比例函数y=的图象上,∴=1,即a=c,又∵-1<c<0,∴-1<a<0,ac>0,∴<a,∵反比例函数y=在每个象限内由随着x的增大而减小,∴b<c,∴b-c<0,∴一次函数y=(b-c)x+ac的大致图象经过一二四象限,故选:D.依据B(,c)在反比例函数y=的图象上,即可得到a=c,再根据-1<c<0,即可得到-1<a<0,ac>0,<a,依据反比例函数y=在每个象限内由随着x的增大而减小,即可得到b<c,即b-c<0,进而得出一次函数y=(b-c)x+ac的大致图象经过一二四象限.本题考查了反比例函数的图象、一次函数的图象,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.【答案】1.3×107【解析】解:一千三百万=1.3×107.故答案为:1.3×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】y=30-x【解析】解:由某工程队承建30千米的管道铺设工程,预计工期为60天,可知工程队每天铺设30÷60=0.5米,所以y=30-0.5x,故填y=30-工作量=工作效率×工作时间,由30千米的管道铺设工程,工期为60天,可知一天工作了千米,问题得解.本题考查了,工作量,式作时间,工作效率三者的关系,明确工作量=工作效率×工作时间是解题的关键.13.【答案】30°【解析】解:如图,连接BD.∵∠BOD=160°,∴,∴∠A=100°.在△ABD中,∵AB=AD,∴∠ABD=∠ADB=40°.在△OBD中,∵OB=OD,∴∠OBD=∠BDO=10°,∵BC∥AD,∴∠ABC=180°-∠A=80°,∴∠CBO=∠ABC-∠ABD-∠OBD=80°-40°-10°=30°.首先根据∠BOD的度数求得∠C的度数,然后根据AB=AD和BC∥AD求得∠ABC的度数,从而求得∠CBO的度数.本题主要考查了圆周角定理和圆内接四边形的性质.了解有关性质是解答本题的关键.14.【答案】或3【解析】解:①当AF=AD=6时,△AEF是等腰直角三角形,∴AF=AE,∴AE=3.②当AF=DF时,△ADF是等厘直角三角形,∴AD=AF=6,∴AF=3,在等腰直角三角形AEF中,AF=AE,∴AE=3.③当AD=DF时,∠AFD=45°,此时点F与点C重合,点E与点B重合,不符合题意;综上所述,当△ADF是等腰三角形时,AE的长度等于或3;故答案为:或3.分三种情况:①当AF=AD=6时,△AEF是等腰直角三角形,由勾股定理即可得出结果;②当AF=DF时,△ADF是等厘直角三角形,由勾股定理得出AF,再由勾股定理即可得出结果;③当AD=DF时,∠AFD=45°,此时点F与点C重合,点E与点B重合,不符合题意;即可得出答案.本题考查了正方形的性质、等腰直角三角形的与性质、勾股定理等知识;熟练掌握等腰直角三角形的性质和勾股定理是解题的关键.15.【答案】解:设第五节的容积为x升,每一节与前一节的空积之差为y升,依题意得:,解得:,答:第五节的容积9升,每一节与前一节的容积之差2升.【解析】从题目中可知,第2节开始相邻两节的容积差相等设为y,第5节的容积直接设为x,然后根据第5节和容积差建立等量关系:第1节容积+第2节容积+第3节容积=9,第7节容积+第8节容积+第9节容积=45构建二元一次方程组求解.本题考查了二元一次方程组在古典数学中的应用,突出了我国古人在数学方面的成就.难点是用第5节容积和相邻容积来表示竹子各节的容积.16.【答案】解:去分母,得6-2(x+2)>-x,去括号,得6-2x-4>-x,移项、合并同类项,得-x>-2.系数化为1.得x<2.∴原不等式的解集为x<2,它的解集在数轴上表示如图所示:【解析】根据去分母,去括号,移项及合并同类项,系数化为1即可.本题考查了解一元一次不等式,去分母是解题关键,不含分母的项要乘分母的最小公倍数.17.【答案】(1)10 72-32(2)第n个等式为:n(n+6)=(n+3)2-32;证明:左边=n(n+6)=n2+6n,右边=(n+3)2-32=n2+6n+9-9=n2+6n,左边=右边n(n+6)=(n+3)2-32.【解析】解:(1)第四个等式:4×10=72-32;(2)见答案【分析】由等式可以看出:第一个因数是从1开始连续的自然数,第二个因数比第一个因数大6,结果是第一个因数与3和的平方,减去3的平方,由此规律得出答案即可.本题考查了数字的变化类,找出数字之间的运算规律,发现规律是解题关键.18.【答案】解:(1)△A1B1C1如图①.(2)△A2B2C如图②.【解析】(1)各顶点均向上平移2个单位长度得到△A1B1C1;(2)根据位似变换的定义和性质作图即可得.考查了作图-位移变换和平移变换.解答此题的关键是掌握平移位似的性质.19.【答案】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE∥OB,又∵CO∥EB∴四边形OBEC为平行四边形.又∵OB=OC=4.∴四边形OBEC是菱形.【解析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBEC为平行四边形,再由OB=OC,即可判断四边形OBEC是菱形.本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.20.【答案】解:(1)∵点B(2,n),P(3n-4,1)在双曲线上,∴2n=3n-4,解得n=4;(2)由(1)知点B(2,4),P(8,1).如图,过点P作PD⊥BC,垂足为D,并延长PD交AB于点P'.在△BDP和△BDP'中,,∴△BDP≌△BDP',∴DP'=DP=6.∴点P'(-4,1).将点B(2,4),P'(-4,1)代入y=kx+b,得,解得,∴一次函数的解析式为y=x+3.【解析】(1)把B、P的坐标代入反比例函数解析式,可得到关于n的方程,可求得n 的值;(2)过点P作PD⊥BC,垂足为D,并延长PD交AB于点P′,可证明△BDP≌△BDP′,则可求得P′的坐标,由B、P′的坐标,利用待定系数法可求得直线AB的解析式.本题为反比例函数与一次函数的综合应用,涉及函数图象上的点与函数解析式的关系、待定系数法、全等三角形的判定和性质及数形结合思想等知识.在(1)中由B、P的坐标得到n的方程是解题的关键;在(2)中构造全等三角形,求得P′的坐标是解题的关键.本题考查知识点较多,综合性较强,但难度不大.21.【答案】(1)12(2)3 0.36(3)(人),即该年级合格的学生有360人.【解析】解:(1)第3组的频数为:50-6-8-18-6=12,故答案为:12,补全的频数分布直方图见答案(2)由直方图可知,中位数落在第3组,次数在140≤x<160这组的频率为:18÷50=0.36,故答案为:3,0.36;(3)见答案【分析】(1)根据题目中的数和频数分布表中的数据可以求得第3组的人数,从而可以将频数分布表和频数分布直方图补充完整;(2)根据频数分布直方图中的数据可以得到这组数据的中位数和次数在140≤x<160这组的频率;(3)根据题意可以求得该年级合格的学生有多少人.本题考查频数分布表和频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)①当1≤x<50时,w=(200-2x)(x+40-30)=-2x2+180x+2000.②当50≤x≤90时,w=(200-2x)(90-30)=-120x+12000.所以;(2)①当1≤x<50时,二次函数图象开口向下,对称轴为直线x=45,那么当x=45时,.