苏教版数学高二-高中数学苏教版选修1-1第1章《常用逻辑用语》单元检测(A)
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)
一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。
高二数学第一章 常用逻辑用语测试题及答案
高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
高中数学选修1-1第一章《常用逻辑用语》单元测试(一)
105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)
苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)一、填空题.给出命题:若函数y=f是幂函数,则函数y=f的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.解析:易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.答案:1.下列命题中,真命题是________.①∃x0∈R,ex0≤0;②∀x∈R,2x>x2;③a+b=0的充要条件是ab=-1;④a>1,b>1是ab>1的充分条件.解析:因为∀x∈R,ex>0,故排除①;取x=2,则22=22,故排除②;a+b=0,取a=b=0,则不能推出ab=-1,故排除③;应填④.答案:④.命题“若x2≥1,则x≥1或x≤-1”的逆否命题是________.解析:命题的条件为“x2≥1”,结论为“x≥1或x≤-1”,否定结论作条件,否定条件作结论,即为其逆否命题.答案:若-10;④函数y=sinx+sin|x|的值域是[-2,2].其中正确命题的序号是________.解析:当G=ab时,有G2=ab,所以a,G,b成等比数列,但当a,G,b成等比数列时,还可以有G=-ab,所以G=ab是a,G,b成等比数列的充分不必要条件,故①正确;当cosαcosβ=1时,有cosα=cosβ=-1或cosα=cosβ=1,即α=21π+π,β=22π+π或α=23π,β=24π,这时α+β=2π+2π或α+β=2π,必有sin =0,故②正确;由于|x-4|的最小值等于0,所以当a≤0时,不等式|x -4|0,故③正确;函数y=sinx+sin|x|=2sinx,x≥00,xx2;④∀x∈R,有x2+4>0.其中的真命题是________.解析:方程x2=2的解只有无理数x=±2,所以不存在有理数x使得方程x2=2成立,故②为假命题;比如存在x =0,使得03=02,故③为假命题,①④显然正确.答案:①④.若非空集合A,B,c满足A∪B=c,且B不是A的子集,则“x∈c”是“x∈A”的________条件.解析:x∈A⇒x∈c,但是x∈c不能推出x∈A.答案:必要不充分.“a=18”是“对任意的正数x,2x+ax≥1”的________条件.解析:a=18⇒2x+ax=2x+18x≥22x×18x=1,另一方面对任意正数x,2x+ax≥1只要2x+ax≥22x×ax=22a ≥1⇒a≥18.答案:充分不必要.已知命题p:关于x的不等式x2+2ax+4>0对∀x∈R 恒成立;命题q:函数y=-x是R上的减函数.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是________.解析:由x2+2ax+4>0对∀x∈R恒成立,得Δ=2-4×41,解得a1,则α必定是锐角.其中真命题的序号是________.解析:①“若xy=1,则x,y互为倒数”的逆命题为“若x,y互为倒数,则xy=1”,是真命题;②“相似三角形的周长相等”的否命题为“两个三角形不相似,则周长不相等”,显然是假命题;③∵b≤-1,∴Δ=4b2-4=-4b≥4>0,∴“若b≤-1,则x2-2bx+b2+b=0有实数根”为真命题,∴其逆否命题也是真命题;④∵当α=7π3时,sinα+cosα>1成立,∴此命题是假命题.答案:①③3.已知命题p:x2-x≥6,q:x∈Z,则使得x∈时,“p且q”与“綈q”同时为假命题的x组成的集合=________.解析:x∈时,“p且q”与“綈q”同时为假命题,即x∈时,p假且q真.故令x2-x0,∴原不等式化为x2-ax +20.∵∀x∈R时,2x2+x+1>0恒成立,∴Δ=2-8,s:x2+x+1>0.如果对∀x∈R,r与s有且仅有一个是真命题.求实数的取值范围.解:∵sinx+cosx=2sinx+π4≥-2,∴当r是真命题时,0恒成立,有Δ=2-40,即x>0,y>0或x0,y>0时,|x+y|=x +y=|x|+|y|,当x2},P={x|x<3},则“x∈或x∈P”是“x∈”的什么条件?求使不等式4x2-2x-1<0恒成立的充要条件.解:x∈或x∈P⇒x∈R,x∈⇔x∈,因为x∈或x∈Px∈,但x∈⇒x∈或x∈P.故“x∈或x∈P”是“x∈”的必要不充分条件.当≠0时,不等式4x2-2x-1<0恒成立⇒4<0,Δ=42+16<0,⇔-4<<0.又当=0时,不等式4x2-2x-1<0,对x ∈R恒成立.故使不等式4x2-2x-1<0恒成立的充要条件是-4<≤0.。
高中数学苏教版选修1-1第1章 常用逻辑用语1.1.1
【解】
(1)(2)(3)(4)(5)都是命题;其中(1)(2)(4)为真命题.
(3)中,如 2>-3,-1>-10,但 2×(-1)>(-3)×(-10)不成立,∴(3)为假 命题. (5)中,尽管现在还不知明年 12 月 8 号这一天本地是否下雨,但到这一天来到 时,总能知道是否下雨,故它是命题,只是暂时还不知它的真假. (6)祈使句,不是命题. (7)语句中含有变量 x,无法判定其真与假,故不是命题.
【解】 逆命题:设 x 为实数,若 x2>0,则 x>0,逆命题为假命题; 否命题:设 x 为实数,若 x≤0,则 x2≤0,否命题为假命题; 逆否命题:设 x 为实数,若 x2≤0,则 x≤0,逆否命题为真命题.
我还有这些不足: (1) (2) ________________________________________________________ ________________________________________________________
判断真假
的语句叫做命题.
2.四种命题的概念 一般地,设“若 p 则 q”为原命题,那么“
若q则p
”就叫做原命题的逆
命题, 原命题与逆命题称为 互逆命题 ; “若非 p 则非 q”就叫做原命题的否命题, 原命题和否命题称为 互否命题 ; “ 若非q则非p ”就叫做原命题的逆否命题,
原命题与逆否命题称为 互为逆否命题 .
(4)逆命题:若 ab 是奇数,则 a,b 都是奇数,为真命题; 否命题:若 a 或 b 是偶数,则 ab 是偶数,为真命题; 逆否命题:若 ab 是偶数,则 a 或 b 是偶数,为真命题.
1.写出一个命题的其他三种命题,关键是找出原命题的条件和结论,对于条件 和结论不明显的命题,需将原命题改写成“若 p,则 q”的形式,必要时可以加入 字母或文字. 2.若命题含有大前提,注意大前提既不是命题的条件也不是命题的结论,所以 其他三种命题中都需保留大前提.
数学选修1-1第一章 常用逻辑用语测试题
第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是b a 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个3.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真4.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。
其中使用逻辑联结词的命题有( )A .1个B .2个C .3个D .4个7.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题8.设集合{}{}|2,|3M x x P x x =>=<,那么“x M ∈,或x P ∈”是“x M P ∈ ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假10.下列命题中的真命题是( )11.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题; 其中真命题为( )A .①②B .②③C .①③D .③④12.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件13.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( )A.若0(,)a b a b R ≠≠∈,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠C.若0,0(,)a b a b R ≠≠∈且,则220a b +≠D.若0,0(,)a b a b R ≠≠∈或,则220a b +≠二、填空题14.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
高中数学选修2-1 第一章《 常用逻辑用语》单元测试题(含答案)
高中数学选修2-1 第一章单元测试题《常用逻辑用语》时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列语句中,不能成为命题的是( )A.指数函数是增函数吗?B.2 012>2 013C.若a⊥b,则a·b=0D.存在实数x0,使得x0<02.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.1 B.2C.3 D.43.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列命题中的假命题是( )A.存在x∈R,lg x=0 B.存在x∈R,tan x=1C.任意x∈R,x3>0 D.任意x∈R,2x>05.下列命题中是全称命题并且是真命题的是( )A.每个二次函数的图象与x轴都有两个不同的交点B.对任意非正数c,若a≤b+c,则a≤bC.存在一个菱形不是平行四边形D.存在一个实数x使不等式x2-3x+7<0成立18.(本小题满分12分)写出下列命题的否定,并判断其真假.(1)p:不论m取何实数,方程x2+mx-1=0必有实数根;(2)p:存在一个实数x,使得3x<0;(3)p:若a n=-2n+1,则∃n∈N,使S n<0;(4)p:有些偶数是质数.19.(本小题满分12分)设命题p:c2<c和命题q:对∀x∈R,x2+4cx+1>0,且p∨q为真,p∧q为假,求实数c的取值范围.20.(本小题满分12分)已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若綈p是綈q的充分而不必要条件,求实数m的取值范围.21.(本小题满分12分)已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.22.(本小题满分12分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.高中数学选修2-1 第一章单元测试题《常用逻辑用语》参考答案时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列语句中,不能成为命题的是( )A.指数函数是增函数吗?B.2 012>2 013C.若a⊥b,则a·b=0D.存在实数x0,使得x0<0解析:疑问句不能判断真假,因此不是命题.D是命题,且是个特称命题.答案:A2.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.1 B.2C.3 D.4解析:原命题是真命题,逆否命题为真命题,逆命题为“若xy≥0,则x≥0,y≥0”是假命题,则否命题为假命题.答案:B3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:先求出两直线平行的条件,再判断与a=1的关系.若l1∥l2,则2a -2=0,∴a=1.故a=1是l1∥l2的充要条件.答案:C。
苏教版高中数学选修1-1高二选修第一章常用逻辑用语测试题(理科).docx
