高中物理-电学中的动量和能量问题专题训练与解析

合集下载

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合专项练习题1.如图所示,在平直轨道上P点静止放置一个质量为2m的物体A,P点左侧粗糙,右侧光滑。

现有一颗质量为m 的子弹以v0的水平速度射入物体A并和物体A一起滑上光滑平面,与前方静止物体B发生弹性正碰后返回,在粗糙面滑行距离d停下。

已知物体A与粗糙面之间的动摩擦因数为μ=v2072gd,求:(1)子弹与物体A碰撞过程中损失的机械能;(2)B物体的质量。

2.如图所示,水平光滑地面的右端与一半径R=0.2 m的竖直半圆形光滑轨道相连,某时刻起质量m2=2 kg的小球在水平恒力F的作用下由静止向左运动,经时间t=1 s 撤去力F,接着与质量m1=4 kg以速度v1=5 m/s向右运动的小球碰撞,碰后质量为m1的小球停下来,质量为m2的小球反向运动,然后与停在半圆形轨道底端A点的质量m3=1 kg的小球碰撞,碰后两小球粘在一起沿半圆形轨道运动,离开B点后,落在离A点0.8 m的位置,求恒力F 的大小。

(g取10 m/s2)3.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。

求(1)小球b碰后瞬间的速度;(2)小球a 碰后在轨道中能上升的最大高度。

4.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求:(1)摆到最低点B ,女演员未推男演员时秋千绳的拉力;(2)推开过程中,女演员对男演员做的功;(3)男演员落地点C 与O 点的水平距离s .5.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。

动量与能量综合专题

动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。

当两个或多个物体相互作用时,它们的总动量保持不变。

这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。

在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。

2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。

3、方向:动量是矢量,具有方向性。

在计算动量的变化时,需要考虑动量的方向。

二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。

这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。

在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。

2、转化与转移:能量的转化和转移是不同的。

转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。

3、方向:能量的转化和转移是有方向的。

在计算能量的变化时,需要考虑能量的方向。

三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。

当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。

因此,在解决复杂问题时,需要综合考虑动量和能量的因素。

例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。

这些情况的发生不仅与物体的动量有关,还与物体的能量有关。

如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。

因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。

四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。

17物理大题:电感感应中动量、能量问题

17物理大题:电感感应中动量、能量问题

专题17电感感应中动量、能量问题【例题】(2023·福建漳州·统考二模)如图甲,abcd和a′b′c′d′为在同一水平面内的固定光滑平行金属导轨,ab段和a′b′段间距为2L,cd段和c′d′段间距为L、整个导轨处于方向竖直向下的匀强磁场中,bcc′b′左侧导轨间的磁感应强度大小为B0,bcc′b′右侧导轨间的磁感应强度大小按图乙规律变化,图中t0为已知量,两根相同金属杆M、N分别垂直两侧导轨放置,N杆与cc′之间恰好围成一个边长为L的正方形,M杆中点用一不可伸长绝缘细线通过轻质定滑轮与一重物相连,重物离地面的高度为L,细绳处于伸直状态且与M杆垂直,t=0时刻释放重物,同时在N杆中点处施加一水平拉力,使两杆在0~t0时间内均处于静止状态。

已知M、N杆和重物的质量都为m,不计导轨电阻,重力加速度为g。

(1)求0~t0时间内回路的感应电动势E;(2)求0~t0时间内,施加在N杆上的拉力F随时间t变化的函数关系式;(3)从t0时刻开始,保持拉力F不变,若重物下落的过程中,回路产生的总热量为Q,求重物落地时N杆的速度大小v。

“双轨+双杆”模型如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,ab棒以初速度v0向右滑动.运动过程中,ab、cd棒始终与导轨垂直并接触良好.模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab棒受到水平向左的安培力,向右减速;cd棒受到水平向右的安培力,向右加速,最终导体棒ab、cd共速,感应电流消失,一起向右做匀速直线运动,该过程导体棒ab、cd组成的系统所受合外力为零,动量守恒:m ab v0=(m ab+m cd)v共,若ab棒、cd棒所在导轨不等间距,则动量不守恒,可考虑运用动量定理求解.【特别提醒】等距导轨上的双棒模型常见情景(以水平光滑导轨为例)过程分析动量观点的应用双棒切割式棒MN 做变减速运动,棒PQ 做变加速运动,稳定时,两棒的加速度均为零,以相同的速度匀速运动等长双棒所受的合外力为零,系统利用动量守恒定律求末速度,单棒利用动量定理求电荷量、相对位移题型二动量定理在电磁感应中的应用关于电磁感应的一些问题中,物体做变加速运动,无法直接应用运动学公式或动能定理求解时,特别是涉及到求电荷量,变加速运动的时间、位移时,可用动量定理解决.练后反馈1、单棒+电阻模型2、不等距导轨上的双棒模型常见情景(以水平光滑导轨为例)过程分析动量观点的应用不等距导轨棒MN 做变减速运动,棒PQ 做变加速运动,稳定时,两棒的加速度均为零,两棒以不同的速度做匀速运动,所围的面积不变,末速度满足关系式v 1L 1=v 2L 2双棒所受的合外力不为零,系统动量不守恒,对每个棒分别用动量定理列式,联立末速度关系求末速度3、棒+电容器模型(电阻阻值为R,电容器电容为无外力,电容器放电(电源电动势为计,电容器电容为导体棒相当于电源,电容器被充电电容器放电,相当于电源;体棒受安培力而运动安培力为阻力,棒减速,BLv-U CR,电容器被充电=U C时,I=0,电容器放电时,导体棒在安培力作用下开始运动,放电,导致电流减小,流为零,此时U Ca减小的减速运动,时I=0,但电容器带电荷量不为零a减小的加速运动,最终匀速运动,I=0电容器充的电荷量:最终电容器两端电压【变式训练】(2023·福建厦门·统考二模)如图所示,间距均为L的光滑平行倾斜导轨与光滑平行水平导轨在M、N处平滑连接,虚线MN右侧存在方向竖直向下、磁感应强度为B的匀强磁场。

动量与能量部分习题分析与解答共23页

动量与能量部分习题分析与解答共23页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。量与能量部分习题分析与解 答
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