②当50≤x≤90时,w随x的增大而减小,综上,销售该商品第45天时,当天销售利润最大,最大利润是6050元;(3)①当1≤x<50时,w=-2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天.②当50≤x≤90时,w=-120x+12000≥4800,解得x≤60.因此利润不低于4800元的天数是50≤x≤60,共11天.所以该商品在销售过程中,共有41天每天销售利润不低于4800元.【解析】(1)当1≤x<50时和当50≤x≤90两种情况下,利用总利润=单件利润×销量列出函数关系式即可;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.23.【答案】(1)在Rt△ABC中,∵∠ACB=90°,a=3,b=4,∴,.∵CD,CE是斜边AB上的高,中线,∴∠BDC=90°,.∴在Rt△BCD中,.∴.(2)(3)在Rt△BCD中,,∴,又,∴CD=3DE,即.∵b=3,∴2a=9-a2,即a2+2a-9=0.由求根公式得(负值舍去),即所求a的值是.【解析】解:(1)见答案(2)在Rt△ABC中,∵∠ACB=90°,BC=a,AC=b,∴.∵,∴=,故答案为:.(3)见答案【分析】(1)求出BE,BD即可解决问题.(2)利用勾股定理,面积法求高CD即可.(3)根据CD=3DE,构建方程即可解决问题.本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2020年安徽省中考数学一模试卷
![2020年安徽省中考数学一模试卷](https://img.taocdn.com/s3/m/2f8be886ba1aa8114431d9ec.png)
2020年安徽省中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.(4分)a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,a -,b ,b -按照从小到大的顺序排列( )A .b a a b -<-<<B .a b a b -<-<<C .b a a b -<<-<D .b b a a -<<-<3.(4分)2020年新冠状病毒全球感染人数约33万,科学记数法如何表示( )A .53310⨯B .53.310⨯C .50.3310⨯D .5310⨯4.(4分)若2x =是关于x 的一元一次方程2ax b -=的解,则362b a -+的值是( )A .8-B .4-C .8D .45.(4分)如图,//DE GF ,A 在DE 上,C 在GF 上ABC ∆为等边三角形,其中80EAC ∠=︒,则BCG ∠度数为( )A .20︒B .10︒C .25︒D .30︒6.(4分)二次函数2(0)y ax bx c a =++≠的图象如图所示,现有以下结论:①0a <;②0abc >;③0a b c -+<;④240b ac -<;其中正确的结论有( )A .1个B .2个C .3个D .4个7.(4分)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为( )A .10%B .20%C .25%D .40%8.(4分)如图,ABC ∆中,BD 是ABC ∠的平分线,//DE AB 交BC 于E ,6EC =,4BE =,则AB 长为( )A .6B .8C .203D .2459.(4分)如图,在锐角ABC ∆中,4AB =,5BC =,45ACB ∠=︒,将ABC ∆绕点B 按逆时针方向旋转,得到111A B C ∆.点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC ∆绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,线段1EP 长度的最小值是 .10.(4分)如图,在等腰ABC ∆中,4AB AC cm ==,30B ∠=︒,点P 从点B 出发,以3/cm s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1/cm s 的速度沿BA AC -方向运动到点C 停止,若BPQ ∆的面积为2()y cm ,运动时间为()x s ,则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .二.填空题(共4小题,满分20分,每小题5分)11.(5分)把多项式36mx my -分解因式的结果是 .12.(5分)不等式组35112502x x +⎧⎪⎨-⎪⎩…„的所有整数解的积为 . 13.(5分)设抛物线2:(0)l y ax bx c a =++≠的顶点为D ,与y 轴的交点是C ,我们称以C 为顶点,且过点D 的抛物线为抛物线l 的“伴随抛物线”,请写出抛物线241y x x =-+的伴随抛物线的解析式 .14.(5分)如图,在等腰ABC ∆中,4AB AC ==,6BC =,点D 在底边BC 上,且DAC ACD ∠=∠,将ACD ∆沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .三.解答题(共2小题,满分16分,每小题8分)15.(8分)计算:101tan 4522|22( 3.14)2π-︒--+- 16.(8分)《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.四.解答题(共2小题,满分16分,每小题8分)17.(8分)如图,已知平面直角坐标内有三点,分别为(1,1)A -,(2,4)B -,(3,2)C -.(1)请画出ABC ∆关于原点O 对称的△111A B C ;(2)直接写出把ABC ∆绕点O 顺时针旋转90︒后,点C 旋转后对应点2C 的坐标.18.(8分)用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有134+=个小正方形;第(3)个图形有1359++=个小正方形;第(4)个图形有135725+++=小正方形;⋯⋯(1)根据上面的发现我们可以猜想:1357(21)n ++++⋯+-= (用含n 的代数式表示);(2)请根据你的发现计算:①135799++++⋯+;②101103105199+++⋯+.五.解答题(共3小题,满分30分,每小题10分)19.(10分)如图,在同一平面内,两条平行高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速公路1l 成30︒角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km ,求两高速公路间的距离(结果保留根号).。
安徽省阜阳市2020版中考数学一模试卷(II)卷
![安徽省阜阳市2020版中考数学一模试卷(II)卷](https://img.taocdn.com/s3/m/40ab0cd976c66137ef06192a.png)