陈店中学高二数学选修第一章常用逻辑用语测试题(理科)班级: 学号: 姓名:一、 选择题(每道题只有一个答案,每道题5分,共50分) 1、下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ③“若m>0,则x 2+x -m 有实根”的逆否命题 ②“正多边形都相似”的逆命题 ④“若x -123是有理数,则x 是无理数”的逆否命题 A 、①②③④ B 、①③④ C 、②③④ D 、①④2一个命题与他们的逆命题、否命题、逆否命题这4个命题中( ) A 、 真命题与假命题的个数相同 B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数一定是可能是奇数,也可能是偶数 3、“用反证法证明命题“如果x<y ,那么51x >51y ”时,假设的内容应该是( ) A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x <51y4、“a ≠1或b ≠2”是“a +b ≠3”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要6、函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A 、ab =0B 、a +b=0C 、a =bD 、a 2+b 2=07、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( )A 、若x =a 且x =b ,则x 2-(a +b )x +ab =0B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0C 、若x =a 且x =b ,则x 2-(a +b )x +ab ≠0D 、若x =a 或x =b ,则x 2-(a +b )x +ab =0 8、“12m”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要9、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( )A 、 存在实数m ,使得方程x 2+mx +1=0无实根B 、 不存在实数m ,使得方程x 2+mx +1=0有实根C 、 对任意的实数m ,使得方程x 2+mx +1=0有实根D 、 至多有一个实数m ,使得方程x 2+mx +1=0有实根10.若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,其逆命题都是假命题,则"c d ≤"是"e f ≤"的( ) A 、必要非充分条件 B 、充分非必要条件 C 、充分必要条件 D 、既非充分也非必要条件 二、填空题(每道题4分,共20分) 1. 判断下列命题的真假性:①若m>0,则方程x 2-x +m =0有实根 ②若x>1,y>1,则x+y>2的逆命题 ③对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 2.“末位数字是0或5的整数能被5整除”的否定形式是 否命题是3. 命题“A ⊆B ”看成一个复合命题,那么这个复合命题的形式是__________,其中构成它的两个简单命题分别是_______________________________________________________________。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)(3)
一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.已知命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭,命题p 的否定是( ) A .1,04xx R ⎛⎫∃∈> ⎪⎝⎭ B .1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭C .1,04xx R ⎛⎫∀∈≤ ⎪⎝⎭D .1,04xx R ⎛⎫∀∉≤ ⎪⎝⎭3.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( )A .0a ∀≥,20a a +≤B .0a ∀≥,20a a +<C .0a ∀≥,20a a +≥D .0a ∃<,20a a +< 4.命题“x R ∀∈,210x x +-<”的否定是( )A .x R ∃∈,210x x +->B .x R ∃∈,210x x +-≥C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +->5.已知命题2:,21>0p x R x ∀∈+,则命题p 的否定是( ) A .2,210x R x ∀∈+≤ B .2,21<0x R x ∀∈+ C .2,21<0x R x ∃∈+D .2,210x R x ∃∈+≤6.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.已知直线,m n ,平面,αβ,n αβ=,m ∥α,m n ⊥,那么“m ⊥β”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 8.命题“210x x x ∀>->,”的否定是( )A .21,0x x x ∃≤->B .21,0x x x ∀>-≤C .21,0x x x ∃>-≤D .21,0x x x ∀≤-> 9.设非空集合,M N 满足M N N =,则( )A .0,x N ∃∈ 有x M ∉B .,x N ∀∉有x M ∈C .0,x M ∃∉ 有0x N ∈D .,x N ∀∈有x M ∈10.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( ) A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭11.命题“,sin 0x x R x e ∃∈+>”的否定为( ) A .,sin 0x x R x e ∀∈+< B .,sin 0x x R x e ∀∈+≤ C .,sin 0x x R x e ∃∈+<D .,sin 0x x R x e ∃∈+≤12.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π二、填空题13.命题“2,0x R x x ∀∈+>”的否定是___________.14.已知命题():1,p x ∃∈+∞,24x >,则命题p ⌝为__________. 15.若“x ∃∈R ,220x x a ++<”是假命题,则实数a 的取值范围是________. 16.若“[]1,2,0x x a ∃∈-≤”是假命题,则实数a 的取值范围是__________. 17.命题“0,21x x ∀>>”的否定____________. 18.下列五个命题中正确的是_____.(填序号)①若ABC 为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则2a b =;②若cos cos a A b B =,则ABC 是等腰三角形;③若a b <,x ∈R ,则b b x a a x+<+; ④设等差数列{}n a 的前n 项和为n S ,若202011S S -=,则20211S >; ⑤函数2()f x =的最小值为2.19.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是________. 20.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,给出下列命题:①若//,m n αα⊂,则//m n ; ②若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ;③若,,//αβαβ⊥⊂n m ,则m n ⊥; ④ ,,,αγβγαβγ⊥⊥⋂=⊂m n ,则m n ⊥. 其中真命题是__________.三、解答题21.已知命题p :x R ∀∈,2210x ax -+>,命题q :函数(21)y a x =-单调递增, (1)若命题p 为真命题,求实数a 的取值范围;(2)若命题q 为真命题,求实数a 的取值范围;(3)若命题p q ∧是假命题,命题p q ∨是真命题,求实数a 的取值范围; 22.已知命题p :22310x x -+≤和命题q :2(21)(1)0x a x a a -+++≤ (1)若12a =,且p 和q 都是真命题,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.23.已知命题:“{}|22x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设关于x 的不等式()()80x a x a ---<的解集为N ,若“x ∈N ”是“x M ∈”的必要条件,求a 的取值范围.24.已知:集合2{|320},M x R x x =∈-+≤集合{|132}N x R m x m =∈+≤≤- (1)若“”x M ∈是“”x N ∈的充分不必要条件,求m 的取值范围. (2)若M N M ⋃=,求m 的取值范围.25.设p :对任意的x ∈R 都有22x x a ->,q :存在0x R ∈,使20220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.26.设a R ∈,命题p :∃[]1,2x ∈,满足()11>0a x --,命题q :∀x R ∈,2++1>0ax x .(1)若命题p q ∧是真命题,求a 的范围;(2)()p q ⌝∧为假,()p q ⌝∨为真,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案.解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.B解析:B 【分析】根据命题的否定的定义,写出命题的否定,然后判断. 【详解】命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭的否定是:1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭. 故选:B . 3.C解析:C 【分析】根据特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥. 故选:C.4.B解析:B 【分析】根据全称命题的否定是特称命题即可得正确答案. 【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥ 故选:B5.D解析:D 【分析】根据命题的否定的定义写出命题的否定,再判断. 【详解】命题2:,21>0p x R x ∀∈+的否定是2,210x R x ∃∈+≤. 故选:D .6.C解析:C 【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立;必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件. 故选:C.7.C解析:C 【分析】若m ⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的判定定理可得α⊥β, 若α⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的性定定理可得m ⊥β,再根据充要条件的定义可得答案. 【详解】 若m ⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ', 又m ⊥β,∴m '⊥β, 又∵m '⊂α,∴α⊥β, 若α⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ', ∵m n ⊥,∴m n '⊥, 又∵α⊥β,α∩β=n , ∴m β'⊥,∴m β⊥, 故“m ⊥β”是“α⊥β”的充要条件,【点睛】关键点点睛:根据面面垂直的判定定理以及性质定理求解是解题关键.8.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C9.D解析:D 【分析】根据交集的结果可得N M ⊆,分析选项,即可得答案. 【详解】 因为MN N =,所以N M ⊆,所以,x N ∀∈有x M ∈. 故选:D10.C解析:C 【分析】根据命题否定的定义写出命题的否定,然后判断. 【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥,故选:C .11.B解析:B 【分析】根据特称命题的否定变换形式即可得出结果. 【详解】特称命题的否定为全称命题,故“,sin 0x x R x e ∃∈+>”的否定为“,sin 0xx R x e ∀∈+≤”,故选:B .12.B解析:B根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 32π=.故满足条件的选项为B. 故选:B.二、填空题13.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可. 【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤”故答案为:2,0x R x x ∃∈+≤14.【分析】根据含一个量词命题否定的定义即可求得答案【详解】命题则为:故答案为:解析:()21,,4x x ∀∈+∞≤【分析】根据含一个量词命题否定的定义,即可求得答案. 【详解】命题():1,p x ∃∈+∞,24x >,则p ⌝为:()21,,4x x ∀∈+∞≤.故答案为:()21,,4x x ∀∈+∞≤15.