MATLAB代码 解线性方程组的迭代法

合集下载

matlab逐次超松弛迭代法

matlab逐次超松弛迭代法

matlab逐次超松弛迭代法
逐次超松弛迭代法(Gauss-Seidel迭代法)是一种用于解线性方程组的迭代方法,通常用于求解大型稀疏线性方程组。

在MATLAB 中,可以使用该方法来解决线性方程组的数值解。

首先,让我们来了解一下逐次超松弛迭代法的基本原理。

该方法是基于迭代的思想,通过不断迭代更新解向量的各个分量,直到满足一定的收敛条件为止。

具体步骤如下:
1. 首先,需要将线性方程组表示为矩阵形式 Ax = b,其中A 是系数矩阵,x是未知向量,b是常数向量。

2. 然后,将系数矩阵A分解为下三角矩阵L、对角矩阵D和上三角矩阵U,即A = L + D + U。

3. 接下来,可以根据逐次超松弛迭代法的迭代公式来更新解向量x的各个分量,直到满足一定的精度要求或者迭代次数达到指定的值为止。

在MATLAB中,可以通过编写相应的代码来实现逐次超松弛迭代
法。

具体步骤如下:
1. 首先,需要编写一个函数来实现逐次超松弛迭代法的迭代过程,可以使用for循环来进行迭代更新解向量的各个分量。

2. 其次,需要编写主程序来调用该函数,并传入系数矩阵A、常数向量b以及迭代的初始解向量作为输入参数。

3. 最后,可以设置迭代的终止条件,例如迭代次数的最大值或者解的精度要求,以及初始解向量的初值。

需要注意的是,在实际应用中,逐次超松弛迭代法的收敛性和稳定性需要进行分析和验证,以确保得到正确的数值解。

此外,还需要注意选择合适的松弛因子来加速收敛速度。

总的来说,逐次超松弛迭代法是一种常用的求解线性方程组的数值方法,在MATLAB中可以通过编写相应的代码来实现该方法,并得到线性方程组的数值解。

三种迭代法matlab程序 数值分析

三种迭代法matlab程序 数值分析

• for k=1:max1
• for j=1:N

if j==1

X(1)=(b(1)-A(1,2:N)*P(2:N))/A(1,1);

elseif j==N

X(N)=(b(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);

else

X(j)=(b(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);

end
• end
• err=abs(norm(X'-P));
• P=X';
• if(err<delta)

break
• end
• end
• X=X';
• err,k
雅可比迭代法的Matlab程序
给 定 初 始 值 X P0 , 用 雅 克 比 迭 代 法 求 解 线 性 方 程 组
AX b,并生成序列Pk ,求不超过误差界的近似解。
• for k=1:max1
• for j=1:N

if j==1

X(1)=(b(1)-A(1,2:N)*P(2:N))/A(1,1);

elseif j==N

X(N)=(b(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);

else

X(j)=(b(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);
function X=jacobi(A,b,P,delta,max1) %A是n维非奇异阵。%b是n维向量。%P是初值。%delta是误差界。 %max1是给定的迭代最高次数。%X为所求的方程组AX=b的近似解。 N=length(b); for k=1:max1 for j=1:N

matlab 解线性方程组的迭代法

matlab 解线性方程组的迭代法
MATLAB的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,简称GADS)是 MATLAB的一个优化工具箱。它有两种使用方式:一种是 通过命令行调用ga函数,另一种是通过图形界面调用。
小结
➢ 线性方程组求根方法的几何意义
➢ 线性方程组求根函数的理解与应用
设线性代数方程组为
展开为
若对角元素 逐一变量分离得方程组

此即为迭代公式
简单迭代解法的过程如下:
1 设定一组初值 2 第一次迭代:
得到
第k次迭代 第i个变量
3 第二次迭代: 得到
4 同样做法,得到第k+1次迭代:
迭代次数k的取值与精度要求有关,按下式判断:
若满足则停止迭代 为了便于编程,迭代公式可改写为:
matlab 解线性方程组的 迭代法
2020年4月22日星期三
第十讲 解线性方程组的迭代解法
内容提要
引言 简单迭代法 赛得尔迭代法 迭代解法的收敛性 MATLAB的线性方程组求解函数2 小结
1、引言
迭代解法的基本思想
根据给定方程组,设计出一个迭代公式,构造一 数组的序列 ,代入迭代公式,计算出 ,再代 入迭代公式,经过k次迭代运算后得到 ,若 收敛于某一极限数组xi,则xi就是方程组的近似解。
while(norm(x-x1)>eps) x1=x; x=(I-A)*x1+b; n = n + 1; if(n>=M) disp('Warning: 迭代次数太多,现
在退出!'); return;
end end
例:求解方程组
clear all; A =[ 1.0170 -0.0092 0.0095;

matlabjacobi迭代法

matlabjacobi迭代法

matlabjacobi迭代法Jacobi迭代法是一种求解线性方程组的迭代法,其基本思想是将原方程组的系数矩阵分解为对角部分和非对角部分,对于对角矩阵使用前、后代替法求解,对于非对角部分使用迭代更新法求解。

Jacobi迭代法的基本形式如下:$\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1 \\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2 \\... \\a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n=b_n \\\end{cases}$其中,$a_{ij}$表示系数矩阵的第$i$行第$j$列的元素,$b_i$表示方程组的第$i$个方程的解。