安徽省阜阳市2020版中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单项选择题 (共10题;共20分)1. (2分)(2019·新宁模拟) 对描述不正确的一项是()A . 面积为2的正方形的边长B . 它是一个无限不循环小数C . 它是2的一个平方根D . 它的小数部分大于2-2. (2分) PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为A . 0.25×10﹣5B . 0.25×10﹣6C . 2.5×10﹣5D . 2.5×10﹣63. (2分)下列各式中能用完全平方公式分解的是().A . 4x2+4x-1B . x2+xy+y2C . -2x2+4x-2D . 2x2+4x+14. (2分)(2016·福田模拟) 景新中学为了了解学生体育中考备考情况,随机抽查了10名学生的引体向上,结果如下表:引体向上(次)181920学生数262则关于这10名学生的引体向上数据,下列说法错误的是()A . 极差是2B . 众数是19C . 平均数是19D . 方差是45. (2分)如图,把长方形纸片ABCD沿EF对折,若∠1 = 50°,则∠AEF等于()A . 50°B . 65°C . 80°D . 115°6. (2分)(2020·重庆模拟) 如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为()A . 9米B . 28米C . 米D . (14+2 )米7. (2分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A . 两正面都朝上B . 两背面都朝上C . 一个正面朝上,另一个背面朝上D . 三种情况发生的概率一样大8. (2分)(2019·邵阳模拟) 已知⊙O的直径AB=8cm,点C在⊙O上,且∠B0C=60°,则AC的长为()A . 4cmB . 4 cmC . 5cmD . 2.5cm9. (2分)如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A . 4.5米B . 6米C . 3米D . 4米10. (2分)(2016·黄石) 以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A . b≥B . b≥1或b≤﹣1C . b≥2D . 1≤b≤2二、填空题 (共6题;共6分)11. (1分)(2018·建湖模拟) 若代数式有意义,则实数x的取值范围是________.12. (1分)(2017·南京模拟) 分解因式x3+6x2+9x=________.13. (1分) (2017八下·常山月考) 若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为________.14. (1分) (2017八下·长春期末) 如图,在□ABCD中, AB= cm,AD=4 cm,AC⊥BC ,则△DBC比△ABC的周长长________cm.15. (1分)(2017·平顶山模拟) 如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为________.16. (1分)已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为________三、解答题 (共8题;共80分)17. (5分) (2018九下·尚志开学考) 先化简,再求代数式:的值,其中 .18. (10分)(2018·毕节模拟) 小明、小华用除了正面的数字不同其他完全相同的4张卡片玩游戏,卡片上的数字分别是2、4、5、6,他俩将卡片洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的卡片不放回(1)若小明恰好抽到了标注4的卡片,直接写出小华抽出的卡片上的数字比4大的概率是多少;(2)小明、小华约定,若小明抽到的卡片的标注数字比小华的大,则小明胜:反之,则小明负,你认为这个游戏是否公平?请用树状图或列表法说明理由.19. (5分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?20. (10分) (2016八下·微山期末) 如图,直线OA:y= x与直线AB:y=kx+b相交于点A(9,3),点B 坐标为(0,12).(1)求直线AB的表达式;(2)点P是线段OA上任意一点(不与点O,A重合),过点P作PQ∥y轴,交线段AB于点Q,分别过P,Q 作y轴的直线,垂足分别为M,H,得矩形PQHM.如果矩形PQHM的周长为20,求此时点P的坐标.21. (15分)(2017·成华模拟) 已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4 .BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使EF= ,连接BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.22. (10分) (2020八下·北镇期中) A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.(1)求A,B两种型号空调的进价;(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A种型号的空调多少台?23. (10分)如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.24. (15分)(2017·辽阳) 如图1,抛物线y= x2+bx+c经过A(﹣2 ,0)、B(0,﹣2)两点,点C 在y轴上,△ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(t>0),过点D作DE⊥AC于点E,以DE为边作矩形DEGF,使点F在x轴上,点G在AC或AC的延长线上.(1)求抛物线的解析式;(2)将矩形DEGF沿GF所在直线翻折,得矩形D'E'GF,当点D的对称点D'落在抛物线上时,求此时点D'的坐标;(3)如图2,在x轴上有一点M(2 ,0),连接BM、CM,在点D的运动过程中,设矩形DEGF与四边形ABMC 重叠部分的面积为S,直接写出S与t之间的函数关系式,并写出自变量t的取值范围.参考答案一、单项选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
【精校】2020年安徽省阜阳市中考一模试卷数学
![【精校】2020年安徽省阜阳市中考一模试卷数学](https://img.taocdn.com/s3/m/896eb5efa26925c52dc5bf61.png)
2020年安徽省阜阳市中考一模试卷数学一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.-3的倒数是( )A.3B.-3C.1 3D.-1 3解析:∵(-3)×(-13)=1,∴-3的倒数是-13.答案:D2.计算(2x)3÷x的结果正确的是( )A.8x2B.6x2C.8x3D.6x3解析:(2x)3÷x=8x3÷x=8x2.答案:A3.下列几何体中,三视图有两个相同,另一个不同的是( )A.①②B.②③C.②④D.③④解析:正方的三视图都是正方形,故①不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故②符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故③符合题意;球的三视图都是圆,故④不符合题意.答案:B4.( )A.2B.3C.4D.5解析:∵12,∴2<3,∵34,∴24+1 3.答案:B5.今年元宵节,央视新闻频道以《正月十五闹元宵-安徽阜阳千万灯珠流光溢彩别样灯会闹元宵》为题,对阜阳生态园灯会进行实景直播.据不完全统计,当晚约有98000人次来阜阳生态园游园、赏灯.用科学记数法表示98000正确的是( )A.9.8×104B.9.8×105C.98×103D.9.8×10-4解析:将98000用科学记数法表示为9.8×104.