高中物理-力学中的动量和能量问题专题训练与解析

高中物理-力学中的动量和能量问题专题训练与解析

第1课时力学中的动量和能量问题高考命题点命题轨迹情境图动量定理和动量守恒定律的应用20161卷35(2)17(3)20题20172卷15,3卷2020191卷16“碰撞模型”问题20151卷35(2),2卷35(2)15(1)35(2)题15(2)35(2)题16(3)35(2)题18(2)24题19(1)25题20163卷35(2)20182卷15、2420191卷25“爆炸模型”和“反冲模20171卷1420181卷24型”问题19(3)25题20193卷25“板块模型”问题20162卷35(2)16(2)35(2)题1.动量定理(1)公式:Ft=p′-p,除表明等号两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.(2)意义:动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′(系统相互作用前总动量p等于相互作用后总动量p′),或Δp=0(系统总动量的变化量为零),或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的变化量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统所受外力的合力不为零,但在某一方向上系统受到的合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三大观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法(1)对多个物理过程进行整体分析,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体分析,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).类型1动量定理的应用例1(2019·全国卷Ⅰ·16)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为3km/s,产生的推力约为4.8×106N,则它在1s时间内喷射的气体质量约为()A .1.6×102kgB .1.6×103kgC .1.6×105kgD .1.6×106kg 答案B解析设1s 时间内喷出的气体的质量为m ,喷出的气体与该发动机的相互作用力为F ,由动量定理有Ft =m v -0,则m =Ft v =4.8×106×13×103kg =1.6×103kg ,选项B 正确.拓展训练1(2019·湖北武汉市二月调研)运动员在水上做飞行运动表演,他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图1所示.已知运动员与装备的总质量为90kg ,两个喷嘴的直径均为10cm ,已知重力加速度大小g =10m /s 2,水的密度ρ=1.0×103kg/m 3,则喷嘴处喷水的速度大约为()图1A .2.7m /sB .5.4m/sC .7.6m /sD .10.8m/s答案C解析设Δt 时间内一个喷嘴中有质量为m 的水喷出,忽略水的重力冲量,对两个喷嘴喷出的水由动量定理得:F Δt =2m vm =ρv Δt ·πd 24因运动员悬停在空中,则F =Mg 联立代入数据解得:v ≈7.6m/s ,故C 正确.类型2动量定理和动量守恒定律的应用例2(2019·河北省“五个一名校联盟”第一次诊断)观赏“烟火”表演是每年“春节”庆祝活动的压轴大餐.某型“礼花”底座仅用0.2s 的发射时间,就能将5kg 的礼花弹竖直抛上180m 的高空.(忽略发射底座高度,不计空气阻力,g 取10m/s 2).(1)“礼花”发射时燃烧的火药对礼花弹的作用力约是多少?(2)某次试射,当礼花弹到达最高点180m 的高空时爆炸为沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得两块落地点间的距离s =900m ,落地时两者的速度相互垂直,则两块的质量各为多少?答案见解析解析(1)设礼花弹竖直抛上180m 高空用时为t ,由竖直上抛运动的对称性知:h =12gt 2代入数据解得:t =6s设发射时间为t 1,火药对礼花弹的作用力为F ,对礼花弹发射到180m 高空运用动量定理有:Ft 1-mg (t +t 1)=0代入数据解得:F =1550N ;(2)设礼花弹在180m 高空爆炸时分裂为质量为m 1、m 2的两块,对应水平速度大小为v 1、v 2,方向相反,礼花弹爆炸时该水平方向合外力为零,由动量守恒定律有:m 1v 1-m 2v 2=0且有:m 1+m 2=m由平抛运动的规律和题目落地的距离条件有:(v 1+v 2)t =s设落地时竖直速度为v y ,落地时两块的速度相互垂直,如图所示,有:tan θ=v y v 1=v 2v y又v y =gt1=1kg2=4kg 1=4kg2=1kg拓展训练2(多选)(2019·福建厦门市上学期期末质检)如图2所示,一质量M =2.0kg 的长木板B 放在光滑水平地面上,在其右端放一个质量m =1.0kg 的小物块A .给A 和B 以大小均为3.0m/s 、方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B 板.下列说法正确的是()图2A .A 、B 共速时的速度大小为1m/sB .在小物块A 做加速运动的时间内,木板B 速度大小可能是2m/sC .从A 开始运动到A 、B 共速的过程中,木板B 对小物块A 的水平冲量大小为2N·sD .从A 开始运动到A 、B 共速的过程中,小物块A 对木板B 的水平冲量方向向左答案AD 解析设水平向右为正方向,根据动量守恒定律得:M v -m v =(M +m )v 共,解得v 共=1m /s ,A 正确;在小物块向左减速到速度为零时,设长木板速度大小为v 1,根据动量守恒定律:Mv -m v =M v 1,解得:v 1=1.5m/s ,所以当小物块反向加速的过程中,木板继续减速,木板的速度必然小于1.5m/s ,所以B 错误;根据动量定理,A 、B 相互作用的过程中,木板B 对小物块A 的水平冲量大小为I =m v 共+m v =4N·s ,故C 错误;根据动量定理,A 对B 的水平冲量I ′=M v 共-M v =-4N·s ,负号代表与正方向相反,即向左,故D 正确.1.模型介绍碰撞模型主要是从运动情景和解题方法高度相似角度进行归类.模型具体有以下几种情况:(水平面均光滑)①物体与物体的碰撞;②子弹打木块;③两个物体压缩弹簧;④两个带电体在光滑绝缘水平面上的运动等.2.基本思路(1)弄清有几个物体参与运动,并分析清楚物体的运动过程.(2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面(仅有重力做功),不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.3.方法选择(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及位移和时间,且受到恒力作用,应使用牛顿运动定律.(3)若物体(或系统)涉及位移和速度,应考虑使用动能定理,运用动能定理解决曲线运动和变加速运动问题特别方便.(4)若物体(或系统)涉及速度和时间,应考虑使用动量定理.例3(2019·山东日照市3月模拟)A 、B 两小球静止在光滑水平面上,用水平轻弹簧相连接,A 、B 两球的质量分别为m 和M (m <M ).若使A 球获得瞬时速度v (如图3甲),弹簧压缩到最短时的长度为L 1;若使B 球获得瞬时速度v (如图乙),弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为()图3A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定答案C解析当弹簧压缩到最短时,两球的速度相同,对题图甲取A 的初速度方向为正方向,由动量守恒定律得:m v =(m +M )v ′由机械能守恒定律得:E p =12m v 2-12(m +M )v ′2联立解得弹簧压缩到最短时有:E p =mM v 22(m +M )同理:对题图乙取B 的初速度方向为正方向,当弹簧压缩到最短时有:E p =mM v 22(m +M )故弹性势能相等,则有:L 1=L 2,故A 、B 、D 错误,C 正确.拓展训练3(2019·四川省第二次诊断)如图4甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为()图4A.1v 0(s +L ) B.1v 0(s +2L )C.12v 0(s +L ) D.1v 0(L +2s )答案D解析子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有:m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理:-F f (s +L )=12m v 12-12m v 02,由动量定理:-F f t =m v 1-m v 0,对木块由动能定理:F f s =12m v 22,由动量定理:F f t =m v 2,联立解得:t =1v 0(L +2s ),故选D.例4(2019·全国卷Ⅰ·25)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B 静止于水平轨道的最左端,如图5(a)所示.t =0时刻,小物块A 在倾斜轨道上从静止开始下滑,一段时间后与B 发生弹性碰撞(碰撞时间极短);当A 返回到倾斜轨道上的P 点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止.物块A 运动的v -t 图象如图(b)所示,图中的v 1和t 1均为未知量.已知A 的质量为m ,初始时A 与B 的高度差为H ,重力加速度大小为g ,不计空气阻力.图5(1)求物块B 的质量;(2)在图(b)所描述的整个运动过程中,求物块A 克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等.在物块B 停止运动后,改变物块与轨道间的动摩擦因数,然后将A 从P 点释放,一段时间后A 刚好能与B 再次碰上.求改变前后动摩擦因数的比值.答案(1)3m (2)215mgH (3)119解析(1)根据题图(b),v 1为物块A 在碰撞前瞬间速度的大小,v 12为其碰撞后瞬间速度的大小.设物块B 的质量为m ′,碰撞后瞬间的速度大小为v ′.由动量守恒定律和机械能守恒定律有m v 1=m ′v ′①12m v 12=12m -12v +12m ′v ′2②联立①②式得m ′=3m ;③(2)在题图(b)所描述的运动中,设物块A 与轨道间的滑动摩擦力大小为F f ,下滑过程中所经过的路程为s 1,返回过程中所经过的路程为s 2,P 与B 的高度差为h ,整个过程中克服摩擦力所做的功为W .由动能定理有mgH -F f s 1=12m v 12-0④-(F f s 2+mgh )=0-12m ⑤从题图(b)所给出的v -t 图线可知s 1=12v 1t 1⑥s 2=12·v 12·(1.4t 1-t 1)⑦由几何关系得:s 2s 1=hH⑧物块A 在整个运动过程中克服摩擦力所做的功为W =F f s 1+F f s 2⑨联立④⑤⑥⑦⑧⑨式可得W =215mgH ;⑩(3)设倾斜轨道倾角为θ,物块与轨道间的动摩擦因数在改变前为μ,有W =μmg cos θ·H +hsin θ⑪设物块B 在水平轨道上能够滑行的距离为s ′,由动能定理有-μm ′gs ′=0-12m ′v ′2⑫设改变后的动摩擦因数为μ′,由动能定理有mgh -μ′mg cos θ·hsin θ-μ′mgs ′=0⑬联立①③④⑤⑥⑦⑧⑩⑪⑫⑬式可得μμ′=119.⑭拓展训练4(2019·福建泉州市质量检查)在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v ,儿子的速度大小为2v .两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t 停止运动.已知父亲和车的总质量为3m ,儿子和车的总质量为m ,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g ,求:(1)碰后瞬间父亲的速度大小和此后父亲能滑行的最大距离;(2)碰撞过程父亲坐的车对儿子坐的车的冲量大小.答案(1)μgt 12μgt 2(2)3m v -3μmgt解析(1)设碰后瞬间父亲的速度大小为v 1,由动量定理可得-μ·3mgt =0-3m v 1得v 1=μgt设此后父亲能滑行的最大距离为s ,由动能定理可得-μ·3mgs =0-12×3m v 12得s =12μgt 2(2)设碰后瞬间儿子的速度大小为v 2,取父亲的运动方向为正方向,由动量守恒定律可得3m v -m ·2v =3m v 1+m v 2设碰撞过程父亲坐的车对儿子坐的车的冲量大小为I ,由动量定理可得I =m v 2-(-m ·2v )解得I =3m v -3μmgt例5(2019·全国卷Ⅲ·25)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0kg ,m B =4.0kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0m ,如图6所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.图6(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少?(3)A 和B 都停止后,A 与B 之间的距离是多少?答案(1)4.0m /s 1.0m/s (2)物块B 先停止0.50m (3)0.91m解析(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正方向,由动量守恒定律和题给条件有0=m A v A -m B v B ①E k =12m A v A 2+12m B v B 2②联立①②式并代入题给数据得v A =4.0m/s ,v B =1.0m/s ③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④s B =v B t -12at 2⑤v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得s A =1.75m ,s B =0.25m ⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25m 处.B 位于出发点左边0.25m 处,两物块之间的距离s 为s =0.25m +0.25m =0.50m ⑨(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有12m A v A ′2-12m A v A 2=-μm A g (2l +s B )⑩联立③⑧⑩式并代入题给数据得v A ′=7m/s ⑪故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有m A (-v A ′)=m A v A ″+m B v B ″⑫12m A v A ′2=12m A v A ″2+12m B v B ″2⑬联立⑪⑫⑬式并代入题给数据得v A ″=375m/s ,v B ″=-275m/s ⑭这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式2as A ′=v A ″2,2as B ′=v B ″2⑮由④⑭⑮式及题给数据得s A ′=0.63m ,s B ′=0.28m ⑯s A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离s ′=s A ′+s B ′=0.91m拓展训练5(2019·云南昆明市4月质检)科研人员乘热气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为M =200kg.热气球在空中以v 0=0.1m /s 的速度匀速下降,距离水平地面高度h =186m 时科研人员将质量m =20k g 的压舱物竖直向下抛出,抛出后6s 压舱物落地.此过程中压舱物所受空气阻力可忽略不计,热气球所受浮力不变,重力加速度取g =10m/s 2,求:(1)压舱物刚被抛出时的速度大小;(2)压舱物落地时热气球距离水平地面的高度.答案(1)1m/s (2)206m 解析(1)设压舱物抛出时的速度为v 1,热气球的速度为v 2压舱物抛出后做竖直下抛运动,由运动学规律有:h =v 1t +12gt 2代入数据得到:v 1=1m/s(2)热气球和压舱物组成的系统动量守恒,以v 0的方向为正方向,M v 0=m v 1+(M -m )v 2代入数据得到:v 2=0设热气球所受浮力为F ,则F =Mg压舱物抛出后对热气球进行受力分析,由牛顿第二定律有:F -(M -m )g =(M -m )a代入数据得到:a =109m/s 2热气球6s 上升的高度为:h 2=v 2t +12at 2代入数据得到:h 2=20m 则H =h 1+h 2=206m.例6(2019·河南省九师联盟质检)如图7所示,在光滑水平面上有B 、C 两个木板,B 的上表面光滑,C 的上表面粗糙,B 上有一个可视为质点的物块A ,A 、B 、C 的质量分别为3m 、2m 、m .A 、B 以相同的初速度v 向右运动,C 以速度v 向左运动.B 、C 的上表面等高,二者发生完全非弹性碰撞但并不粘连,碰撞时间很短.A 滑上C 后恰好能到达C 的中间位置,C 的长度为L ,不计空气阻力.求:图7(1)木板C 的最终速度大小;(2)木板C 与物块A 之间的摩擦力F f 大小;(3)物块A 滑上木板C 之后,在木板C 上做减速运动的时间t .答案(1)56v (2)m v 23L(3)3L 2v解析(1)设水平向右为正方向,B 、C 碰撞过程中动量守恒:2m v -m v =(2m +m )v 1解得v 1=v3A 滑到C 上,A 、C 动量守恒:3m v +m v 1=(3m +m )v 2解得v 2=56v ;(2)根据能量关系可知,在A 、C 相互作用过程中,木板C 与物块A 之间因摩擦产生的热量为Q =12(3m )v 2+12m v 12-12(3m +m )v 22Q =F f ·L 2联立解得F f =m v 23L;(3)在A 、C 相互作用过程中,以C 为研究对象,由动量定理得F f t =m v 2-m v 1解得t =3L2v.拓展训练6(2019·四川攀枝花市第二次统考)如图8所示,质量m =1kg 的小物块静止放置在固定水平台的最左端,质量M =2kg 的小车左端紧靠平台静置在光滑水平地面上,平台、小车的长度l 均为0.6m .现对小物块施加一水平向右的恒力F ,使小物块开始运动,当小物块到达平台最右端时撤去恒力F ,小物块刚好能够到达小车的右端.小物块大小不计,与平台间、小车间的动摩擦因数μ均为0.5,重力加速度g 取10m/s 2,求:图8(1)小物块离开平台时速度的大小;(2)水平恒力F 对小物块冲量的大小.答案(1)3m/s (2)5N·s 解析(1)设撤去水平向右的恒力F 时小物块的速度大小为v 0,小物块和小车的共同速度大小为v 1.从撤去恒力到小物块到达小车右端过程,以v 0的方向为正方向,对小物块和小车组成的系统:由动量守恒:m v 0=(m +M )v 1由能量守恒:12m v 02=12(m +M )v 12+μmgl联立以上两式并代入数据得:v 0=3m/s(2)设水平恒力F 对小物块冲量的大小为I ,小物块在平台上运动的时间为t .小物块在平台上运动的过程,对小物块:由动量定理:I -μmgt =m v 0-0由运动学规律:l =v 02·t联立并代入数据得:I =5N·s.专题强化练(限时45分钟)1.(多选)(2019·安徽宣城市第二次模拟)如图1,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽上高h 处由静止开始自由下滑,则()图1A .在小球下滑的过程中,小球和槽组成的系统水平方向动量守恒B .在小球下滑的过程中,小球和槽之间的相互作用力对槽不做功C .被弹簧反弹后,小球能回到槽上高h 处D .被弹簧反弹后,小球和槽都做速率不变的直线运动答案AD解析在小球下滑的过程中,小球和槽组成的系统,在水平方向上不受力,则水平方向上动量守恒,故A 正确;在小球下滑过程中,槽向左滑动,根据动能定理知,槽的速度增大,则小球对槽的作用力做正功,故B 错误;小球和槽组成的系统水平方向上动量守恒,开始总动量为零,小球离开槽时,小球和槽的动量大小相等,方向相反,由于质量相等,则速度大小相等,方向相反,然后小球与弹簧接触,被弹簧反弹后的速度与接触弹簧时的速度大小相等,可知反弹后,小球和槽都做速率不变的直线运动,且速度大小相等,则小球不会回到槽上高h 处,故D 正确,C 错误.2.(多选)(2019·辽宁葫芦岛市一模)一个静止的质点在t =0到t =4s 这段时间,仅受到力F 的作用,F 的方向始终在同一直线上,F 随时间t 的变化关系如图2所示.下列说法中正确的是()图2A .在t =0到t =4s 这段时间,质点做往复直线运动B .在t =1s 时,质点的动量大小为1kg·m/sC .在t =2s 时,质点的动能最大D .在t =1s 到t =3s 这段时间,力F 的冲量为零答案CD3.(2019·广东省“六校”第三次联考)开学了,想到又能够回到校园为梦想而拼搏,小明同学开心得跳了起来.假设小明质量为m ,从开始蹬地到离开地面用时为t ,离地后小明重心最大升高h ,重力加速度为g ,忽略空气阻力.以下说法正确的是()A .从开始蹬地到到达最高点的过程中,小明始终处于失重状态B .在t 时间内,小明机械能增加了mghC .在t 时间内,地面给小明的平均支持力为F =m 2gh tD .在t 时间内,地面对小明做功mgh答案B解析从开始蹬地到到达最高点的过程中,经历了向上加速和减速的过程,所以小明是先超重后失重,故A 错误;小明离开地面后,只受重力作用,机械能守恒,重心最大升高h ,可知小明离开地面时的机械能为mgh ,这是在蹬地的时间t 中,其他外力做功转化的,故B 正确;在时间t 内,由动量定理得:F t -mgt =m v -0,离开地面到最高点有:mgh =12m v 2,联立解得:F =m 2gh t+mg ,故C 错误;在时间t 内,地面对小明的支持力并没有在力的方向上发生位移,做功为0,故D 错误.4.(2019·陕西榆林市第三次测试)如图3甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg ,两物块之间用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触,另有一物块C 从t =0时,以一定速度向右运动.在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示,墙壁对物块B 的弹力在4s 到12s 的时间内对B 的冲量I 的大小为()图3A .9N·sB .18N·sC .36N·sD .72N·s 答案C解析由题图乙知,C 与A 碰前速度为:v 1=9m /s ,碰后瞬间C 的速度为:v 2=3m/s ,C 与A 碰撞过程动量守恒,以C 的初速度方向为正方向,由动量守恒定律得:m C v 1=(m A +m C )v 2,代入数据解得m C =2kg,12s 末A 和C 的速度为:v 3=-3m/s,4s 到12s ,墙对B 的冲量为:I =(m A +m C )v 3-(m A +m C )v 2,代入数据解得:I =-36N·s ,方向向左,故C 正确,A 、B 、D 错误.5.(2019·陕西省第二次质检)核桃是“四大坚果”之一,核桃仁具有丰富的营养价值,但核桃壳十分坚硬,不借助专用工具不易剥开.小悠同学发现了一个开核窍门:把核桃竖直上抛落回与坚硬地面撞击后就能开裂.抛出点距离地面的高度为H ,上抛后达到的最高点与抛出点的距离为h .已知重力加速度为g ,空气阻力不计.(1)求核桃落回地面的速度大小v ;(2)已知核桃质量为m ,与地面撞击作用时间为Δt ,撞击后竖直反弹h 1高度,求核桃与地面之间的平均作用力F .答案(1)2g (H +h )(2)m [2gh 1+2g (H +h )]Δt+mg ,方向竖直向上解析(1)核桃竖直上抛到最高点后做自由落体运动,则有:v 2=2g (H +h )则落回地面的速度:v =2g (H +h )(2)设核桃反弹速度为v 1,则有:v 12=2gh 1以竖直向上为正方向,核桃与地面作用的过程:(F -mg )Δt =m v 1-m (-v )解得:F =m [2gh 1+2g (H +h )]Δt +mg ,方向竖直向上.6.(2019·河南南阳市上学期期末)如图4所示,水平光滑地面上有两个静止的小物块A 和B (可视为质点),A 的质量m =1.0kg ,B 的质量M =4.0kg ,A 、B 之间有一轻质压缩弹簧,且A 、B 间用细线相连(图中未画出),弹簧的弹性势能E p =40J ,弹簧的两端与物块接触而不固定连接.水平面的左侧有一竖直墙壁,右侧与倾角为30°的光滑斜面平滑连接.将细线剪断,A 、B 分离后立即撤去弹簧,物块A 与墙壁发生弹性碰撞后,A 在B 未到达斜面前追上B ,并与B 相碰后结合在一起向右运动,g 取10m/s 2,求:图4(1)A 与弹簧分离时的速度大小;(2)A 、B 沿斜面上升的最大距离.答案(1)8m/s (2)1.024m解析(1)设A 、B 与弹簧分离时的速度大小分别为v 1、v 2,系统动量守恒:0=m v 1-M v 2系统能量守恒:E p =12m v 12+12M v 22解得v 1=8m/s ,v 2=2m/s ;(2)A 与墙壁碰后速度大小不变,设A 与B 相碰后,A 与B 的速度大小为v ,对A 、B 系统动量守恒:m v 1+M v 2=(m +M )v 解得v =3.2m/s对A 、B 整体,由动能定理:-(m +M )gL sin 30°=0-12(m +M )v 2解得L =1.024m.7.(2019·河南郑州市第二次质量预测)如图5甲所示,半径为R =0.8m 的四分之一光滑圆弧轨道固定在竖直平面内,A 为轨道最高点,与圆心O 等高;B 为轨道最低点.在光滑水平面上紧挨B 点有一静止的平板车,其质量M =3kg ,小车足够长,车的上表面与B 点等高,平板车上表面涂有一种特殊材料,物块在上面滑动时,动摩擦因数随物块相对小车左端位移的变化图象如图乙所示.物块(可视为质点)从圆弧轨道最高点A 由静止释放,其质量m =1kg ,g 取10m/s 2.图5(1)求物块滑到B 点时对轨道压力的大小;(2)物块相对小车静止时距小车左端多远?答案(1)30N (2)1.75m解析(1)物块从光滑圆弧轨道A 点滑到B 点的过程中,只有重力做功,由机械能守恒定律得:mgR =12m v B 2代入数据解得v B =4m/s在B 点,由牛顿第二定律得F N -mg =m v B 2R代入数据解得F N =30N由牛顿第三定律可知,物块滑到B 点时对轨道的压力大小:F N ′=F N =30N (2)物块滑上小车后,由于水平地面光滑,系统的合外力为零,所以系统的动量守恒.以向右为正方向,由动量守恒定律得m v B =(m +M )v代入数据解得v =1m/s由能量关系得系统生热Q =12m v B 2-12(m +M )v 2解得Q =6J由功能关系知Q =12μ1mgx 1+μ1mg (x -x 1)将μ1=0.4,x 1=0.5m 代入可解得x =1.75m.。