【分析】根据题意可知命题是真命题可得出由此可求得实数的取值范围【详解】由于命题是假命题则该命题的否定是真命题解得因此实数的取值范围是故答案为: 解析:[)1,+∞【分析】根据题意可知,命题“x R ∀∈,220x x a ++≥”是真命题,可得出0∆≤,由此可求得实数a 的取值范围, 【详解】由于命题“x ∃∈R ,220x x a ++<”是假命题,则该命题的否定“x R ∀∈,220x x a ++≥”是真命题,440a ∴∆=-≤,解得1a ≥.因此,实数a 的取值范围是[)1,+∞. 故答案为:[)1,+∞.16.【分析】由题转化为命题为真命题即恒成立故可求解实数的取值范围【详解】由题转化为命题为真命题即恒成立又在上单调递增所以故故答案为:解析:()1+∞, 【分析】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,故可求解实数a 的取值范围. 【详解】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立, 又y x =在[]1,2上单调递增,所以min 1y =,故1a <.故答案为:()1+∞, 17.【解析】试题分析:命题的否定是:考点:命题的否定 解析:0,21x x ∃>≤【解析】试题分析:命题“0,21x x ∀>>”的否定是:0,21xx ∃>≤.考点:命题的否定.18.①④【分析】利用三角函数恒等变换公式和正弦定理余弦定理判断①②由不等式的性质判断③根据等差数列前项和与等差数列性质判断④应用基本不等式判断⑤【详解】①∵∴∴又为锐角∴由正弦定理和①正确;②∵由正弦定解析:①④ 【分析】利用三角函数恒等变换公式和正弦定理、余弦定理判断①②,由不等式的性质判断③,根据等差数列前n 项和与等差数列性质判断④,应用基本不等式判断⑤. 【详解】①∵()sin 12cos 2sin cos cos sin B C A C A C +=+,∴sin 2sin cos sin cos sin()sin cos sin B B C A C A C A C B +=++=+,∴2sin cos sin cos B C A C =,又C 为锐角,cos 0C ≠,∴2sin sin B A =,由正弦定理和2b a =.①正确;②∵cos cos a A b B =,由正弦定理得sin cos sin cos A A B B =,即2sin cos 2sin cos A A B B =,sin 2sin 2A B =,又,A B 是三角形内角,∴22A B =或22180A B +=︒,∴A B =或90A B +=︒,ABC 是等腰三角形或直角三角形,②错;③0x =时,b b x a a x+=+,不等式不成立,③错误; ④∵{}n a 是等差数列,202011S S -=,∴2320201a a a +++=,220202019()12a a +=,2202022019a a +=, ∴120212021220202021()2021202122021()122220192019a a S a a +==+=⨯=>,④正确;⑤22()2f x ===≥=,=,即241x +=时,等号成立,但2441x +≥>,因此不等式中等号不成立,2不是()f x 的最小值(可利用单调性得最小值为52).⑤错. 故答案为:①④ 【点睛】本题考查命题的真假判断,考查正弦定理、三角函数的恒等变换,不等式的性质,等差数列的性质与前n 项和,考查基本不等式求最值的条件.需要掌握的知识点较多,属于中档题.19.乙【解析】四人供词中乙丁意见一致或同真或同假若同真即丙偷的而四人有两人说的是真话甲丙说的是假话甲说乙丙丁偷的是假话即乙丙丁没偷相互矛盾;若同假即不是丙偷的则甲丙说的是真话甲说乙丙丁三人之中丙说甲乙两解析:乙 【解析】四人供词中,乙、丁意见一致,或同真或同假,若同真,即丙偷的,而四人有两人说的是真话,甲、丙说的是假话,甲说“乙、丙、丁偷的”是假话,即乙、丙、丁没偷,相互矛盾;若同假,即不是丙偷的,则甲、丙说的是真话,甲说“乙、丙、丁三人之中”,丙说“甲、乙两人中有一人是小偷”是真话, 可知犯罪的是乙.【点评】本体是逻辑分析题,应结合题意,根据丁说“乙说的是事实”发现,乙、丁意见一致,从而找到解题的突破口,四人中有两人说的是真话,因此针对乙、丁的供词同真和同假分两种情况分别讨论分析得出结论.20.②③④【分析】利用线面关系逐一分析即可【详解】对于①若则或异面故错误;对于②由线面平行的判定定理知:若且则故正确;对于③由面面平行的性质定理以及线面垂直的性质定理可知:若则故正确;对于④设在面内任取解析:②③④ 【分析】利用线面关系逐一分析即可.【详解】对于①,若//,m n αα⊂,则//m n 或,m n 异面,故错误; 对于②,由线面平行的判定定理知:若,//αβ⋂=m m n , 且,n n αβ⊄⊄,则//,//αβn n ,故正确;对于③,由面面平行的性质定理以及线面垂直的性质定理可知: 若,,//αβαβ⊥⊂n m ,则m n ⊥,故正确; 对于④,设,a b αγβγ==,在面γ内任取点O ,作,OA a OB b ⊥⊥,由,αγβγ⊥⊥,得OA α⊥,OB β⊥, 故OA m ⊥,OB m ⊥,则m γ⊥, 又γ⊂n ,则m n ⊥,故正确; 故答案为:②③④ 【点睛】本题考查了命题的真假判断、线面之间的位置关系、面面平行的性质定理、线面垂直的性质定理,考查了考生的空间想象能力,属于基础题.三、解答题21.(1)()1,1-;(2)1,2⎛⎫+∞ ⎪⎝⎭;(3)[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦.【分析】(1)由x R ∀∈,2210x ax -+>恒成立,利用判别式法求解. (2)根据函数(21)y a x =-单调递增,由210a ->求解.(3)根据命题p q ∧是假命题,命题p q ∨是真命题,则由p 、q 一真一假求解. 【详解】(1)因为命题p 为真命题,即x R ∀∈,2210x ax -+>恒成立, 所以2440a ∆=-<, 解得11a -<<,所以实数a 的取值范围是()1,1-.(2)若命题q 为真命题,即函数(21)y a x =-单调递增, 则210a ->, 解得12a >, 所以实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭. (3)因为命题p q ∧是假命题,命题p q ∨是真命题,所以p 、q 一真一假,①若p 真、q 假,则1112a a -<<⎧⎪⎨≤⎪⎩,解得112a -<≤; ②若p 假、q 真,则1112a a a ≤-≥⎧⎪⎨>⎪⎩或,解得1a ≥; 综上:[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦22.(1)112x ≤≤;(2)102a ≤≤. 【分析】 (1)由一元二次不等式可得命题p :112x ≤≤,命题q :1322x ≤≤,即可得解; (2)由命题间的关系转化条件为112xx ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+,即可得解. 【详解】 不等式22310x x -+≤即()()2110x x --≤,解得112x ≤≤, 不等式2(21)(1)0x a x a a -+++≤即()()10x a x a ---≤,解得1a x a ≤≤+,则命题p :112x ≤≤,命题q :1a x a ≤≤+, (1)当12a =时,命题p :112x ≤≤,命题q :1322x ≤≤, 若p 和q 都是真命题,则112x ≤≤; (2)因为p 是q 的充分不必要条件,所以112xx ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+, 所以1211a a ⎧≤⎪⎨⎪+≥⎩且等号不同时成立,解得102a ≤≤, 所以实数a 的取值范围为102a ≤≤. 23.(1)164⎡⎫-⎪⎢⎣⎭,;(2)124⎡⎫--⎪⎢⎣⎭,. 【分析】 (1)利用参数分离法将m 用x 表示,结合二次函数的性质求出m 的取值范围,从而可求集合M ;(2)若x ∈N 是x M ∈的必要条件,则M N ⊆即可得到不等式,从而求出参数的取值范围;【详解】解:(1)由题意可知20x x m --=,所以221124m x x x ⎛⎫=-=-- ⎪⎝⎭,因为{}|22x x x ∈-<<,所以21116244x ⎛⎫⎡⎫--∈- ⎪⎪⎢⎝⎭⎣⎭,,即164m -≤<,则实数m 的取值集合M=164⎡⎫-⎪⎢⎣⎭,; (2)由()()80x a x a ---<,可得()8N a a =+,,因为“x N ∈”是“x M ∈”的必要条件,所以M N ⊆,则1486a a ⎧<-⎪⎨⎪+≥⎩,解得124a -≤<-,所以a 的取值范围为124⎡⎫--⎪⎢⎣⎭,. 【点睛】本题考查必要条件求参数的取值范围,一般可根据如下规则判断计算:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对的集合与p 对应集合互不包含. 24.(1){|0}m m ≤;(2)1{|}2m m ≥.【分析】 (1)首先解出集合{|12}M x x =≤≤,由条件可知M N ≠⊂,列不等式求m 的取值范围;(2)由条件可知N M ⊆,再分N =∅和N ≠∅两种情况列式求m 的取值范围.【详解】解:(1){|12}M x x =≤≤,因为“”x M ∈是“”x N ∈的充分不必要条件,所以M N ≠⊂. 即:01113222m m m m ≤⎧+≤⎧⎪⇒⎨⎨-≥≤⎩⎪⎩,(等号不能同时取)0m ∴≤ 故m 的范围为{|0}m m ≤(2)因为,M N M =所以N M ⊆①当N =∅时:132m m +>-,23m >所以 ②当N ≠∅时:2132311032212m m m m m m m ⎧≤⎪+≤-⎧⎪⎪+≥⇒≥⎨⎨⎪⎪-≤⎩⎪≥⎩, 即1223m ≤≤ 综上可得:m 的范围为1{|}2m m ≥【点睛】本题考查根据充分必要条件,以及集合的包含关系求参数的取值范围,重点考查转化与化归思想,计算能力,属于基础题型. 25.[)(2,1)1,a ∈--+∞【解析】 试题分析:先根据恒成立得 22a x x <-最小值,得p ,再根据方程有解得q ,根据命题p q ∨为真,命题p q ∧为假,得,p q 一真一假,最后分类求实数a 的取值范围. 试题由题意:对于命题p ,∵对任意的2,2x R x x a ∈->,∴1440a ∆=+<,即:1p a <-;对于命题q ,∵存在x R ∈,使2220x ax a ++-=,∴()224420a a ∆=--≥,即:1q a ≥或2a ≤-. ∵p q ∨为真,p q ∧为假,∴,p q 一真一假,①p 真q 假时,21a -<<-, ②p 假q 真时,1a ≥.综上,()[)2,11,a ∈--⋃+∞.26.(1)322a <<;(2)3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭. 【分析】(1)由命题p q ∧是真命题,则需命题p 为真命题且q 为真命题,建立关于a 的不等式组,可得答案;(2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,分p 假q 假和p 真q 真,建立关于a 的不等式组,可得a 的取值范围;【详解】 (1)命题p 真时,则()1>0211>0a a -⎧⎨--⎩或()10111>0a a -<⎧⎨⨯--⎩, 得3>2a ; q 真,则240a -<,得22a -<<,所以p q ∧真,322a <<; (2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,若p 假q 假,则3222a a a ⎧≤-⎪⎨⎪≤-≥⎩或,得2a ≤-,若p 真q 真,则3>222a a ⎧⎪⎨⎪-<<⎩,所以,322a <<, 综上2a ≤-或322a <<. 故a 的取值范围是3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭.【点睛】本题考查根据复合命题的真假求参数的范围的问题,属于基础题.。
苏教版高中数学选修1-1常用逻辑用语训练.docx
新课标数学选修1-1常用逻辑用语训练一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。
1.有三个语句:⑴2x <;⑵210x -=;⑶20,()x x R <∈,其中是真命题的为 ( )A .⑴ ⑵B .⑴ ⑶C .⑵D .⑶2.下列语句中是命题的为 ( )A .你到过北京吗?B .对顶角难道不相等吗?C .啊!我太高兴啦!D .求证:2是无理数3.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程21x =的解1x =±。
其中,复合命题有 ( )A .1个B .2个C .3个D .4个4.“220a b +≠”的含义为 ( )A .,a b 不全为0B . ,a b 全不为0C .,a b 至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为05.若命题“⌝p ”与命题“p ∨q ”都是真命题,那么 ( )A .命题p 与命题q 的真值相同B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题6.命题p :若A B B =,则A B ⊆;命题q :若A B ⊄,则A B B ≠。