答案:A.6.阜阳某企业今年1月份产值为a万元,2月份比1月份减少了10%,预计3月份比2月份增加15%.则3月份的产值将达到( )A.(a-10%)(a+15%)万元B.(a-10%+15%)万元C.a(1-10%)(1+15%)万元D.a(1-10%+15%)万元解析:由题意可得,3月份的产值将达到:a(1-10%)(1+15%)(万元).答案:C7.已知x2-2x-3=0,则2x2-4x的值为( )A.6B.-6C.-2或6D.-2或30解析:∵x2-2x-3=0,即x2-2x=3,∴原式=2(x2-2x)=6.答案:A8.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为( )C.4解析:连接AO并延长,交BC于D,连接OB,∵AB=AC,∴AD⊥BC,∴BD=12BC=3,∵△ABC是等腰直角三角形,∴AD=BD=3,∴OD=2,∴=答案:B9.如图,在正六边形ABCDEF中,四边形BCEF的面积为30,则正六边形ABCDEF的面积为( )B.40D.45解析:连接AD交BF、CE与M、N,∵正六边形ABCDEF,∴∠FAB=120°,∴∠FAM=60°,∴AM=12AF,∴AM=12EF,∴△FAB的面积=14×四边形BCEF的面积=7.5,同理△EDC的面积=7.5,∴正六边形ABCDEF的面积=30+7.5+7.5=45.答案:D10.如图,两个全等的等腰直角三角板(斜边长为2)如图放置,其中一块三角板45°角的顶点与另一块三角板ABC的直角顶点A重合.若三角板ABC固定,当另一个三角板绕点A旋转时,它的直角边和斜边所在的直线分别与边BC交于点E、F.设BF=x,CE=y,则y关于x的函数图象大致是( )A.B.C.D.解析:由题意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴AB CE BF AC=,又∵△ABC是等腰直角三角形,且BC=2,∴,又BF=x,CE=y,∴x=,即xy=2,(1<x<2). 答案:C二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:8m-2m3= .解析:原式=2m(4-m2)=2m(2-m)(2+m).答案:2m(2-m)(2+m)2π+-()sin60°= . 解析:原式=5+1-32=6-1.5=4.5. 答案:4.513.若二次函数y=x 2+bx+5配方后为y=(x-2)2+k ,则b+k= .解析:∵y=(x-2)2+k=x 2-4x+4+k ,∴b=-4,4+k=5,解得k=1,∴b+k=-4+1=-3. 答案:-314.如图,在矩形ABCD 中,O 为AC 中点,EF 过点O 且EF ⊥AC 分别交DC 于点F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,给出以下结论:①∠AFC=120°;②△AEF 是等边三角形; ③AC=3OG ; ④S △AOG =16S △ABC . 其中正确的是 .(把所有正确结论的序号都选上)解析:∵四边形ABCD 是矩形,∴AB ∥CD ,∠B=90°,∴∠FCA=∠OAG , ∵O 为AC 中点,EF ⊥AC ,∴AF=CF ,∴∠FAC=∠FCA , ∵点G 是AE 中点且∠AOG=30°,∴OG=12AE=AG ,∴∠OAG=∠AOG=30°, ∴∠FCA=∠FAC=30°,∴∠AFC=180°-30°-30°=120°,①正确; ∵∠FAE=30°+30°=60°,∠AEO=90°-30°=60°,∴∠AFE=60°, ∴△AEF 是等边三角形,②正确;∵∠OAG=30°,EF ⊥AC ,∴AE=2OE=2OG,∴,∴,③不正确; ∵点G 是AE 中点,∴S △AOG =12S △AOE , ∵∠AOE=90°=∠B ,∠OAE=∠BAC ,∴△AOE ∽△ABC ,相似比为12OE OE OE BC OA AC ===,∴2133AOE ABCS S ⎛⎫ ⎪ ⎪⎝⎭==V V ,∴S △AOG =16S △ABC ,④正确. 答案:①②④三、解答题(本大题共2小题,每小题8分,满分16分)15.解方程:x2-2x=2x+1.解析:先移项,把2x移到等号的左边,再合并同类项,最后配方,方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.答案:∵x2-2x=2x+1,∴x2-4x=1,∴x2-4x+4=1+4,(x-2)2=5,∴x-2=x1x216.点P(1,a)在反比例函数y=kx的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.解析:先求出点P(1,a)关于y轴的对称点,代入y=2x+4,求出a的值,再把P点坐标代入y=kx即可求出k的值.答案:点P(1,a)关于y轴的对称点是(-1,a),∵点(-1,a)在一次函数y=2x+4的图象上,∴a=2×(-1)+4=2,∵点P(1,2)在反比例函数y=kx的图象上,∴k=2,∴反比例函数的解析式为y=2x.四.(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.解析:(1)把A、B、C三点先向右平移4个单位,再向上平移1个单位得到A1,B1,C1,顺次连接得到的各点即可;(2)延长OA1到A2,使0A2=20A1,同法得到其余各点,顺次连接即可.答案:如图.18.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(-2,1)、F(0,6),则这3点的“矩面积”= .(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标.解析:(1)根据题目中的新定义可以求得相应的“矩面积”;(2)根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值,从而可以求得点F 的坐标.答案:(1)由题意可得,∵点D(1,2)、E(-2,1)、F(0,6),∴a=1-(-2)=3,h=6-1=5,∴S=ah=3×5=15.(2)由题意可得,“水平底”a=1-(-2)=3,当t>2时,h=t-1,则3(t-1)=18,解得,t=7,故点F的坐标为(0,7);当1≤t≤2时,h=2-1=1≠3,故此种情况不符合题意;当t<1时,h=2-t,则3(2-t)=18,解得t=-4,故点F的坐标为(0,-4),所以,点F的坐标为(0,7)或(0,-4).五、(本大题共2小题,每小题10分,满分20分)19.位于合肥滨湖新区的渡江战役纪念馆,实物图如图1所示,示意图如图2所示.某学校数学兴趣小组通过测量得知,纪念馆外轮廓斜坡AB的坡度i=1,底基BC=50m,∠ACB=135°,求馆顶A离地面BC的距离.(结果精确到0.1m≈1.41 1.73)解析:根据题干中给出的角,构造直角三角形.过点A作AD⊥BC交BC的延长线于点D,设AD=x,用x表示出CD、BD,再根据坡度i=1:,列出等量关系式即可得解.答案:如图,过点A作AD⊥BC交BC的延长线于点D.∵∠ACB=135°,∴△ADC为等腰直角三角形,设AD=x,则CD=x,BD=50+x,∵斜坡AB的坡度i=1x:(50+x)=1:,整理得-1)x=50,解得≈68.3.答:馆顶A离地面BC的距离约为68.3 m.20.2020年中考,阜阳市某区计划在4月中旬的某个周二至周四这3天进行理化加试.王老师和朱老师都将被邀请当监考老师,王老师随机选择2天,朱老师随机选择1天当监考老师.