高中物理-动量和能量专题训练与解析(一)

高中物理-动量和能量专题训练与解析(一)

动量和能量专题限时训练1建议用时40分钟,实际用时________1.如图,长度x =5m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5kg,B 的质量M =5.5kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10m/s 2,求:(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.解析:(1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得:-μmgx =12mv 2A -12mv 20①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′②由能量守恒定律得:12mv 2A =12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4m/s ,v B ′=3m/s碰后A 、B 的速度大小分别为4m/s 、3m/s(2)设A 碰撞后运动的路程为s A ,由动能定理得:-μmgs A =0-12mv A ′2④s A =163m 所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3m/s.在水平面PQ 上,B 再运动s B ′=s B =3m 停止,s B ′+s A ′<5m ,所以A 、B 不能再次相遇.最终A 、B 的距离s AB =x -s A ′-s B ′=53m.答案:(1)4m/s 3m/s (2)不能相遇53m 2.如图所示,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大;(3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 20得,v 0=2gL 小球在圆周最低点时拉力最大,由牛顿第二定律得:F T -mg =m v 20R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t 解得:h =L(3)小球与滑块C C 组成的系统动量守恒,设C 碰后速率为v 1,依题意有mv 0=m -v 023mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2,由动量守恒得:3mv 1=(3m +6m )v 2由能量守恒得:12·3mv 21=12(3m +6m )v 22+μ·3mgs 联立解得:s =L 2由s <L 知,滑块C 不会从木板上掉下来.答案:(1)3mg (2)h =L (3)不能3.光滑水平面上有一质量m 车=1.0kg 的平板小车,车上静置A 、B 两物块。

专题(05)电学中的动量和能量问题(解析版)

专题(05)电学中的动量和能量问题(解析版)

专题(05)电学中的动量和能量问题(解析版)【专题考向】动量与能量在电学中应用,主要是动力学知识和功能关系解决力电综合问题,在高考中常以压轴题的形式出现,题目综合性强,分值高,难度大。

考查重点:(1)电场和磁场中的动量和能量问题;(2)电磁感应中的动量和能量问题。

【知识、方法梳理】【热点训练】1、(多选)图中虚线a、b、c、d、f代表匀强电场内间距相等的一组等势面,已知平面b上的电势为2 V。

一电子经过a时的动能为10 eV,从a到d的过程中克服电场力所做的功为6 eV。

下列说法正确的是()A.平面c上的电势为零B.该电子可能到达不了平面fC.该电子经过平面d时,其电势能为4 eVD.该电子经过平面b时的速率是经过d时的2倍解析:因等势面间距相等,由U=Ed得相邻虚线之间电势差相等,由a到d,-eU ad=-6 eV,故U ad=6 V;各虚线电势如图所示,因电场力做负功,故电场方向向右,沿电场线方向电势降低,φc=0,A项正确;因电子的速度方向未知,若不垂直于等势面,如图中实曲线所示,电子可能到达不了平面f,B项正确;经过d时,电势能E p=-eφd=2 eV,C项错误;由a到b,W ab=E kb-E ka=-2 eV,所以E kb=8 eV;由a到d,W ad=E kd-E ka=-6 eV,所以E kd=4 eV;则E kb=2E kd,根据E k=12mv 2知v b =2v d ,D 项错误。

【答案】AB2、如图所示,间距为L 的足够长光滑平行金属导轨固定在同一水平面内,虚线MN 右侧区域存在磁感应强度为B 、方向竖直向下的匀强磁场。

质量均为m 、长度均为L 、电阻均为R 的导体棒a 、b ,垂直导轨放置且保持与导轨接触良好.开始导体棒b 静止于与MN 相距为x 0处,导体棒a 以水平速度v 0从MN 处进入磁场。

不计导轨电阻,忽略因电流变化产生的电磁辐射,运动过程中导体棒a 、b 没有发生碰撞。

高三物理动量、能量计算题专题训练

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

高三物理第二轮复习 电学中的动量和能量问题

高三物理第二轮复习 电学中的动量和能量问题

匀加速直线运动.经过t0时间,ab棒恰好到PQ位置,此时
撤去力F,同时释放金属棒cd,重力加速度为g,求:
图6
(1)ab棒匀加速运动过程中,外力F随时间t变化 的函数关系;
专题四 动量与能量
第2课时 电学中的动量和能量问题
内容索引
高考题型1 电场中的动量和能量问题 高考题型2 磁场中的动量和能量问题 高考题型3 电磁感应中动量和能量问题
高考题型1
电场中的动量和能量问题
例1 (2018·湖南省常德市期末检测)如图1所示,轨道ABCDP位于竖直平面内,
其中圆弧段CD与水平段AC及倾斜段DP分别相切于C点和D点,水平段BC粗糙,
解析 答案
(3)若在圆弧轨道的最低点C放一个与小球甲完全相同的不带电的金属小 球乙,让小球甲仍由轨道的A端由静止释放,则甲球与乙球发生弹性碰 撞后的一瞬间,乙球对轨道的压力.(不计两球间静电力的作用) 答案 3mg-Δ4F,方向竖直向下
解析 答案
拓展训练3 (2018·北京市大兴区上学期期末)如图5所示,在矩形MNQP 区域中有一垂直纸面向里的匀强磁场.质量和电荷量都相等的带电粒子a、 b、c以不同的速率从O点沿垂直于PQ的方向射入磁场,图中实线是它们 的轨迹.已知O是PQ的中点,不计粒子重力.从图示轨迹中可以判断 A.a粒子带负电,b粒子带正电 B.c粒子的动量大小大于a粒子的动量 C.b粒子运动的时间大于a粒子运动的时间
图3
解析 答案
(2)a、b两小球系统的电势能最大值Ep;
答案
2 3mgR
解析 两球速度相等时系统电势能最大,以向右为正方向,由动量守恒
定律有:2mvM=3mv共 根据能量守恒定律有:Ep=12(2m)vM2-12(3m)v 共 2 解得:Ep=23mgR

2020年高考物理二轮专题复习五:电学中的动量与能量问题(解析附后)

2020年高考物理二轮专题复习五:电学中的动量与能量问题(解析附后)
(1)若x0已知,试求B与A碰撞过程中损失的机械能ΔE;
(2)若x0未知,且B与A一起向上运动在最高点时恰未分离,试求A、B运动到最高点时弹簧的形变量x;
(3)在满足第(2)问的情况下,试求A、B运动过程中的最大速度vm。
6.如图所示,ab、ef是固定在绝缘水平桌面上的平行光滑金属导轨,导轨足够长,导轨间距为d.在导轨ab、ef间放置一个阻值为R的金属导体棒PQ,其质量为m、长度恰好为d。另一质量为3m、长为d的金属棒MN也恰好能和导轨良好接触,起初金属棒MN静止于PQ棒右侧某位置,整个装置处于方向垂直桌面向下、磁感应强度大小为B的匀强磁场中。现有一质量为m、带电荷量为q的光滑绝缘小球在桌面上从O点(O为导轨上的一点)以与导轨ef成60°角的方向斜向右方进入磁场,随后小球垂直地打在金属棒MN的中点,小球与金属棒MN的碰撞过程中无机械能损失,不计导轨间电场的影响,不计导轨和金属棒MN的电阻,两棒运动过程中不相碰,求:
【答案】BC
2.【解析】金属板在Q的电场中达到静电平衡时,金属板是一个等势体,表面是一个等势面,表面的电场线与表面垂直,小球所受电场力与金属板表面垂直水平向左,根据等效法可知金属板表面的电场强度等效于等量异种电荷的连线的中垂线的电场强度,所以小球在A、B两点的电场强度大小EB>EA;由于电场力与小球的速度方向垂直,电场力对小球不做功,小球的电势能不变,小球在A、B两点的电势能大小EpB=EpA;在竖直方向受到重力和摩擦力作用,由于重力和摩擦力作用大小未知,若重力一直大于摩擦力,小球有可能一直做加速运动;根据动量定理可知小球受到合力的冲量不为0,故选项A正确,B、C、D错误。
(1)小球在O点射入磁场时的初速度v0的大小;
(2)金属棒PQ上产生的热量E和通过的电荷量Q;

动量和能量训练专题(含详细解析过程)

动量和能量训练专题(含详细解析过程)