那么命题p 与命题q 的关系是 ( )A .互逆B .互否C .互为逆否命题D .不能确定7.若A :a ∈R,|a |<1, B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.有下列四个命题:①“若x+y=0 , 则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1 ,则x 2 + 2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为 ( )A .①②B .②③C .①③D .③④9.设集合A={x |x 2+x -6=0},B={x |m x +1=0} ,则B 是A 的真子集的一个充分不必要的条件是( )A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .m=21-C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭10.设集合M={x| x>2},P={x|x<3},那么“x ∈M,或x ∈P ”是“x ∈M ∩P ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件二、填空题:请把答案填在题中横线上。
高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)
一、选择题1.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,23x x >,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝2.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 3.下列说法正确的个数是( )①“若4a b +≥,则,a b 中至少有一个不小于2“的逆命题是真命题 ②命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题 ③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->” ④1a b +>是a b >的一个必要不充分条件 A .0B .1C .2D .34.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.5.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假6.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( )A .1B .2C .3D .47.下列有关命题的说法错误的是( ) A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题8.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真9.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题 10.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >11.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④12.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若12,[3,4]x x ∀∈∃∈R ,使2211221225x x x x x ax +++-成立,则实数a 的取值范围是______. 14.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=; ④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上)15.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 16.“14a =”是“对任意的正数x ,均有1ax x +≥”的________条件.17.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈, ②[]33-∈,③[][][][][]01234Z =⋃⋃⋃⋃,④整数,a b 属于同一类的充要条件是[]0a b -∈. 其中正确的个数是___________ 18.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________. 19.下列说法:(1)设a ,b 是正实数,则“a >b >1”是“log 2a >log 2b”的充要条件; (2)对于实数a ,b ,c ,如果ac >bc ,则a >b ; (3)“m=12”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;(4)等比数列{a n }的公比为q ,则“a 1>0且q >1”是对任意n ∈N +,都有a n+1>a n 的充分不必要条件;其中正确的命题有______ 20.给出下列四个命题中:①命题“若x ≥2且y ≥3,则x +y ≥5”为假命题.②命题“若x 2-4x +3=0,则x =3”的逆否命题为:“若x ≠3,则x 2-4x +3≠0”. ③“x >1”是“|x |>0”的充分不必要条件④关于x 的不等式|x +1|+|x -3|≥m 的解集为R ,则m ≤4. 其中所有正确命题的序号是______.三、解答题21.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.22.已知:()2:,21p x R x m x ∀∈>+,0:,q x R ∃∈200210x x m +--=,(1)若q 是真命题,求实数m 的取值范围; (2)若()p q ∧⌝为真命题,求实数m 的取值范围.23.已知p :2430x x -+<,q :()()210x m x m m R -++<∈.(1)求不等式2430x x -+<的解集;(2)若q 是p 的必要不充分条件,求m 的取值范围.24.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论. 25.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=.(1)若命题p :“x B ∀∈,都有x A ∈”为真命题,求实数a 的取值集合; (2)若C ≠∅,且“x A ∈”是“x C ∈”的必要条件,求实数m 的取值集合. 26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别判断两个命题p , q 的真假,结合复合命题真假关系进行判断即可. 【详解】对于命题p ,取1x =时,10<不成立,故命题p 为假命题, 对于命题 q ,1x =-时,23(1)(1)->-成立,故命题 q 为真命题,所以p q ∧为假命题,p q ⌝∧为真命题,p q ∧⌝为假命题,p q ⌝∧⌝为假命题,故选:B 【点睛】本题主要考查复合命题真假关系的判断,结合条件判断命题p ,q 的真假是解决本题的关键.2.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.3.C解析:C 【解析】对于①,原命题的逆命题为:若,? a b 中至少有一个不小于2,则4a b +≥,而4,?4a b ==-满足,? a b 中至少有一个不小于2,但此时0a b +=,故①是假命题;对于②,此命题的逆否命题为“设,?a b R ∈,若3a =且3b =,则6a b +=”,此命题为真命题,所以原命题也是真命题,故②是真命题;对于③“20000x R x x ∃∈-<,”的否定是“20x R x x ∀∈-≥,”,故③是假命题;对于④,由a b >可推得1a b >-,故④是真命题,故选C .点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真假.4.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.5.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.6.B解析:B 【分析】①1=1,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1abe e -=,则111a b a bb b b e e e e e e-+===+,再利用0b >,得出1b e >,从而求得a be -的范围,进而判断;④取特殊值,a e =,1b =即可判断. 【详解】解:①1=,1,所以1a b =++所以11a b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确; 若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③, 故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.7.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确;否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误;若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.8.C解析:C【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.10.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题, 不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.A解析:A 【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可. 【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.二、填空题13.【分析】先整理为关于的不等式恒成立求出相应的最值后得不等式在时能成立分离参数整理为求出诉最大值可得结论【详解】由得∴当时取得最小值∴使成立即使成立设设则∴即∴在时是增函数∴在上有∴故答案为:【点睛】 解析:(,5]-∞【分析】先整理为关于1x 的不等式恒成立,求出相应的最值后,得不等式222222154x x x ax -+--+-在2[3,4]x ∈时能成立,分离参数整理为223414x a x ≤++,求出223414x x ++诉最大值可得结论. 【详解】由2211221225x x x x x ax ≥++-+,得2212122(2)5x x x x ax +-≥-+-, ∴当2112x x =-时,()21212x x x +-取得最小值()22222221211224x x x x x ⎛⎫⎛⎫-+--=-+- ⎪ ⎪⎝⎭⎝⎭ ∴2[3,4]x ∃∈,使222222154x x x ax -+--+-成立,即2[3,4]x ∃∈,使223414a x x ++成立. 设3414t y t=++,设1234t t ≤<≤,则12120,316t t t t -<>, ∴12121212121233()(316)44444t t t t t t y y t t t t ---=+--=0<,即12y y <, ∴3414t y t=++在[3,4]∈时,是增函数. ∴223414x y x =++在[3,4]上有max 5y =,∴5a ≤. 故答案为:(,5]-∞. 【点睛】思路点睛:本题考查双变量不等式恒成立求参数范围.解题方法是先整理为以1x 为变量的不等式恒成立,又转化为关于2x 的不等式能成立,分离参数后求得函数的最值.14.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误; ②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.15.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-.本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.16.充分不必要【分析】当时对任意的正数x 均有反过来当对任意的正数x 均有时通过讨论有成立即可判断【详解】当时对任意的正数x 均有当且仅当时等号成立;当对任意的正数x 均有时当时令此时不符合题意;当时显然不满足解析:充分不必要 【分析】当14a =时,对任意的正数x ,均有141a x x x x+=+≥,反过来,当对任意的正数x ,均有1a x x +≥时,通过讨论有14a ≥成立,即可判断.