(1)求王老师选择周二、周三这两天的概率是多少?(2)求王老师和朱老师两人同一天监考理化加试的概率.解析:(1)用列举法得到王老师选择周二、周三这两天的情况数,由概率公式计算即可;(2)用画树状图法,分别列出所有等可能出现的结果数,以及所求事件发生的结果数,然后用概率公式P=mn计算即可.答案:(1)王老师选择的时间有以下3种可能:(2,3),(2,4),(3,4),所以王老师选择周二,周三的概率是13;(2)由树状图可知,共有9种等可能的结果,其中他们能同天监考的结果有6种,∴他们同天监考的概率是62 93 .四.解答题21.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C ;(2)若⊙O 的半径为3,AD=2,试求AE 的长; (3)在(2)的条件下,求△ABC 的面积.解析:(1)连接OB.先证明∠ABO 、∠CBD 均为直角,然后依据同角的余角相等证明∠ABD=∠CBO ,接下来,结合等腰三角形的性质和平行线的性质进行证明即可;(2)连接OB ,先求得AB 的长,然后由平行线分线段成比例定理求得BE 的长,最后再△BOE 中依据勾股定理可求得OE 的长;(3)根据相似三角形的性质即可得到结论. 答案:(1)如图1:连接OB.∵CD 为圆O 的直径,∴∠CBD=∠CBO+∠OBD=90°.∵AE 是圆O 的切线,∴∠ABO=∠ABD+∠OBD=90°.∴∠ABD=∠CBO. ∵OB=OC ,∴∠C=∠CBO.∴∠C=∠ABD. ∵OE ∥BD ,∴∠E=∠ABD.∴∠E=∠C ;(2)∵⊙O 的半径为3,AD=2,∴AO=5,∴AB=4. ∵BD ∥OE ,∴AD AB AO AE =,即245AE=,∴AE=10; (3)∵S △AOE =12AE ·OB=15, ∵∠C=∠E ,∠A=∠A ,∴△AOE ∽△ABC ,∴21625ABC AOE S AC S AE ⎛==⎫ ⎪⎝⎭V V ,∴S △ABC =15×1648255=.22.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.王宏按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+400. (1)王宏在开始创业的第一个月将销售单价定为18元,那么政府这个月为他承担的总差价为多少元?(2)设王宏获得的利润为W(元),当销售单价为多少元时,每月可获得最大利润?(3)若物价部门规定,这种节能灯销售单价不得高于24元.如果王宏想要每月获得的利润不低于2000元,那么政府为他承担的总差价最少为多少元?解析:(1)求出销售量,根据政府每件补贴2元,即可解决问题. (2)构建二次函数,利用二次函数的性质解决问题即可.(3)根据条件确定出自变量的取值范围,求出y 的最小值即可解决问题.答案:(1)当x=18时,y=-10x+400=-10×18+400=220, 220×(12-10)=220×2=440元.即政府这个月为他承担的总差价为440元.(2)依题意得,w=(x-10)(-10x+400)=-10x 2+500x-4000=-10(x-25)2+2250, ∵a=-10<0,∴当x=25时,w 有最大值2250元.即当销售单价定为25元时,每月可获得最大利润2250元.(3)由题意得:-10x 2+500x-4000=2000,解得:x 1=20,x 2=30. ∵a=-10<0,抛物线开口向下, 当20≤x ≤30时,2250≥w ≥2000.又∵x ≤24,∴当20≤x ≤24时,w ≥2000.∴当x=24时,政府每个月为他承担的总差价最小,y=-24×10+400=160,160×2=320, ∴政府每个月为他承担的总差价最小值320元.即销售单价定为24元时,政府每个月为他承担的总差价最少为320元.23.如图①,△ABC 与△CDE 是等腰直角三角形,直角边AC 、CD 在同一条直线上,点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点,连接AE 、BD.(1)猜想PM 与PN 的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE 绕着点C 顺时针旋转α(0°<α<90°),得到图②,AE 与MP 、BD 分别交于点G 、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由; (3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC ,CD=kCE ,如图③,写出PM 与PN 的数量关系,并加以证明.解析:(1)由等腰直角三角形的性质易证△ACE ≌△BCD ,由此可得AE=BD ,再根据三角形中位线定理即可得到PM=PN ,由平行线的性质可得PM ⊥PN ; (2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明; (3)PM=kPN ,由已知条件可证明△BCD ∽△ACE ,所以可得BD=kAE ,因为点P 、M 、N 分别为AD 、AB 、DE 的中点,所以PM=12BD ,PN=12AE ,进而可证明PM=kPN. 答案:(1)PM=PN ,PM ⊥PN ,理由如下:∵△ACB 和△ECD 是等腰直角三角形,∴AC=BC ,EC=CD ,∠ACB=∠ECD=90°.在△ACE 和△BCD 中,90AC BC ACB ECD CE CD =⎧⎪∠=∠=︒⎨⎪=⎩,,,∴△ACE ≌△BCD(SAS),∴AE=BD ,∠EAC=∠CBD ,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=12BD,PN=12AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD. 又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=12BD,PM∥BD;PN=12AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN,∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴BC CDAC CE=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=12BD,PN=12AE.∴PM=kPN.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2020年阜阳市九年级数学下期中一模试题含答案
![2020年阜阳市九年级数学下期中一模试题含答案](https://img.taocdn.com/s3/m/f93e99fc48d7c1c708a145f1.png)