1.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则 A .W b =2W a ,I b =2 I a B .W b =4W a ,I b =2 I a C .W b =2 W a ,I b =4 I a D .W b =4 W a ,I b =4 I a2.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是 A .在全过程中重力的冲量为零 B .在全过程中重力做功为零C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量 3.质量为m 的小物块,在与水平方向成α角的力F 作用下,沿光滑水平面运动,物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功W 和力F 对物块作用的冲量I 的大小是 A .221122B A W mv mv =-B .221122B B W mv mv >-C .B A I mv mv =-D .B A I mv mv >-4.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定 A .s A >s B t A >t BB .s A >s B t A < t BC .s A <s B t A >t BD .s A <s B t A <t B5.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有 A .1212p p E E >>和 B .1212p p E E ><和 C .1212p p E E <>和D .1212p pE E <<和6.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,所受空气阻力大小恒为f ,则在时间t 内 A .物体受重力的冲量为零B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大C .物体动量的增量大于抛出时的动量D .物体机械能的减小量等于f H7.如图所示,水平地面上放着一个表面均光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 A .系统的动量守恒,机械能不守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D .系统的动量不守恒,机械能不守恒8.汽车拉着拖车在平直公路上匀速行驶.突然拖车与汽车脱钩,而汽车的牵引力不变,各自受的阻力不变,则脱钩后,在拖车停止运动前,汽车和拖车系统 A .总动量和总动能都保持不变 B .总动量增加,总动能不变 C .总动量不变,总动能增加D .总动量和总动能均增加9.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和10.如图所示,质量为m 的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mghB .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得3sin304F mg ma mg +︒==,解得14F mg =重力势能的变化由重力做功决定,故△E p =mgh动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mg mgh ∆===︒机械 综合以上分析可知,B 、D 两选项正确.11.高速公路上发生了一起交通事故,一辆总质量2000kg 向南行驶的长途客车迎面撞上了一辆总质量为4000kg 向北行驶的卡车,碰后两辆车连接一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前的速率是20m/s ,由此可知卡车碰前瞬间的动能 A .等于2×105J B .小于2×105JC .大于2×105JD .大于2×105J ,小于8×105J12.一个人稳站在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示.则A .踏板对人做的功等于人的机械能的增加量B .踏板对人的支持力做的功等于人的机械能的增加量C .克服人的重力做的功等于人的机械能增加量D .对人做功的只有重力和踏板对人的支持力13.“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343km的圆轨道上运行了77圈.运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行“轨道维持”,由于飞船受轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况将会是 A .动能、重力势能和机械能逐渐减小B .重力势能逐渐减小、动能逐渐增大,机械能不变C .重力势能逐渐增大,动能逐渐减小,机械能不变D .重力势能逐渐减小、动能逐渐增大,机械能逐渐减小提示:“神舟”六号飞船在每一圈的运行中,仍可视为匀速圆周运动,由万有引力提供向心力得:22Mm v Gm r r =,所以飞船的动能为:21,22k GMm E mv r==轨道高度逐渐降低,即轨道半径逐渐减小时,飞船的动能将增大;重力做正功,飞船的重力势能将减小;而大气阻力对飞船做负功,由功能关系知,飞船的机械能将减小.故选项D 正确. 14.质量为m 1=4kg 、m 2=2kg 的A 、B 两球,在光滑的水平面上相向运动,若A 球的速度为v 1=3m/s ,B 球的速度为v 2=-3m/s ,发生正碰后,两球的速度的速度分别变为v 1'和v 2',则v 1'和v 2'可能为 A .v 1'=1m/s ,v 2'=1m/s B .v 1'=4m/s ,v 2'=-5m/s C .v 1'=2m/s ,v 2'=-1m/sD .v 1'=-1m/s ,v 2'=5m/s15.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg·m/s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为A .p A ′=6kg ·m/s ,pB ′=6kg ·m/s B .p A ′=3kg ·m/s ,p B ′=9kg ·m/sC .p A ′=-2kg·m/s ,p B ′=14kg ·m/sD .p A ′=-5kg ·m/s ,p B ′=17kg ·m/s16.利用传感器和计算机可以测量快速变化的力的瞬时值.下图是用这种方法获得的弹性绳中拉力F 随时间的变化图线.实验时,把小球举高到绳子的悬点O 处,然后放手让小球自由下落.由此图线所提供的信息,以下判断正确的是 A .t 2时刻小球速度最大B .t 1~t 2期间小球速度先增大后减小C .t 3时刻小球动能最小D .t 1与t 4时刻小球动量一定相同17.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时射入木块,最终都停12 3 4 5t在木块中,这一过程中木块始终保持静止.现知道子弹A 射入深度d A 大于子弹B 射入的深度d B ,则可判断A .子弹在木块中运动时间t A >tB B .子弹入射时的初动能E kA >E kBC .子弹入射时的初速度v A >v BD .子弹质量m A <m B18.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示,设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是 A .木块静止,d 1= d 2 B .木块向右运动,d 1< d 2 C .木块静止,d 1< d 2D .木块向左运动,d 1= d 2提示:由动量守恒和能量守恒求解.19.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出,如图甲所示;若射击下层,整个子弹刚好嵌入,如图乙所示.则比较上述两种情况,以下说法正确的是A .两次子弹对滑块做功一样多B .两次滑块所受冲量一样大C .子弹击中上层过程中产生的热量多D .子弹嵌入下层过程中对滑块做功多20.一个半径为r 的光滑圆形槽装在小车上,小车停放在光滑的水平面上,如图所示,处在最低点的小球受击后获得水平向左的速度v 开始在槽内运动,则下面判断正确的是 A .小球和小车总动量不守恒 B .小球和小车总机械能守恒 C .小球沿槽上升的最大高度为r甲 乙D .小球升到最高点时速度为零21.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为 A.1)∶1) B1 C.1)∶1)D.1提示:由对称性可知,m 1、m 2同时到达圆轨道最低点,根据机械能守恒定律可知,它们到达最低点的速率应相等v 2112()()m m v m m v '-=+,以后一起向左运动,由机械能守恒定律可得,212121()(1cos 60)()2m m gR m m v '+-︒=+, 联立以上各式解得12∶1)∶1)m m =22.如图所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧.物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用.两物体的质量相等,作用过程中,弹簧获得的最大弹性势能为E P .现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P .则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比A .物体A 的初动能之比为2:1B .物体A 的初动能之比为4:3C .物体A 损失的动能之比为1:1D .物体A 损失的动能之比为27:3223.如图所示,竖直的墙壁上固定着一根轻弹簧,将物体A 靠在弹簧的右端并向左推,当压缩弹簧做功W 后由静止释放,物体A 脱离弹簧后获得动能E 1,相应的动量为P 1;接着物体A 与静止的物体B 发生碰撞而粘在一起运动,总动能为水平面的摩擦不计,则 A .W =E 1=E 2 B .W =E 1>E 2 C .P 1=P 2D .P 1>P 224.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块-v甲B的速度随时间变化的规律如图乙所示,从图象信息可得A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶825.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m 、M 和弹簧组成的系统A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零提示:F 1、F 2为系统外力且做功代数和不为零,故系统机械能不守恒;从两物体开始运动以后两物体作的是加速度越来越小的变加速运动,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的速度最大,动能最大;由于F 1、F 2等大反向,系统合外力为零,故系统的动量始终为零. 26.如图所示,一轻弹簧与质量为m 的物体组成弹簧振子,物体在一竖直线上的A 、B 两点间做简谐运动,点O 为平衡位置,C 为O 、B之间的一点.已知振子的周期为T ,某时刻物体恰好经过C 向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是 A .物体动能变化量一定为零B .弹簧弹性势能的减小量一定等于物体重力势能的增加量C .物体受到回复力冲量的大小为mgT /2D .物体受到弹簧弹力冲量的大小一定小于mgT /2提示:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C 点向上运动,过半个周期时间应该在C 点大于O 点对称位置,速度的大小相等,所以动能的变化量为零,A 选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B 选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22TI mgI mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.27.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示.另有一质量为m 的物块C ,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B 、C 一起运动,将弹簧进一步压缩后,物块B 、C 被反弹.下列结论中正确的是 A .B 、C 反弹过程中,在P 处物块C 与B 相分离 B .B 、C 反弹过程中,在P 处物C 与B 不分离 C .C 可能回到Q 处 D .C 不可能回到Q 处28.如图所示,AB 为斜轨道,与水平面夹角30°,BC 为水平轨道,两轨道在B 处通过一小段圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的动摩擦因数为μ,求:(1)整个过程中摩擦力所做的功?(2)物块沿轨道AB 段滑动的时间t 1与沿轨道BC 段滑动的时间t 2之比t 1/t 2等于多少? 【答案】(1)mgh ;(2解析:(1)设物块在从A 到B 到C 的整个过程中,摩擦力所做的功为W f ,则由动能定理可得mgh -W f =0,则W f =mgh(2)物块在从A 到B 到C 的整个过程中,根据动量定理,有12(sin30cos30)0mg mg t mgt μμ︒-︒-=解得12sin30cos30t g t g mg μμ==︒-︒ 29.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v =滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m /s ).求: (1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数. 【答案】(1)1m/s ;(2)0.3解析:(1)A 、B 最后速度相等,由动量守恒可得()M m v mv +=0解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程μmg L mv M m v ⋅=-+21212022()解得0.3μ=30.某宇航员在太空站内做了如下实验:选取两个质量分别为m A =0.1kg 、m B =0.2kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.1m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t =3.0s,两球之间的距离增加了s =2.7m ,求弹簧被锁定时的弹性势能E p ? 【答案】0.027J解析:取A 、B 为系统,由动量守恒得0()A B A A B B m m v m v m v +=+ ① 又根据题意得:A B v t v t s -=②由①②两式联立得:v A =0.7m/s ,v B =-0.2m/s由机械能守恒得:2220111()222p A B A A B BE m m v m v m v ++=+ ③代入数据解得E p =0.027J31.质量为m 1=0.10kg 和m 2=0.20kg 两个弹性小球,用轻绳紧紧的捆在一起,以速度v 0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t =5.0s 后两球相距s =4.5m .求这两个弹性小球捆在一起时的弹性势能. 【答案】2.7×10-2J解析:绳子断开前后,两球组成的系统动量守恒,根据动量守恒定律,得2211021)(v m v m v m m +=+绳子断开后,两球匀速运动,由题意可知12()v v t s -=或21()v v t s -=代入数据解得120.7m/s 0.2m/s v v ==-,或120.5m/s 0.4m/s v v =-=,两球拴在一起时的弹性势能为2021222211)(212121v m m v m v m E P +-+==2.7×10-2J32.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.v【答案】(1;(2)208(12)25v m g Mμ- 解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv m Mv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ② 当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=- ③ 联立①②③解得v =(2)由①②两式解得208(12)25v m l g Mμ=- 33.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?【答案】解析:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有0)(2v m m mv A +=①则v A =v 0由系统能量守恒有E =12 2mv A 2+12 (m +m )v 02 ②此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,此过程C 球机械能守恒,则mg ·2R =12 mv 02-12 mv 2 ③在最高点Q ,由牛顿第二定律得Rmv mg 2= ④ 联立①~④式解得E =10mgR34.如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B 相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求:(1)碰后瞬间,A 、B 共同的速度大小;(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.【答案】(1;(2)20168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22011122mgl mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2解得2v =(2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x , 由功能关系可得221(2)2(2)2mg x m v μ=解得20168v l x g μ=- 35.如图所示,质量M =1kg 的滑板B 右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木板A之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 质量m =1kg ,开始时木块A 与滑块B 以v 0=2m/s 的速度水平向右运动,并与竖直墙碰撞.若碰撞后滑板B 以原速v 0弹回,g 取10m/s 2.求:滑板B 向左运动后,木块A 滑到弹簧C 墙压缩弹簧过程中,弹簧具有的最大弹性势能.【答案】5.4J解析:木块A 先向右减速后向左加速度,滑板B 则向左减速,当弹簧压缩量最大,即弹性势能最大为E p 时,A 和B 同速,设为v .对A 、B 系统:由动量守恒定律得 00()Mv mv m M v -=+① 解得v =1.2m/s 由能量守恒定律得22200111()222p mv Mv m M v E mgL μ+=+++ ②由①②解得 5.4p E =J36.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求:(1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V① V =m M m +v 0 ②木块A 的速度:V =2m/s③ (2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得E P =22011()22mv m M v mgL μ-+- ④解得E P =39J37.设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱? 已知:返回过程中需克服火星引力做功(1)R W mgR r=-,返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ;不计火星表面大气对返回舱的阻力和火星自转的影响. 【答案】(1)2R mgR r - 解析:物体m 在火星表面附近2mMG mg R =,解得2GM gR =设轨道舱的质量为0m ,速度大小为v .则2002m Mv Gm r r = 联立以上两式,解得返回舱与轨道舱对接时具有动能22122k mgR E mv r== 返回舱返回过程克服引力做功(1)R W mgR r=-返回舱返回时至少需要能量k E E W =+ 解得(1)2R E mgR r =- 38.美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为v 1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为v 2,进入一个椭圆轨道Ⅱ,运动到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求:(1)探测器在轨道Ⅲ上的运行速率v 3和加速度的大小;(2)探测器在A 点喷出的气体质量△m .【答案】(11v ,212R v r;(2)122v v m u v -- 解析:(1)在轨道I 上,探测器m 所受万有引力提供向心力,设土星质量为M ,则有212v MmG m RR = 同理,在轨道Ⅲ上有232()()v M m m G m m rr -∆=-∆由上两式可得31v v = 探测器在轨道Ⅲ上运行时加速度设为a ,则23v a r= 解得212Ra v r = (2)探测器在A 点喷出气体前后,由动量守恒定律,得mv 1=(m -△m )v 2+△mv 解得122v v m m u v -∆=- 78.如图所示,光滑水平路面上,有一质量为m 1=5kg 的无动力小车以匀速率v 0=2m/s 向前行驶,小车由轻绳与另一质量为m 2=25kg 的车厢连结,车厢右端有一质量为m 3=20kg的物体(可视为质点),物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移(设物体不会从车厢上滑下);(2)从绳拉紧到小车、车厢、物体具有共同速度所需时间.(取g =10m/s 2)【答案】(1)0.017m ;(2)0.1s解析:(1)以m 1和m 2为研究对象,考虑绳拉紧这一过程,设绳拉紧后,m 1、m 2的共同速度为v 1这一过程可以认为动量守恒,由动量守恒定律有m 1v 0=(m 1+m 2)v 1,解得10112521m/s 5253m v v m m ⨯===++. 再以m 1、m 2、m 3为对象,设它们最后的共同速度为v 2,则m 1v 0=(m 1+m 2+m 3)v 2, 解得102123520.2m/s 52520m v v m m m ⨯===++++ 绳刚拉紧时m 1和m 2的速度为v 1,最后m 1、m 2、m 3的共同速度为v 2,设m 3相对m 2的位移为Δs ,则在过程中由能量守恒定律有221213123211()()22m m v m g s m m m v μ+=∆+++ 解得Δs =0.017m .(2)对m 3,由动量定理,有μm 3gt =m 3v 220.20.1s 0.210v t g μ===⨯ 所以,从绳拉紧到m 1、m 2、m 3有共同速度所需时间为t =0.1s .79.已知A 、B 两物块的质量分别为m 和3m ,用一轻质弹簧连接,放在光滑水平面上,使B 物块紧挨在墙壁上,现用力推物块A 压缩弹簧(如图所示).这个过程中外力F 做功为W ,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时A 、B 的速度各为多大时,有同学求解如下:解:设弹簧第一次恢复原长时A 、B 的速度大小分别为v A 、v B系统动量守恒:0=m v A +3m v B系统机械能守恒:W =22B A 11322mv mv +⨯解得:A v =B v =“-”表示B 的速度方向与A 的速度方向相反) (1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.(2)当A 、B 间的距离最大时,系统的弹性势能E P =?【答案】(1)不正确.A v =v B =0;(2)34W 解析:(1)该同学的求解不正确.在弹簧恢复原长时,系统始终受到墙壁给它的外力作用,所以系统动量不守恒,且B 物块始终不动,但由于该外力对系统不做功,所以机械能守恒,即在恢复原长的过程中,弹性势能全部转化为A 物块的动能.2A 12W mv =解得A v =v B =0 (2)在弹簧恢复原长后,B 开始离开墙壁,A 做减速运动,B 做加速运动,当A 、B 速度相等时,A 、B 间的距离最大,设此时速度为v ,在这个过程中,由动量守恒定律得 mv A =(m +3m )v解得A 14v v ==根据机械能守恒,有W =22P 11322mv mv E +⨯+ 解得P 34E W =80.1930年发现用钋放出的射线,其贯穿能力极强,它甚至能穿透几厘米厚的铅板,1932年,英国年轻物理学家查德威克用这种未知射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均与静止的氢核和氮核正碰,测出被打出的氢核最大速度为v H =3.5×107m/s ,被打出的氮核的最大速度v N =4.7×106m/s ,假定正碰时无机械能损失,设未知射线中粒子质量为m ,初速为v ,质子的质量为m ’.(1)推导打出的氢核和氮核速度的字母表达式;(2)根据上述数据,推算出未知射线中粒子的质量m 与质子的质量m ’之比(已知氮核质量为氢核质量的14倍).【答案】(1)H H 2m v v m m =+,N N 2m v v m m =+;(2) 1.0165m m=' 解析:(1)碰撞满足动量守恒和机械能守恒,与氢核碰撞时,有21H H v m mv mv +=,2212212121H H v m mv mv += 解得H H 2m v v m m =+.同理可得N N2m v v m m =+。

