高二文科数学《立体几何》经典练习题(含解析)

合集下载

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.如图,在腰长为2的等腰直角三角形ABC内任取一点P,则点P到直角顶点A的距离小于的概率为【答案】【解析】点P到直角顶点A的距离小于,则点P在以点A为圆心为半径的扇形区域内,则其概率为2.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角3.已知正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,则该四棱台的侧面积等于.【答案】.【解析】因为正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,所以正四棱台的斜高,则该四棱台的侧面积为.【考点】正四棱台.4.已知空间中两点A(1,2,3),B(4,2,a),且,则a=()A.1或2B.1或4C.0或2D.2或4【答案】D【解析】或【考点】空间两点间距离5.三棱锥A—BCD的四个顶点同在一个球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=1,则球O的表面积等于.【答案】【解析】易知,棱AD的中点即为球心O.由已知条件可得AD=.所以球半径为,则其表面积等于.【考点】多面体与其外接球问题.6.在正方体中,下列几种说法正确的是()A.与成角B.与成角C.D.【答案】A【解析】直线与是异面直线,而∥,所以即为与所成的角.显然三角形是等边三角型,所以.故选A.同时可分别证明答案B、C、D是错误的.【考点】异面直线所成的角及其是否垂直的问题.7.如图是一个几何体的三视图,其中正视图与左视图都是全等的腰为的等腰三角形,俯视图是边长为2的正方形,(1)画出该几何体;(2)求此几何体的表面积与体积.【答案】;【解析】根据题意可得该几何体是正四棱锥,底面为2的的正方形,因为侧面斜高为,所以可得高为2,即可求得表面积与体积试题解析:(1)此几何体是正四棱锥,它的底为边长为2的正方形,侧面斜高为表面积为体积为【考点】1.三视图;2.几何体的体积、表面积公式8.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9B.10C.11D.12【答案】D【解析】根据题中所给的几何体的三视图,可以断定该几何体是下边是一个圆柱,上边是一个球体,且球的半径和圆柱的底面圆的半径是相等的,可知其表面积是圆柱的表面积加上球的表面积,即为,故选D.【考点】根据几何体的三视图,求其表面积.9.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;【答案】(1)(2)【解析】(1)取中点,,连接,则为所求二面角的平面角,找出二面角的平面角再根据题目所给条件即可计算出二面角的大小。

高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。

高二高三立体几何文科大题训练,附详细答案

高二高三立体几何文科大题训练,附详细答案

侧视DCBAP图5图41、(佛山市2013届高三上学期期末)如图所示,已知圆O 的直径AB 长度为4,点D 为 线段AB 上一点,且13AD DB =,点C 为圆O 上一点,且BC =.点P 在圆O 所在平面上的正投影为 点D ,PD BD =.(1)求证:CD ⊥平面PAB ; (2)求点D 到平面PBC 的距离.2、(广州市2013届高三上学期期末)已知四棱锥P ABCD -的正视图是一个底边长为4、腰长为3的等腰三角形,图4、图5 分别是四棱锥P ABCD -的侧视图和俯视图. (1)求证:AD PC ⊥;(2)求四棱锥P ABCD -的侧面PAB 的面积.1解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥,BC =知,60CAB ∠=,∴ACO ∆为等边三角形,从而CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.) 法2:∵AB 为圆O 的直径,∴AC CB ⊥, ∵在Rt ABC ∆中,4AB =,∴由3AD DB =BC =得,3DB =,4AB =,BC =,∴BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分法3:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆BC =得,30ABC ∠=,∵4AB =,由3AD DB =得,3DB =,BC = 由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=, ∴222CD DB BC +=,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分由PD AO D=得,CD⊥平面PAB.-----------------6分(Ⅱ)法1:由(Ⅰ)可知CD=3PD DB==,--------7分(注:在第(Ⅰ)问中使用方法1时,此处需要求出线段的长度,酌情给分.)∴1111133332322P BDC BDCV S PD DB DC PD-∆=⋅=⋅⋅⋅=⨯⨯=.--------10分又PB==,PC==BC==∴PBC∆为等腰三角形,则122PBCS∆=⨯=.--------12分设点D到平面PBC的距离为d,由P BDC D PBCV V--=得,13PBCS d∆⋅=,解得d=.--------14分法2:由(Ⅰ)可知CD=,3PD DB==,过点D作DE CB⊥,垂足为E,连接PE,再过点D作DF PE⊥,垂足为F.-----------------8分∵PD⊥平面ABC,又CB⊂平面ABC,∴PD CB⊥,又PD DE D=,∴CB⊥平面PDE,又DF⊂平面PDE,∴CB DF⊥,又CB PE E=,∴DF⊥平面PBC,故DF为点D到平面PBC的距离.--------10分在Rt DEB∆中,3sin302DE DB=⋅=,2PE==,在Rt PDE∆中,335PD DEDFPE⨯⋅===,即点D到平面PBC的距离为5.-------14分2(1)证明:依题意,可知点P在平面ABCD上的正射影是线段CD的中点E,连接PE,则PE⊥平面ABCD. …………… 2分FE D CBAP∵AD ⊂平面ABCD ,∴AD PE ⊥. …………… 3分 ∵AD CD ⊥,CD PE E CD ,=⊂平面PCD ,PE ⊂平面PCD , ∴AD ⊥平面PCD . …………… 5分 ∵PC ⊂平面PCD ,∴AD PC ⊥. …………… 6分 (2)解:依题意,在等腰三角形PCD 中,3PC PD ==,2DE EC ==, 在R t △PED 中,225PE PD DE =-=,…………… 7分过E 作EF AB ⊥,垂足为F ,连接PF ,∵PE ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB PE ⊥. …………… 8分 ∵EF ⊂平面PEF ,PE ⊂平面PEF ,EF PE E =,∴AB ⊥平面PEF . …………… 9分 ∵PF ⊂平面PEF ,∴AB PF ⊥. …………… 10分 依题意得2EF AD ==. …………… 11分 在R t △PEF 中, 223PF PE EF =+=, …………… 12分∴△PAB 的面积为162S AB PF ==. ∴四棱锥P ABCD -的侧面PAB 的面积为6. …………… 14分3、(惠州市2013届高三上学期期末)如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点.(1)求证:EF //平面11ABC D ; (2)求证:1CF B E ⊥; (3)求三棱锥1C B FE V -的体积.3解:(1)连结1BD ,在B DD 1∆中,E 、F 分别为1D D ,DB 的中点,则∵EF 为中位线…………2分1//EF D B ∴而1D B ⊂面11ABC D ,EF ⊄面11ABC D//EF ∴面11ABC D …………4分(2)等腰直角三角形BCD 中,F 为BD 中点BD CF ⊥∴①…………5分正方体1111ABCD A B C D -ABCD 1面⊥∴DD ,ABCD 面⊂CF CF DD ⊥∴1②…………7分综合①②,且1111,,B BDD BD DD D BD DD 面⊂=⋂11B BDD CF 面⊥∴,而111B E BDD B ⊂面,E B CF 1⊥∴…………………………………………………9分(3)由(2)可知11CF BDD B ⊥平面1CF EFB ∴⊥平面 即CF 为高 ,2CF BF ==…………10分1132EF BD ==,222211(2)26B F BF BB =+=+= 222211111(22)3B E B D D E =+=+=∴22211EF B F B E += 即190EFB ∠=∴223211=⋅=∆F B EF S EF B …………12分11113B EFC C B EF B EF V V S CF --∆∴==⋅⋅=1222331=⋅⋅…………14分4、(茂名市2013届高三上学期期末)在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD,1AB CD ==,3AC =,AD=DE=2,G 为AD 的中点。

高中数学立体几何小题100题(含答案与解析)

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。

高二立体几何试题(详细答案)

高二立体几何试题(详细答案)

一、选择题: (本大题共12小题,每小题3分,共36分.) 1、已知),1,2,1(),1,1,0(-=-=b a 则a 与b 的夹角等于 A .90°B .30°C .60°D .150°2、设M 、O 、A 、B 、C 是空间的点,则使M 、A 、B 、C 一定共面的等式是 A .0=+++OC OB OA OMB .OC OB OA OM --=2C .OC OB OA OM 413121++= D .0=++MC MB MA 3、下列命题不正确的是A .过平面外一点有且只有一条直线与该平面垂直;B .如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直;C .两异面直线的公垂线有且只有一条;D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。