2020年阜阳市九年级数学下期中一模试题含答案一、选择题1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.67B.3037C.127D.60372.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y23.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是()A.B.C.D.4.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC 扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)5.如图所示,在△ABC中, cos B 2,sin C=35,BC=7,则△ABC的面积是()A .212B .12C .14D .216.用放大镜观察一个五边形时,不变的量是( )A .各边的长度B .各内角的度数C .五边形的周长D .五边形的面积7.如图,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过顶点B ,则反比例函数的表达式为( )A .y=12xB .y=24xC .y=32xD .y=40x8.在△ABC 中,若=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°9.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .510.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16511.如图所示,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .2512.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .105 mB .(105 1.5)+ mC .11.5mD .10m二、填空题13.计算:cos 245°-tan30°sin60°=______. 14.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.15.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子 1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .16.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则点C 的坐标为________.17.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =______.18.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)19.若a b =34,则a b b+=__________. 20.若函数y =(k -2)2k 5x -是反比例函数,则k =______.三、解答题21.如图,∠ABD =∠BCD =90°,AB •CD =BC •BD ,BM ∥CD 交AD 于点M .连接CM 交DB 于点N .(1)求证:△ABD ∽△BCD ;(2)若CD =6,AD =8,求MC 的长.22.如图,在OABC Y 中,22OA =,45AOC ∠=︒,点C 在y 轴上,点D 是BC 的中点,反比例函数()0k y x x=>的图象经过点A 、D(1)求k 的值;(2)求点D 的坐标.23.如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.24.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器高度忽略不计,结果保留根号形式)25.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB•BC=12AC•BP,∴BP=·341255 AB BCAC⨯==.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.3.C解析:C【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、D不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A符合题意;故选C.【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.4.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,AC=2,所以△ABC的周长为2+2,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+32,故B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.5.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.6.B解析:B【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;∵相似三角形的对应角相等,∴对应角大小不变,故选项B 正确;.∵相似三角形的面积比等于相似比的平方,∴C 选项错误;∵相似三角形的周长得比等于相似比,∴D 选项错误.故选B .点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.7.C解析:C【解析】【分析】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.【详解】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.8.C解析:C【解析】【分析】根据非负数的性质可得出cosA 及tanB 的值,继而可得出A 和B 的度数,根据三角形的内角和定理可得出∠C 的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .9.C解析:C【解析】试题分析:观察图象可得,k >0,已知S △AOB =2,根据反比例函数k 的几何意义可得k=4,故答案选C.考点:反比例函数k 的几何意义.10.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=, 在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==, ∴AD=BC 22222520533AC AB ⎛⎫-=-= ⎪⎝⎭. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.11.A解析:A【解析】【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案.【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD , ∴C (1,2),则CD 的长度是2,故选A . 【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.12.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.二、填空题13.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos45tan30sin60︒-︒︒=21123222-=-=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.14.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 15.3【解析】【分析】先根据同一时刻物高与影长成正比求出QD的影长再根据此影长列出比例式即可【详解】解:过N点作ND⊥PQ于D又∵AB=2BC=16PM=12NM=08∴PQ=QD+DP=QD+NM=1解析:3【解析】【分析】先根据同一时刻物高与影长成正比求出QD的影长,再根据此影长列出比例式即可.