设向量$x^{(k)}=(x_1^{(k)},x_2^{(k)},...,x_n^{(k)})$表示Jacobi迭代法的第$k$次迭代结果,则迭代公式为:$x_i^{(k+1)}=\frac{1}{a_{ii}}(b_i-\sum_{j=1,j\ne i}^n a_{ij}x_j^{(k)}),i=1,2,...,n$迭代公式的意义是,将第$i$个变量的系数$a_{ii}$看成系数矩阵的一个主对角元,将剩下的系数$a_{ij}(i\ne j)$看成非对角元,同时将当前未知量向量$x^{(k)}$看成已知量,利用这些参数求解第$i$个方程中未知量$x_i$。

Jacobi迭代法的收敛条件为原矩阵的对角线元素不为零,且矩阵的任意一行中非对角线元素绝对值之和小于对角线元素绝对值。

在Matlab中,可通过编写函数的方式实现Jacobi迭代法。

函数jacobi实现了迭代公式,并以向量形式返回迭代结果,如下所示:```function xnew = jacobi(A, b, xold)% Jacobi迭代法求解线性方程组Ax=b% A为系数矩阵,b为常数向量,xold为迭代初值% 输出迭代后的解向量xnew% 初始化迭代初值n = length(b);xnew = zeros(n,1);% 迭代更新for i = 1:nxnew(i) = (b(i) - A(i,:)*xold + A(i,i)*xold(i)) / A(i,i);endend```在主程序中可按以下步骤使用函数jacobi求解线性方程组:1.构造系数矩阵A和常数向量b;2.设定迭代初值xold;3.利用jacobi函数求解迭代结果,并对迭代过程进行循环。

matlab 解线性方程组的迭代法

matlab 解线性方程组的迭代法
为消除被测件在测量仪器上的安装定位过程带来的误差,必 须对直接测量的数据进行修正。光轴拟合就是对测量数据的 优化和修正的过程。提出一种光轴拟合的数学模型,该数学 模型结合了解析方法和数值分析方法,考虑了中心偏测量的 实际情况,在严格的数学模型基础上做了合理的简化,使光轴 的拟合问题最终转化为对线性方程组的求解。
迭代过程本质上就是计算极限的过程,一般不能 得到精确解。
迭代法的优点是程序简单,适合于大型方程组求 解,但缺点是要判断迭代是否收敛和收敛速度问题 。 1. 雅可比(Jacobi(1804-1851))迭代法(简单迭代法) 2. 赛得尔 (Seidel (1821 - 1896))迭代法
2、简单迭代法
while(norm(x-x1)>eps) x1=x; x=(I-A)*x1+b; n = n + 1; if(n>=M) disp('Warning: 迭代次数太多,现
在退出!'); return;
end end
例:求解方程组
clear all; A =[ 1.0170 -0.0092 0.0095;
遗传算法是一种基于自然选择的用于求解有约束和无约束 最优问题的方法。遗传算法反复修改包含若干个体的种群 。遗传算法在每一步中,随机从当前种群中选择若干个个 体作为父辈,并用它们产生下一代子辈。在若干代之后, 种群就朝着最优解“进化”。我们可以利用遗传算法去解决 各种最优化问题,包括目标函数是不连续、不可微、随机 或者高度非线性的问题。
若不满足收敛条件,适当调整方程次序或作一 定的线性组合,就可能满足收敛条件。
5、MATLAB的线性方程组求解函数 2
格式
solve('eqn1','eqn2',...,'eqnN','var1,var2,...,varN')

matlab jacobi迭代法代码

matlab jacobi迭代法代码

matlab jacobi迭代法代码Matlab是一种常用的数学软件,它具有强大的矩阵计算和绘图功能。

在数值计算中,迭代法是一种重要的求解方法。

本文将介绍如何使用Matlab实现Jacobi迭代法,并运用实例来说明其应用。

Jacobi迭代法是一种经典的迭代法,用于解线性方程组。

它的基本思想是通过迭代逐步逼近方程组的解。

具体而言,对于线性方程组Ax=b,Jacobi迭代法通过以下步骤进行计算:1. 将方程组表示为x=D^(-1)(L+U)x+b的形式,其中D为A的对角矩阵,L为A的严格下三角矩阵,U为A的严格上三角矩阵。

2. 初始化解向量x^(0)为一个初始猜测值,通常取零向量。

3. 根据迭代公式x^(k+1)=D^(-1)(b-(L+U)x^(k)),计算下一迭代解x^(k+1)。

4. 重复步骤3,直到解向量收敛于方程组的解。

下面是一个使用Matlab实现Jacobi迭代法的示例代码:```matlabfunction x = Jacobi(A, b, maxIter, tolerance)n = size(A, 1);x = zeros(n, 1);xPrev = x;iter = 0;while iter < maxIterfor i = 1:nsigma = A(i, 1:i-1) * xPrev(1:i-1) + A(i, i+1:n) * xPrev(i+1:n);x(i) = (b(i) - sigma) / A(i, i);endif norm(x - xPrev) < tolerancebreak;endxPrev = x;iter = iter + 1;endend```在上面的代码中,函数Jacobi接受四个参数:系数矩阵A,右侧常数向量b,最大迭代次数maxIter和收敛容限tolerance。