4、若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭②//m m n n αα⊥⎫⇒⎬⊥⎭③//m m n n αα⊥⎫⇒⊥⎬⎭④//m n m n αα⎫⇒⊥⎬⊥⎭A .1个B .2个C .3个D .4个 5、四棱锥成为正棱锥的一个充分但不必要条件是A .各侧面是正三角形B .底面是正方形C .各侧面三角形的顶角为45度D .顶点到底面的射影在底面对角线的交点上6、若点A (42+λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为A .1,-4,9B .2,-5,-8C .-3,-5,8D .2,5,8 7、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 A .2F+V=4 B .2F -V=4 C .2F+V=2 (D )2F -V=2 8、侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 A .239 B .433 C .233 D .439 9、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,则 A .θ=600 B .θ=450 C .52cos =θ D .52sin =θ 10、已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是A .2∶πB .1∶2πC .1∶πD .4∶3π11、设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅AC AB ,0=⋅AD AC ,0=⋅AD AB ,则△BCD 是A .钝角三角形B .直角三角形C .锐角三角形D .不确定 12、将B ∠=600,边长为1的菱形ABCD 沿对角线AC 折成二面角θ,若∈θ[60°,120°], 则折后两条对角线之间的距离的最值为A .最小值为43, 最大值为23B .最小值为43, 最大值为43C .最小值为41, 最大值为43D .最小值为43, 最大值为23二、填空题:(本大题共6题,每小题3分,共18分)13、已知向量a 、b 满足|a | = 31,|b | = 6,a 与b 的夹角为3π,则3|a |-2(a ·b )+4|b | =________;14、如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为 时,体积V P -AEB 恒为定值(写上你认为正确的一个答案即可).ABCDEP15、若棱锥底面面积为2150cm ,平行于底面的截面面积是254cm ,底面和这个截面的距离是12cm ,则棱锥的高为 ;16、一个四面体的所有棱长都是2,四个顶点在同一个球面上,则此球的表面积为 . 三、解答题:(本大题共6题,共46分)17.在如图7-26所示的三棱锥P —ABC 中,PA ⊥平面ABC , PA=AC=1,PC=BC ,PB 和平面ABC 所成的角为30°。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.(本题满分10分)把边长为60cm的正方形铁皮的四角切去边长为xcm的相等的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,问x取何值时,盒子的容积最大,最大容积是多少?【答案】16000【解析】设长方体高为xcm,则底面边长为(60-2x)cm.(0<x<30)…1分长方体容积(单位:),…3分…5分令解得x=10,x=30(不合题意合去)于是…7分在x=10时,V取得最大值为…10分2.已知三棱锥满足,则点在平面上的射影是三角形的心.【答案】外【解析】,设点在平面上的射影是.则,所以是外心.【考点】射影定理3.(本题满分16分,第(1)小题7分,第(2)小题9分)如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等.铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm,加工中不计损失).(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为mm,求钉身的长度(结果精确到mm).【答案】(1);(2)【解析】(1)观察铆钉的面积,钉身为圆柱形的侧面积,加半球的底面积加半球面的面积;(2)将钉身圆柱捶打成钢板厚的圆柱加一个半球形的帽,所以利用等体积建立方程,求的钉身的长度.试题解析:解:设钉身的高为,钉身的底面半径为,钉帽的底面半径为,由题意可知:圆柱的高圆柱的侧面积半球的表面积所以铆钉的表面积()(2)设钉身长度为,则由于,所以,解得答:钉身的表面积为,钉身的长度约为.【考点】1.组合体的表面积;2.组合体的体积;3.等体积.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】【解析】由三视图可知原几何体如图所示:故几何体的体积,答案选B.【考点】空间几何体的三视图与体积5.直三棱柱中,,,、分别为、的中点.(1)求证:;(2)求异面直线与所成角的余弦值.【答案】(1)见解析(2)【解析】(1)以为原点,以,,为,,轴建立空间直角坐标系.设,计算与的数量积即可得到(2)同理可计算,利用向量的夹角的余弦公式可得向量与的余弦值,亦即异面直线与所成角的余弦值试题解析:由题知平面,,以为原点,以,,为,,轴建立空间直角坐标系.设,,,,,,,,,,,所以;(2),设异面直线与所成角为,则有【考点】向量法解决空间几何中的直线与直线垂直和异面直线所成的角.6.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面和平面有不同在一条直线上的三个交点【答案】C【解析】A如果三点在一条直线上,则不能确定一个平面;B四边形可以为空间中的三棱锥;C梯形两平行边确定一个平面;D平面和平面相交所有的点都在交线上,所以三个点一点在同一条直线上,故选择C【考点】空间点、线、面7.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为,故选D.【考点】空间几何体的三视图.8.在长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,,则与所成角的余弦值为【考点】空间向量求异面直线所成角9.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为,则三棱锥O-AB1D1的体积为_____________.【答案】【解析】【考点】棱锥体积10.设为不同的平面,为不同的直线,则的一个充分条件为().A.,,B.,,C.,,D.,,【答案】D【解析】一条直线垂直于两个互相垂直的平面的交线,则这条直线与这两个平面中的某一平面可能垂直也可能不垂直,所以选项A错误;同理,可说明B、C不正确;若,,,则∥,,所以。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为()A.B.C.D.【答案】C【解析】∵底面,∴而底面是正方形,∴∴面,则∴就是二面角的平面角在中,∵,是中点∴,即二面角的大小为,故选C2.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()【答案】B【解析】略3.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥中,底面为矩形,平面,点在线段上,平面.(1)求证:平面;(2)若,,求二面角的大小.【答案】(1)详见解析;(2)详见解析.【解析】(1)要证线与面垂直,即证垂直于平面内的两条相交直线,根据已知的线与面垂直,得到线性垂直,得证;(2)法一:根据前问所证,平面,易证底面是正方形,所以可以根据三垂线定理做出二面角的平面角,即设的交点为,过点作于点,连,易证为二面角的平面角,在直角三角形内求得角;法二:以为原点建立平面直角坐标系,根据向量法,求两个平面的法向量,利用法向量夹角的余弦值计算二面角的余弦值.试题解析:解:(1)证明:∵,∴.同理由,可证得.又,∴.(2)解法一:设的交点为,过点作于点,连易证为二面角的平面角由(1)知为正方形,在中,,二面角的大小为解法二:分别以射线,,为轴,轴,轴的正半轴建立空间直角坐标系.由(1)知,又,∴.故矩形为正方形,∴.∴.∴.设平面的一个法向量为,则,即,∴,取,得.∵,∴为平面的一个法向量.所以.设二面角的平面角为,由图知,则二面角的大小为【考点】1.线与面垂直的判定;2.二面角的计算;3.几何法与向量法求二面角.4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.(本小题12分)已知三棱柱中,底面,,,分别为的中点.(1)求证://平面;(2)求证:;(3)求三棱锥A-BCB的体积.1【答案】(1)见解析:(2)见解析;(3)【解析】(1)欲证//平面,AB中点G,连DG,CG,只需证明是平行四边形,∥即可;(2)证明面面垂直采用证明线面垂直,通过证明因为底面为等腰三角形,,又因为,所以可证得;(3)转化顶点所求三棱锥的体积为,即可求得试题解析:(I)取AB中点G,连DG,CG,在三棱柱中,底面ABC ,是矩形.∵D,E分别为AB1,CC1的中点,∴,是平行四边形,∥∵GC平面ABC,平面ABC,∴DE//平面ABC .(II)三棱柱中,底面ABC,∴中点,又,∴(III)由(II)得,在,,【考点】1.证明线面平行;2.证明面面垂直;3.求体积6.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离7.已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥;②若∥,则∥;③若⊥,则⊥;④若⊥,则⊥;其中正确结论的个数是( )A.0B.1C.2D.3【答案】A【解析】若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题•错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题‚错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题ƒ错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;【考点】直线与直线、平面与平面的平行与垂直的命题判断.8.已知,,则的最小值.【答案】【解析】,因此当时取最小值【考点】空间向量模9.截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C.球D.圆台【答案】C【解析】圆柱的截面可以是矩形,圆锥的截面可以是三角形,圆台的截面可以是梯形,值有球的截面都是圆,故选C.【考点】几何体的截面图形.10.一个正方体的展开图如图所示,为原正方体的顶点,则在原来的正方体中()A.B.C.与所成的角为D.与相交【答案】C【解析】把展开图还原为立体图形,如下图正方体,可见与是异面直线,它们甩成的角为60°.【考点】多面体的展开图,两直线的位置关系.11.在三棱锥中,已知,则三棱锥外接球的表面积为.【答案】【解析】设中点为,由于,则点到点的距离相等,因此是三棱锥外接球的直径,由题意,是等边三角形,,所以,.【考点】几何体与外接球,球的表面积.【名师】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.12.如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于()A. B. C. D.【答案】D【解析】为了便于解析,可设三棱锥为正三棱锥,为正三棱锥的高;为正三棱锥有高,因为底面相同,则它们的体积比为高之比,已知三棱锥的体积为2,所以三棱锥的体积为:(1),由题意可知,且,所以由平行得到,所以,(面BCG所在的平面图如左下角简图),同理,,则,所以,那么,亦即,设,那么,则,而,所以,则,所以,所以,又,所以,(2),且,所以:(3),由(2)×(3)得到:代入到(1)得到:三棱锥的体积就是.【考点】1.简单几何体体积;2.三角形相似比的应用.【方法点晴】此题主要考查三角形相似比在求简单几何体体积中应用方面的内容,属于中高档题.根据题意可借助正三棱锥(或正四面体)模型来帮助思考,值得注意的是所求三棱锥体积的高与原三棱锥的高往往是不在同一直线上的,当然这两个高的比值也是解决此问题的关键点,需要借助这两高与垂线之间的比值进行转换,在此过程中多次使用了相似三角形的相似比,从而问题可得解决.13.如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.【答案】(1)见解析;(2)450(3)【解析】(1)要证明BD⊥平面PAC,只需证BD垂直于平面PAC两条相交直线即可,由ABCD为正方形,可得BD⊥AC,易得PA⊥平面ABCD,可得BD⊥PA ,结论得证.(2)由PA⊥面ABCD可得AD为PD在平面ABCD的射影,又CD⊥AD,由三垂线定理的逆定理可得 CD⊥PD,可得∠PDA为二面角P—CD—B的平面角.易得∠PDA=450.(3)由,求得点C到平面PBD的距离试题解析:(1)在Rt△BAD中,AD=2,BD=,∴AB=2,ABCD为正方形,因此BD⊥AC.∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA .又∵PA∩AC=A∴BD⊥平面PAC.(2)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CD⊥AD,∴CD⊥PD,知∠PDA为二面角P—CD—B的平面角.又∵PA=AD,∴∠PDA=450.(3)∵PA=AB=AD=2,∴PB=PD=BD=,设C到面PBD的距离为d,由,有,即,得【考点】线面垂直,二面角及点到平面的距离.【方法点睛】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求.两种方法各有利弊,在解题中可根据情况灵活选用.14.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)详见其解析;(2)存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据线面垂直的判定定理和性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标,再由三点共线即可求出点坐标,最后计算并验证其是否为0即可得出所证的答案;(2)首先设出面的法向量为,然后由即可得出,又因为面的法向量,再由公式即可得出的值,进而得出点的坐标,即可得出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;…6分(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、线线垂直的判定定理;2、空间向量法求解立体几何问题.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______________.【答案】【解析】设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.【考点】1、圆锥侧面展开图面积;2、圆锥轴截面性质.16.已知一个高度不限的直三棱柱,,点是侧棱上一点,过作平面截三棱柱得截面,给出下列结论:①是直角三角形;②是等边三角形;③四面体为在一个顶点处的三条棱两两垂直的四面体.其中有不可能成立的结论的个数是()A.0B.1C.2D.3【答案】B【解析】本题考察在空间点线面的位置关系,在直三棱柱中,数形结合,作图求解,①和②找出一个例子即可证明其存在性,③需分类讨论,利用直三棱柱的性质以及底面三边长AB=4,BC=5,CA=6条件判断.如图,做直三棱柱ABC-A1B1C1,AB=4,BC=5,CA=6,(1)不妨取AD=6,AE=10,DE=8,则△ADE是直角三角形,①可能成立;(2)不妨令AD=AE=DE=a(a>6),则△ADE是等边三角形,②可能成立;(3)假设四面体APDE为在一个顶点处的三条棱两两垂直的四面体,当A为直角顶点时,在直三棱柱ABC-A1B1C1中,PA⊥底面ABC,则 E,D分别与C,B重合,此时,∠EAD不是直角,与假设矛盾,假设不成立,当P为直角顶点时,可得PD∥AB,PE∥AC,由等角定理知则∠EPD不可能是直角,与假设矛盾,假设不成立,当E或D点为直角顶点时,不妨选E为直角顶点,则DE⊥EP,DE⊥EA,EP∩EA═A,EP⊂平面,EA⊂平面,则平面与平面垂直,则直三棱柱中,可证∠ACB为二面角的平面角,∠ACB═90°,与题意矛盾,假设不成立.综上③错误.故选:C.【考点】命题的真假判断17.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.18.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.19.在直三棱柱中,,,则直线与平面所成角的正弦值为()A.B.C.D.【答案】C【解析】在直三棱柱中,,可以证得,因此直线与平面所成角为,在中,,因此【考点】直线与平面所成的角;20.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱锥组成的,其直观图如下:所以该几何体的体积为:.故选A.【考点】1.三视图;2.几何体的体积.21.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线()A.垂直B.异面C.平行D.相交【答案】A【解析】由题意得可以分两种情况讨论:①当直尺所在直线与地面垂直时,则地面上的所有直线都与直尺垂直,则底面上存在直线与直尺所在直线垂直;②当直尺所在直线若与地面不垂直时,则直尺所在的直线必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,则得到地面上总有直线与直尺所在的直线垂直.∴教室内有一直尺,无论怎样放置,在地面总有这样的直线与直尺所在直线垂直. 【考点】空间中直线与直线之间的位置关系22. (2015秋•淮南期末)已知正方体的棱长为1,则正方体的外接球的体积为 . 【答案】.【解析】正方体的外接球的直径是正方体的体对角线,由此能求出正方体的外接球的体积. 解:∵正方体棱长为1, ∴正方体的外接球的半径R=, ∴正方体的外接球的体积V=()3=.故答案为:.【考点】球的体积和表面积.23. 在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于 ( ) A .B .C .D .【答案】B 【解析】取的中点,连接,,那么异面直线所成角就是,根据勾股定理,,,所以,故选B .【考点】异面直线所成角24. 如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1. 【答案】见解析【解析】(1)利用ABC ﹣A 1B 1C 1为直三棱柱,证明CC 1⊥AC ,利用AB 2=AC 2+BC 2,说明AC ⊥CB ,证明AC ⊥平面C 1CB 1B ,推出AC ⊥BC 1.(2)设CB 1∩BC 1=E ,说明E 为C 1B 的中点,说明AC 1∥DE ,然后证明AC 1∥平面CDB 1. 解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱, ∴CC 1⊥平面ABC ,AC ⊂平面ABC , ∴CC 1⊥AC∵AC=3,BC=4,AB=5, ∴AB 2=AC 2+BC 2,∴AC ⊥CB 又C 1C∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B , ∴AC ⊥BC 1(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点又D为AB中点,∴AC1∥DEDE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.25.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.26.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.【答案】,【解析】由两两垂直,分别以所在的直线为轴建立如图所示的空间直角坐标系,设,则,所以,其中平面的一个法向量为,所以与平面所成角的正弦值为,所以;又向量与所成角的余弦值为,又,所以异面直线与所成角的余弦值是.【考点】空间向量的运算及空间角的求解.27.平行六面体中,底面是边长为1的正方形,侧棱的长为2,且,则的长为 .【答案】【解析】由题意得,在平行六面体中,因为,,,且,所以,所以.【考点】空间向量的运算.28.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A.B.C.D.【答案】A【解析】试题分析:设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可.解:设长方体的高为1,连接B1A、B1C、AC∵B1C和C1D与底面所成的角分别为600和450,∴∠B1CB=60°,∠C1DC=45°∴C1D=,B1C=,BC=,CD=1则AC=∵C1D∥B1A∴∠AB1C为异面直线B1C和DC1所成角由余弦定理可得cos∠AB1C=故选A【考点】异面直线及其所成的角.29.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 .【答案】【解析】设圆锥的底面半径为,,解得,根据勾股定理,圆锥的高等于,所以圆锥的体积.【考点】旋转体的体积30.已知A、B、C三点不共线,若点M与A、B、C四点共面, 对平面ABC外一点O,给出下列表达式:其中x,y是实数,则【答案】【解析】A、B、C三点不共线,点M与A、B、C四点共面,则对平面ABC外一点O,满足,所以,所以【考点】空间向量的基本定理及其意义31.在正方体中,、分别是、的中点。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.一个球的Л体积为,则此球的表面积为.【答案】【解析】因为球的体积公式:,所以=所以R=1,由表面积公式S=4=2.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1B.C.D.2【答案】C【解析】略3.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角4.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD 的体积为_____________.【答案】【解析】矩形外接圆的直径为对角线长。