【详解】解:过N 点作ND ⊥PQ 于D ,BC DN AB QD∴= 又∵AB=2,BC=1.6,PM=1.2,NM=0.8, 1.5AB DN QD BC ⋅∴== ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m ).故答案为:2.3.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.16.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD∥BG∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==. ∵两个正方形的相似比为13, ∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2).【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键. 17.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF,结合图形计算即可.【详解】∵1l∥2l∥3l,∴36 DE ABEF BC==又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.18.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP为x米根据题意得整理得x2+10x﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x=5﹣5是原方程的解析:18【解析】【分析】根据黄金分割定义:AP BPAB AP=列方程即可求解.【详解】解:设AP为x米,根据题意,得x10 10x x -=整理,得x2+10x﹣100=0解得x1=﹣5≈6.18,x2=﹣5(不符合题意,舍去)经检验x=5是原方程的根,∴AP的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.19.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键解析:7 4【解析】【分析】由比例的性质即可解答此题.【详解】∵34ab=,∴a=34 b,∴a bb+=3744b b bb b+=,故答案为7 4【点睛】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.20.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.三、解答题21.(1)见解析;(2)MC=.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC ,再判定∠MBC =90°,最后由勾股定理求得MC 的值即可.【详解】(1)证明:∵AB •CD =BC •BD ∴AB BC =BD CD在△ABD 和△BCD 中,∠ABD =∠BCD =90°∴△ABD ∽△BCD ;(2)∵△ABD ∽△BCD ∴AD BD =BD CD,∠ADB =∠BDC 又∵CD =6,AD =8∴BD 2=AD •CD =48∴BC ∵BM ∥CD∴∠MBD =∠BDC ,∠MBC =∠BCD =90°∴∠ADB =∠MBD ,且∠ABD =90°∴BM =MD ,∠MAB =∠MBA∴BM =MD =AM =4∴MC .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.22.(1)4k =;(2)()1,4D .【解析】【分析】(1)根据已知条件求出A 点坐标即可;(2)四边形OABC 是平行四边形OABC ,则有AB x ⊥轴,可知B 的横纵标为2,D 点的横坐标为1,结合解析式即可求解;【详解】(1)Q OA =45AOC ∠=︒,∴()2,2A ,∴4k =,∴4y x=; (2)四边形OABC 是平行四边形OABC ,∴AB x ⊥轴,∴B 的横纵标为2,Q 点D 是BC 的中点,∴D 点的横坐标为1,∴()1,4D ;【点睛】本题考查反比例函数的图象及性质,平行四边形的性质;利用平行四边形的性质确定点B 的横坐标是解题的关键.23.(1)12y x =;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】(1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.24.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.25.(1)画图见解析;(2)DE=4.【解析】【分析】(1)连接CB延长CB交DE于O,点O即为所求.连接OG,延长OG交DF于H.线段FH即为所求.(2)根据AB CAOD CD=,可得1.6 1.41.42.1DO=+,即可推出DO=4m.【详解】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,AB CA OD CD=,∴1.6 1.41.42.1 DO=+,∴OD=4m,∴灯泡的高为4m.【点睛】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.。
2020年中考数学全真模拟试卷(安徽专用)(一)(解析版)
![2020年中考数学全真模拟试卷(安徽专用)(一)(解析版)](https://img.taocdn.com/s3/m/5c104217aeaad1f347933fb9.png)
(k> 0)的图象上 ,当垂足为点C.D ,QDA.增大C.先减小后增大m> 1 时,过点 P 分别作 x 轴 .y 轴的垂线 ,垂足为点 A.B;过点 Q 分别作 x 轴 .y 轴的垂线 ,交 PA 于点 E,随着 m 的增大 ,四边形 ACQE 的面积 ()B.减小D.先增大后减小【答案】 A【解析】首先利用m 和 n 表示出 AC 和 CQ 的长 ,那么四边形 ACQE 的面积即可利用m.n 表示 ,然后根据函数的性质判断.【解答】由题意得AC=m﹣1,CQ= n,那么 S 四边形ACQE= AC?CQ= (m﹣ 1)n= mn﹣ n.∵P(1,4).Q(m,n)在函数 y= (x> 0)的图象上 ,∴ mn= k= 4(常数 ) .∴ S 四边形ACQE= AC?CQ= 4﹣ n,∵当 m> 1 时,n 随 m 的增大而减小,∴ S 四边形ACQE= 4﹣ n 随 m 的增大而增大.应选:A.【点睛】此题考察了反比例函数面积问题,正确的识图和运用k 的几何意义是解题的关键.10.[ XX省二十所初中名校教育联盟中考数学一模]在 Rt△ ABC 中 ,∠ ACB= 90°,AC= 8,BC= 3,点 D 是 BC 边上一动点 ,连接 AD 交以 CD 为直径的圆于点E.那么线段BE 长度的最小值为 ()A.B.1C.D.【答案】 B【解析】作AC 为直径的圆 ,即可得当O.E.B 三点共线时 ,BE 是最短 ,也即求 OB 的长度即可求.【解答】解 :如图 ,作以 AC 为直径的圆 ,圆心为 O∵ E 点在以 CD 为直径的圆上∴∠ CED= 90°∴∠ AEC= 180°﹣∠CED = 90°∴点 E 也在以 AC 为直径的圆上,若BE 最短 ,那么 OB 最短∵ AC= 8,∴OC=4∵BC= 3,∠ACB= 90°∴OB===5∵OE= OC=4∴BE= OB﹣ OE=5﹣ 4= 1应选 :B.