函数返回解向量x。

在迭代过程中,我们使用了一个for循环来更新解向量x的每个分量。

用matlab解线性方程组

用matlab解线性方程组

用matlab解线性方程组2008-04-12 17:00一。

高斯消去法1.顺序高斯消去法直接编写命令文件a=[]d=[]'[n,n]=size(a);c=n+1a(:,c)=d;for k=1:n-1a(k+1:n, k:c)=a(k+1:n, k:c)-(a(k+1:n,k)/ a(k,k))*a(k, k:c); %消去endx=[0 0 0 0]' %回带x(n)=a(n,c)/a(n,n);for g=n-1:-1:1x(g)=(a(g,c)-a(g,g+1:n)*x(g+1:n))/a(g,g)end2.列主高斯消去法*由于“[r,m]=max(abs(a(k:n,k)))”返回的行是“k:n,k”内的第几行,所以要通过修正来把m 改成真正的行的值。

该程序只是演示程序,真正机器计算不需要算主元素所在列以下各行应为零的值。

直接编写命令文件a=[]d=[] '[n,n]=size(a);c=n+1a(:,c)=d; %(增广)for k=1:n-1[r,m]=max(abs(a(k:n,k))); %选主m=m+k-1; %(修正操作行的值)if(a(m,k)~=0)if(m~=k)a([k m],:)=a([m k],:); %换行enda(k+1:n, k:c)=a(k+1:n, k:c)-(a(k+1:n,k)/ a(k,k))*a(k, k:c); %消去endendx=[0 0 0 0]' %回带x(n)=a(n,c)/a(n,n);for g=n-1:-1:1x(g)=(a(g,c)-a(g,g+1:n)*x(g+1:n))/a(g,g)end3.分别用顺序高斯消去法和列主高斯消去法解方程组a*x=d,并比较结果a=[0 1 2 3;9 11 23 34;62.5 23.4 15.5 17.2;192.01 124 25.1 59.3] d=[1;1;1;1]顺序高斯消去法:提示“Warning: Divide by zero.” x =NaN NaN NaN NaN 列主高斯消去法:x =-1.2460 2.8796 5.5206 -4.3069由此可见列主高斯消去法可以解决顺序高斯消去法所不能解决的问题。

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较线性方程组的解法有很多种,其中一类常用的方法是迭代法。

迭代法根据一个初值逐步逼近方程组的解,在每一次迭代中利用现有的信息产生新的近似值,并不断地修正。

下面介绍基于Matlab的三种迭代法:雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法,并进行比较。

1. 雅可比迭代法雅可比迭代法是迭代法中最简单的一种方法。

对于线性方程组Ax=b,雅可比迭代法的迭代公式为:x_{i+1}(j)=1/a_{jj}(b_j-\\sum_{k=1,k\eq j}^n a_{jk}x_i(k))其中,i表示迭代次数,j表示未知数的下标,x_i表示第i次迭代的近似解,a_{jk}表示系数矩阵A的第j行第k列元素,b_j 表示方程组的常数项第j项。

在Matlab中,可以使用以下代码实现雅可比迭代:function [x,flag]=jacobi(A,b,X0,tol,kmax)n=length(b);x=X0;for k=1:kmaxfor i=1:nx(i)=(b(i)-A(i,:)*x+A(i,i)*x(i))/A(i,i);endif norm(A*x-b)<tolflag=1;returnendendflag=0;return其中,参数A为系数矩阵,b为常数项列向量,X0为初值列向量,tol为迭代误差容许值(默认为1e-6),kmax为最大迭代次数(默认为1000)。

函数返回值x为近似解列向量,flag表示是否满足容许误差要求。

2. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进。

其基本思想是,每次迭代时,利用已经求出的新解中的信息来更新其他未知数的值。

迭代公式为:x_{i+1}(j)=(1/a_{jj})(b_j-\\sum_{k=1}^{j-1}a_{jk}x_{i+1}(k)-\\sum_{k=j+1}^n a_{jk}x_i(k))与雅可比迭代法相比,高斯-赛德尔迭代法的每一次迭代都利用了前面已求得的近似解,因此可以更快地收敛。

matlab超松弛迭代法求方程组

matlab超松弛迭代法求方程组

一、介绍MATLAB(Matrix Laboratory)是一种用于数值计算和数据可视化的专业软件。

在MATLAB中,超松弛迭代法是解决线性方程组的一种有效算法。

本文将介绍MATLAB中超松弛迭代法的基本原理和实现方法,并给出一个具体的例子进行演示。

二、超松弛迭代法的基本原理超松弛迭代法是一种逐步迭代的算法,用于求解线性方程组。

它的基本原理是通过不断迭代更新方程组的解,直到达到满足精度要求的解。

超松弛迭代法的公式如下:X(k+1) = (1-w)X(k) + w*(D-L)⁻¹*(b+U*X(k))其中,X(k)代表第k次迭代的解向量,X(k+1)代表第k+1次迭代的解向量,D、L和U分别代表方程组的对角线元素、下三角元素和上三角元素构成的矩阵,b代表方程组的右端向量,w代表松弛因子。

超松弛迭代法的关键在于选择合适的松弛因子w,一般情况下,可以通过试验选取一个合适的值。

在MATLAB中,可以使用sor函数来实现超松弛迭代法。

三、MATLAB中超松弛迭代法的实现方法在MATLAB中,可以通过调用sor函数来实现超松弛迭代法。

sor 函数的语法格式如下:[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit)其中,A代表线性方程组的系数矩阵,b代表右端向量,w代表松弛因子,tol代表迭代的精度要求,maxit代表最大迭代次数,X代表迭代求解得到的解向量,flag代表迭代的结果标志,relres代表相对残差的大小,iter代表迭代次数,resvec代表迭代过程中的残差向量。