棱锥的体积为【考点】棱锥外接球问题5.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可得其还原图是半个圆锥,由题可得其底面圆半径为1,母线长为3,所以其体积为。

故选A。

【考点】由三视图求面积、体积。

6.(本小题满分12分)已知如图,四边形是直角梯形,,,平面,,点、、分别是、、的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)先证明平面∥平面,由面面平行可得线面平行;(Ⅱ)建立直角坐标系,由空间微量公式计算即可.试题解析:(Ⅰ)证明:∵点、、分别是、、的中点,∴∥,∥.∵平面,平面,平面,平面,∴∥平面,∥平面.∵,∴平面∥平面∵平面,∴∥平面.(Ⅱ)解:根据条件,直线,,两两垂直,分别以直线,,为建立如图所示的空间直角坐标系.设,∵,∴∴.设分别是平面和平面的一个法向量,∴,∴,即,.不妨取,得.∴.∵二面角是锐角,∴二面角的余弦值是.【考点】1.线面平行、面面平行的判定与性质;2.空间向量的应用.7.一个几何体的三视图如图所示,已知这个几何体的体积为,则()A.B.C.D.【答案】B【解析】根据题中所给的三视图,可知该几何体为底面为边长为和的长方形,顶点在底面上的摄影是左前方的顶点,所以有,解得,故选B.【考点】根据所给的几何体的三视图,还原几何体,求其体积及其他量.8.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,【考点】1.线面垂直的判定定理;2.二面角;9.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值为()A.B.C.D.【答案】B【解析】设该棱柱各棱长为a,底面中心为O,则A1O平面ABC.在三角形A1AO中,可得.设AB中点为D,可证,AD A1D.在直角三角形ADA1中,AA1=a,AD=,解得,.故与底面所成角的正弦值为.故选B.10.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________.【答案】【解析】【考点】圆锥体积11.如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF= .则下列结论中正确的个数为①AC⊥BE;②EF∥平面ABCD;③三棱锥A﹣BEF的体积为定值;④的面积与的面积相等,A.4B.3C.2D.1【答案】B【解析】①中AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;④由图形可以看出,B到线段EF的距离与A到EF的距离不相等,故△AEF的面积与△BEF的面积相等不正确【考点】1.正方体的结构特点;2.空间线面垂直平行的判定与性质12.设为两个不重合的平面,为两条不重合的直线,给出下列四个命题:①若,则;[②若,则;③若则;④若与相交且不垂直,则与一定不垂直.其中,所有真命题的序号是.【答案】①③【解析】②中两平面平行或垂直;④中两直线可能相交,平行或异面,可能出现异面直线垂直的情况;①③由线面垂直平行的判定与性质可知结论正确【考点】空间线面垂直平行的判定与性质13.一个的长方体能装卸8个半径为1的小球和一个半径为2的大球,则的最小值为()A.B.C.D.8【答案】B【解析】在的面上放4个小球,在在上面放一个大球,4个小球每个都与相邻两个相切,大球与四个小球都相切,记4个小球的球心依次为,大球球心为,则为正四棱锥,底面边长为2,侧棱长为3,其高为,对应上面再放4个小球,因此的最小值为,故选B.【考点】长方体与球.14.如图,在四面体中,,,点分别是的中点(1)求证:平面平面;(2)当,且时,求三棱锥的体积【答案】(1)见解析;(2).【解析】(1)证明面面垂直应证线面垂直,首先根据图形分析需要证明面即可说明平面平面;(2)解决本题关键是找出底面上的高,由(1)很容易可以得到高为,由此可以计算三棱锥的体积.试题解析:(1)证明:∵中,分别是的中点,.,.中,,是的中点,.,面,平面平面;(2)解:,是的中点,,,,∴平面,,,,,,.【考点】空间几何体的垂直、平行、体积问题.15.如图,已知四棱锥的底面为菱形,,,.(1)求证:;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】(1)用几何法证明线线垂直的主要思路是证明线面垂直,则线线垂直,所以首先根据所给的条件能够确定是等腰直角三角形,是等边三角形,然后取的中点,连接,最后证明平面;(2)根据上一问的结论,根据勾股定理,证明,从而可以以为原点建立空间直角坐标系,分别求两个平面的法向量,利用公式求解.试题解析:(1)证明:取的中点,连接.∵,∴又四边形是菱形,且,∴是等边三角形,∴又,∴,又,∴(2)由,,易求得,,∴,以为坐标原点,以,,分别为轴,轴,轴建立空间直坐标系,则,,,,∴,,设平面的一个法向量为,则,,∴,∴,,∴设平面的一个法向量为,则,,∴,∴,,∴∴【考点】1.线与线的位置关系;2.二面角.16.如图,在正三棱锥中,.分别为棱.的中点,并且,若侧棱长,则正三棱锥的外接球的体积为__________.【答案】【解析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积.∵M,N分别为棱SC,BC的中点,∴MN∥SB,∵三棱锥S-ABC为正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM,而AM∩AC=A,∴MN⊥平面SAC,∴SB⊥平面SAC ∴∠ASB=∠BSC=∠ASC=90°以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径.【考点】球的体积与表面积【方法点睛】一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.17.如图,在三棱锥中,△和△都为正三角形且,,,,分别是棱,,的中点,为的中点.(1)求异面直线和所成的角的大小;(2)求证:直线平面.【答案】(1);(2)见解析.【解析】(1)通过构造中位线,得到,即为异面直线和所成的角,由已知数据求之即可;(2)要证平面,可在平面中构造一条直线与平行即可,连接交于点,连接,证明即可.试题解析:(1)∵,分别是,的中点,∴,∴为异面直线和所成的角.在△中,可求,,,故,即异面直线和所成的角是.(2)连接交于点,连接,∵为的中点,为的中点,∴为△的重心,∴.∵为的中点,为的中点,∴,∴,∴,∵面,面,∴面.【考点】1.异面直线所成的角;2.线线、线面平行的判定与性质.18.如图1,已知正方体ABCD-A1B1ClD1的棱长为a,动点M、N、Q分别在线段上,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的正视图面积等于()A.B.C.D.【答案】B【解析】由俯视图可知为的中点,与重合,与点重合.所以此时三棱锥的正视图为三角形,其面积为.故B正确.【考点】三视图.【思路点晴】本题主要考查的是三视图,属于中档题.应先根据三棱锥的俯视图确定四点的位置,还原出三棱锥的立体图,根据其立体图可得其正视图,从而可求得正视图的面积.19.如图,在四棱锥中,底面是正方形,侧棱底面,,是的中点.则与底面所成的角的正切值为________.【答案】【解析】设底面边长为1,取中点,连接,,所以底面,那么为与底面所成的角,,,所以.【考点】线面角【思路点睛】主要考察了线面角的求法,属于基础题型,根据线面角的定义,线与射影所成角,所以此题的关键是求在平面内的射影,所以根据底面,取中点,得底面,再连接,为与底面所成的角,根据正切公式求解.20.在四棱锥中,底面,,,,,是的中点.(1)证明:;(2)证明:平面;(3)(限理科生做,文科生不做)求二面角的余弦值.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明异面直线垂直,一般的思路是证明线面垂直,线在面内,所以线线垂直的思路,所以根据条件转化为先证明平面,而要证明平面,得先证明,条件所给,易证;(2)证明线面垂直的思路是证明线与平面内的两条相交直线垂直,则线面垂直,根据上一问已证明,所以只需再证明,根据条件需证明,问题会迎刃而解;(3)由题可知两两垂直,建立空间直角坐标系,设,那就可以写出各点的坐标,并分别求两个平面的法向量与,利用公式,并观察是钝二面角.试题解析:(1)证明:底面,.又面,面,.(2)证明:,是等边三角形,,又是的中点,,又由(1)可知,面(3)解:由题可知两两垂直,如图建立空间直角坐标系,设,则.设面的一个法向量为,即取则,即设面的一个法向量为,即取则即,由图可知二面角的余弦值为.【考点】1.线线垂直,线面垂直的证明;2.二面角;3.向量法.21.如图,已知圆柱的高为,是圆柱的三条母线,是底面圆的直径,.(1)求证://平面;(2)求二面角的正切值.【答案】(1)证明见解析;(2).【解析】(1)先利用垂直关系建立空间直角坐标系,写出相关点的坐标,通过证明的方向向量和平面的法向量垂直进行证明;(2)先求出两个平面的法向量,利用空间向量求出其二面角的余弦值,再利用同角三角函数基本关系式求解.试题解析:由是直径,可知,故由可得:,以点为坐标原点建立空间直角坐标系(如图)则(1)由可得平面的一个法向量又又平面平面(2)由可得平面的一个法向量,由可得平面的一个法向量设二面角为,则所以二面角的正切值为.【考点】1.线面平行的判定;2.二面角;3.空间向量在立体中的应用.22.(2015秋•黄冈校级期末)如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)()A. B. C. D.【答案】A【解析】在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α,平面α与平面ABCD有一个公共点D,则它们有且只有一条过该点的公共直线.取特殊点B,可排除选项B,故选A.【考点】轨迹方程.23.(2015秋•内江期末)若一个几何体的正视图是一个三角形,则该几何体不可能是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】B【解析】圆柱的正视图可能是矩形,可能是圆,不可能是三角形.解:圆锥的正视图有可能是三角形,圆柱的正视图可能是矩形,可能是圆,不可能是三角形,棱锥的正视图有可能是三角形,三棱柱放倒时正视图是三角形,∴在圆锥、圆柱、棱锥、棱柱中,正视图是三角形,则这个几何体一定不是圆柱.故选:B.【考点】简单空间图形的三视图.24.已知两条不重合的直线和两个不重合的平面、,有下列命题:①若,,则;②若,,,则;③若是两条异面直线,,,,则;④若,,,,则.其中正确命题的个数是()A.B.C.D.【答案】B【解析】①不正确,还可能;②正确,,,又,;③不正确,还可能相交;④由面面垂直的性质定理可知④正确.综上可得②④正确.故B正确.【考点】1线面位置关系;2面面位置关系.25.如图,在三棱锥P﹣ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.(Ⅰ)证明:AB⊥PC;(Ⅱ)证明:平面PAB∥平面FGH.【答案】见解析【解析】(Ⅰ)根据线面垂直的性质定理证明AB⊥面PEC,即可证明:AB⊥PC;(Ⅱ)根据面面平行的判定定理即可证明平面PAB∥平面FGH.解:(Ⅰ)证明:连接EC,则EC⊥AB又∵PA=PB,∴AB⊥PE,∴AB⊥面PEC,∵BC⊂面PEC,∴AB⊥PC(Ⅱ)连结FH,交于EC于O,连接GO,则FH∥AB在△PEC中,GO∥PE,∵PE∩AB=E,GO∩FH=O∴平面PAB∥平面FGH【考点】平面与平面平行的判定;空间中直线与直线之间的位置关系.26.以正方体的顶点D为坐标原点,如图建立空间直角坐标系,则与共线的向量的坐标可以是()A.B.C.D.【答案】D【解析】不妨令正方体的边长为1,则由图可知.,与共线的向量的坐标为.故D正确.【考点】空间向量共线问题.27.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=" 2AD" ="2CD" =2.E是PB的中点.(I)求证;平面EAC⊥平面PBC;(II)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.【答案】(I)证明见解析;(II).【解析】对于问题(I),可以先证明平面,再证明,然后即可证明所需结论;对于问题(II),首先建立以为坐标原点的空间坐标系,然后再求出相应点的坐标,再由题设条件求出的长以及平面的法向量,最后利用向量的夹角公式,就可以得到直线与平面所成角的正弦值.试题解析:(I),,,,,错误!未指定书签。