【详解】 当14a =时,对任意的正数x ,均有141a x x x x +=+≥==, 当且仅当12x =时等号成立; 当对任意的正数x ,均有1ax x+≥时,当0a <时,令0x =>,此时0ax x+=,不符合题意; 当0a =时,1≥x ,显然不满足题意;当0a >时,有1ax x+≥, 解得有14a ≥, 所以“14a =”是“对任意的正数x ,均有1ax x +≥”的充分不必要条件故答案为:充分不必要 【点睛】本题考查了充分性和必要性的判断,属于一般题.17.3【分析】根据2011被5除的余数为1可判断①;将=可判断②;根据整数集就是由被5除所得余数为01234可判断③;令根据类的定理可证明④的真假【详解】①由2011÷5=402…1所以2011∈1故①解析:3根据2011被5除的余数为1,可判断①;将3-=52-+,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令115a n m =+,225b n m =+,根据“类”的定理可证明④的真假. 【详解】①由2011÷5=402…1,所以2011∈[1],故①正确; ②由()3512-=⨯-+ 所以[]33-∉,故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确; ④假设115a n m =+,225b n m =+,()12125a b n n m m -=-+-,,a b 要是同类. 则 12m m =,即120m m -=,所以[]0a b -∈,反之若[]0a b -∈,即120m m -=,所以12m m =,则,a b 是同类. ④正确; 故答案为:3 【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.属中档题.18.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.19.(3)(4)【分析】利用充要条件不等式性质两直线垂直的充要条件等比数列为递增数列的条件逐一判断即可【详解】对于(1)求得所以是的充分不必要条件所以错误对于(2)不成立所以错误对于(3)直线与直线相互解析:(3)(4) 【分析】利用充要条件、不等式性质、两直线垂直的充要条件、等比数列为递增数列的条件,逐一判断即可. 【详解】对于(1)22"log log "a b >求得0a b >>,所以"1"a b >>是22"log log "a b >的充分不必要条件,所以错误对于(2)0c <不成立,所以错误对于(3)直线()2310m x my +++=与直线()()2230m x m y -++-=相互垂直,12m =或2m =-,所以正确 对于(4)1"0a >且1"q >可以推出对任意n N +∈,都有1n n a a +>,反之不成立,如数列16,8,4,2----,所以正确故答案为(3)(4) 【点睛】本题考查了命题真假的判断,涉及到不等式性质、充要条件、等比数列的单调性等知识,属于中档题.20.②③④【分析】命题的判断一一进行判断即可对于①显然为假命题;对于②逆否命题条件和结论都否定正确;对于③若x >1则|x|>0若|x|>0则x 不一定大于1;对于④f (x )=|x+1|+|x ﹣3|表示数轴解析:②③④ 【分析】命题的判断,一一进行判断即可.对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和. 【详解】对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和,最小为4,所以m 4≤.故答案为②③④. 【点睛】本题考查命题真假的判断,综合考查了不等式性质及绝对值的意义,属于中档题.三、解答题21.(1)[)2,3;(2)12a <<. 【分析】(1)当1a =时,分别求出p ,q 成立的等价条件,利用p q ∧为真可得x 的取值范围; (2)由题可得q 是p 的充分不必要条件,得Q P ,从而可得a 的取值范围. 【详解】(1)当1a =时,由()()130x x --<,得p :13x <<, 由428x ≤≤,得:q 23x ≤≤,由p ∧q 为真,即p ,q 均为真命题,因此x 的取值范围是[)2,3. (2)若¬p 是¬q 的充分不必要条件,可得q 是p 的充分不必要条件,由题可得命题p 对应的集合{}3P x a x a =<<,命题q 对应的集合{}23Q x x =≤≤, 所以Q P ,因此2a <且33a <,解得12a <<. 即实数a 的取值范围是12a <<. 【点睛】本题考查充分必要条件的定义和应用,考查复合命题的真假判断,考查分析解决问题的能力,属于基础题.22.(1)2m ≥-;(2)2m <-. 【分析】(1)由题意知,q 是真命题等价于方程2210x x m +--=有实根,利用判别式0∆≥即可求解;(2)由题意知,分别求出p 、q ⌝为真命题时实数m 的取值范围,然后再取交集即可. 【详解】(1)因为0:R,q x ∃∈200210x x m +--=为真命题, 所以方程2210x x m +--=有实根, 所以判别式()4410m ∆=++≥, 所以实数m 的取值范围为2m ≥-.(2)()221x m x >+可化为220mx x m -+<, 若:R,p x ∀∈()221x m x >+为真命题,则220mx x m -+<对任意的x ∈R 恒成立, 当0m =时,不等式可化为20x -<,显然不恒成立;当0m ≠时,有2440m m <⎧⎨-<⎩,1m ∴<-, 由(1)知,若q ⌝为真命题,则2m <-, 又()p q ∧⌝为真,故p 、q ⌝均为真命题,所以实数m 需满足12m m <-⎧⎨<-⎩,解得2m <-,所以实数m 的取值范围为2m <-. 【点睛】本题考查利用复合命题的真假求参数的取值范围;考查运算求解能力和逻辑思维能力;熟练掌握复合命题的真假判断是求解本题的关键;属于中档题. 23.(1){}3|1x x <<(2)()3,+∞ 【分析】(1)分解因式得()()130x x --<,进而求解即可;(2)先将命题q 中不等式分解为()()10x m x --<,所以讨论m 与1的大小,当1m 时,不等式()210x m x m -++<的解是1x m <<,由q 是p 的必要不充分条,则2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,即可求解,同理讨论当1m <与1m =时的情况.【详解】解:(1)因为2430x x -+<,所以()()130x x --<,所以13x <<, 所求解集为{}|13x x <<.(2)因为q :()()210x m x m m R -++<∈,则()()10x m x --<当1m 时,不等式()210x m x m -++<的解是1x m <<,因为q 是p 的必要不充分条件,所以2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,所以3m >;当1m <时,不等式()210x m x m -++<的解是1m x <<,因为{}{}||131x x x m x <<⋂<<=∅,不合题意; 当1m =时,不等式2430x x -+<的解集为∅,不合题意. 综上,m 的取值范围是()3,+∞. 【点睛】本题考查含参数的一元二次不等式的解法,考查由充分必要条件求参数的范围,考查运算能力与分类讨论思想.24.充分不必要条件,证明见解析. 【分析】利用给出的定义、向量共面定理即可判断出关系. 【详解】p :空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a ,b ,c 共面.p 是q 的充分不必要条件.证明如下:若空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出, 不妨设c xa yb =+,则由向量共面定理知,a ,b ,c 共面, 即p q ⇒,反之不成立,例如,三个非零向量a ,b ,c 共面,且//a b ,而c 与a ,b 不共线,则c 无法用a ,b 线性表示. p ∴是q 的充分不必要条件.【点睛】本题考查了向量共线共面定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.25.(1){2,3};(2){3}. 【分析】(1)解方程确定集合,A B ,再根据命题p 为真求得a ; (2)题意说明x C ∈是x A ∈的充分条件,由此可求得m 值. 【详解】 由题意{1,2}A =,(1)2a =时,{1}B =满足题意,2a ≠时,{1,1}B a =-, 则∵x B ∀∈,都有x A ∈,∴12a -=,3a =, ∴a 的取值集合是{2,3};(2)∵“x A ∈”是“x C ∈”的必要条件,∴x C x A ∈⇒∈.若280m ∆=-=,即m =±C =或{C =均不合题意, 又C ≠∅,∴0∆>,因此12{,}C x x =,又12,x A x A ∈∈, 因此不妨设11x =,22x =,则123m x x =+=.∴m 的取值集合是{3}.【点睛】关键点点睛:本题考查由充分必要条件求参数,解题方法是根据充分条件,必要条件的定义得出集合中元素的性质,从而得出结论.也可由充分必要条件与集合包含之间的关系确定集合的关系,从而得出结论. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<,故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤<②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。
【数学】第一章《常用逻辑用语》综合测试(苏教版选修1-1)
高中苏教选修(1-1)第1章常用逻辑用语综合测试题一、选择题1.下列语句中,命题和真命题的个数分别是( ) ①垂直于同一条直线的两条直线平行吗? ②一个数不是奇数就是偶数③大角所对的边大于小角所对的边;④x y +是有理数,则x y ,也都是有理数; ⑤求证x ∈R ,方程210x x ++=无实数根. A .4,1 B .2,2 C .3,0 D .2,1答案:C2.①“若240b ac ->,则关于x 的方程20ax bx c ++=的解集必含有两个元素”; ②“矩形的对角线相等”的逆命题;③“若a b >,则a c b c ++≥”的否命题. 其中真命题的个数有( ) A .0个 B .1个 C .2个 D .3个 答案:A3.若语句:p x A B ∈ ,则“非p ”是( ) A .x A B ∉ B .x A ∉或x B ∉ C .x A ∉且x B ∉D .x A B ∈答案:B4.语句:p α是第二象限角;语句:sin tan 0q αα<,则p 是q 成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案:A5.下列判断错误的是( )A .命题“若p ,则q ”与命题“若非q ,则非p ”等价B .“22am bm <”是“a b <”的充要条件 C .“菱形的对角线互相垂直”的否定为假命题D .{}:12p ∅,Ü,{}:412q ,Ü,则“p 或q ”为真命题 答案:B6.命题:p 若a b ∈R ,,则1a b +>是1a b +>的充分不必要条件;命题:q 函数12y x =--的定义域是(][)13--+ ∞,,∞,则( )A .“p 或q ”为假B .“p 且q ”为真C .“p 且q ”为假D .以上均不对答案:C7.在下列结论中,正确的结论为( )①“p 且q ”为真是“p 或q ”为真的充分不必要条件 ②“p 或q ”为假是“p 或q ”为真的充分不必要条件 ③“p 或q ”为真是“非p ”为假的必要不充分条件 ④“非p ”为真是“p 且q ”为假的必要不充分条件 A .①② B .①③C .②④D .③④答案:B8.若函数()()f x g x ,的定义域和值域都是R ,则“()()f x gx <”成立的充要条件是( )A .0x ∃∈R ,使00()()f x g x <B .存在无数多个实数x ,使得()()f x g x <C .x ∀∈R ,都有1()()2f xg x +< D .不存在实数x ,使得()()f x g x ≥ 答案:D9.命题:p 不等式11x xx x >--的解集为{}|01x x <<;命题1:05q a <≤是函数2()2(1)2f x ax a x =+-+在区间(]4-∞,上为减函数的充分不必要条件,则( )A .p 真q 假B .“p 且q ”为真C .“p 或q ”为假D .p 假q 真答案:B10.设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对x ∀∈R ,有()f x M ≤,则M 是函数()f x 的最大值; ②若0x ∃∈R ,使得对x ∀∈R ,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若0x ∃∈R ,使得对x ∀∈R 有0()()f x f x ≤,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( )A .0B .1C .2D .3 答案:C11.