以下是一个使用sor函数求解线性方程组的示例:A = [4 -1 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 4 -1 0; 0 -1 0 -1 4 -1; 0 0 -1 0 -1 4];b = [1; 0; -1; 0; 1; 0];w = 1.25;tol = 1e-6;maxit = 100;[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit);通过调用sor函数,可以得到方程组的解向量X,迭代的结果标志flag,相对残余resrel和迭代次数iter。

MATLAB代码解线性方程组的迭代法

MATLAB代码解线性方程组的迭代法

MATLAB代码解线性方程组的迭代法解线性方程组的迭代法1.rs里查森迭代法求线性方程组Ax=b的解function[x,n]=rs(A,b,x0,eps,M)if(nargin==3)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-A)*x0+b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend2.crs里查森参数迭代法求线性方程组Ax=b的解function[x,n]=crs(A,b,x0,w,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-w*A)*x0+w*b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend3.grs里查森迭代法求线性方程组Ax=b的解function[x,n]=grs(A,b,x0,W,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%前后两次迭代结果误差%迭代过程while(tol>eps)x=(I-W*A)*x0+W*b;%迭代公式n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend4.jacobi雅可比迭代法求线性方程组Ax=b的解function[x,n]=jacobi(A,b,x0,eps,varargin)if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend5.gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,n]=gauseidel(A,b,x0,eps,M)if nargin==3eps=1.0e-6;M=200;elseif nargin==4M=200;elseif nargin<3errorreturn;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵G=(D-L)\U;f=(D-L)\b;x=G*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=G*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend6.SOR超松弛迭代法求线性方程组Ax=b的解function[x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend7.SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解function[x,n]=SSOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=inv(D-L*w)*((1-w)*D+w*U);B2=inv(D-U*w)*((1-w)*D+w*L);f1=w*inv((D-L*w))*b;f2=w*inv((D-U*w))*b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend8.JOR雅可比超松弛迭代法求线性方程组Ax=b的解function[x,n]=JOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin==5M=10000;endif(w<=0||w>=2)%收敛条件要求error;return;endD=diag(diag(A));%求A的对角矩阵B=w*inv(D);%迭代过程x=x0;n=0;%迭代次数tol=1;%迭代过程while tol>=epsx=x0-B*(A*x0-b);n=n+1;tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend9.twostep两步迭代法求线性方程组Ax=b的解function[x,n]=twostep(A,b,x0,eps,varargin) if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=(D-L)\U;B2=(D-U)\L;f1=(D-L)\b;f2=(D-U)\b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend10.fastdown最速下降法求线性方程组Ax=b的解function[x,n]=fastdown(A,b,x0,eps)if(nargin==3)eps=1.0e-6;endx=x0;n=0;tol=1;while(tol>eps)%以下过程可参考算法流程r=b-A*x0;d=dot(r,r)/dot(A*r,r);x=x0+d*r;tol=norm(x-x0);x0=x;n=n+1;end11.conjgrad共轭梯度法求线性方程组Ax=b的解function[x,n]=conjgrad(A,b,x0)r1=b-A*x0;p=r1;n=0;for i=1:rank(A)%以下过程可参考算法流程if(dot(p,A*p)< 1.0e-50)%循环结束条件break;endalpha=dot(r1,r1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;if(r2< 1.0e-50)%循环结束条件break;endbelta=dot(r2,r2)/dot(r1,r1);p=r2+belta*p;n=n+1;end12.preconjgrad预处理共轭梯度法求线性方程组Ax=b的解function[x,n]=preconjgrad(A,b,x0,M,eps)if nargin==4eps=1.0e-6;endr1=b-A*x0;iM=inv(M);z1=iM*r1;p=z1;n=0;tol=1;while tol>=epsalpha=dot(r1,z1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;z2=iM*r2;belta=dot(r2,z2)/dot(r1,z1);p=z2+belta*p;n=n+1;tol=norm(x-x0);x0=x;%更新迭代值r1=r2;z1=z2;end13.BJ块雅克比迭代法求线性方程组Ax=b的解function[x,N]=BJ(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;%参数的默认值endNS=size(A);n=NS(1,1);if(sum(d)~=n)disp('分块错误!');return;endbnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);%求A的对角分块矩阵endfor i=1:bnumendb=bs(i,1)+d(i,1)-1;invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,bs(i,1):e ndb));%求A的对角分块矩阵的逆矩阵endN=0;tol=1;while tol>=epsx=invDB*(DB-A)*x0+invDB*b;%由于LB+DB=DB-AN=N+1;%迭代步数tol=norm(x-x0);%前后两步迭代结果的误差x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend14.BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,N]=BGS(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角分块矩阵endLB=-tril(A-DB);%求A的下三角分块阵UB=-triu(A-DB);%求A的上三角分块阵N=0;tol=1;while tol>=epsinvDL=inv(DB-LB);x=invDL*UB*x0+invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;end15.BSOR块逐次超松弛迭代法求线性方程组Ax=b的解function[x,N]=BSOR(A,b,x0,d,w,eps,M)if nargin==5eps=1.0e-6;M=10000;elseif nargin<5errorreturnelseif nargin==6M=10000;%参数默认值endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角矩阵endLB=-tril(A-DB);%求A的下三角阵UB=-triu(A-DB);%求A的上三角阵N=0;iw=1-w;while tol>=epsinvDL=inv(DB-w*LB);x=invDL*(iw*DB+w*UB)*x0+w*invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend。