高二文科数学《立体几何》大题训练试题(含解析汇报),1份

高二文科数学《立体几何》大题训练试题(含解析汇报),1份

C(第2题图)《立体几何》大题训练试题1.如图的几何体中,AB ⊥平面ACD ,DE ⊥平面ACD ,△A C D 为等边三角形, 22AD DE AB ===,F 为CD 的中点.(1)求证://AF 平面BCE ;(2)求证:平面BCE ⊥平面CDE 。

2.如图,AB 为圆O 的直径,点E 、F 在圆O 上,AB ∥EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==. (1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求证:OM ∥平面DAF ; (3)求三棱锥F -CBE 的体积.3.、如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=,DE AF //,22===AF DA DE .(Ⅰ)求证://AC 平面BEF ; (Ⅱ)求四面体BDEF 的体积.4.如图,长方体1111D C B A ABCD -中,11==AA AB ,2=AD ,E 是BC 的中点.(Ⅰ)求证:直线//1BB 平面DE D 1; (Ⅱ)求证:平面AE A 1⊥平面DE D 1; (Ⅲ)求三棱锥DE A A 1-的体积.CDFEA 1B 1C 1D 1ABCD EBA EDCFACD 图2 BAC D图15.如图,己知BCD ∆中,090BCD ∠=,1,BC CD AB BCD ==⊥平面,060,,AC,AD ADB E F ∠=分别是上的动点,且AE AF==,(0<<1)AC ADλλ (1)求证:不论λ为何值,总有EF ABC;⊥平面 (2)若1=,2λ求三棱锥A-BEF 的体积.6.如图,已知三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点, D 为PB 的中点,且△PMB 为正三角形. (1)求证:DM ∥平面APC ; (2)求证: BC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D —BCM 的体积.7、如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,2,1AB AD CD ===.将ADC ∆沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.(1) 求证:BC ⊥平面ACD ;(2) 求几何体D ABC -的体积.8、已知四棱锥P ABCD - (图5) 的三视图如图6所示,PBC ∆为正三角形,PA 垂直底面ABCD ,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P ABCD -的体积;(3)求证:AC ⊥平面PAB ;P9.如图,四棱锥ABCD 中,底面ABCD 是正方形,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)PA ∥平面BDE ;(Ⅱ)平面PAC ⊥平面BDE .10。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.已知三棱锥的底面是以为斜边的等腰直角三角形,,则三棱锥的外接球的球心到平面的距离是()A.B.1C.D.【答案】A【解析】三棱锥的底面是以为斜边的等腰直角三角形,,在面内的射影为中点,平面,上任意一点到的距离相等。