设αβ,为两个不同的平面,l m ,为两条不同的直线,且l α⊂,m β⊂.有如下两个命题:①若αβ∥,则l m ∥;②若l m ⊥,则αβ⊥,那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题 答案:D12.若()f x 是R 上的减函数,且(0)3f =,(3)1f =-,设{}|()12P x f x t =+-<,{}|()1Q x f x =<-,若“x P ∈”是“x Q ∈”的充分不必要条件,则实数t 的取值范围是( ) A .{}|0t t ≤B .{}|0t t ≥C .{}|3t t -≥D .{}|3t t -≤答案:D 二、填空题13.存在性命题“存在一个被7整除的整数不是奇数”的否定是 . 答案:所有被7整除的整数都是奇数14.如果命题A 的否命题是B ,B 的逆命题为C ,则C 为A 的逆命题的 命题. 答案:否15.2()210p x ax x =++>,若对x ∀∈R ,()p x 是真命题,则实数a 的取值范围是 . 答案:1a >16.有下面四个命题:①命题“若1xy =,则x y ,互为倒数”的逆命题; ②命题“存在两个等边三角形,它们不相似”的否定; ③命题“若1m ≤,则220x x m -+=有实根”的逆否命题;④命题“若A B B = ,则A B ⊆”的逆否命题.其中真命题的是 .(填上你认为正确的命题的序号) 答案:①②③ 三、解答题17.已知命题:末位是0的整数,可以被5整除.把命题改写成“若p ,则q ”的形式,并写出它的逆命题、否命题与逆否命题,并判断真假.解:原命题:若一个整数的末位数是0,则这个整数可以被5整除.它是真命题. 逆命题:若一个整数可以被5整除,则这个整数的末位数是0.它是假命题. 否命题:若一个整数的末位数不是0,则这个整数不能被5整除.它是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数不是0.它是真命题.18.分别写出由下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的命题,并判断它们的真假.(1):p 平行四边形的对角线相等; :q 平行四边形的对角线互相平分;(2):p 方程2160x -=的两根的符号不同;:q 方程2160x -=的两根的绝对值相等.解:(1)p 或q :平行四边形的对角线相等或互相平分. p 且q :平行四边形的对角线相等且互相平分. 非p :有的平行四边形的对角线不相等.由于p 假q 真,所以p 或q 真,p 且q 假,非p 真;(2)p 或q :方程2160x -=的两根符号不同或绝对值相等.p 且q :方程2160x -=的两根符号不同且绝对值相等.非p :方程2160x -=的两根符号相同.由于p 真q 真,所以p 或q 、p 且q 为真,非p 为假.19.给出问题:已知语句:20p m -<<,01n <<;语句:q 关于x 的方程20x mx n ++=有两个小于1的正根.试分析p 是q 的什么条件.一位同学给出了如下解答:设关于x 的方程20x mx n ++=有两个小于1的正根12x x ,,则101x <<,201x <<,所以1202x x <+<,且1201x x <<. 由根与系数的关系,得1212x x m x x n +=-⎧⎨=⎩,,则0201m n <-<⎧⎨<<⎩,,所以20m -<<,01n <<. 又命题:20p m -<<,01n <<, 故p 是q 的充要条件.该同学的解答正确吗?试给出判断,并说明理由.解:该同学的解答是错误的,原因是由101x <<,201x <<得到1202x x <+<, 且1201x x <<并不是完全等价的,如取13m =-,12n =,则211032x x -+=. 此时方程的114092∆=-⨯<无解,更谈不上有两个小于1的正根,易知q p p q ⇒,¿,从而p 是q 的充要条件是错误的.正确的结论应为p 是q 的必要不充分条件.20.已知{}138M x x x =++->,{}2|(8)80N x x a x a =+--≤.(1)求a 的一个值,使它成为{}|58M N x x =< ≤的一个充分不必要条件; (2)求a 的一个取值范围,使它成为{}|58M N x x =< ≤的一个必要不充分条件.解:由已知有{}|35M x x x =<->或,{}|()(8)0N x x a x =+-≤. (1) 显然当35a --≤≤,即53a -≤≤时,{}|58M N x x =< ≤. 取0a =,由{}|58M N x x =< ≤,不能推出0a =. 所以0a =是{}|58M N x x =< ≤的一个充分不必要条件;(2)当{}|58M N x x =< ≤时,53a -≤≤,此时有3a ≤.但当3a ≤时推不出{}|58M N x x =< ≤.21.已知0ab ≠,求证1a b +=的充要条件是33220a b ab a b ++--=. 证明:必要性: 1a b +=,即1b a =-,33223322(1)(1)(1)a b ab a b a a a a a a ∴++--=+-+----323222133120a a a a a a a a a =+-+-+---+-=.充分性:33220a b ab a b ++--= ,即2222()()()0a b a ab b a ab b +-+--+=,22()(1)0a ab b a b ∴-++-=.又0ab ≠,即0a ≠且0b ≠,22223024b a ab b a b ⎛⎫∴-+=--≠ ⎪⎝⎭,只有1a b +=.综上,当0ab ≠时,1a b +=的充要条件是33220a b ab a b ++--=.22.已知条件:510m x a ->>和条件21:0231n x x >-+.请选取适当的实数a 的值,分别利用所给的两个条件构成形如“如果p ,则q ”形式的命题,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.(本题为开放题,a 值不惟一) 解:由已知条件m 即51x a -<-或51x a ->,15a x -∴<,或15ax +>, 已知条件n 即22310x x -+>,12x ∴<或1x >.令4a =,则m 即35x <-或1x >,此时必有m n ⇒成立,反之不然,故可以选取的一个实数4a =,p 为m ,q 为n ,对应的命题是“如果m ,则n ”. 由以上过程可知这一过程的原命题为真命题,但它的逆命题为假命题. 注:本题为一开放题,答案不惟一,只需a 满足1152a -≤且115a+≥即可.。
新苏教版数学(选修1-1)本章练测:第1章-常用逻辑用语(含答案)
第1章常用逻辑用语(苏教版选修1-1)一、填空题(本大题共14小题,每小题5分,共70分)1.下列说法中,不正确的是_________.①“若则”与“若则”是互逆的命题;②“若则”与“若则”是互否的命题;③“若则”与“若则”是互否的命题;④“若则”与“若则”互为逆否命题.2.若命题“”是假命题,则实数的取值范围是_____.3.集合,,则“”是“”的____条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4.设,若是的必要不充分条件,则实数的取值范围是___.5.命题将函数的图象向右平移个单位长度得到函数的图象;命题函数的最小正周期是,则复合命题“或”“且”“非”中真命题的个数是______.6.已知命题,命题,若命题“”是真命题,则实数的取值范围是__.7.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“是“一元二次不等式a+bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.8.关于的函数有以下命题:①,;②;③,都不是偶函数;④,使f是奇函数.其中假命题的序号是___.9.有限集合中元素的个数记作,设A,B都是有限集合,给出下列命题:①的充要条件是=;②的必要条件是;③的充分条件是;④的充要条件是.其中正确的命题是____.10.已知命题使;命题,都有给出下列结论:①命题“”是真命题;②命题“”是假命题;③命题“”是真命题;④命题“”是假命题,其中正确的是____.11.若为定义在D上的函数,则“存在D,使得”是“函数为非奇非偶函数”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)12.命题:“如果+=0,则x=2且y=-1”的逆否命题为.13.已知命题p:命题q:若命题p是命题q的充分不必要条件,则实数的范围是____________.14.下列命题:①“若,则互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若则”的逆命题,其中真命题是(填序号).二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.16.(本小题满分14分)已知命题:任意,,如果命题是真命题,求实数的取值范围.17.(本小题满分14分)求证:方程m-2x+3=0有两个同号且不相等的实根的充要条件是0<m<.18.(本小题满分16分)若函数的图象和轴恒有公共点,求实数的取值范围.19.(本小题满分16分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?20.(本小题满分16分)设设p :实数x 满足-4ax +3<0,其中a >0;q :实数x 满足(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.第1章 常用逻辑用语(苏教版选修1-1)答题纸得分:___一、填空题1.2. 3. 4. 5.6.7. 8. 9.10.11. 12. 13. 14.二、解答题15.解:16.解:17.解:18.解:19.解:20.解:第1章常用逻辑用语(苏教版选修1-1)参考答案1.②解析:“若则”与“若则”是互为逆否的命题,②不正确,故选②.2.解析:已知命题是假命题,则它的否定为真命题,命题的否定为的判别式3.必要不充分解析:集合集合,故,,所以“”是“”的必要不充分条件.4.解析:由已知得若成立,则,若成立,则.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以所以.5.2解析:将函数y=的图象向右平移个单位长度得到函数y==的图象,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数,最小正周期为,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个.6.解析:若p成立,对.因为若q成立,则方程因为命题“”是真命题,所以p真q真,故7.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.8.①③解析:对于命题①,若==成立,,所以命题①是假命题;对于函数f,当=时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.9.①②解析:,集合和集合没有公共元素,①正确;,集合中的元素都是集合中的元素,②正确;③错误;,则集合中的元素与集合中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.10.②③解析:因为,所以命题p是假命题,是真命题;由函数y=的图象可得,命题q是真命题,是假命题.所以命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题.所以②③正确.11.充分不必要解析:存在D,使得;若函数为非奇非偶函数,可能定义域不关于原点对称,所以“存在D,使得”是“函数为非奇非偶函数”的充分不必要条件.12.如果x≠2或y≠-1,则+≠0 解析:“x=2且y=-1”的否定为“x≠2或y≠-1”,“+=0”的否定为+≠0,故原命题的逆否命题为“如果x≠2或y≠-1,则+≠0”.13.解析:两个命题可分别表示为或,或,要使命题是命题的充分不必要条件,则解得.14.①②③解析:“若,则互为倒数”的逆命题为“若互为倒数,则”,是真命题;“四边相等的四边形是正方形”的逆命题为“正方形是四边相等的四边形”,是真命题,所以否命题也是真命题;“梯形不是平行四边形”是真命题,所以其逆否命题是真命题;“若则”的逆命题为“若则”,当不成立,是假命题.所以真命题为①②③.15.解:否命题为“若,则关于的方程没有实数根”;逆命题为“若关于的方程有实数根,则”;逆否命题为“若关于的方程没有实数根,则”.由方程的判别式,得,此时方程有实数根.因为使,所以方程有实数根,所以原命题为真,从而逆否命题为真.但方程有实数根,必须,不能推出,故逆命题为假,从而否命题为假.16.解:因为命题是真命题,所以是假命题.又当是真命题,即恒成立时,应有,所以当是假命题时,.所以实数的取值范围是.17.证明:(1)充分性:∵0<m<,∴方程m-2x+3=0根的判别式Δ=4-12m>0,且>0,∴方程m-2x+3=0有两个同号且不相等的实根.(2)必要性:若方程m-2x+3=0有两个同号且不相等的实根,则有解得0<m<.综合(1)(2)可知,方程m-2x+3=0有两个同号且不相等的实根的充要条件是0<m<. 18.解:(1)当时,=的图象与轴恒相交;(2)当时,二次函数=的图象和轴恒有公共点的充要条件是恒成立,即恒成立,又是一个关于的二次不等式,恒成立的充要条件是解得.综上,当时,;当时,.19.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.20.解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若是q的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B,又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.。