基于matlab的线性方程组迭代法(实验报告)

基于matlab的线性方程组迭代法(实验报告)

基于matlab 的线性方程组迭代法实验题目:实验要求:(1)分别试用 Jacobi 和Gauss-Seidel 迭代法计算,要求达到的精度为:(1)()510k k x x +-∞->(2)观测得到的迭代序列是否收敛?若收敛,记录迭代次数并分析计算结果。

实验流程一、迭代法简介 1、 Jacobi 迭代法对于方程组Ax b =有A 非奇异情况下且0ij a ≠时,A 分裂为A D L U =--,可得到:0x B x f =+,其中1110(),B I D A D L U f D b ---=-=+=,得到雅克比迭代法:(0)(1)()0()k k x xB x f +⎧⎪⎨=+⎪⎩初始向量 2、 Gauss-Seidel 迭代法(0)(1)()()k k x x Gx f +⎧⎪⎨=+⎪⎩初始向量 其中11(),()G D L U f D L b --=-=-。

其迭代法优点为只需一组存储单元。

3、 超松弛迭代法(SOR)Gauss-Seidel 迭代法的一种加速方法,ω松弛因子。

(0)(1)()(1)(1))()(1)k k k k k x x Gx f x x x ωω+++⎧⎪⎪=+⎨⎪=+-⎪⎩(初始向量 其中11(),()G D L U f D L b --=-=-。

二、迭代法的matlab 程序1、 Jacobi 迭代法Jacobi.mfunction [y,n]= Jacobi( A,b,x0,e )%JACOBI ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));B=I-D\A;f=D\b;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=B*y+f;n=n+1;endnend2、Gauss-Seidel迭代法GaussSeidel.mfunction [y,n]= GaussSeidel( A,b,x0,e ) %GS ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=G*y+f;n=n+1;endnend3、超松弛迭代法(SOR) SOR.mfunction [y,n]= SOR( A,b,w,x0,e )%SORÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<5)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ex0=y;x1=G*x0+f;y=(1-w)*x0+w*x1;n=n+1;endnend4、变量初始化creatMatrix.mclear;clc;a=diag(3*ones(1,20));b=diag(-0.5*ones(1,19),1);c=diag(-0.25*ones(1,18),2);A=a+b+b'+c+c';%ϵÊý¾ØÕób=ones(20,1)*7/4;b(1)=9/4;b(20)=9/4;x0=zeros(20,1);A,b,x0,w=1.5建立A数组以及初始化b,松弛因子w,迭代初值x05、程序运行和结果记录solve.mclc;tic,s1=Jacobi(A,b,x0),toctic,s2=GaussSeidel(A,b,x0),toctic,s3=SOR(A,b,w,x0),toc三、计算结果运行程序得到几种方法的计算结果。

MATLAB 块雅克比迭代法求线性方程组Ax=b的解 块高斯-赛德尔迭代法求线性方程组Ax=b的解

MATLAB 块雅克比迭代法求线性方程组Ax=b的解 块高斯-赛德尔迭代法求线性方程组Ax=b的解

function [x,N]= BJ(A,b,x0,d,eps,M) %块雅克比迭代法求线性方程组Ax=b的解if nargin==4eps= 1.0e-6;M = 10000;elseif nargin<4errorreturnelseif nargin ==5M = 10000; %参数的默认值endNS = size(A);n = NS(1,1);if(sum(d) ~= n)disp('分块错误!');return;endbnum = length(d);bs = ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB = zeros(n,n);for i=1:bnumendb = bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):e ndb);%求A的对角分块矩阵endfor i=1:bnumendb = bs(i,1)+d(i,1)-1;invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,b s(i,1):endb));%求A的对角分块矩阵的逆矩阵endN = 0;tol = 1;while tol>=epsx = invDB*(DB-A)*x0+invDB*b; %由于LB+DB=DB-AN =N+1;%迭代步数tol = norm(x-x0); %前后两步迭代结果的误差x0 = x;if(N>=M)disp('Warning: 迭代次数太多,可能不收敛!');return;endendfunction [x,N]= BGS(A,b,x0,d,eps,M) %块高斯-赛德尔迭代法求线性方程组Ax=b的解if nargin==4eps= 1.0e-6;M = 10000;elseif nargin<4errorreturnelseif nargin ==5M = 10000;endNS = size(A);n = NS(1,1);bnum = length(d);bs = ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB = zeros(n,n);for i=1:bnumendb = bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):e ndb);%求A的对角分块矩阵endLB = -tril(A-DB); %求A的下三角分块阵UB = -triu(A-DB); %求A的上三角分块阵N = 0;tol = 1;while tol>=epsinvDL = inv(DB-LB);x = invDL*UB*x0+invDL*b; %块迭代公式N = N+1;tol = norm(x-x0);x0 = x;if(N>=M)disp('Warning: 迭代次数太多,可能不收敛!');return;endend类别:matlab 编程 | | 添加到搜藏 | 分享到i贴吧 | 浏览(168) | 评论(0)上一篇:MATLAB 共轭梯度法求线性方程组A...。