,在面内作的垂直平分线,则为的外接球球心。

,,即为到平面的距离。

故选A。

【考点】点、线、面间的距离计算。

2.已知、、两两所成的角为60,则平面与平面所成二面角的余弦值为。

【答案】【解析】在、、上分别截取,连接,则是正三角形;取的中点,连接,四棱锥是正四面体,每个面的三角形都是正三角形,则,所以是平面与平面所成二面角的平面角;设棱长为1,则,在三角形中,根据余弦定理.【考点】二面角的相关知识3.长方体的底面是边长为的正方形,若在侧棱上至少存在一点,使得,则侧棱的长的最小值为()A.B.C.D.【答案】B【解析】以D为原点,分别为轴建立坐标系,设侧棱长为b,则,所以侧棱长的最小值为【考点】1.向量法求解立体几何问题;2.二次方程根的判定4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.棱长为1的正方体中,分别为棱的中点.(1)若平面与平面的交线为,与底面的交点为点,试求的长;(2)求二面角的余弦值.【答案】(1)(2)【解析】根据两面相交,有一条交线,且满足过平面的平行线的平面与该平面相交,交线与面的平行线是平行的,所以所对应的直接与直线是平行的,从而根据平面几何的有关结论,求得交线的位置,从而求得点的位置,放在相应的三角形中,求得的长,第二问建立相应的空间坐标系,求得两个半平面的法向量,从而求得二面角的余弦值.试题解析:(1)如图,可求得,(2)分别以DA、DC、DD所在直线为x,y,z轴建立空间直角坐标系,1(1,1,1,)E(,1,0)A(1,0,0),F(0,0,),B1设平面的法向量为,平面,所以利用空间向量,易得【考点】面面相交,二面角的余弦值.6.在正方体底面,任一点,则直线所成角为()A.B.C.D.不能确定【答案】C【解析】设AD、BC的中点分别为E、F,连接A1E、EF、FB1,则四边形A1EFB1矩形.可以证明A1E AM,EF AM,所以AM平面A1EFB1.而直线OP在平面A1EFB1,所以AM OP.故选C.【考点】异面直线垂直的判定.7.正四棱柱ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是()A.EF与BB1垂直B.EF与BD垂直C.EF与CD异面D.EF与A1C1异面【答案】D【解析】可以证明答案A、B、C是正确的.同时,设AB、BC的中点分别为G、H,连接GH.显然EF∥GH,GH∥AC,AC∥A1C1,所以EF∥A1C1即答案D是错误的.【考点】以正方体为载体的异面直线的判断.8.如果把一个球的表面积扩大到原来的2倍,变为一个新球,那么新球的体积扩大到原来的倍,则()A.B.C.D.【答案】C【解析】球体扩大前表面积,体积,扩大后表面积,则,那么扩大后体积,所以.【考点】等差数列前项和公式.9.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离10.(本小题满分12分)如图所示,在多面体,四边形,均为正方形,为的中点,过的平面交于(1)证明:;(2)(理科做)求二面角余弦值.(3)(文科做)若正方形边长为2,求多面体的体积.【答案】(1)详见解析;(2);(3).【解析】(1)因为,平面,平面,所以平面,又平面,平面平面=,所以//.(2)将几何体补成正方体知,⊥平面,所以⊥, ⊥平面,所以⊥,所以交线⊥平面.二面角的平面角与∠相等,即可求出结果.(3)根据空间几何体的特征,可知四棱锥的高为2,然后根据体积公式即可求出结果.试题解析:(1)因为,平面,平面,所以平面,又平面,平面平面=,所以//.(2)将几何体补成正方体知,⊥平面,所以⊥⊥平面,所以⊥,所以交线⊥平面.二面角的平面角与∠相等,余弦值为(3)由题意可知,四棱锥.【考点】1.线面平行的性质定理;2.二面角;3.几何体的体积.11.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.【答案】12【解析】:∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则,棱锥的斜高为,该六棱锥的侧面积为【考点】棱柱、棱锥、棱台的体积12.已知球的半径为,求其内接正方体的棱长__________.【答案】【解析】球的内接正方体的对角线就是球的直径,所以正方体的棱长为【考点】球的内接多面体13.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为A.B.C.D.【答案】C【解析】设底面圆半径为,母线长为,所以扇形圆心角为,圆心角【考点】圆锥表面积与扇形弧长公式14.如图,在棱长为1的正方体中,M、N分别是的中点,则图中阴影部分在平面上的投影的面积为.【答案】【解析】N点投影到AD中点,M点投影到中点,因此投影面积为正方形面积的,面积为【考点】侧视图15.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.(1)求证:平面EFG∥平面PMA;(2)求证:平面EFG⊥平面PDC;(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.【答案】(1)、(2)证明过程详见解析;(3)1:4.【解析】(1)证明EG、FG都平行于平面PMA,然后由平面与平面平行的判定方法即可证明;(2)证明GF⊥平面PDC,然后由平面与平面垂直的判定定理即可证明;(3)设MA为1,从而其他边的长度都可表示,问题可求解.试题解析:(1)证明∵E、G、F分别为MB、PB、PC的中点,∴EG∥PM,GF∥BC.又∵四边形ABCD是正方形,∴BC∥AD,∴GF∥AD.∵EG、GF在平面PMA外,PM、AD在平面PMA内,∴EG∥平面PMA,GF∥平面PMA.又∵EG、GF都在平面EFG内且相交,∴平面EFG∥平面PMA.(2)证明由已知MA⊥平面ABCD,PD∥MA,∴PD⊥平面ABCD.又BC⊂平面ABCD,∴PD⊥BC.∵四边形ABCD为正方形,∴BC⊥DC.又PD∩DC=D,∴BC⊥平面PDC.在△PBC中,∵G、F分别为PB、PC的中点,∴GF∥BC,∴GF⊥平面PDC.又GF⊂平面EFG,∴平面EFG⊥平面PDC.(3)解∵PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,则PD=AD=2.∵DA⊥平面MAB,且PD∥MA,∴DA即为点P到平面MAB的距离,∴VP -MAB∶VP-ABCD=S△MAB·DA∶S正方形ABCD·PD=S△MAB ∶S正方形ABCD=∶(2×2)=1∶4.【考点】①证明平面与平面平行、垂直;②求体积.16.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90B.129C.132D.138【答案】D.【解析】分析题意可知,该几何体为三棱柱与长方体的组合,其表面积,故选D.【考点】1.三视图;2.空间几何体的表面积.17.某几何体的三视图如图所示,则它的体积为____________.【答案】【解析】由三视图可知该几何体下面部分是圆柱,上半部分是圆锥,其中圆柱的底面圆半径为3,高位5,所以体积为,圆锥的底面圆半径为3,高为4,所以体积为,所以该几何体体积为【考点】三视图与几何体体积18.把球的表面积扩大到原来的2倍,那么球的体积扩大到原来的()A.2倍B.倍C.倍D.倍【答案】C【解析】设原来球的半径为,扩大后球的半径为,依题意可知,.所以.即球的体积扩大到原来的倍.故C正确.【考点】球的表面积公式,体积公式.19.如图,在正三棱柱中,分别为中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析;(2)详见解析.【解析】(1)连交于点,由三角形中位线可得且,则可证得为平行四边形,从而可得,由线面平行的判定定理可证得平面.(2)由正棱柱可得底面,从而可得,又为正三角形可得.由线面垂直的判定定理可得面,又,所以面,由面面垂直的判定定理可得面面.试题解析:证明:(1)连交于点,为中点,,为中点,,,四边形是平行四边形,,又平面,平面,平面;(2)由(1)知,,为中点,所以,所以,又因为底面,而底面,所以,则由,得,而平面,且,所以面,又平面,所以平面平面.【考点】1线面平行;2线面垂直,面面垂直.【方法点睛】本题主要考查的是线面平行,线面垂直,面面垂直,属于中档题.证明线面平行的关键是证明线线平行,常用方法有:中位线,平行四边形,平行线分线段成比例逆定理等;证明线面垂直常用其判定定理证明,关键是证明线线垂直,证明线线垂直常用的方法有:由线面垂直得线线垂直、勾股定理证直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.20.(2015秋•宁城县期末)如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.(Ⅰ)求证:MN∥平面ABB1A1;(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)线段CC1上存在点Q,使得A1B⊥平面MNQ.【解析】(Ⅰ)取AB中点D,连接DM,DB1,然后由三角形的中位线定理得到MN∥DB1,再由线面平行的判定定理得答案;(Ⅱ)连接BC1,可证QN⊥BC1,A1C1⊥QN,从而可证:A1B⊥QN,同理可得 A1B⊥MQ,即可得证A1B⊥平面MNQ.解:(Ⅰ)证明:取AB中点D,连接DM,DB1.在△ABC中,因为 M为AC中点,所以DM∥BC,.在矩形B1BCC1中,因为 N为B1C1中点,所以B1N∥BC,.所以 DM∥B1N,DM=BN.所以四边形MDB1N为平行四边形,所以 MN∥DB1.因为 MN⊄平面ABB1A1,DB1⊂平面ABB1A1,所以 MN∥平面ABB1A1.(Ⅱ)解:线段CC1上存在点Q,且Q为CC1中点时,有A1B⊥平面MNQ.证明如下:连接BC1.在正方形BB1C1C中易证 QN⊥BC1.又A1C1⊥平面BB1C1C,所以 A1C1⊥QN,从而NQ⊥平面A1BC1.所以 A1B⊥QN.同理可得 A1B⊥MQ,所以A1B⊥平面MNQ.故线段CC1上存在点Q,使得A1B⊥平面MNQ.【考点】直线与平面垂直的判定;直线与平面平行的判定.21.已知圆锥底面半径为4,高为3,则该圆锥的表面积为()A.B.C.D.【答案】D【解析】依题意,圆锥的母线长为,则圆锥的表面积为,故选D.【考点】圆锥的表面积公式.22.已知两个不同的平面和两条不重合的直线,则下列四个命题正确的是()A.若,,则B.若,,,,则C.若,,,则D.若,,,,则【答案】D【解析】若,,则或,故A错误;若,,,,则或相交,故B错误;若,,,则或或斜交,故C错误;若,,,,则正确;故选D.【考点】空间中线面位置关系的判定.23.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则与的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】,夹角为【考点】向量夹角24.(2012•贵州校级模拟)棱长为2的正方体的内切球的表面积为()A.2πB.4πC.8πD.16π【答案】B【解析】棱长为2的正方体的内切球的半径r=1,由此能求出其表面积.解:棱长为2的正方体的内切球的半径r==1,表面积=4πr2=4π.故选B.【考点】棱柱、棱锥、棱台的侧面积和表面积.25.如图,正方形和四边形所在平面互相垂直,,,,.(1)求证:平面;(2)求证:平面;(3)求二面角的大小.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)设与交于点,则在平面中,可先证明四边形为平行四边形,得,就可证明平面;(2)先为原点,建立空间直角坐标系,把对应各点坐标出来,可以推出和,求出平面的法向量,就可得证平面;(3)先利用(2)找到是平面的一个法向量,求出平面的法向量,就可利用法向量求解二面角的大小.试题解析:(1)证明:设与交于点.因为,且,,所以四边形为平行四边形,所以.因为平面,平面,所以平面.(2)证明:因为正方形和四边形所在的平面互相垂直,且,所以平面.如图,以为原点,建立空间直角坐标系.则,,,,,.,,.,,所以,,又,所以平面.(3)由(2)知,是平面的一个法向量.设平面的法向量,则,,即,得,且.令,则,.从而.故二面角为锐角,故二面角的大小为.【考点】空间中直线与平面的位置关系的判定与证明;二面角的求解.【方法点晴】本题主要考查了直线和平面垂直的判定和性质,直线与平面平行的判定定理及空间角的求解,在证明线面平行时,常用方法是在平面内找已知直线的平行线,也可利用面面平行的推理证明线面平行,注意方法的选择,本题第2,3问题的解答中,把空间的位置关系和空间角的求解转化为空间向量的运算,是解答立体几何问题的一种重要方法,平时注意总结和领会.26.(2014•云南模拟)如图,在四棱锥P﹣ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()A.B.C.D.【答案】A【解析】先找符合条件的特殊位置,然后根据符号条件的轨迹为线段PC的垂直平分面与平面AC 的交线得到结论.解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”设AB的中点为N,根据题目条件可知△PAN≌△CBN∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”故动点M的轨迹肯定过点D和点N而到点P与到点N的距离相等的点为线段PC的垂直平分面线段PC的垂直平分面与平面AC的交线是一直线故选A【考点】直线与平面垂直的性质;平面与平面之间的位置关系.27.已知,若则实数=_______.【答案】4【解析】【考点】向量的坐标运算28.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.29.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.【答案】(Ⅰ)证明见解析;(Ⅱ)(Ⅲ)【解析】方法一:(1)取OB中点E,连接ME,NE,证明平面MNE∥平面OCD,方法是两个平面内相交直线互相平行得到,从而的到MN∥平面OCD;(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP菱形的对角相等得到∠ABC=∠ADC=,利用菱形边长等于1得到DP=,而MD利用勾股定理求得等于,在直角三角形中,利用三角函数定义求出即可.(3)AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD,又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,求出距离可得.方法二:(1)分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,分别表示出A,B,O,M,N的坐标,求出,,的坐标表示.设平面OCD的法向量为=(x,y,z),则,解得,∴MN∥平面OCD(2)设AB与MD所成的角为θ,表示出和,利用a×b=|a||b|cosα求出叫即可.(3)设点B到平面OCD的距离为d,则d为在向量上的投影的绝对值,由得.所以点B到平面OCD的距离为.解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则×=0,×=0即取,解得∵×=(,,﹣1)×(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.【考点】用空间向量求直线间的夹角、距离;用向量证明平行.30.将边长为正方形沿对角线折成直二面角,有如下三个结论:(1);(2)是等边三角形;(3)四面体的表面积为.则正确结论的序号为.【答案】(1)(2)(3)【解析】根据题意,画出图形,如图所示:二面角A-BD-C为90°,E是BD的中点,可以得出∠AEC=90°,为直二面角的平面角;对于(1),由于BD⊥面AEC,得出AC⊥BD,命题(1)正确;对于(2),在等腰直角三角形AEC中,可以求出AC=2AE=AD=CD,所以△ACD是等边三角形,命题(2)正确;对于(3),四面体ABCD的表面积为命题(3)正确;综上,正确的命题是(1)(2)(3).【考点】平面与平面垂直的性质31.一个几何体的三视图如图,其中主视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B.C.D.【答案】D【解析】由三视图可知该几何体为半个圆锥,其中圆锥底面半径为1,母线长为2,所以棱锥的高为,所以体积为【考点】三视图32.如图,在正方体中,与所成角的大小为()A.B.C.D.【答案】D【解析】在正方体中,连接,则,又平面,所以,根据线面垂直的判定定理可得,平面,所以,所以与所成角的大小为,故选D.【考点】直线与平面垂直;异面直线所成的角.【方法点晴】本题主要考查了直线与平面垂直的判定与证明及异面直线所成角的求解,其中熟记直线与平面垂直的判定定理和异面直线所成角的概念是解答问题的挂件,属于基础题,同时着重考查了转化与化归思想和空间几何体的结构特征,本题的解答中,利用直线与平面垂直的判定定理,得到平面,即可得到异面所成角的大小.33.一空间几何体的三视图如图所示,则该几何体的表面积为.【答案】【解析】由三视图可知该几何体为一个半圆锥,其底面半径为,高为,母线长为.所以其表面积为【考点】三视图与几何体的表面积.34.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为( )A.B.C.D.【答案】A【解析】由三视图知,该四面体中,,尺寸见三视图,,(由俯视图知),,,,,,所以.故选A.【考点】三视图,几何体的表面积.【名师】(1)画几何体的三视图可以想象自己站在几何体的正前方、正左方和正上方观察,它的轮廓线是什么,然后再去画图.(2)对于简单几何体的组合体的三视图,①要确定正视、侧视、俯视的方向;②要注意组合体是由哪些几何体组成,弄清楚它们的生成方式;③注意它们的交线的位置.(3)对简单几何体的三视图要熟悉.由三视图还原直观图时,还要注意三视图中反应的线面位置关系.35.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【答案】B【解析】观察三视图可以得到该几何体是一个四棱锥,高为,底面是边长为的正方体,故体积为,故选B.【考点】三视图及几何体的体积.36.如图所示,在三棱柱中,底面,,是上一动点,则的最小值是.【答案】【解析】连接,沿将展开到所在的平面,再连接交于,此时有最小值,在中.【考点】空间中线段最短值的计算.【方法点晴】本题主要考查的是在空间几何体中,线段最短问题,属于难题,对于空间的线段最值问题,我们需要将空间的线段转化成平面线段问题,将不在一个平面的的两条相交线段转化到同一平面上,根据两点间直线距离最短求出,线段的最小值.在空间中这种转化思想是需要注意的.37.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()A.B.C.D.【答案】B【解析】由三视图可知,该几何体是一个半圆柱合一个四棱锥的组合体,其中四棱锥的底面与半圆柱的轴截面重合,半圆柱的底面半径为,高为,棱柱的高是,所以该几何体的体积是.【考点】1三视图;2、棱锥,圆柱.38.如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,AD DC,AB=AD=1,DC=2,PD=,M为棱PB的中点.(1)证明:DM平面PBC;(2)求二面角A—DM—C的余弦值.【答案】(1)见解析;(2)【解析】(1)证线与面垂直,基本思路为利用线与面垂直的判定,即转化为证线与线垂直。

高中数学立体几何小题100题(含答案与解析)

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。

立体几何经典试题(含答案)

立体几何经典试题(含答案)

1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 【解析】(Ⅰ)由题设知BC BC⊥⊥1CC ,BC ,BC⊥⊥AC AC,,1CC AC C Ç=,∴BC ^面11ACC A , , 又又∵1DC Ì面11ACC A ,∴1DC BC ^,由题设知01145A DC ADC Ð=Ð=,∴1CDC Ð=090,即1DC DC ^, 又∵DC BC C Ç=, , ∴∴1DC ⊥面BDC , , ∵∵1DC Ì面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+´´´=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ^平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为△PAD 中AD 边上的高. (1)证明:PH ^平面ABCD ;(2)若1PH =,2AD =,1FC =,求三棱锥E BCF -的体积;的体积;(3)证明:EF ^平面PAB . B 1C B A D C 1A 1【解析】(1)证明:因为AB ^平面PAD ,所以PH AB ^。