【点睛】此题主要考察勾股定理,圆的性质.利用构造法是解题的关键.二 .填空题 (本大题共 4 小题 ,每题 5 分 ,总分值 20 分 )11. [XX省XX市瑶海区一模]分解因式 :x3﹣4x2+4 x=.【答案】 x(x﹣ 2)2【解析】首先提取公因式x,然后利用完全平方式进展因式分解即可.【解答】解 :x3﹣ 4x2+4x=x(x2﹣ 4x+4)=x(x﹣ 2)2,故答案为x(x﹣ 2)2.【点睛】此题考察了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进展二次分解,注意分解要彻底.12. [ XX省XX市一模21 个单位 ,所得的新抛物线的解析式为______.]抛物线 ??= ??向左平移【答案】 ??= (??+ 1) 2【解析】先确定抛物线2的顶点坐标为(0,0) ,再利用点平移的规律得到点(0,0) 平移后对应点的坐标为??= ??(-1,0),然后根据顶点式写出平移后的抛物线解析式.2的顶点坐标为 (0,0) ,把点 (0,0)向左平移 1 个单位所得对应点的坐标为(-1,0) ,所以新【解答】解 :抛物线 ??= ??抛物线的解析式为??= (??+ 1) 2.故答案为 ??= (??+ 1) 2.【点睛】此题考察了二次函数图象与几何变换:由于抛物线平移后的形状不变,故 a 不变 ,所以求平移后的抛物线解析式通常可利用两种方法: 一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13. [2021年XX省XX市高台县中考数学模拟试卷] 如图 ,在 Rt△ ABC 中 ,∠ACB= 90°,∠ A= 56°,以 BC 为直径的⊙O 交 AB 于点 D ,E 是⊙O 上一点 ,且=,连接 OE.过点 E 作 EF⊥OE ,交 AC 的延长线于点F,那么∠F 的度数为.【答案】 112°【解析】直接利用互余的性质再结合圆周角定理得出∠ COE 的度数 ,再利用四边形内角和定理得出答案.【解答】∵∠ ACB= 90°,∠ A= 56°,∴∠ ABC= 34°,∵=,∴2∠ ABC=∠ COE= 68°,又∵∠ OCF=∠ OEF = 90°,∴∠ F= 360°﹣ 90°﹣ 90°﹣68°= 112°.故答案为 :112 °.【点睛】此题主要考察了圆周角定理以及四边形内角和定理等根本性质,熟练掌握相关定理内容是解题关键.14. [2021XX一六八中学一模] 如图 ,在矩形 ABCD 中 ,AB= 6,BC= 4,点 E 是边 BC 上一动点 ,把△DCE 沿 DE 折叠得△ DFE ,射线 DF 交直线 CB 于点 P,当△ AFD 为等腰三角形时,DP 的长为.【答案】或.【解析】先根据AD =BC= 4,DF = CD = AB= 6,得出 AD< DF ,再分两种情况进展讨论:①当 FA= FD 时 ,过F 作 GH⊥AD 与 G,交 BC 于 H,根据△DGF∽△ PHF ,得出=,即=,进而解得 PF =﹣6,进而得出 DP 的长 ;②当 AF= AD = 4 时 ,过 F 作 FH ⊥ BC 于 H,交 DA 的延长线于G,根据勾股定理求得FG =,FH =6﹣,再根据△ DFG ∽△ PFH ,得出=,即=,进而解得PF =﹣6,即可得出PD 的长.【解答】解 :∵ AD = BC= 4,DF = CD= AB= 6,∴AD<DF,故分两种情况:①如下列图 ,当 FA = FD 时 ,过 F 作 GH ⊥ AD 与 G,交 BC 于 H ,那么 HG ⊥BC ,DG=AD=2,∴ Rt△DFG 中 ,GF ==4,∴FH =6﹣4,∵DG ∥PH,∴△ DGF ∽△ PHF ,∴=,即=,解得 PF=﹣6,∴DP=DF+PF=6+﹣6=;②如下列图 ,当 AF = AD= 4 时 ,过 F 作 FH ⊥BC 于 H,交 DA 的延长线于G,那么Rt△ AFG 中 ,AG2+FG2= AF2,即 AG2+FG2= 16;Rt△ DFG 中 ,DG 2+FG2= DF 2,即 (AG+4) 2+FG2= 36;联立两式 ,解得 FG =,∴FH =6﹣,∵∠ G=∠ FHP = 90°,∠ DFG =∠ PFH ,∴△ DFG ∽△ PFH ,∴=,即=,解得 PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.【点睛】此题是折叠问题,主要考察了相似三角形的判定与性质,勾股定理 ,等腰三角形的性质以及矩形的性质的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,运用相似三角形的对应边成比例列出方程,求得线段的长.解题时注意分类思想的运用.三 .(本大题共 2 小题 ,每题 8 分 ,总分值 16 分 )15. [2021XX省原创 ] 计算 :sin30 +(2021)°0﹣+()﹣1【答案】【解析】根据零指数幂和负指数幂的运算法那么,算术平方根的定义及特殊角的三角函数值求解即可.【解答】解 :原式=+1﹣ 2+2=.【点睛】此题主要考察了实数的运算,正确化简各数是解题的关键.16.[2021年XX省XX市洞口县中考数学模拟试卷(二 )改编?] 九章算术? 是中国古代数学专著?,九章算术?方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之 ,问几何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年安徽省阜阳市颍州区中考数学一模试卷
一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的)
1.下列图形中,是中心对称图形但不是轴对称图形的是()
A.B.
C.D.
2.边长为2的正六边形的边心距为()
A.1B.2C.D.2
3.若m是一元二次方程x2﹣4x﹣1=0的根,则代数式4m﹣m2的值为()A.1B.﹣1C.2D.﹣22
4.如图,⊙O中,∠AOB=80°,点C、D是⊙O上任意两点,则∠C+∠D的度数是()
A.80°B.90°C.100°D.110°
5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+9=0B.4x2﹣4x+1=0C.x2+x+1=0D.x2+x﹣1=0
6.将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2
C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+2
7.在△ABC中,∠ACB=90°,BC=1,AC=3,将△ABC以点C为中心顺时针旋转90°,得到△DEC,连接BE、AD.下列说法错误的是()
A.S△ABD=6B.S△ADE=3C.BE⊥AD D.∠ADE=135°8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()
A.9B.10C.11D.12
9.如图,AB是⊙O半径OC的垂直平分线,点P是劣弧上的点,则∠APB的度数为()
A.135°B.130°C.120°D.110°
10.如图,四边形ABCD是正方形,AB=8,AC、BD交于点O,点P、Q分别是AB、BD 上的动点,点P的运动路径是AB→BC,点Q的运动路径是BD,两点的运动速度相同并且同时结束.若点P的行程为x,△PBQ的面积为y,则y关于x的函数图象大致为()
A.B.。