高中数学苏教版选修21第1章常常利用逻辑用语单元检测A卷
第1章单元检测(A 卷)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.有关命题的说法正确的有________.(写出所有正确命题的序号) ①命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”; ②“x =1”是“x 2-3x +2=0”的充分没必要要条件; ③若p 且q 为假命题,则p 、q 均为假命题; ④对于命题p :存在x ∈R ,使得x 2+x +1<0, 则⌝p :对∀x ∈R ,均有x 2+x +1≥0.2.下列命题中,真命题是________.(写出符合要求的序号) ①∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数; ②∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数; ③∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数; ④∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数. 3.有四个关于三角函数的命题: p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12;p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y ; p 3:∀x ∈[0,π],1-cos2x2=sin x ; p 4:sin x =cos y x +y =π2.其中的假命题是__________.(写出所有假命题的代号)4.已知命题p :“a =1”是“∀x >0,x +ax ≥2”的充分必要条件,命题q :∃x 0∈R ,x 2+x -1>0.则下列结论中正确的是________. ①命题“p ∧q ”是真命题; ②命题“p ∧⌝q ”是真命题;③命题“⌝p ∧q ”是真命题;④命题“⌝p ∧⌝q ”是假命题.5.已知命题p :∃x ∈R ,x 2+2ax +a ≤0.若命题p 是假命题,则实数a 的取值范围是________.6.已知p :|x +1|>2,q :5x -6>x 2,则⌝p 是⌝q 的______________条件. 7.给出命题“已知a 、b 、c 、d 是实数,若a =b ,c =d ,则a +c =b +d ”,对其原命题、逆命题、否命题、逆否命题而言,真命题有________个.8.下列命题中的假命题是________.(写出所有假命题的序号).①∀x ∈R,2x -1>0;②∀x ∈N *,(x -1)2>0; ③∃x ∈R ,lg x <1;④∃x ∈R ,tan x =2.9.已知命题p :∃x ∈R ,sin x <tan x ,命题q :方程x 2-x +1=0有实数根.给出下列四个命题:①“p 或q ”;②“p 且q ”;③“⌝p ”;④“⌝q ”. 其中真命题的个数是________. 10.“x 2-4x <0”是“0<x <5”的____________条件.11.命题“至少有一个正实数知足方程x 2+2(a -1)x +2a +6=0”的否定是________________________________________________________________________. 12.在△ABC 中,“A >30°”是“sin A >12”的______________条件.13.若p :“平行四边形必然是菱形”,则“非p ”为___________________________________________________________. 14.下列四个命题中,①“k =1”是“函数y =cos 2kx -sin 2kx 的最小正周期为π”的充要条件;②“a =3”是“直线ax +2y +3a =0与直线3x +(a -1)y =a -7彼此垂直”的充要条件;③函数y =x 2+4x 2+3的最小值为2.其中是假命题的为________(将你以为是假命题的序号都填上) 二、解答题(本大题共6小题,共90分)15.(14分)将下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)正方形是矩形又是菱形; (2)同弧所对的圆周角不相等; (3)方程x 2-x +1=0有两个实根.16.(14分)判毕命题“已知a、x为实数,若是关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.17.(14分)已知p :⎪⎪⎪⎪1-x -13≤2;q :x 2-2x +1-m 2≤0 (m >0),若⌝p 是⌝q 的必要非充分条件,求实数m 的取值范围.18.(16分)已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.19.(16分)p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根;若是p与q中有且仅有一个为真命题,求实数a的取值范围.20.(16分)已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,求实数a的取值范围.单元检测卷答案解析第1章常常利用逻辑用语(A)1.①②④ 2.①3.p 1,p 4解析 ∵对∀x ∈R ,均有sin 2x 2+cos 2x 2=1而不是12,故p 1为假命题.当x ,y ,x -y 有一个为2k π(k ∈Z )时,sin x -sin y =sin(x -y )成立,故p 2是真命题. ∵cos2x =1-2sin 2x , ∴1-cos2x 2=1-1+2sin 2x 2=sin 2x .又∵x ∈[0,π]时,sin x ≥0,∴对∀x ∈[0,π],均有1-cos2x2=sin x ,因此p 3是真命题.当sin x =cos y ,即sin x =sin(π2-y )时,x =2k π+π2-y ,即x +y =2k π+π2(k ∈Z ),故p 4为假命题.4.③④解析 a =1⇒x +a x =x +1x ≥2x ×1x=2,显然a =2时也能推出“∀x >0,x +ax ≥2”成立,所以“a =1”是“∀x >0,x +ax≥2”的充分没必要要条件,故p 是假命题,而q 是真命题,故③④正确. 5.0<a <1解析 若p 为假命题,则有綈p 为真命题,即x 2+2ax +a >0对∀x ∈R 恒成立,故有 Δ=4a 2-4a <0,所以0<a <1. 6.充分没必要要解析 |x +1|>2⇒x >1或x <-3,∴綈p 为:-3≤x ≤1,5x -6>x 2⇒2<x <3, ∴綈q 为:x ≤2或x ≥3, ∴綈p ⇒綈q ,但綈q 綈p . ∴綈p 是綈q 的充分没必要要条件. 7.2 8.② 9.2解析 命题p 真、q 假,∴“p 或q ”真,“綈q ”真. 10.充分没必要要11.所有的正数都不知足x 2+2(a -1)x +2a +6=0 12.必要不充分13.平行四边形不必然是菱形;或至少有一个平行四边形不是菱形 解析 本题考查复合命题“非p ”的形式,p :“平行四边形必然是菱形”是假命题,这里“必然是”的否定是用“必然不是”仍是“不必然是”?若为“平行四边形必然不是菱形”仍为假命题,与真值表相违,故原命题的“非p ”为“平行四边形不必然是菱形”,是一个真命题.第二种说法是命题是全称命题的简写形式,应用规则转变即可. 14.①②③ 解析 ①“k =1”可以推出“函数y =cos 2kx -sin 2kx 的最小正周期为π”,可是函数y =cos 2kx-sin 2kx 的最小正周期为π,即y =cos2kx ,T =2π|2k |=π,k =±1.②“a =3”不能推出“直线ax +2y +3a =0与直线3x +(a -1)y =a -7彼此垂直”,反之垂直推出a =25;③函数y =x 2+4x 2+3=x 2+3+1x 2+3=x 2+3+1x 2+3,令x 2+3=t ,t ≥3,y min =3+13=433. 15.解 (1)若一个四边形是正方形,则它既是矩形,又是菱形,为真命题. (2)若两个角为同弧所对的圆周角,则它们不相等,为假命题.(3)若一个方程为x 2-x +1=0,则这个方程有两个实数根,为假命题. 16.解 方式一 (直接法)逆否命题:已知a 、x 为实数,若是a <1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集. 判断如下:二次函数y =x 2+(2a +1)x +a 2+2图象的开口向上, 判别式Δ=(2a +1)2-4(a 2+2)=4a -7. ∵a <1,∴4a -7<0.即二次函数y =x 2+(2a +1)x +a 2+2与x 轴无交点,∴关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集,故逆否命题为真. 方式二 (先判断原命题的真假)∵a 、x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空, ∴Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a ≥74,∵a ≥74>1,∴原命题为真.又∵原命题与其逆否命题等价,∴逆否命题为真. 方式三 (利用集合的包括关系求解)命题p :关于x 的不等式x 2+(2a +1)x +a 2+2≤0有非空解集. 命题q :a ≥1.∴p :A ={a |关于x 的不等式x 2+(2a +1)x +a 2+2≤0有实数解}={a |(2a +1)2-4(a 2+2)≥0}=⎩⎨⎧⎭⎬⎫a |a ≥74,q :B ={a |a ≥1}.∵A ⊆B ,∴“若p ,则q ”为真,∴“若p ,则q ”的逆否命题“若綈q ,则綈p ”为真. 即原命题的逆否命题为真.17.解 綈p :⎪⎪⎪⎪1-x -13>2,解得x <-2或x >10,A ={x |x <-2或x >10}. 綈q :x 2-2x +1-m 2>0, 解得x <1-m 或x >1+m ,B ={x |x <1-m 或x >1+m }.∵綈p 是綈q 的必要非充分条件,∴BA ,即⎩⎪⎨⎪⎧1-m ≤-21+m ≥10⇒m ≥9,∴m ≥9. 18.解 令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0-2k -12>1f (1)>0,即k <-2.所以其充要条件为k <-2.19.解 对任意实数x 都有ax 2+ax +1>0恒成立⇔a =0或⎩⎨⎧a >0Δ<0⇔0≤a <4;关于x 的方程x 2-x +a =0有实数根⇔1-4a ≥0⇔a ≤14;若是p 真,且q 假,有0≤a <4,且a >14,∴14<a <4;若是q 真,且p 假,有a <0或a ≥4,且a ≤14,∴a <0. 综上,实数a 的取值范围为(-∞,0)∪⎝⎛⎭⎫14,4. 20.解 假设三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0都没有实数根,则⎩⎪⎨⎪⎧Δ1=(4a )2-4(-4a +3)<0Δ2=(a -1)2-4a 2<0Δ3=(2a )2-4(-2a )<0,即⎩⎪⎨⎪⎧-32<a <12a >13或a <-1,-2<a <0得-32<a <-1.∴实数a 的取值范围是a ≤-32或a ≥-1.。
苏教版数学高二-选修1-1训练 模块综合检测 A