因为PH 为△PAD 中AD 边上的高,边上的高, 所以PH AD ^。

因为AB AD A = ,所以PH ^平面ABCD 。

(2)连结BH ,取BH 中点G ,连结EG 。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.设均为直线,其中在平面的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】略2.如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【答案】D【解析】A中由三垂线定理可知是正确的;B中AB,CD平行,所以可得到线面平行;C中设AC,BD相交与O,所以SA与平面SBD所成的角等于SC与平面SBD所成的角分别为所以两角相等,D中由异面直线所成角的求法可知两角不等【考点】1.线面平行垂直的判定;2.线面角,异面直线所成角3.(12分)如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:(1)平面平面; (2).【答案】(1)详见解析(2)详见解析【解析】(1)由,得F分别是SB的中点,点分别是棱的中点,借助于中位线证明直线平行,进而得到两面平行;(2)由平面平面得AF⊥平面SBC∴AF⊥BC∴BC⊥平面SAB∴BC⊥SA试题解析:(1)∵,∴F分别是SB的中点∵E.F分别是SA.SB的中点∴EF∥AB又∵EF平面ABC, AB平面ABC∴EF∥平面ABC同理:FG∥平面ABC又∵EF FG=F, EF.FG平面ABC∴平面平面(2)∵平面平面,平面平面=sBAF平面SAB, AF⊥SB∴AF⊥平面SBC又∵BC平面SBC∴AF⊥BC又∵, AB AF=A, AB.AF平面SAB∴BC⊥平面SAB又∵SA平面SAB∴BC⊥SA【考点】1.线面平行的判定与性质;2.线面垂直的判定与性质4.几何体的三视图如图,则几何体的体积为()A.B.C.D.【答案】D【解析】此几何体的下面是半径为1,高为1的圆柱,上面是半径为1,高为1的圆锥,所以体积是。

【考点】1.三视图;2.几何体的体积.5.在直三棱柱中,平面,其垂足落在直线上.(Ⅰ)求证:;(Ⅱ)若,,为的中点,求三棱锥的体积.【答案】(Ⅰ)证明略;(Ⅱ).【解析】(Ⅰ)可通过证线面垂直,证明线线垂直,易证和,可得证平面,继而得;(Ⅱ)由题设可知,在中,计算得,在中,,因为为的中点,,由.试题解析:(Ⅰ)证明:三棱柱为直三棱柱,平面,又平面,平面,且平面,.又平面,平面,,平面,又平面,(Ⅱ)在直三棱柱中,.平面,其垂足落在直线上,.在中,,,,在中,由(1)知平面,平面,从而为的中点,【考点】1.线线垂直;2.空间几何体的体积.6.已知一个几何体的三视图如图所示(单位:cm), 那么这个几何体的侧面积是()A.B.C.D.【答案】C【解析】由三视图知,该几何体是:底面为上底长为1,下底为是2,高为1的直角梯形且高为1的直棱柱.所以该几何体的侧面积为.故选C.【考点】由三视图求其直观图的侧面积.7.如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为()A.B.C.D.【答案】B【解析】由三视图可知该几何体是三棱柱,底面是边长为2的正三角形,高为4,因此底面积为,侧面积为,因此全面积为【考点】三视图8.(12分)如图,在正方体ABCD-A1B1C1D1中.(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D;(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.【答案】(1)当E为棱DD1上的中点;(2)证明见解析.【解析】(1)在中,不难看出若则所以(2)连接不难看出而所以试题解析:(Ⅰ)当E为棱DD1上的中点时,平面A1C1E∥B1D;如图,连接A1C1,与D1B1相交于O,E为DD1上的中点,连接OE,得到OE∥B1D,OE⊂平面A1C1E, B1D⊄平面 A1C1E,∴B1D∥平面A1C1E;(Ⅱ)连接A1D,BD,因为几何体为正方体,如图,所以A1D∥B1C,A1B∥D1C,所以平面A1BD∥平面D1B1C.DM⊂∥平面DA1BD.所以DM∥平面D1B1C.【考点】1、线面平行的判定定理;2、面面平行的判定定理.【方法点晴】本题主要考查的是直线与平面平行,平面与平面平行的判定定理的应用,属于中档题.解题时一定要找准确线线平行,否则很容易出错.证明线线平行的方法有三角形的中位线,平行四边形,面面平行的性质定理,线面平行的性质定理,公理四,线面垂直的性质定理.9.在半径为1的球面上有不共面的四个点A,B,C,D且,,,则等于()A.2B.4C.8D.16【答案】C【解析】如图,构造长方体,设长方体的长、宽、高分别为则,根据题意,则,选C【考点】长方体的性质10.一个三棱锥的顶点在空间直角坐标系中的坐标分别是(0,0,1),(1,0,0),(2,2,0),(2,0,0),画该三棱锥三视图的俯视图时,从轴的正方向向负方向看为正视方向,从轴的正方向向负方向看为俯视方向,以平面为投影面,则得到俯视图可以为()【答案】D【解析】A为正视图,B为侧视图,C中的中间实线应为虚线.故D正确.【考点】三视图.11.在中,,M为AB的中点,将沿CM折起,使间的距离为,则M到平面ABC的距离为A.B.C.1D.【答案】A【解析】由已知得,,,由为等边三角形,取中点,则,交于,则,,.折起后,由,知,又,∴,于是,∴.∵,∴平面,即是三棱锥的高,,设点到面的距离为,则因为,所以由,可得,所以,故选A.【考点】翻折问题,利用等级法求点面距离.【思路点睛】该题属于求点到面的距离问题,属于中等题目,一般情况下,在文科的题目中,出现求点到平面的距离问题时,大多数情况下,利用等级法转换三棱锥的顶点和底面,从而确定出所求的距离所满足的等量关系式,在做题的过程中,可以做一个模型,可以提高学生的空间想象能力,提升做题的速度.12.如图①,在边长为1的等边中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图②所示的三棱锥,其中.(1)证明://平面;(2)证明:平面;(3)当时,求三棱锥的体积.【答案】(1)、(2)证明过程详见解析;(3).【解析】(1)分析折叠前后量的变化情况,可得DE//BC,然后由直线与平面平行的判定方法知结论成立;(2)通过已知条件得,由易知,所以由直线与平面垂直的判定方法知结论成立;(3)结合(2)可得平面,所以计算三棱锥的体积以DFG为底面,GE为高易求解.试题解析:(1)在等边中,,所以,在折叠后的三棱锥A—BCF成立,所以DE//BC因为平面BCF,BC面BCF,所以DE//平面BCF;(2)在等边中,是的中点,所以①,.因为在三棱锥中,,所以②因为,所以平面ABF(3)由(1)可知,结合(2)可得平面..【考点】本题以折叠问题为背景,考查线面平行与垂直的证明及空间几何体体积的求法.13.如图,已知四棱锥,底面为菱形,平面,,分别是的中点.(1)证明:;(2)若,求二面角的余弦值.【答案】(1)证明详见解析;(2)二面角的余弦值为.【解析】(1)首先可得为正三角形.根据为的中点,得到.进一步有.由平面,证得.平面.即得.(2)思路一:利用几何方法.遵循“一作,二证,三计算”,过作于,有平面,过作于,连接,即得为二面角的平面角,在中,.思路二:利用“向量法”:由(1)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,确定平面的一法向量及为平面的一法向量.计算.试题解析:(1)证明:由四边形为菱形,,可得为正三角形.因为为的中点,所以.又,因此.因为平面,平面,所以.而平面,平面且,所以平面.又平面,所以.(2)解法一:因为平面,平面,所以平面平面.过作于,则平面,过作于,连接,则为二面角的平面角,在中,,,又是的中点,在中,,又,在中,,即所求二面角的余弦值为.解法二:由(1)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又分别为的中点,所以,,所以.设平面的一法向量为,则因此取,则,因为,,,所以平面,故为平面的一法向量.又,所以.因为二面角为锐角,所以所求二面角的余弦值为.【考点】1.垂直关系;2.空间的角;3.空间向量方法.14.在平面几何中有如下结论:正三角形的内切圆面积为,外接圆面积为,则,推广到空间中可以得到类似结论:已知正四面体的内切球体积为,外接球体积为,则=()A.B.C.D.【答案】D【解析】正三角形的外心与内心重合于正三角形的中心,由重心定理,得,即,由此类比,正四面体的内切球的球心与外接球的球心重合,且在正四面体的高上(如图所示),且,则,则;故选D.【考点】1.类比推理;2.球的体积公式.【方法点睛】本题考查类比推理,属于基础题;类比推理的应用一般分为类比定义、类比性质和类比方法三种情况,在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理性问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;有一些处理问题的方法具有类比性,可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.15.如图,在三棱柱中,侧棱垂直于底面,,,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.【答案】(1)证明见解析(2)证明见解析(3)【解析】(1)证明面面垂直只需证明线面垂直,然后通过面面垂直的判断定理即可得证,本题中只需证明平面即可,所以只需证明垂直平面内相交的两条直线即可;(2)要证明线面平行,只需证明直线和平面内的一条直线平行即可,通常采用构造平行四边形法、中位线法或者构造平行平面法,本题中我们可以采用构造平行四边形法证明四边形为平行四边形,即可得证;(3)要求三棱锥的体积,只需求出点到平面的距离即可,然后求出的面积代入椎体的体积公式即可得到所求答案.试题解析:(1)证明:在三棱柱中,底面,所以.又因为,所以平面,所以平面平面.(2)证明:取的中点,连接,.因为,,分别是,,的中点,所以,且,.因为,且,所以,且,所以四边形为平行四边形,所以.又因为平面,平面,所以平面.(3)因为,,,所以,所以三棱锥的体积.【考点】(1)面面垂直判断定理(2)线面平行的判定(3)三棱锥的体积16.已知矩形.将沿矩形的对角线所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线与直线垂直B.存在某个位置,使得直线与直线垂直C.存在某个位置,使得直线与直线垂直D.对任意位置,三对直线“与”,“与”,“与”均不垂直【答案】B【解析】如图,AE⊥BD,EF⊥BD,依题意,,A选项,若存在某个位置,使得直线与直线垂直,则由于AE⊥BD,所以BD⊥平面AEC,从而BD⊥EC,这与已知相矛盾,所以A错误;B选项中,若存在某个位置,使得直线与直线垂直,则CD⊥平面ABC,平面BCD⊥平面ABC,取BC得中点M,连接ME,则ME⊥BD,所以就是二面角A-BD-C的平面角,此角显然存在,即当A在底面是的射影位于BC的中点时,AB⊥ CD,故B正确;C选项中,若存在某个位置,使得直线与直线垂直,则BC⊥平面ACD,从而平面ACD⊥平面B CD,即点A在底面BCD上的射影应在线段CD 上,这是不可能的,故排除C;根据上述亦可排除D,故选B.【考点】空间中直线与直线、直线与平面及平面与平面的垂直关系.【方法点晴】这是一道折叠问题,应当注意折叠前后的变量与不变量,计算几何体中的相关边长,再分别对四个选项进行分析排除,这就需要用到反证法,先假设某个条件成立,从该条件出发,结合原图形中的不变关系,看能否推出矛盾,这是探索性问题常用的解题思路,本题中还要用到线线垂直、线面垂直及面面垂直之间的相互转化,这就需要考生对空间中的垂直关系非常熟悉,方能顺利解答.17.如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.(1)求证:;(2)求二面角的平面角的正弦值.【答案】(1)证明见解析;(2).【解析】第(1)小题设计为证明,只需证明平面;第(2)小题求二面角的大小,解决方法多样,既可以用综合法,也可以用向量法求解.试题解析:(1)证明:∵是的中点,且,∴.∵△与△均是以为直角顶点的等腰直角三角形,∴,.∵,平面,平面,∴平面.∵平面,∴.∵四边形是正方形∴.∵,平面,平面,∴平面.∵平面,∴.∵,平面,平面,∴平面.∵平面,∴.(2)解法1:作于,连接,∵⊥平面,平面∴.∵,平面,平面,∴⊥平面.∵平面,∴.∴∠为二面角的平面角.设正方形的边长为,则,,在Rt△中,在Rt△中,,,在Rt△中,.所以二面角的平面角的正弦值为.解法2:以为坐标原点,分别以所在直线为轴,轴,轴,建立空间直角坐标系,设,则,,,.∴,.设平面的法向量为,由得令,得,∴为平面的一个法向量.∵平面,平面,∴平面平面.连接,则.∵平面平面,平面,∴平面.∴平面的一个法向量为.设二面角的平面角为,则.∴.∴二面角的平面角的正弦值为.【考点】线面间平行与垂直,二面角.18.如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点, D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF,正确的是()A.(1)和(3)B.(2)和(5)C.(1)和(4)D.(2)和(4)【答案】C【解析】(1)由已知可得,即,又,面.所以(1)正确;(2)由(1)知面,而过平面外一点有且只有一条直线与已知平面垂直,所以(2)不正确;(3),为锐角,即与不垂直,所以不可能垂直平面.所以(3)不对;(4)由平面图形易得,即,,,面.所以(4)正确;(5)设正方形边长为2,则,可知,所以,即与不垂直.所以(5)不正确.综上可得正确的为(1)和(4),故C正确.【考点】线面垂直.【方法点晴】本题主要考查的是线面垂直,属于中档题.证明线面垂直常用其判定定理证明,关键是证明线线垂直,证明线线垂直常用的方法有:由线面垂直得线线垂直、勾股定理证直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.19.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.20.在四面体中,,则该四面体的外接球的表面积为______.【答案】【解析】由题意,以为过同一顶点的三条棱作正方体,则正方体的外接球同时也是该四面体的外接球;因为正方体的对角线的长为,球的半径为,所以该四面体的外接球的表面积为.【考点】球的表面积.21.正方形的边长为a,沿对角线AC将△ADC折起,若,则二面角的大小为________.【答案】【解析】取中点,连接和,那么,因为,所以是等边三角形,,在三角形内,,所以,根据平面关系知,即为二面角的平面角,所以二面角的大小是.【考点】二面角22.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.23.如图:在平行六面体中,为与的交点。