动量、动力学和能量观点在力学中的应用(解析版)--高一物理专题练习(内容+练习)

动量、动力学和能量观点在力学中的应用(解析版)--高一物理专题练习(内容+练习)

动量、动力学和能量观点在力学中的应用高一物理专题练习(内容+练习)一、解决力学问题的三个基本观点和五个规律二、力学规律的选用原则1.如果物体受恒力作用,涉及运动细节可用动力学观点去解决.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究的对象为几个物体组成的系统,且它们之间有相互作用,一般用两个守恒定律解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及相对位移问题时优先考虑利用能量守恒定律求解,根据系统克服摩擦力所做的总功等于系统机械能的减少量(即转化为系统内能的量)列方程.5.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间极短,因此动量守恒定律一般能派上大用场.一、单选题1.如图所示,半径为R、竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩擦。

圆心O 点正下方放置质量为2m 的小球A ,质量为m 的小球B 以初速度0v 向左运动,与小球A 发生弹性碰撞。

碰后小球A 在半圆形轨道运动时不脱离轨道,则小球B 的初速度0v 不可能为(重力加速度为g )()A .BC .D .【答案】A【解析】根据题意可知,小球B 与小球A 发生弹性碰撞,设碰撞后小球B 的速度为2v ,小球A 的速度为1v ,取向左为正方向,由动量守恒定律和能量守恒定律有0122mv mv mv =+2220121112222mv mv =⋅+解得1023v v =2013v v =-由于碰后小球A 在半圆形轨道运动时不脱离轨道,则小球A 未通过与圆心的等高点或通过圆弧最高点,若小球A 恰好到达圆心的等高点,由能量守恒定律有211222mv mgR ⋅=解得1v =解得0v =若小球恰好通过圆弧最高点,由能量守恒定律有22111222222mv mg R mv ⋅=⋅+由牛顿第二定律有222v mg mR=解得1v =解得0v =则碰后小球A 在半圆形轨道运动时不脱离轨道,小球B 的初速度0v 取值范围为0v ≤0v ≥选不可能的,故选A 。

高中物理压轴题04 用动量和能量的观点解题(解析版)

高中物理压轴题04 用动量和能量的观点解题(解析版)

压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于动量和能量的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。

考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。

(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。

4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。

研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。

(3)规定正方向。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。

高三物理专项训练 电学中的动量和能量问题(附答案解析)

高三物理专项训练 电学中的动量和能量问题(附答案解析)

电学中的动量和能量问题专题强化练1.(2019·河北省承德市联校期末)如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是( )A .1∶1B .1∶2C .1∶3D .1∶4【答案】D2.(2019·福建宁德一模)如图所示,MN 、PQ 是两条水平放置的平行金属导轨,匀强磁场的磁感线垂直导轨平面.导轨左端接阻值R =1.5 Ω的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆ab ,ab 的质量m =0.1 kg ,电阻r =0.5 Ω.ab 与导轨间动摩擦因数μ=0.5,导轨电阻不计,现用F =0.7 N 的恒力水平向右拉ab ,使之从静止开始运动,经时间2 s 后,ab 开始做匀速运动,此时电压表示数U =0.3 V .重力加速度g =10 m/s 2.则ab 加速过程中,通过R 的电荷量为( )A .0.12 CB .0.36 CC .0.72 CD .1.6 C【答案】B【解析】金属杆做匀速直线运动时,由平衡条件得F =μmg +BIL ,由欧姆定律得I =BLv R +r =U R,解得BL =1 T·m ,v =0.4 m/s ,设ab 加速时间为t ,加速过程的平均感应电流为I -,由动量定理得Ft -μmgt -B I -Lt =mv ,电荷量q =I -t ,代入数据解得q =0.36 C ,故选项B 正确.3.(2019·河北石家庄三模)(多选)如图所示,两个足够长的光滑平行金属导轨倾斜放置,上端接有一定值电阻,匀强磁场垂直导轨平面向上.一导体棒以平行导轨向上的初速度从ab 处上滑,到最高点后又下滑回到ab 处.下列说法中正确的是( )A .上滑过程中导体棒克服安培力做的功大于下滑过程中克服安培力做的功B .上滑过程中导体棒克服安培力做的功等于下滑过程中克服安培力做的功C.上滑过程中安培力对导体棒的冲量大小大于下滑过程中安培力对导体棒的冲量大小D.上滑过程中安培力对导体棒的冲量大小等于下滑过程中安培力对导体棒的冲量大小【答案】AD【解析】由能量守恒定律可知上滑过程对应位置的速率大于下滑过程的速率,所以上滑过程中导体棒克服安培力做的功大于下滑过程中克服安培力做的功,故选项A正确,B错误;安培力的冲量大小I冲=BILt=BLq,由E=ΔΦΔt,可知q=ΔΦR,由于上滑过程与下滑过程电荷量q相等,所以安培力的冲量大小相等,故选项D正确,C错误.4.(2019·山东省实验中学模拟)如图所示,平行板电容器水平放置,两极板间电场强度大小为E,中间用一光滑绝缘细杆垂直连接,杆上套有带正电荷的小球和绝缘弹簧,小球压在弹簧上,但与弹簧不拴接,开始时对小球施加一竖直向下的外力,将小球压至某位置使小球保持静止.撤去外力后小球从静止开始向上运动,上升h时恰好与弹簧分离,分离时小球的速度为v,小球上升过程不会撞击到上极板,已知小球的质量为m,带电荷量为q,重力加速度为g,下列说法正确的是()A.与弹簧分离时小球的动能为mgh+qEhB.从开始运动到与弹簧分离,小球增加的机械能为mgh+qEhC.从开始运动到与弹簧分离,小球减少的电势能为qE hD.撤去外力时弹簧的弹性势能为12mv2-(qE-mg)h【答案】D【解析】根据动能定理可知,合外力对小球所做的功等于小球动能的变化量,所以小球与弹簧分离时的动能为E k=qEh-mgh+E p,选项A错误;从开始运动到与弹簧分离,小球增加的机械能为ΔE=mgh+12mv2=qEh+E p,选项B错误;小球减少的电势能为Eqh,故选项C错误;从撤去外力到小球与弹簧分离,由动能定理可知,12mv 2=E p +qEh -mgh ,所以E p =12mv 2-(qE -mg )h ,选项D 正确.5.(2019·四川第二次大联考)(多选)如图所示,固定的竖直光滑U 型金属导轨,间距为L ,上端接有阻值为R 的电阻,处在方向水平且垂直于导轨平面、磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计.初始时刻,弹簧处于伸长状态,其伸长量为x 1=mg k ,此时导体棒具有竖直向上的初速度v 0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.则下列说法正确的是( )A .初始时刻导体棒受到的安培力大小F =B 2L 2v 0RB .初始时刻导体棒加速度的大小a =2g +B 2L 2v 0m R +rC .导体棒往复运动,最终静止时弹簧处于压缩状态D .导体棒开始运动直到最终静止的过程中,电阻R 上产生的焦耳热Q =12mv 20+2m 2g 2k【答案】BC【解析】由法拉第电磁感应定律得E =BLv 0,由闭合电路欧姆定律得I =E R +r ,由安培力公式得F =B 2L 2v 0R +r,故选项A 错误;初始时刻,F +mg +kx 1=ma ,得a =2g +B 2L 2v 0m R +r ,故选项B 正确;因为导体棒静止时没有安培力,只有重力和弹簧的弹力,故弹簧处于压缩状态,故选项C 正确;根据能量守恒,减少的动能和重力势能全部转化为焦耳热,即Q 总=12mv 20+mg (x 1+mg k )=12mv 20+2m 2g 2k ,但R 上的只是一部分,故选项D 错误.6.(2019·四川绵阳市二诊)如图所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,。

高三物理一轮复习——电学中的动量和能量问题专题强化练

高三物理一轮复习——电学中的动量和能量问题专题强化练

高三物理一轮复习——电学中的动量和能量问题专题强化练(限时45分钟)1. (2019·陕西省第二次质检)如图1所示,一竖直放置的足够大金属板正前方O 点固定一正点电荷Q ,一表面绝缘的带正电小球(可视为质点且不影响Q 的电场)从金属板的上端释放,由静止开始沿金属板下落先后运动到板面的A 、B 两位置,OB 垂直于金属板,已知小球的质量不可忽略,金属板表面粗糙,则小球在运动过程中( )图1A .小球可能一直做加速运动B .小球在A 、B 两点的电势能大小E p B >E p AC .小球在A 、B 两点的电场强度大小E B <E AD .小球受到合力的冲量一定为0答案 A解析 金属板在Q 的电场中达到静电平衡时,金属板是一个等势体,表面是一个等势面,表面的电场线与表面垂直,小球所受电场力与金属板表面垂直水平向左,根据等效法可知金属板表面的电场强度等效于等量异种电荷的连线的中垂线的电场强度,所以小球在A 、B 两点的电场强度大小E B >E A ;由于电场力与小球的速度方向垂直,电场力对小球不做功,小球的电势能不变,小球在A 、B 两点的电势能大小E p B =E p A ;在竖直方向受到重力和摩擦力作用,由于重力和摩擦力作用大小未知,若重力一直大于摩擦力,小球有可能一直做加速运动;根据动量定理可知小球受到合力的冲量不为0,故选项A 正确,B 、C 、D 错误.2. (2019·贵州省部分重点中学3月联考)如图2所示,正方形区域ABCD 中有垂直于纸面向里的匀强磁场,M 、N 分别为AB 、AD 边的中点,一带正电的粒子(不计重力)以某一速度从M 点平行于AD 边垂直磁场方向射入,并恰好从A 点射出.现仅将磁场的磁感应强度大小变为原来的12,下列判断正确的是( )。