matlab计算方程组

matlab计算方程组

matlab计算方程组Matlab作为一款试用范围广泛的科学计算软件,其计算方程组的能力也是非常强大的。

在Matlab中,可以通过多种方式计算方程组,比如使用直接法、迭代法、线性方程组求解器等等。

下面将分步骤阐述使用Matlab计算方程组的方法。

一、使用直接法求解直接法是一种将系数矩阵直接求逆再与常数向量相乘的方法,通常在方程组的规模较小时使用。

下面是使用Matlab求解线性方程组的示例代码:```matlab% 定义系数矩阵和常数向量A = [1 2 3; 4 5 6; 7 8 9];b = [3; 6; 9];% 求解方程组x = A\b;disp(x);```这段代码首先定义了一个3x3的系数矩阵A和一个3x1的常数向量b,然后使用反斜线符号来求解方程组。

该符号将A的逆矩阵乘上b,得到解向量x。

二、使用迭代法求解当方程组的规模较大时,直接法的计算量可能会非常大,在这种情况下可以使用迭代法来求解方程组。

迭代法的主要思想是通过反复迭代求解来逼近方程组的解。

常见的迭代法有Jacobi迭代法、Gauss-Seidel迭代法等。

以Jacobi迭代法为例,下面是使用Matlab求解线性方程组的示例代码:```matlab% 定义系数矩阵和常数向量A = [1 2 3; 4 5 6; 7 8 9];b = [3; 6; 9];% 定义Jacobi迭代法函数function [x, k] = jacobi(A, b, x0, tol, max_iter)D = diag(diag(A));L = -tril(A, -1);U = -triu(A, 1);x = x0;for k = 1:max_iterx = inv(D)*(b + L*x + U*x);if norm(A*x - b) < tolreturnendendend% 求解方程组x0 = [0; 0; 0];tol = 1e-6;max_iter = 1000;[x, k] = jacobi(A, b, x0, tol, max_iter);disp(x);```这段代码首先定义了一个3x3的系数矩阵A和一个3x1的常数向量b,然后定义了一个Jacobi迭代法的函数来求解方程组。

matlab迭代法解方程

matlab迭代法解方程

matlab迭代法解方程在MATLAB中,可以使用迭代法求解方程。

迭代法的一般步骤如下:1. 选择一个初始猜测值。

2. 根据某种迭代公式,计算下一个近似解。

3. 根据设定的停止准则,判断迭代是否结束。

常见的停止准则可以是近似解的相对误差小于某个给定的值,或者迭代次数达到了预设的最大次数。

4. 如果迭代未结束,将计算得到的近似解作为新的猜测值,回到步骤2;否则,停止迭代,并输出最终的近似解。

下面是一个使用迭代法求解方程的示例代码:```matlabfunction x = iterativeMethod(equation, x0, epsilon, maxIter)syms x;f = equation;df = diff(f, x);x_prev = x0;for i = 1:maxIterx_new = x_prev - subs(f, x, x_prev) / subs(df, x, x_prev);if abs(x_new - x_prev) < epsilonx = x_new;return;endx_prev = x_new;enderror('Maximum iteration reached. No solution found.');end```使用该函数时,需要传入四个参数:`equation`是方程的符号表达式,`x0`是初始猜测值,`epsilon`是停止迭代的相对误差阈值,`maxIter`是最大迭代次数。

例如,要求方程sin(x) - x^2 = 0的解,可以使用以下代码:```matlabequation = sin(x) - x^2;x0 = 1;epsilon = 1e-6;maxIter = 100;x = iterativeMethod(equation, x0, epsilon, maxIter);disp(x);```该代码会输出方程sin(x) - x^2 = 0的近似解。

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)1.回溯法(系数矩阵为上三角)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));2.系数矩阵为下三角function x=matrix_down(A,b)%求解系数矩阵是下三角的方程组n=length(b);x=zeros(n,1);x(1)=b(1)/A(1,1);for k=2:1:nx(k)=(b(k)-A(k,1:k-1)*x(1:k-1))/A(k,k);end3.普通系数矩阵(先化为上三角,在用回溯法)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));4.三角分解法function [X,L,U]=LU_matrix(A,B)%A是非奇异矩阵%AX=B化为LUX=B,L为下三角,U为上三角%程序中并没有真正解出L和U,全部存放在A中[N,N]=size(A);X=zeros(N,1);Y=zeros(N,1);C=zeros(1,N);R=1:N;for p=1:N-1[max1,j]=max(abs(A(p:N,p)));C=A(p,:);A(p,:)=A(j+p-1,:);A(j+p-1,:)=C;d=R(p);R(p)=R(j+p-1);R(j+p-1)=d;if A(p,p)==0'A is singular.No unique solution'break;endfor k=p+1:Nmult=A(k,p)/A(p,p);A(k,p)=mult;A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);endendY(1)=B(R(1));for k=2:NY(k)=B(R(k))-A(k,1:k-1)*Y(1:k-1);endX(N)=Y(N)/A(N,N);for k=N-1:-1:1X(k)=(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k);endL=tril(A,-1)+eye(N)U=triu(A)5.雅克比迭代法function X=jacobi(A,B,P,delta,max1);%雅克比迭代求解方程组N=length(B);for k=1:max1for j=1:NX(j)=(B(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);enderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)breakendendX=X';k6.盖斯迭代法function X=gseid(A,B,P,delta,max1);%盖斯算法,求解赋初值的微分方程N=length(B);for k=1:max1for j=1:Nif j==1X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1);elseif j==NX(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);elseX(j)=(B(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);endenderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)break;endendX=X';k。