(完整版)高中立体几何经典练习试题[最新版]

(完整版)高中立体几何经典练习试题[最新版]

1.如图,在四棱锥P﹣ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.(Ⅰ)求证:平面DPC⊥平面BPC;(Ⅱ)求二面角C﹣PD﹣B的余弦值.2.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,,E、F分别为AD、PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC;(3)求二面角E﹣PC﹣D的大小.3.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑;(2)若面DEF与面ABCD所成二面角的大小为,求的值.4.如图所示三棱柱111C B A ABC -中,⊥1AA 平面ABC ,四边形ABCD 为平行四边形,CD AD 2=,CD AC ⊥.(Ⅰ)若AC AA =1,求证:⊥1AC 平面CD B A 11;(Ⅱ)若D A 1与1BB 所成角的余弦值为721,求二面角11C D A C --的余弦值.5.在直角梯形ABCD 中,//,,3,2,AB CD AD AB DC AB ⊥== 1,AD =,1AE EB DF ==,现把EF 它沿折起,得到如图所示的几何体,连接,,DB AB DC ,使 5.DC =(1)求证:平面DBC ⊥平面DFB ;(2)判断在线段DC 上是否存在一点H ,使得二面角E BH C --的余弦值为306-,若存在,确定H 的位置,若不存在,说明理由.6.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,24AB AD ==,23BD =,PD ⊥底面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若二面角P BC D --的大小为6π,求AP 与平面PBC 所成角的正弦值.7.在三棱锥A BCD -中,4,22AB BC AD BD CD =====,在底面BCD 内作CE CD ⊥,且 2.CE =(1)求证://CE 平面ABD ;(2)如果二面角A BD C --的大小为90,求二面角B AC E --的余弦值.8.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,AD AP =,E 为棱PD 中点.(1)求证:PD ⊥平面ABE ; (2)若F 为AB 中点,(01)PM PC λλ=<<,试确定λ的值,使二面角P FM B --的余弦值为33-.9.如图,在三棱柱111ABC A B C -中,点C 在平面111A B C 内的射影点为11A B 的中点 1,,90O AC BC AA ACB ==∠=.(1)求证:AB ⊥ 平面1OCC ;(2)求二面角1A CC B --的正弦值.F PM A CD EB10.已知多面体ABCDEF 如图所示.其中ABCD 为矩形,DAE △为等腰直角三角形,DA AE ⊥,四边形AEFB 为梯形,且AE BF ∥,90ABF =︒∠,22AB BF AE ===.(1)若G 为线段DF 的中点,求证:EG ∥平面ABCD .(2)线段DF 上是否存在一点N ,使得直线BN 与平面FCD 所成角的余弦值等于215若存在,请指出点N 的位置;若不存在,请说明理由.11.在如图所示的几何体中,平面ADNM ⊥平面ABCD ,四边形ABCD 是菱形,四边形ADNM 是矩形,π3DAB ∠=,2AB =,1AM =,E 是AB 的中点.(Ⅰ)求证:DE ⊥平面ABM ; (II)在线段AM 上是否存在点P ,使二面角P EC D --的大小为π4?若存在,求出AP 的长;若不存在,请说明理由.12.如图,已知梯形CDEF 与△ADE 所在平面垂直,AD ⊥DE ,CD ⊥DE ,AB ∥CD ∥EF ,AE=2DE=8,AB=3,EF=9.CD=12,连接BC ,BF .(Ⅰ)若G 为AD 边上一点,DG=DA ,求证:EG ∥平面BCF ;(Ⅱ)求二面角E ﹣BF ﹣C 的余弦值.N M D CE B A13.如图三棱柱中,侧面为菱形,.(1)证明:;(2)若,,,求二面角的余弦值.14.如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.15.如图,在四棱锥中,底面为菱形,为的中点.(Ⅰ)若,求证:平面平面;(Ⅱ)若平面平面,且,点在线段上,试确定点的位置,使二面角大小为,并求出的值.16.已知在边长为4的等边△ABC (如图1所示)中,MN ∥BC ,E 为BC 的中点,连接AE 交MN 于点F ,现将△AMN 沿MN 折起,使得平面AMN ⊥平面MNCB (如图2所示).(1)求证:平面ABC ⊥平面AEF ;(2)若S BCNM =3S △AMN ,求直线AB 与平面ANC 所成角的正弦值.17.如图(1),在五边形BCDAE 中,AB CD //,90=∠BCD ,1==BC CD ,2=AB ,ABE ∆是以AB 为斜边的等腰直角三角形.现将ABE ∆沿AB 折起,使平面⊥ABE 平面ABCD ,如图(2),记线段AB 的中点为O . (1)求证:平面⊥ABE 平面EOD ;(2)求平面ECD 与平面ABE 所成的锐二面角的大小.18.如图,在等腰梯形ABCD 中,//AB CD ,1AD DC CB ===,60ABC ∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,2CF =.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 二面角的平面角为(90)θθ≤,试求cos θ的取值范围.。

高二立体几何试题(详细答案)

高二立体几何试题(详细答案)

高二数学立体几何一、选择题: (本大题共12小题,每小题3分,共36分.) 1、已知),1,2,1(),1,1,0(-=-=则与的夹角等于 A .90°B .30°C .60°D .150°2、设M 、O 、A 、B 、C 是空间的点,则使M 、A 、B 、C 一定共面的等式是 A .0=+++OC OB OA OMB .OC OB OA OM --=2C .OM 413121++= D .0=++MC MB MA 3、下列命题不正确的是A .过平面外一点有且只有一条直线与该平面垂直;B .如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直;C .两异面直线的公垂线有且只有一条;D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。

4、若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭②//m m n n αα⊥⎫⇒⎬⊥⎭③//m m n n αα⊥⎫⇒⊥⎬⎭④//m n m n αα⎫⇒⊥⎬⊥⎭A .1个B .2个C .3个D .4个 5、四棱锥成为正棱锥的一个充分但不必要条件是A .各侧面是正三角形B .底面是正方形C .各侧面三角形的顶角为45度D .顶点到底面的射影在底面对角线的交点上6、若点A (42+λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为A .1,-4,9B .2,-5,-8C .-3,-5,8D .2,5,8 7、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 A .2F+V=4 B .2F -V=4 C .2F+V=2 (D )2F -V=2 8、侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 A .239 B .433 C .233 D .439 9、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,则 A .θ=600 B .θ=450 C .52cos =θ D .52sin =θ10、已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是A .2∶πB .1∶2πC .1∶πD .4∶3π11、设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅AC AB ,0=⋅AD AC ,0=⋅AD AB ,则△BCD 是A .钝角三角形B .直角三角形C .锐角三角形D .不确定12、将B ∠=600,边长为1的菱形ABCD 沿对角线AC 折成二面角θ,若∈θ[60°,120°], 则折后两条对角线之间的距离的最值为A .最小值为3, 最大值为23B .最小值为3, 最大值为43C .最小值为41, 最大值为3D .最小值为43, 最大值为3二、填空题:(本大题共6题,每小题3分,共18分) 13、已知向量a 、b 满足|a | =31,|b | = 6,a 与b 的夹角为3π,则3|a |-2(a ·b )+4|b | =________; 14、如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为 时,体积V P-AEB恒为定值(写上你认为正确的一个答案即可).ABDEP15、若棱锥底面面积为2150cm ,平行于底面的截面面积是254cm ,底面和这个截面的距离是12cm ,则棱锥的高为 ;16、一个四面体的所有棱长都是2,四个顶点在同一个球面上,则此球的表面积为 . 三、解答题:(本大题共6题,共46分)17.在如图7-26所示的三棱锥P —ABC 中,PA ⊥平面ABC , PA=AC=1,PC=BC ,PB 和平面ABC 所成的角为30°。