高三物理动量和能量 训练专题 (含详细解析过程)

高三物理动量和能量 训练专题 (含详细解析过程)

1.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则 A .W b =2W a ,I b =2 I a B .W b =4W a ,I b =2 I a C .W b =2 W a ,I b =4 I a D .W b =4 W a ,I b =4 I a2.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是 A .在全过程中重力的冲量为零 B .在全过程中重力做功为零C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量 3.质量为m 的小物块,在与水平方向成α角的力F 作用下,沿光滑水平面运动,物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功W 和力F 对物块作用的冲量I 的大小是 A .221122B A W mv mv =-B .221122B B W mv mv >-C .B A I mv mv =-D .B A I mv mv >-4.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定 A .s A >s B t A >t BB .s A >s B t A < t BC .s A <s B t A >t BD .s A <s B t A <t B5.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有 A .1212p p E E >>和 B .1212p p E E ><和 C .1212p p E E <>和D .1212p pE E <<和6.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,所受空气阻力大小恒为f ,则在时间t 内 A .物体受重力的冲量为零B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大C .物体动量的增量大于抛出时的动量D .物体机械能的减小量等于f H7.如图所示,水平地面上放着一个表面均光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 A .系统的动量守恒,机械能不守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D .系统的动量不守恒,机械能不守恒8.汽车拉着拖车在平直公路上匀速行驶.突然拖车与汽车脱钩,而汽车的牵引力不变,各自受的阻力不变,则脱钩后,在拖车停止运动前,汽车和拖车系统 A .总动量和总动能都保持不变 B .总动量增加,总动能不变 C .总动量不变,总动能增加D .总动量和总动能均增加9.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和10.如图所示,质量为m 的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mgh B .重力势能增加了mgh C .动能损失了mgh D .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得3sin304F mg ma mg +︒==,解得14F mg =重力势能的变化由重力做功决定,故△E p =mgh动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mgmgh ∆===︒机械综合以上分析可知,B 、D 两选项正确.11.高速公路上发生了一起交通事故,一辆总质量2000kg 向南行驶的长途客车迎面撞上了一辆总质量为4000kg 向北行驶的卡车,碰后两辆车连接一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前的速率是20m/s ,由此可知卡车碰前瞬间的动能 A .等于2×105J B .小于2×105JC .大于2×105JD .大于2×105J ,小于8×105J12.一个人稳站在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示.则A .踏板对人做的功等于人的机械能的增加量B .踏板对人的支持力做的功等于人的机械能的增加量C .克服人的重力做的功等于人的机械能增加量D .对人做功的只有重力和踏板对人的支持力13.“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343km的圆轨道上运行了77圈.运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行“轨道维持”,由于飞船受轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况将会是 A .动能、重力势能和机械能逐渐减小B .重力势能逐渐减小、动能逐渐增大,机械能不变C .重力势能逐渐增大,动能逐渐减小,机械能不变D .重力势能逐渐减小、动能逐渐增大,机械能逐渐减小提示:“神舟”六号飞船在每一圈的运行中,仍可视为匀速圆周运动,由万有引力提供向心力得:22Mm v Gm r r =,所以飞船的动能为:21,22k GMm E mv r==轨道高度逐渐降低,即轨道半径逐渐减小时,飞船的动能将增大;重力做正功,飞船的重力势能将减小;而大气阻力对飞船做负功,由功能关系知,飞船的机械能将减小.故选项D 正确. 14.质量为m 1=4kg 、m 2=2kg 的A 、B 两球,在光滑的水平面上相向运动,若A 球的速度为v 1=3m/s ,B 球的速度为v 2=-3m/s ,发生正碰后,两球的速度的速度分别变为v 1'和v 2',则v 1'和v 2'可能为 A .v 1'=1m/s ,v 2'=1m/s B .v 1'=4m/s ,v 2'=-5m/s C .v 1'=2m/s ,v 2'=-1m/sD .v 1'=-1m/s ,v 2'=5m/s15.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg·m/s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为A .p A ′=6kg ·m/s ,pB ′=6kg ·m/s B .p A ′=3kg ·m/s ,p B ′=9kg ·m/sC .p A ′=-2kg·m/s ,p B ′=14kg ·m/sD .p A ′=-5kg ·m/s ,p B ′=17kg ·m/s16.利用传感器和计算机可以测量快速变化的力的瞬时值.下图是用这种方法获得的弹性绳中拉力F 随时间的变化图线.实验时,把小球举高到绳子的悬点O 处,然后放手让小球自由下落.由此图线所提供的信息,以下判断正确的是 A .t 2时刻小球速度最大B .t 1~t 2期间小球速度先增大后减小C .t 3时刻小球动能最小D .t 1与t 4时刻小球动量一定相同17.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时射入木块,最终都停在木块中,这一过程中木块始终保持静止.现知道子弹A 射入深度d A 大于子弹B 射入的深度d B ,则可判断A .子弹在木块中运动时间t A >tB B .子弹入射时的初动能E kA >E kBtC .子弹入射时的初速度v A >v BD .子弹质量m A <m B18.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示,设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是 A .木块静止,d 1= d 2 B .木块向右运动,d 1< d 2 C .木块静止,d 1< d 2D .木块向左运动,d 1= d 2提示:由动量守恒和能量守恒求解.19.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出,如图甲所示;若射击下层,整个子弹刚好嵌入,如图乙所示.则比较上述两种情况,以下说法正确的是A .两次子弹对滑块做功一样多B .两次滑块所受冲量一样大C .子弹击中上层过程中产生的热量多D .子弹嵌入下层过程中对滑块做功多20.一个半径为r 的光滑圆形槽装在小车上,小车停放在光滑的水平面上,如图所示,处在最低点的小球受击后获得水平向左的速度v 开始在槽内运动,则下面判断正确的是 A .小球和小车总动量不守恒 B .小球和小车总机械能守恒 C .小球沿槽上升的最大高度为r D .小球升到最高点时速度为零21.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为甲 乙A.1)∶1) B1 C.1)∶1)D.1提示:由对称性可知,m 1、m 2同时到达圆轨道最低点,根据机械能守恒定律可知,它们到达最低点的速率应相等v =2112()()m m v m m v '-=+,以后一起向左运动,由机械能守恒定律可得,212121()(1cos60)()2m m gR m m v '+-︒=+,联立以上各式解得12∶1)∶1)m m =22.如图所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧.物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用.两物体的质量相等,作用过程中,弹簧获得的最大弹性势能为E P .现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P .则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比A .物体A 的初动能之比为2:1B .物体A 的初动能之比为4:3C .物体A 损失的动能之比为1:1D .物体A 损失的动能之比为27:3223.如图所示,竖直的墙壁上固定着一根轻弹簧,将物体A 靠在弹簧的右端并向左推,当压缩弹簧做功W 后由静止释放,物体A 脱离弹簧后获得动能E 1,相应的动量为P 1;接着物体A 与静止的物体B 发生碰撞而粘在一起运动,总动能为水平面的摩擦不计,则 A .W =E 1=E 2 B .W =E 1>E 2 C .P 1=P 2D .P 1>P 224.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2 = 1∶2-v甲BD .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶825.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m 、M 和弹簧组成的系统A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零提示:F 1、F 2为系统外力且做功代数和不为零,故系统机械能不守恒;从两物体开始运动以后两物体作的是加速度越来越小的变加速运动,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的速度最大,动能最大;由于F 1、F 2等大反向,系统合外力为零,故系统的动量始终为零.26.如图所示,一轻弹簧与质量为m 的物体组成弹簧振子,物体在一竖直线上的A 、B 两点间做简谐运动,点O 为平衡位置,C 为O 、B 之间的一点.已知振子的周期为T ,某时刻物体恰好经过C 向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是 A .物体动能变化量一定为零B .弹簧弹性势能的减小量一定等于物体重力势能的增加量C .物体受到回复力冲量的大小为mgT /2D .物体受到弹簧弹力冲量的大小一定小于mgT /2提示:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C 点向上运动,过半个周期时间应该在C 点大于O 点对称位置,速度的大小相等,所以动能的变化量为零,A 选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B 选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22TI mgI mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.27.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示.另有一质量为m 的物块C ,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B 、C 一起运动,将弹簧进一步压缩后,物块B 、C 被反弹.下列结论中正确的是 A .B 、C 反弹过程中,在P 处物块C 与B 相分离 B .B 、C 反弹过程中,在P 处物C 与B 不分离 C .C 可能回到Q 处 D .C 不可能回到Q 处28.如图所示,AB 为斜轨道,与水平面夹角30°,BC 为水平轨道,两轨道在B 处通过一小段圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的动摩擦因数为μ,求:(1)整个过程中摩擦力所做的功?(2)物块沿轨道AB 段滑动的时间t 1与沿轨道BC 段滑动的时间t 2之比t 1/t 2等于多少? 【答案】(1)mgh ;(2解析:(1)设物块在从A 到B 到C 的整个过程中,摩擦力所做的功为W f ,则由动能定理可得mgh -W f =0,则W f =mgh(2)物块在从A 到B 到C 的整个过程中,根据动量定理,有12(sin30cos30)0mg mg t mgt μμ︒-︒-=解得12sin 30cos30t g t g mg μμ==︒-︒29.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v =滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m/s ).求: (1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数. 【答案】(1)1m/s ;(2)0.3 解析:(1)A 、B 最后速度相等,由动量守恒可得()M m v mv +=0解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程μmg L mv M m v ⋅=-+21212022() 解得0.3μ=30.某宇航员在太空站内做了如下实验:选取两个质量分别为m A =0.1kg 、m B =0.2kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.1m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t =3.0s ,两球之间的距离增加了s =2.7m ,求弹簧被锁定时的弹性势能E p ? 【答案】0.027J解析:取A 、B 为系统,由动量守恒得0()A B A A B B m m v m v m v +=+ ① 又根据题意得:A B v t v t s -=②由①②两式联立得:v A =0.7m/s ,v B =-0.2m/s由机械能守恒得:2220111()222p A B A A B BE m m v m v m v ++=+ ③代入数据解得E p =0.027J31.质量为m 1=0.10kg 和m 2=0.20kg 两个弹性小球,用轻绳紧紧的捆在一起,以速度v 0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t =5.0s 后两球相距s =4.5m .求这两个弹性小球捆在一起时的弹性势能. 【答案】2.7×10-2J解析:绳子断开前后,两球组成的系统动量守恒,根据动量守恒定律,得2211021)(v m v m v m m +=+绳子断开后,两球匀速运动,由题意可知12()v v t s -=或21()v v t s -=代入数据解得120.7m/s 0.2m/s v v ==-,或120.5m/s 0.4m/s v v =-=,两球拴在一起时的弹性势能为2021222211)(212121v m m v m v m E P +-+==2.7×10-2J32.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.【答案】(1(2)208(12)25v mg Mμ-解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv mMv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ②当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=-③联立①②③解得v =(2)由①②两式解得208(12)25v ml g Mμ=-33.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?【答案】解析:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有0)(2v m m mv A +=①则v A =v 0由系统能量守恒有E =12 2mv A 2+12 (m +m )v 02②此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,此过程C 球机械能守恒,则mg ·2R =12 mv 02-12mv 2③在最高点Q ,由牛顿第二定律得Rm v m g 2=④联立①~④式解得E =10mgR34.如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B 相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求: (1)碰后瞬间,A 、B 共同的速度大小;(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.【答案】(1;(2)20168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22011122mgl mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2解得2v =(2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x ,由功能关系可得221(2)2(2)2mg x m v μ= 解得20168v lx g μ=-35.如图所示,质量M =1kg 的滑板B 右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木板A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 质量m =1kg ,开始时木块A 与滑块B 以v 0=2m/s 的速度水平向右运动,并与竖直墙碰撞.若碰撞后滑板B 以原速v 0弹回,g 取10m/s 2.求:滑板B 向左运动后,木块A 滑到弹簧C 墙压缩弹簧过程中,弹簧具有的最大弹性势能. 【答案】5.4J解析:木块A 先向右减速后向左加速度,滑板B 则向左减速,当弹簧压缩量最大,即弹性势能最大为E p 时,A 和B 同速,设为v .对A 、B 系统:由动量守恒定律得 00()Mv mv m M v -=+ ①解得v =1.2m/s由能量守恒定律得22200111()222p mv Mv m M v E mgL μ+=+++②由①②解得 5.4p E =J36.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求: (1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V① V =mM m+v 0② 木块A 的速度:V =2m/s③(2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得 E P =22011()22mv m M v mgL μ-+- ④解得E P =39J37.设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱?已知:返回过程中需克服火星引力做功(1)RW mgR r=-,返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ;不计火星表面大气对返回舱的阻力和火星自转的影响. 【答案】(1)2R mgR r-解析:物体m 在火星表面附近2mM Gmg R=,解得2GM gR =设轨道舱的质量为0m ,速度大小为v .则2002m M v Gm rr =联立以上两式,解得返回舱与轨道舱对接时具有动能22122k mgR E mv r ==返回舱返回过程克服引力做功(1)RW mgR r=-返回舱返回时至少需要能量k E E W =+解得(1)2R E mgR r=-38.美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为v 1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为v 2,进入一个椭圆轨道Ⅱ,运动到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求: (1)探测器在轨道Ⅲ上的运行速率v 3和加速度的大小; (2)探测器在A 点喷出的气体质量△m .【答案】(11v ,212R v r;(2)122v v m u v --解析:(1)在轨道I 上,探测器m 所受万有引力提供向心力,设土星质量为M ,则有212v Mm Gm RR =同理,在轨道Ⅲ上有232()()v M m m Gm m rr -∆=-∆由上两式可得31v v =探测器在轨道Ⅲ上运行时加速度设为a ,则23v a r=解得212Ra v r=(2)探测器在A 点喷出气体前后,由动量守恒定律,得mv 1=(m -△m )v 2+△mv解得122v v m m u v -∆=-78.如图所示,光滑水平路面上,有一质量为m 1=5kg 的无动力小车以匀速率v 0=2m/s 向前行驶,小车由轻绳与另一质量为m 2=25kg 的车厢连结,车厢右端有一质量为m 3=20kg的物体(可视为质点),物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移(设物体不会从车厢上滑下);(2)从绳拉紧到小车、车厢、物体具有共同速度所需时间.(取g =10m/s 2) 【答案】(1)0.017m ;(2)0.1s 解析:(1)以m 1和m 2为研究对象,考虑绳拉紧这一过程,设绳拉紧后,m 1、m 2的共同速度为v 1这一过程可以认为动量守恒,由动量守恒定律有m 1v 0=(m 1+m 2)v 1,解得10112521m/s 5253m v v m m ⨯===++.再以m 1、m 2、m 3为对象,设它们最后的共同速度为v 2,则m 1v 0=(m 1+m 2+m 3)v 2, 解得102123520.2m/s 52520m v v m m m ⨯===++++绳刚拉紧时m 1和m 2的速度为v 1,最后m 1、m 2、m 3的共同速度为v 2,设m 3相对m 2的位移为Δs ,则在过程中由能量守恒定律有221213123211()()22m m v m g s m m m v μ+=∆+++ 解得Δs =0.017m .(2)对m 3,由动量定理,有μm 3gt =m 3v 220.20.1s 0.210v t g μ===⨯ 所以,从绳拉紧到m 1、m 2、m 3有共同速度所需时间为t =0.1s .79.已知A 、B 两物块的质量分别为m 和3m ,用一轻质弹簧连接,放在光滑水平面上,使B 物块紧挨在墙壁上,现用力推物块A 压缩弹簧(如图所示).这个过程中外力F 做功为W ,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时A 、B 的速度各为多大时,有同学求解如下:解:设弹簧第一次恢复原长时A 、B 的速度大小分别为v A 、v B 系统动量守恒:0=m v A +3m v B 系统机械能守恒:W =22B A 11322mv mv +⨯解得:A v =B v =“-”表示B 的速度方向与A 的速度方向相反) (1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.(2)当A 、B 间的距离最大时,系统的弹性势能E P =? 【答案】(1)不正确.A v =v B =0;(2)34W 解析:(1)该同学的求解不正确.在弹簧恢复原长时,系统始终受到墙壁给它的外力作用,所以系统动量不守恒,且B 物块始终不动,但由于该外力对系统不做功,所以机械能守恒,即在恢复原长的过程中,弹性势能全部转化为A 物块的动能.2A 12W mv =解得A v =v B =0 (2)在弹簧恢复原长后,B 开始离开墙壁,A 做减速运动,B 做加速运动,当A 、B 速度相等时,A 、B 间的距离最大,设此时速度为v ,在这个过程中,由动量守恒定律得 mv A =(m +3m )v解得A 14v v ==根据机械能守恒,有W =22P 11322mv mv E +⨯+ 解得P 34E W =80.1930年发现用钋放出的射线,其贯穿能力极强,它甚至能穿透几厘米厚的铅板,1932年,英国年轻物理学家查德威克用这种未知射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均与静止的氢核和氮核正碰,测出被打出的氢核最大速度为v H =3.5×107m/s ,被打出的氮核的最大速度v N =4.7×106m/s ,假定正碰时无机械能损失,设未知射线中粒子质量为m ,初速为v ,质子的质量为m ’.(1)推导打出的氢核和氮核速度的字母表达式;(2)根据上述数据,推算出未知射线中粒子的质量m 与质子的质量m ’之比(已知氮核质量为氢核质量的14倍). 【答案】(1)H H 2m v v m m =+,N N 2mv v m m =+;(2)1.0165m m ='解析:(1)碰撞满足动量守恒和机械能守恒,与氢核碰撞时,有21HH v m mv mv +=,2212212121H H v m mv mv += 解得H H 2m v v m m =+.同理可得N N2m v v m m =+(2)由(1)可得N H NHm m vv m m +=+代入数据得1.0165mm=' 81.如图所示,在光滑水平面上有一质量为M 的盒子,盒子中央有一质量为m 的物体(可视为质点),它与盒底的动摩擦因数为μ,盒子内壁长l ,现给物体以水平初速度v 0向右运动,设物体与盒子两壁碰撞是完全弹性碰撞,求物体m 相对盒子静止前与盒壁碰撞的次数.。