matlab-线性方程组的迭代解法-GaussSeidel

matlab-线性方程组的迭代解法-GaussSeidel

实验1:线性方程组的迭代解法1、实验环境MATLAB2009A2、实验目的和要求目的:利用Gauss-Seidel编程法求解方程组要求:代码能列出每一次迭代的中间值3、解题思路、代码3.1解题思路Gauss-Seidel迭代公式:x i(k+1)=(b i-∑-=1i i j a ij x j(k+1)-∑+=nij1a ij x j(k))/a ij(i=1,2,…,n)3.2 代码function x = GaussSeidel(A, b, es, maxit)% GaussSeidel: Gauss Seidel method% x = GaussSeidel(A, b):Gauss Seidel without relaxation% input:% A = coefficient matrix% b = right hand side vector% es = stop criterion(default = 0.00001%)% maxit = max iteration (default = 50)% output:% x = solution vectorif nargin < 2, error('at least 2 input arguments required'), end if nargin<4 | isempty(maxit), maxit=50; endif nargin<3 | isempty(es), es=0.00001; endk=0xk=[0 0 0 0][m, n] = size(A);if m~=n, error('Matrix A must be square'); endC = A;for i = 1:nC(i,i) = 0;x(i) = 0;endx = x';for i = 1:nC(i,1:n) = C(i,1:n)/A(i,i);endfor i = 1:nd(i) = b(i)/A(i,i);enditer = 0;while(1)xold = x;for i = 1:nx(i) = d(i)-C(i,:)*x;if x(i) ~= 0ea(i) = abs((x(i)-xold(i))/x(i)) * 100;endendk=k+1xk=x'%此行不打分号,并且转置,以便于输出每次迭代的结果 iter=iter + 1;if (max(ea)<=es | iter == maxit) break; end endend4、实验步骤4.1输入:4.2输出:……………….5、讨论和分析GaussSeidel迭代法是通过利用x i(k+1)=(b i-∑-=1i i j a ij x j(k+1)-∑+=nij1a ij x j(k))/a ij(i=1,2,…,n)这个公式,经过若干次运算,使结果越来越逼近方程的真实解。

基于Matlab实现线性方程组的迭代解法

基于Matlab实现线性方程组的迭代解法

-41111-411 11b=1111第3 3 卷第5 期武夷学院学报Vol〃3 3 No〃5 2 0 1 4 年 1 0 月JOURNAL OF WUYI UNIVERSITY O CT 〃2014基于M a t l a b 实现线性方程组的迭代解法王学彬(武夷学院数学与计算机学院,福建武夷山354300)摘要:本文结合求解线性方程组的迭代法,介绍了如何利用M a t L a b软件求解线性方程组,并给出具体实例。

关键词:M a t l a b;线性方程组;数值解中图分类号:O241〃6文献标识码:A文章编号:1674-2109(2014)05-0006-04DOI:10.14155/ki.35-1293/g4.2014.05.002 1 M a t l a b 软件和迭代法简介并对运行结果进行分析。

(要求计算精度为10-5)例1 利用迭代法解线性方程组 A x = b ,M a t l a b是由T h e M a t h W o r k s公司开发的一套强大的数学软件,现已成为国际上最流行的科学计算与工程计算软件工具之一,M a t l a b主要面对科学计算、可视化及交互式程序设计的高科技计算环境,这使得111111111111-411111111-411111111111111111111111111111111111111111 1111111它的使用不仅仅局限在控制领域和数值分析领域内,在金融分析、神经网络、优化、虚拟现实等许多领域也都被广泛使用1-2。

M a t l a b在数值计算中有着其它软件无法比拟的优势,文献3-5考虑了基于M a t l a b求解常微分方程及在微积分中的一些应用。

本文将介绍如何利用M a t l a b实现线性方程组的迭代解法。

设有线性方程组A x=b,A为非奇异矩阵,首先将A分裂为A=M-N。

其中M一般选择为A的某种近似,且为非奇异矩阵,可称其为分裂矩阵,由分裂矩阵选取的不同,得到不同的迭代法,常见的有雅可比迭代法、高斯-塞德尔迭代法、逐次超松弛迭代法6。