高二数学立体几何含解析

高二数学立体几何含解析

周周练9A一、选择题1.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[答案] D2.正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有( )A.3条 B.4条 C.6条 D.8条[答案] C3.若a、b是异面直线,b、c是异面直线,则( )A.a∥c B.a、c是异面直线 C.a、c相交 D.a、c平行或相交或异面[答案] D[解析] a、b、c的位置关系有下面三种情况,如图所示,由图形分析可得答案为D.4.空间两个角α、β的两边对应平行,若α=60°,则β为( )A.60° B.120° C.30° D.60°或120°[答案] D[解析] 由等角定理知α、β相等或互补.所以β=60°或120°.5.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD所成的角为( )A.30° B.45° C.60° D.90°[答案] A[解析] 取AD的中点H,连FH、EH,在△EFH中∠EFH=90°,HE=2HF,从而∠FEH=30°,故选A.6.下列命题中,正确的结论有( )①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.A.1个 B.2个 C.3个 D.4个[答案] B7.如图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有________对.[答案] 3[解析] AP与BC异面、BP与AC异面、PC与AB异面.8.如图所示,六棱柱ABCDEF-A1B1C1D1E1F1中,底面是正六边形.(1)A1F1与BD所成角的度数为________.(2)C1F1与BE所成角的度数为________.[答案] 30° 60°9点E、F分别是三棱锥P-ABC的棱AP、BC的中点,AB=6,PC=8,EF=5,则异面直线AB与PC所成的角为( )A.60° B.45° C.30° D.90°[答案] D[解析] 如图,取PB的中点G,连结EG、FG,则EG綊AB,GF綊PC,则∠EGF(或其补角)即为AB与PC所成的角,在△EFG中,EG=AB=3,FG=PC=4,EF=5,所以∠EGF=90°.10.如图,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE 与CD所成角的余弦值.[解析] 取AC的中点F,连接BF、EF,在△ACD中,E、F分别是AD、AC的中点,∴EF∥CD,∴∠BEF即为所求的异面直线BE与CD所成的角(或其补角).在Rt△EAB中,AB=1,AE=AD=,∴BE=.在Rt△AEF中,AF=AC=,AE=,∴EF=.在Rt△ABF中,AB=1,AF=,∴BF=.在等腰△EBF中,cos∠FEB===,∴异面直线BE与CD所成角的余弦值为.B一、选择题1.直线a在平面γ外,则( )A.a∥γ B.a与γ至少有一个公共点C.a∩γ=A D.a与γ至多有一个公共点[答案] D[解析] 直线α在平面γ外,包括两种情况,一种是平行,另一种相交,故选D.2.若平面α∥平面β,则( )A.平面α内任一条直线与平面β平行B.平面α内任一条直线与平面β内任一条直线平行C.平面α内存在一条直线与平面β不平行D.平面α内一条直线与平面β内一条直线有可能相交[答案] A3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( )A.5部分 B.6部分C.7部分 D.8部分[答案] C[解析] 垂直于交线的截面如图,把空间分成7部分,故选C.4.若平面α外不共线的三点到平面α的距离相等,则该三点确定的平面β与α的关系是( )A.相交 B.平行C.相交或平行 D.以上都不是[答案] C[解析] 如图(1),α∥β.如图(2),α与β相交.二、填空题5.下列命题正确的有__________ ________.①若直线与平面有两个公共点,则直线在平面内;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;⑤若直线l与平面α平行,则l与平面α内的直线平行或异面;⑥若平面α∥平面β,直线a⊂α,直线b⊂β,则直线a∥b.[答案] ①⑤[解析] ①显然是正确的;②中,直线l还可能与α相交,所以②是错误的;③中,直线l和平面α内过l与α交点的直线都相交而不是异面,所以③是错误的;④中,异面直线中的另一条直线和该平面的关系不能具体确定,它们可以相交,可以平行,还可以在该平面内,所以④是错误的;⑤中,直线l与平面α没有公共点,所以直线l与平面α内的直线没有公共点,即它们平行或异面,所以⑤是正确的;⑥中,分别在两个平行平面内的直线可以平行,也可以异面,所以⑥是错误的.6.将一个长方体的四个侧面和两个底面延展成平面后,可将空间分成_______________部分.[答案] 277.如图,在正方体ABCD-A1B1C1D1中判断下列位置关系:(1)AD1所在的直线与平面BCC1的位置关系是_________________.(2)平面A1BC1与平面ABCD的位置关系是________________.[答案] 平行 相交三、解答题8.已知三个平面α,β,γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.[解析] (1)c∥α,因为α∥β,所以α与β没有公共点.又c⊂β,所以c与α无公共点,所以c∥α.(2)c∥a,因为α∥β,所以α与β没有公共点.又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a,b都在平面γ内,因此a∥b.又c∥b,所以c∥a.9.如右图所示,在正方体ABCD-A1B1C1D1中,M、N分别是A1B1和BB1的中点,试判断(1)AM所在的直线与平面ABCD的位置关系?(2)CN所在的直线与平面ABCD的位置关系?(3)AM所在的直线与平面CDD1C1的位置关系?(4)CN所在的直线与平面CDD1C1的位置关系?[解析] (1)AM所在的直线与平面ABCD相交.(2)CN所在的直线与平面ABCD相交.(3)AM所在的直线与平面CDD1C1平行.(4)CN所在的直线与平面CDD1C1相交.10.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点,画出过D1,C,E的平面与平面ABB1A1的交线,并说明理由.[解析] 如图,取AB的中点F,连接EF,A1B,CF.∵E是AA1的中点,∴EF∥A1B.在正方体ABCD-A1B1C1D1中,A1D1∥BC,A1D1=BC,∴四边形A1BCD1是平行四边形.∴A1B∥CD1,∴EF∥CD1.∴E,F,C,D1四点共面.∵E∈平面ABB1A1,E∈平面D1CE,F∈平面ABB1A1,F∈平面D1CE,∴平面ABB1A1∩平面D1CE=EF.∴过D1,C,E的平面与平面ABB1A1的交线为EF.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科数学《立体几何》大题训练试题1.(本小题满分14分)如图的几何体中,AB 平面ACD , DE 平面ACD, △ ACD为等边三角形,AD DE 2AB 2 , F 为CD 的中点.(1)求证:AF〃平面BCE ;(2)求证:平面BCE 平面CDE 。

2 .(本小题满分14分)GkStKBCF如图,AB为圆O的直径,点E、F在圆O上,AB // EF,矩形ABCD 所在的平面和圆O所在的平面互相垂直,且AB 2 , AD EF1.⑴求证:AF 平面CBF ;⑵设FC的中点为M,求证:OM //平面DAF ;⑶求三棱锥F —CBE的体积.DCB M3.(本小题满分14分)如图所示, 正方形ABCD与直角梯形ADEF ADE 90o, AF // DE , DE DA 2AF (I )求证: AC//平面BEF ;(n)求四面体BDEF的体积.4 .如图,长方体ABCD A1B1C1D1中,AB AA 1, AD 2, E是BC 的中点.(I )求证:直线BB, //平面D, DE ;(n )求证:平面A1AE 平面D1DE ;OC(川)求三棱锥A A, DE的体积.5.(本题满分14分)如图,己知BCD中,BCD 90°, BC CD 1,AB 平面BCD ,AFADB 600,E,F分别是AC,AD上的动点,且圧AC AD ,(0< <1)7、(1)求证:不论为何值,总有EF 平面ABC;1(2)若二求三棱锥A-BEF的体积.26.(本小题满分13分)如图,已知三棱锥 A —BPC中,AP丄PC, AC丄BC, M为AB的中点, D为PB的中点,且△ PMB为正三角形.⑴求证:DM //平面APC;⑵求证:BC丄平面APC ;⑶若BC = 4, AB = 20,求三棱锥 D —BCM的体积.(本小题满分14分)如图1,在直角梯形ABCD中,ADCADC沿AC折起,使平面ADC 平面ABC,得到几何体D ABC,如图2所示.ABCD,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P ABCD的体积;(3)求证:AC 平面PAB;(2)设DF 的中点为N ,则 MN 仏-CD ,2又AO则MN 仏AO , 四边形MNAO 为平行四边形,• OM // AN , 又AN • OM //平面DAF .(2)证明:••• ACD 为等边三角形,F 为CD的中点,• AF CDCB 平面 ABEF ,•/ AF 平面 ABEF , • AF CB , 又AB 为圆O 的直径,• AF BF• AF 平面 CBF .参考答案1 .(本小题满分14分) (1 )证明:取CE 的中点G ,连结FG 、BG . •/ F 为 CD 的中点,••• GF//DE 且 GF••• AB 平面 ACD , DE 平面 ACD , ••• AB//DE ,• GF//AB . 3分又 AB 応,• GF AB .2 •四边形GFAB 为平行四边形,则 AF // BG . ••• AF 平面 BCE , BG 平面 BCE , • AF // 平面 BCE . 2.解:(1) •/ DE 平面 ACD ,AF又 CD DE D ,• AF •/ BG // AF ,•BG••• BG 平面 BCE ,平面ABCD 平面平面 ACD ,• DE AF .平面CDE . 平面CDE . ••平面BCE 平面 CDE .10分 12分 13分 14分ABEF ,CB AB ,平面ABCD I 平面ABEFAB ,平面DAF , OMi CD ,因为 AF // DE , DE 2AF ,所以 AF 〃 OG ,从而四边形AFGO 是平行四边形,FG//AO . 因为FG 平面BEF , AO 平面BEF , 所以AO//平面BEF ,即AC//平面BEF....... 7分(n)解:因为平面 ABCD 平面ADEF , AB AD1(3) •/ BC 面 BEF ,二 V F CB E V C BEF - S B EF BC ,3B 到EF 的距离等于O 到EF 的距离,过点O 作OG EF 于G ,连结OE 、OF ,•- OGOA, ......... 11 分22…V F CBEV C BEF1 3 S BEF BC12分1 1EF1 1 ,OG BC - -113 23 22123、(I )证明:设 ACI BD O 取BE 中点G , 连结 FG,OG14分1所以,OG 〃2D E所以AB 平面ADEF ........ 10分因为 AF //DE ADEo90 DE DA 2AF 21ED AD 2所以DEF 的面积为2……12分14—S DEF AB—所以四面体BDEF 的体积33 ...... 14分4、( I )证明:在长方体ABCDA iB 1C 1D i 中, BB 1 // DD 1 ,BB 1 平面 D 1 DE , DD 1平面D 1 DE --直线BB 1〃平面D 1DEOEF 为正三角形,••• OG 为正OEF 的高,C而AE 平面A i AE ,所以平面A i AE 平面D1DE . 5. ( 1)证明:因为AB丄平面BCD所以AB丄CD,又在△ BCD中, Z BCD = 90°,所以,BC丄CD 又ABA BC= B, 所以,CD!平面ABC ............... 3分又在△ ACD E、F分别是AC AD上的动点,且JA I JA!(o 1)AC AD所以,不论为何值,EF//CD,总有EF丄平面ABC : ......... 7分(2)解:在△ BCD中,Z BCD = 90°, BC= CD= 1,所以,BD= . 2 ,又AB丄平面BCD所以,AB丄BD,又在Rt △ ABD中, ADB 60°, • AB=BDtan60°.6。

(10)分A - BCD的体积是上246、解: (1)由已知得,MD是A ABP的中位线,所以MD /AP.(2分)因为MD?平面APC, AP?平面APC,所以MD 平面APC.(4分)⑵因为△ PMB为正三角形,D为PB的中点,所以MD JPB , (5分)(n )证明:在长方形ABCD 中,••• AB AA1 1 , AD 2,••• AE DE .2,「. AE2DE2 4 AD2,故AE DE, ................... 6 分•••在长方形ABCD中有DD1平面ABCD , AE 平面ABCD ,DD i AE,……7分又••• DD i DE D ,•直线AE 平面D1DE ,……8分10分(川)V A A1DE V A1 ADE 3 AA1 S ADE13.14分14分由(1)知EF丄平面ABE二厂处」灯、g所以,三棱锥所以AP dPB.(6分)又因为AP1PC,且PB A PC = P,所以AP丄平面PBC.(7分)因为BC?平面PBC ,所以AP JBC.又因为BC!AC ,且AC A AP = A ,所以BC 上平面APC.(10分)(3)因为 MD 呼面PBC ,所以 MD 是三棱锥 M — DBC 的高,且 MD = 5, 又在直角三角形 PCB 中,由PB = 10, BC = 4,可得PC = 2.(11分) 1 1于是 S ZBCD = 2S 玉CP = 2, (12 分)所以 V D - BCM = V M -DBC = 3Sh = 10.(13 分) 1所以VBACD3Sh8解:(1 )过A 作AE//CD ,根据三视图可知,E 是BC 的中点,且 BE CE 1 , AE CD2 2BC AB ,故 ACAC ,又面 ADC 面 ABC ,面ACD ,从而OD 平面ABC ,••…OD O ,7.解:(i )在图1中,可得AC BC 2,从而AC 2取AC 中点O 连结DO ,则DO面ADC • OD • BCI 面 ABC BC 又 AC 平面ACD AC , DOBC , AC IAC BC 2,从而 AC 2另解:在图1中,可得 •••面 ACD 面 ABC ,面 ACD 面 ABC AC , BCBC 2 AB 2,故 AC 面ABC ,从而BC BC(n ) 由(i )可知 BC 为三棱锥 B ACD 的高.BC 2, S VACDBC 平面ACD 1211分13分由等积性可知几何体j zABC 的体积为 2614分(1分) (2分)又••• PBC 为正三角形,••• BC PB PC 2,PE BC•- PE 2 PC 2 CE 2(3分)••• PA 平面 ABCD , AE 平面 ABCD , 二 PA AE (4分)•- PA 2 PE 2 AE 2PA(5分) 正视图的面积为S-2 2(6分)(2)由(1) 可知, 四棱锥 ABCD 的高 PA - 2 ,(7分)底面积为SADBCCD2(8分)1 i 3 [2•••四棱锥P ABCD的体积为V p ABCD S PA 23 3 2 2(3)证明:••• PA 平面ABCD , AC 平面ABCD , • PA AC •••在直角三角形ABE中,AB2AE2BE22• AC AB又••• ABI PA A ,• AC 平面PAB (10 分)(11 分)在直角三角形ADC中,AC2AD2 CD2 2 (12 分)• BC2 AA2 AC2 4 ,• BAC是直角三角形(13 分)(14 分)。

相关文档
最新文档