高中物理-专题六第2课时 电学中的动量和能量问题

高中物理-专题六第2课时 电学中的动量和能量问题

第2课时电学中的动量和能量问题专题复习定位解决问题本专题主要培养学生应用动量定理、动量守恒定律、动能定理、机械能守恒定律和能量守恒定律分析与解决电学综合问题。

高考重点动量定理和动量守恒定律在电学中的理解及应用;应用动量和能量观点解决电场和磁场问题;电磁感应中的动量和能量问题。

题型难度本专题针对综合性计算题的考查,一般过程复杂,要综合利用电学知识、动量和能量观点分析问题,综合性较强,难度较大。

高考题型1电磁感应中的动量和能量问题类型1动量定理和能量观点的应用【例1】(2021·江苏省普通高等学校全国统一考试模拟)如图1所示,CD、EF是两条水平放置的阻值可忽略的平行金属导轨,其左右端都与接有阻值为R的倾斜光滑轨道平滑连接,导轨间距都为d,在水平导轨的右侧存在磁感应强度方向垂直于导轨平面向下的匀强磁场,磁感应强度大小为B,磁场区域的宽度为L1。

现将一阻值为r、质量为m的导体棒从右侧倾斜轨道上高h处由静止释放,导体棒最终停在距离磁场的左边界为L2处。

已知右侧倾斜轨道与竖直方向夹角为θ,导体棒始终与导轨垂直且接触良好,且导体棒与水平导轨动摩擦因数为μ,重力加速度为g。

求:图1(1)通过导体棒的最大电流;(2)左侧电阻R上产生的焦耳热;(3)导体棒在水平导轨上运动的时间。

答案 (1)2Bd 2gh R +2r (2)R 2(R +2r )mg (h -μL 1-μL 2) (3)1μ2h g -2B 2d 2L 1μmg (R +2r )解析 (1)质量为m 的导体棒从倾斜轨道上h 高处由静止释放,刚进入磁场时速度最大,由机械能守恒定律得mgh =12m v 2解得最大速度v =2gh产生的最大感应电动势E m =Bd v =Bd 2gh由闭合电路欧姆定律可得通过导体棒的最大电流I m =E m R 2+r =2Bd 2gh R +2r 。

(2)由能量守恒定律可知整个电路中产生的焦耳热Q =mgh -μmg (L 1+L 2)电阻R 中产生的焦耳热 Q R =R 2(R +2r )mg (h -μL 1-μL 2)。

高考物理学科复习题册第一部分专题四动量与能量第2讲电学中的动量和能量问题练习含解析02

高考物理学科复习题册第一部分专题四动量与能量第2讲电学中的动量和能量问题练习含解析02

电学中的动量和能量问题1.如图所示,一带正电小球穿在一根绝缘粗糙直杆上,杆与水平方向夹角为θ,整个空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,先给小球一初速度,使小球沿杆向下运动,在A点时的动能为100 J,在C点时动能减为零,D为AC的中点,那么带电小球在运动过程中( )A.到达C点后小球不可能沿杆向上运动B.小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等C.小球在D点时的动能为50 JD.小球电势能的增加量等于重力势能的减少量解析如果电场力大于重力,则小球速度减为零后可能沿杆向上运动,A项错误;小球受重力、电场力、洛伦兹力、弹力和滑动摩擦力,由于F洛=qvB,故洛伦兹力减小,导致支持力和滑动摩擦力变化,故小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,B项正确;由于小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,故小球在D点时的动能也就不一定为50 J,C项错误;该过程是小球的重力势能、电势能、动能和系统的内能之和守恒,故小球电势能的增加量不等于重力势能的减少量,D项错误。

答案 B2.如图所示,一带电小球沿与CD平行方向射入倾角为θ的光滑斜面上,斜面所在区域存在和AD平行的匀强电场,小球运动轨迹如图中虚线所示,则( )A.若小球带正电荷,则电场方向一定沿斜面向下B.小球从M点运动到N点电势能一定增加C.小球从M点运动到N点动能一定增加D.小球从M点运动到N点机械能一定增加解析若小球带正电荷,重力沿斜面向下的分力大于电场力时,电场力的方向可以沿斜面向上,也可以沿斜面向下,A项错误;当电场力沿斜面向上时,则电场力做负功,电势能增加,当电场力沿斜面向下时,电场力做正功,电势能减小,B项错误;由于合力沿斜面向下,故合力一定做正功,根据动能定理可知,动能一定增加,C项正确;若电场力沿斜面向上,电场力做负功,机械能减小,D项错误。

答案 C3.(多选)如图所示空间的虚线框内有匀强电场,AA ′、BB ′、CC ′是该电场的三个等势面,相邻等势面间的距离均为0.5 cm ,其中BB ′为零势能面。

高中物理-动量和能量专题训练与解析(二)

高中物理-动量和能量专题训练与解析(二)