matlab迭代法解线性方程组

matlab迭代法解线性方程组

function x=ak(a,b)%a为系数矩阵,b为初始向量(默认为零向量)
%e为精度(默认为1e-6),N为最大迭代次数(默认为100),x为返回解向量
n=length(b);
N=100;
e=1e-6;
x0=zeros(n,1)
%生成一n*1阶零矩阵
x=x0;
x0=x+2*e;
k=0;
d=diag(diag(a));
%生成一个除对角线上元素不为零外其他元素皆为零的矩阵d,且d对角线上的元素为矩阵a 对角线上的元素
l=-tril(a,-1);
%生成一个下三角矩阵
u=-triu(a,1);
%生成一个上三角矩阵
while norm(x0-x,inf)>e & k<N %norm(x0-x,inf)为矩阵(x0-x)的无穷范数
k=k+1;
x0=x;
x=inv(d)*(l+u)*x+inv(d)*b;%雅可比迭代公式k
disp(x')
end
if k==N warning('已达最大迭代次数'); end
function X=BDD(f,x0,TOL)
%X用来存储迭代过程所有的根;
%f是符合不动点迭代要求的迭代方程;%x0设定的迭代初值;
%TOL允许的误差值;
x=feval(f,x0);
n=1;
X(:,n)=x;
while abs(x-x0)>TOL
x0=x;
x=feval(f,x0);
n=n+1;
X(:,n)=x;
end。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解线性方程组的迭代法1.rs里查森迭代法求线性方程组Ax=b的解function[x,n]=rs(A,b,x0,eps,M)if(nargin==3)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==4)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-A)*x0+b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend2.crs里查森参数迭代法求线性方程组Ax=b的解function[x,n]=crs(A,b,x0,w,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-w*A)*x0+w*b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend3.grs里查森迭代法求线性方程组Ax=b的解function[x,n]=grs(A,b,x0,W,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%前后两次迭代结果误差%迭代过程while(tol>eps)x=(I-W*A)*x0+W*b;%迭代公式n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend4.jacobi雅可比迭代法求线性方程组Ax=b的解function[x,n]=jacobi(A,b,x0,eps,varargin)if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend5.gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,n]=gauseidel(A,b,x0,eps,M)if nargin==3eps=1.0e-6;M=200;elseif nargin==4M=200;elseif nargin<3errorreturn;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵G=(D-L)\U;f=(D-L)\b;x=G*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=G*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend6.SOR超松弛迭代法求线性方程组Ax=b的解function[x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend7.SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解function[x,n]=SSOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=inv(D-L*w)*((1-w)*D+w*U);B2=inv(D-U*w)*((1-w)*D+w*L);f1=w*inv((D-L*w))*b;f2=w*inv((D-U*w))*b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend8.JOR雅可比超松弛迭代法求线性方程组Ax=b的解function[x,n]=JOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin==5M=10000;endif(w<=0||w>=2)%收敛条件要求error;return;endD=diag(diag(A));%求A的对角矩阵B=w*inv(D);%迭代过程x=x0;n=0;%迭代次数tol=1;%迭代过程while tol>=epsx=x0-B*(A*x0-b);n=n+1;tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend9.twostep两步迭代法求线性方程组Ax=b的解function[x,n]=twostep(A,b,x0,eps,varargin)if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=(D-L)\U;B2=(D-U)\L;f1=(D-L)\b;f2=(D-U)\b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend10.fastdown最速下降法求线性方程组Ax=b的解function[x,n]=fastdown(A,b,x0,eps)if(nargin==3)eps=1.0e-6;endx=x0;n=0;tol=1;while(tol>eps)%以下过程可参考算法流程r=b-A*x0;d=dot(r,r)/dot(A*r,r);x=x0+d*r;tol=norm(x-x0);x0=x;n=n+1;end11.conjgrad共轭梯度法求线性方程组Ax=b的解function[x,n]=conjgrad(A,b,x0)r1=b-A*x0;p=r1;n=0;for i=1:rank(A)%以下过程可参考算法流程if(dot(p,A*p)< 1.0e-50)%循环结束条件break;endalpha=dot(r1,r1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;if(r2< 1.0e-50)%循环结束条件break;endbelta=dot(r2,r2)/dot(r1,r1);p=r2+belta*p;n=n+1;end12.preconjgrad预处理共轭梯度法求线性方程组Ax=b的解function[x,n]=preconjgrad(A,b,x0,M,eps)if nargin==4eps=1.0e-6;endr1=b-A*x0;iM=inv(M);z1=iM*r1;p=z1;n=0;tol=1;while tol>=epsalpha=dot(r1,z1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;z2=iM*r2;belta=dot(r2,z2)/dot(r1,z1);p=z2+belta*p;n=n+1;tol=norm(x-x0);x0=x;%更新迭代值r1=r2;z1=z2;end13.BJ块雅克比迭代法求线性方程组Ax=b的解function[x,N]=BJ(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;%参数的默认值endNS=size(A);n=NS(1,1);if(sum(d)~=n)disp('分块错误!');return;endbnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);%求A的对角分块矩阵endfor i=1:bnumendb=bs(i,1)+d(i,1)-1;invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,bs(i,1):endb));%求A的对角分块矩阵的逆矩阵endN=0;tol=1;while tol>=epsx=invDB*(DB-A)*x0+invDB*b;%由于LB+DB=DB-AN=N+1;%迭代步数tol=norm(x-x0);%前后两步迭代结果的误差x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend14.BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,N]=BGS(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);%求A的对角分块矩阵endLB=-tril(A-DB);%求A的下三角分块阵UB=-triu(A-DB);%求A的上三角分块阵N=0;tol=1;while tol>=epsinvDL=inv(DB-LB);x=invDL*UB*x0+invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend15.BSOR块逐次超松弛迭代法求线性方程组Ax=b的解function[x,N]=BSOR(A,b,x0,d,w,eps,M)if nargin==5eps=1.0e-6;M=10000;elseif nargin<5errorreturnelseif nargin==6M=10000;%参数默认值endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);%求A的对角矩阵endLB=-tril(A-DB);%求A的下三角阵UB=-triu(A-DB);%求A的上三角阵N=0;tol=1;iw=1-w;while tol>=epsinvDL=inv(DB-w*LB);x=invDL*(iw*DB+w*UB)*x0+w*invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend。

相关文档
最新文档