动量和能量专题限时训练2建议用时40分钟,实际用时________1.当金属的温度升高到一定程度时就会向四周发射电子,这种电子叫热电子,通常情况下,热电子的初始速度可以忽略不计.如图所示,相距为L 的两块固定平行金属板M 、N 接在输出电压恒为U 的高压电源E 2上,M 、N 之间的电场近似为匀强电场,K 是与M 板距离很近的灯丝,通过小孔穿过M 板与外部电源E 1连接,电源E 1给K 加热从而产生热电子,不计灯丝对内部匀强电场的影响.热电子经高压加速后垂直撞击N 板,瞬间成为金属板的自由电子,速度近似为零.电源接通后,电流表的示数稳定为I ,已知电子的质量为m 、电荷量为e .求:(1)电子到达N 板前瞬间的速度v N 的大小;(2)N 板受到电子撞击的平均作用力F 的大小.答案(1)2eU m (2)I 2mU e 解析(1)由动能定理得eU =12mv N 2-0,解得v N =2eU m .(2)设Δt 时间经过N 板的电荷量为Q ,Q =I Δt在Δt 时间落在N 板上的电子数为N 1:N 1=I Δte对Δt 时间内落在N 板上的电子整体应用动量定理:-F Δt =0-N 1mv N ,F =N 1mv N Δt =I 2mU e.由作用力与反作用力关系可知,N 板受到电子撞击的平均作用力大小为F ′=F =I2mU e .2.如图所示是计算机模拟出的一种宇宙空间的情景,在此宇宙空间内存在这样一个远离其他空间的区域(其他星体对该区域内物体的引力忽略不计),以MN 为界,上半部分匀强磁场的磁感应强度大小为B 1,下半部分匀强磁场的磁感应强度大小为B 2.已知B 1=4B 2=4B 0,磁场方向相同,且磁场区域足够大.在距离界线MN 为h 的P 点有一宇航员处于静止状态,宇航员以平行于MN 的速度向右抛出一质量为m 、电荷量为q 的带负电小球,发现小球经过界线处的速度方向与界线成90°角,接着小球进入下半部分磁场.当宇航员沿与界线平行的直线匀速到达目标Q 点时,刚好又接住球而静止.求:(1)请你粗略地作出小球从P 点运动到Q 点的运动轨迹;(2)PQ 间的距离是多大;(3)宇航员的质量是多少.答案(1)见解析图(2)6h (3)5πm 6解析(1)小球运动轨迹如图所示.(2)由几何关系可知R 1=h ,由qvB =mv 2R和B 1=4B 2=4B 0,可知R 2=4R 1=4h ,设小球的速率为v 1,由qv 1(4B 0)=mv 12R 1解得小球的速率v 1=4qB 0h m,根据运动的对称性,PQ 间的距离为L =2(R 2-R 1)=6h .(3)由qvB =mv 2r 和T =2πr v 得小球做匀速圆周运动的周期T =2πm qB,故小球由P 运动到Q 的时间t =T 12+T 22=5πm 4qB 0.设宇航员的速度为v 2=L t =24qB 0h 5πm,宇航员在Q 点接住球时,由动量守恒定律有Mv 2-mv 1=0,解得宇航员的质量M =5πm 6.3.如图所示,两根一端带有挡柱的金属导轨MN 和PQ 与水平面成θ=37°角,两导轨间距L =1m ,导轨自身电阻不计,整个装置处在磁感应强度大小B =2T 的匀强磁场中,磁场方向垂直于导轨平面向上.两根完全相同的金属棒ab 和cd ,每根棒长为L ,质量m =1kg ,电阻R =1Ω,垂直放在导轨平面上且始终与导轨保持良好接触.现让金属棒cd 靠在挡柱上,金属棒ab 在沿斜面向上的外力F 作用下从轨道上某处由静止开始做加速度a =2.5m/s 2的匀加速直线运动,直到金属棒cd 刚要滑动时撤去外力F ;此后金属棒ab 继续向上运动0.35s 后减速为0,且金属棒ab 向下返回到初始出发点时的速度大小为1m/s.已知两金属棒与导轨间的动摩擦因数均为0.5,假设最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cos 37°=0.8,重力加速度g 取10m/s 2.求:(1)金属棒cd 刚要滑动时,金属棒ab 的速度大小;(2)金属棒ab 沿斜面向上匀加速运动过程中外力的最大值;(3)金属棒ab 从最高点返回到初始出发点过程中,金属棒ab 产生的焦耳热.答案(1)5m/s (2)22.5N (3)5.5J 解析(1)当金属棒cd 刚要滑动时满足:BIL =mg sin θ+μmg cos θI =BLv 2R联立解得:v =5m/s(2)对金属棒ab :F -mg sin θ-μmg cos θ-BIL =maI =BLv 2Rv =at代入数据可知F 随t 线性变化,当v =5m/s 时,最大值F m =22.5N ;(3)匀加速阶段金属棒ab 的位移为:x 1=v 22a撤去F 后金属棒cd 仍静止,设金属棒ab 减速滑行的位移为x 2由动量定理得(μmg cos θ+mg sin θ+B I L )Δt =mvI Δt =BLx 22R解得x 2=0.75m设金属棒ab 返回到出发点的速度为v 1,由能量守恒:mg (x 1+x 2)sin θ=μmg cos θ(x 1+x 2)+12mv 12+2Q 解得Q =5.5J.4.如图所示,空间存在一个范围足够大的竖直向下的匀强磁场,磁场的磁感应强度大小为B ;边长为L 的正方形金属框abcd (简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 形金属框架MNQP (仅有MN 、NQ 、QP 三条边,简称U 形框),U 形框的M 、P 端的两个触点与方框接触良好且无摩擦,其他地方没有接触.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)若方框固定不动,U 形框以速度v 0垂直NQ 边向右匀速运动,当U 形框的接触点M 、P 端滑至方框的最右侧时,如图乙所示,求U 形框上N 、Q 两端的电势差U NQ ;(2)若方框不固定,给U 形框垂直NQ 边向右的水平初速度v 0,U 形框恰好不能与方框分离,求方框最后的速度v t 和此过程流过U 形框上NQ 边的电荷量q ;(3)若方框不固定,给U 形框垂直NQ 边向右的初速度v (v >v 0),在U 形框与方框分离后,经过t 时间,方框的最右侧和U 形框的最左侧之间的距离为s .求分离时U 形框的速度大小v 1和方框的速度大小v 2.答案见解析解析(1)由法拉第电磁感应定律得:E =BLv 0此时电路图如图所示由串并联电路规律,外电阻为R 外=2r +3r ×r 3r +r =114r 由闭合电路欧姆定律得:流过QN 的电流I =E R 外+r=4BLv 015r 所以:U NQ =E -Ir =1115BLv 0;(2)U 形框向右运动过程中,方框和U 形框组成的系统所受合外力为零,系统动量守恒.依题意得:方框和U 形框最终速度相同,设最终速度大小为v t ;3mv 0=(3m +4m )v t解得:v t =37v 0对U 形框,由动量定理得:-BL I t =3mv t -3mv 0由q =I t解得:q =12mv 07BL(3)设U 形框和方框分离时速度分别为v 1和v 2,系统动量守恒:3mv =3mv 1+4mv 2依题意得:s =(v 1-v 2)t联立解得:v 1=37v +4s 7tv 2=37v -3s 7t .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时电学中的动量和能量问题
高考命题点命题轨迹情境图
电场和磁场中的动量
20183卷21
和能量问题
18(3)21题电磁感应中的动量和
能量问题
例1(2019·湖北省4月份调研)如图1,在高度为H的竖直区域内分布着互相垂直的匀强电场和匀强磁场,电场方向水平向左;磁感应强度大小为B,方向垂直纸面向里.在该区域上方的某点A,将质量为m、电荷量为+q的小球,以某一初速度水平抛出,小球恰好在该区域做直线运动.已知重力加速度为g.
图1
(1)求小球平抛的初速度v0的大小;
(2)若电场强度大小为E,求A点距该区域上边界的高度h;
(3)若电场强度大小为E,令该小球所带电荷量为-q,以相同的初速度将其水平抛出,小球离开该区域时,速度方向竖直向下,求小球穿越该区域的时间.
拓展训练1(2019·云南昭通市上学期期末)真空中存在电场强度为E1的匀强电场(未知),一质量为m、带正电的油滴,电荷量为q,在该电场中竖直向下做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变,持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点,重力加速度大小为g,求:
(1)电场强度E1的大小和方向;
(2)油滴运动到B点时的速度大小.
拓展训练2(2019·江西上饶市重点中学六校第一次联考)如图2所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=2 T.小球1带正电,小球2不带电,静止放置于固定的水平悬空支架上.小球1向右以v1=12m/s的水平速度与小球2正碰,碰后两小球粘在一起在竖直平面内做匀速圆周运动,两小球速度水平向左时离碰撞点的距离为2m.碰后两小球的比荷为4C/kg.(取g=10m/s2)
图2
(1)电场强度E的大小是多少?
(2)两小球的质量之比m2
m1是多少?
例2(2019·山东泰安市第二轮复习质量检测)如图3所示,间距为L的足够长光滑平行金属导轨固定在同一水平面内,虚线MN右侧区域存在磁感应强度为B、方向竖直向下的匀强磁场.质量均为m、长度均为L、电阻均为R的导体棒a、b,垂直导轨放置且保持与导轨接触良好.开始导体棒b静止于与MN相距为x0处,导体棒a以水平速度v0从MN处进入磁场.不计导轨电阻,忽略因电流变化产生的电磁辐射,运动过程中导体棒a、b没有发生碰撞.求:
图3
(1)导体棒b中产生的内能;
(2)导体棒a、b间的最小距离.
拓展训练3(2019·福建龙岩市5月模拟)如图4为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ和MN,左端接有阻值为R的定值电阻,其间有垂直轨道平面的磁感应强度为B的匀强磁场,两轨道间距及磁场宽度均为L.质量为m的金属棒ab静置于导轨上,当磁场沿轨道向右运动的速度为v时,棒ab恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.
图4
(1)判断棒ab刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力F f大小;
(2)若磁场不动,将棒ab以水平初速度2v运动,经过时间t=mR
B2L2停止运动,求棒ab运动位移x及回路中产生的焦耳热Q;
(3)若t=0时棒ab静止,而磁场从静止开始以加速度a做匀加速运动,图5中关于棒ab运动的速度-时间图象哪个可能是正确的?请分析说明棒各阶段的运动情况.
图5
拓展训练4(2019·安徽蚌埠市第二次质检)如图6所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=1kg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.已知磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.
图6
(1)求导体棒刚进入凹槽时的速度大小;
(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;
(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.
专题强化练
(限时45分钟)
1.(2019·陕西省第二次质检)如图1所示,一竖直放置的足够大金属板正前方O点固定一正点电荷Q,一表面绝缘的带正电小球(可视为质点且不影响Q的电场)从金属板的上端释放,由静止开始沿金属板下落先后运动到板面的A、B两位置,OB垂直于金属板,已知小球的质量不可忽略,金属板表面粗糙,则小球在运动过程中()
图1
A.小球可能一直做加速运动
B.小球在A、B两点的电势能大小E p B>E p A
C.小球在A、B两点的电场强度大小E B<E A
D.小球受到合力的冲量一定为0
2.(2019·贵州省部分重点中学3月联考)如图2所示,正方形区域ABCD中有垂直于纸面向里的匀强磁场,M、N分别为AB、AD边的中点,一带正电的粒子(不计重力)以某一速度从M 点平行于AD边垂直磁场方向射入,并恰好从A点射出.现仅将磁场的磁感应强度大小变为
原来的1
2,下列判断正确的是()
图2
A.粒子将从D点射出磁场
B.粒子在磁场中运动的时间将变为原来的2倍
C.磁场的磁感应强度变化前后,粒子在磁场中运动过程的动量变化大小之比为2∶1 D.若其他条件不变,继续减小磁场的磁感应强度,粒子可能从C点射出
3.(多选)(2019·江西宜春市第一学期期末)如图3所示,固定的水平放置的平行导轨CD、EH 足够长,在导轨的左端用导线连接一电阻R,导轨间距为L,一质量为M、长为2L的金属棒放在导轨上,在平行于导轨的水平力F作用下以速度v向右匀速运动,运动过程中金属棒与导轨保持垂直,金属棒与导轨间的动摩擦因数为μ,整个装置处于竖直向下的匀强磁场中(图中未画出),磁场的磁感应强度大小为B,导轨单位长度的电阻为r,其余电阻不计,重力加速度为g.若在0时刻水平力的大小为F0,则在0~t时间内,以下说法正确的有()
图3
A.水平力F对金属棒的冲量大小F0t
B.水平力和摩擦力的合力对金属棒的冲量为零
C.合力对金属棒做的功为零
D.若某时刻通过电阻R的电流为I,则此时水平力F的功率为(BIL+μMg)v 4.(2019·福建福州市期末)如图4所示,竖直平面MN的右侧空间存在着相互垂直水平向左的匀强电场和垂直纸面向里的匀强磁场,MN左侧的绝缘水平面光滑,右侧的绝缘水平面粗糙.质量为m的小物体A静止在MN左侧的水平面上,该小物体带负电,电荷量为-q(q> 0).质量为1
3
的不带电的小物体B以速度v0冲向小物体A并发生弹性正碰,碰撞前后小物体A的电荷量保持不变.
图4
(1)求碰撞后小物体A的速度大小;
(2)若小物体A与水平面间的动摩擦因数为μ,重力加速度为g,磁感应强度为B=3mg
q v0
,电场
强度为E=7μmg
q
.小物体A从MN开始向右运动距离为L时速度达到最大.求小物体A的最
大速度v m和此过程克服摩擦力所做的功W.
5.(2019·湖南长沙、望城、浏阳、宁乡四个县市区3月调研)如图5所示,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨,P1Q1为不计电阻的直导线且P1Q1⊥Q1Q2.P1P2、Q1Q2的倾角均为θ,P2P3、Q2Q3在同一水平面上,P2Q2⊥P2P3,整个轨道在方向竖直向上、
磁感应强度大小为B的匀强磁场中,质量为m、接入电路的电阻为R的金属杆CD从斜轨道上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨电阻和空气阻力均不计,重力加速度大小为g,轨道倾斜段和水平段平滑连接且都足够长,求:
图5
(1)杆CD达到的最大速度大小;
(2)杆CD在距P2Q2距离L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平轨道上滑行的最大距离s.
6.(2019·湖南衡阳市第一次联考)如图6所示,ab、ef是固定在绝缘水平桌面上的平行光滑金属导轨,导轨足够长,导轨间距为d.在导轨ab、ef间放置一个阻值为R的金属导体棒PQ,其质量为m、长度恰好为d.另一质量为3m、长为d的金属棒MN也恰好能和导轨良好接触,起初金属棒MN静止于PQ棒右侧某位置,整个装置处于方向垂直桌面向下、磁感应强度大小为B的匀强磁场中.现有一质量为m、带电荷量为q的光滑绝缘小球在桌面上从O点(O 为导轨上的一点)以与导轨ef成60°角的方向斜向右方进入磁场,随后小球垂直地打在金属棒MN的中点,小球与金属棒MN的碰撞过程中无机械能损失,不计导轨间电场的影响,不计导轨和金属棒MN的电阻,两棒运动过程中不相碰,求:
图6
(1)小球在O点射入磁场时的初速度v0的大小;
(2)金属棒PQ上产生的热量E和通过的电荷量Q;
(3)在整个过程中金属棒MN比金属棒PQ多滑动的距离;
(4)请通过计算说明小球不会与MN棒发生第二次碰撞.。

相关文档
最新文档