模块综合检测(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知p :2x -3<1,q :x (x -3)<0,则p 是q 的____________________条件.2.命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是__________________________________________.3.下列结论正确的个数是________.①命题“所有的四边形都是矩形”是存在性命题;②命题“∀x ∈R ,x 2+1<0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则綈p :∀x ∈R ,x 2+2x +1≤0.4.以双曲线x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为______________. 5.已知命题p :若实数x ,y 满足x 2+y 2=0,则x ,y 全为0;命题q :若a >b ,则1a <1b. 给出下列4个复命合命题:①p ∧q ;②p ∨q ;③綈p ;④綈q .其中真命题的个数是________个.6.抛物线y =ax 2的准线方程是y =2,则a 的值为_________________________.7.函数y =2x 2-ln x 的单调递减区间是__________.8.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.9.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的焦点分别为F 1、F 2,b =4,离心率为35.过F 1的直线交椭圆于A 、B 两点,则△ABF 2的周长为________.10.若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是__________. 11.直线l 的方程为y =x +3,P 为l 上任意一点,过点P 且以双曲线12x 2-4y 2=3的焦点为焦点作椭圆,那么具有最短长轴的椭圆方程为__________.12.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不 充分条件,则实数a 的取值范围是________.13.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C 的离心率为________.14.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.二、解答题(本大题共6小题,共90分)15.(14分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0, 且綈q 是綈p 的必要条件,求实数a 的取值范围.16.(14分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.17.(14分)已知两点M (-2,0)、N(2,0),点P 为坐标平面内的动点,满足||MN →||MP →|+MN →·NP→=0,求动点P (x ,y )的轨迹方程.18.(16分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1. (1)求f (x )的解析式;(2)求f (x )在点(1,2)处的切线方程.19.(16分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点.(1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.20.(16分)已知函数f (x )=ln x -ax +1-a x-1(a ∈R ). (1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.模块综合检测(A)1.既不充分也不必要解析 ∵p :{x |x <2},q :{x |0<x <3},∴p ⇒q ,q ⇒p .2.若△ABC 有两个内角相等,则它是等腰三角形3.1解析 ①不正确,②正确,③不正确.4.x 24+y 216=1 解析 由x 24-y 212=-1,得y 212-x 24=1.∴双曲线的焦点为(0,4)、(0,-4),顶点坐标为(0,23)、(0,-23).∴椭圆方程为x 24+y 216=1. 5.2解析 ∵x 2+y 2=0⇒x =y =0,∴p 真;∵a >b ⇒1a <1b ,当a >0>b 时,1a >0,1b<0, ∴1a >1b,∴q 假.∴①③假,②④真. 6.-18解析 应先将抛物线方程化为标准方程x 2=1ay . ∵准线方程为y =2,∴-14a =2,即a =-18. 7.(0,12) 解析 ∵y ′=4x -1x =4x 2-1x=4(x +12)(x -12)x, 又∵函数的定义域为{x |x >0},∴y ′<0,即4(x +12)(x -12)x<0,结合定义域得0<x <12. 8.32解析 f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32.9.20解析 由椭圆定义知△ABF 2的周长为4a ,又e =c a =35,即c =35a ,∴a 2-c 2=1625a 2=b 2=16,∴a =5,△ABF 2的周长为20.10.a >0解析 y ′=a (3x 2-1),∵函数在⎝⎛⎭⎫-33,33上为减函数,∴y ′≤0在⎝⎛⎭⎫-33,33上恒成立.∵3x 2-1<0,∴a ≥0.当a =0时,函数为常数函数,不合题意,∴a >0.11.x 25+y 24=1 解析 设F 1、F 2为椭圆的左、右焦点,则F 1(-1,0)、F 2(1,0).由于PF 1+PF 2=2a ,当2a 最小时PF 1+PF 2最小.由此问题变成在直线l 上求一点P 使PF 1+PF 2最小,最小值为2a .点F 1关于直线l 的对称点为F 1′(-3,2),F 1′F 2=(-3-1)2+(2-0)2=25,∴a = 5.又c =1.∴b 2=4,即所求椭圆的方程为x 25+y 24=1. 12.0≤a ≤12解析 綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a . 若綈p ⇐綈q ,则a ≤12且a +1≥1,即0≤a ≤12. 13.62解析 ∵双曲线中焦距比虚轴长,∴焦点处内角为60°,又由双曲线性质得四边形为菱形.∴b c =tan 30°=33, ∴c =3b ,∴a 2=c 2-b 2=2b 2,∴a =2b . ∴e =c a =32=62. 14.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0,得x =0或x =-2.又∵f (0)=a ,f (-3)=a ,f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a .由题可知a =3,∴f (x )的最大值为57.15.解 由⎩⎪⎨⎪⎧ x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4, 即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A .即2<x <3满足不等式2x 2-9x +a <0.设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0,需⎩⎪⎨⎪⎧ f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧ 8-18+a ≤018-27+a ≤0.∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}.16.解 如图所示,设PF 1=m ,PF 2=n ,则S △F 1PF 2=12mn sin π3=34mn . 由椭圆的定义知PF 1+PF 2=20,即m +n =20.①又由余弦定理,得PF 21+PF 22-2PF 1·PF 2·cos π3=F 1F 22, 即m 2+n 2-mn =122.②由①2-②,得mn =2563. ∴S △F 1PF 2=6433. 17.解 设P(x ,y),则MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ).∴|MN →|=4,|MP →|=(x +2)2+y 2,MN →·NP →=4(x -2),代入|MN →|·MP →+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,即(x +2)2+y 2=2-x ,化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .18.解 (1)f ′(x )=2ax -43a , 由已知得⎩⎨⎧f ′(1)=2a -43a =1f (1)=a -43a +b =2, 解得⎩⎨⎧ a =32b =52,∴f (x )=32x 2-2x +52. (2)函数f (x )在(1,2)处的切线方程为y -2=x -1,即x -y +1=0.19.解 (1)由⎩⎪⎨⎪⎧ y =ax +1,3x 2-y 2=1消去y , 得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠± 3. (2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=2a 3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB , ∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0,即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a 3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围.故a =±1.20.解 (1)当a =-1时,f (x )=ln x +x +2x-1, x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-a x-1, 所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1. a .当a =12时,x 1=x 2,g (x )≥0恒成立, 此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a-1>1, x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0, 此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a-1<0. x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减; 当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a -1上单调递增,在⎝⎛⎭⎫1a -1,+∞上单调递减.。
高中数学 第1章 常用逻辑用语章末检测 苏教版高二选修2-1数学试题
常用逻辑用语 章末检测一、填空题(本大题共14小题,每小题5分,共70分)1.下列语句中,是命题的个数是________.①|x +2|;②-5∈Z ;③π∉R ;④{0}∈N .答案 3解析 ②③④是命题.2.命题“若α=π4,则tan α=1”的逆否命题是____________. 答案 若tan α≠1,则α≠π4解析 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”. 3.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的________条件.答案 充分不必要解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.4.设函数f (x )=x 2+mx (m ∈R ),则下列命题中的真命题是________.①任意m ∈R ,使y =f (x )都是奇函数;②存在m ∈R ,使y =f (x )是奇函数;③任意m ∈R ,使y =f (x )都是偶函数;④存在m ∈R ,使y =f (x )是偶函数.答案 ④解析 存在m =0∈R ,使y =f (x )是偶函数.5.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的________条件.答案 充分不必要解析 若a =3,则A ⊆B ;若A ⊆B ,则a =3或2.6.如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“p 或q ”是假命题.其中正确的结论是________.答案 ①③解析 “非p 或非q ”是假命题⇒“非p ”与“非q ”均为假命题.故①③正确.7.下列命题中正确的是________.①“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0互相平行”的充分不必要条件;②“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件; ③已知a 、b 、c 为非零向量,则“a ·b =a ·c ”是“b =c ”的充要条件;④p :存在x ∈R ,x 2+2x +2≤0.则綈p :任意x ∈R ,x 2+2x +2>0.答案 ④解析 “m =12”“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0互相平行”,故①不正确.“直线l 垂直平面α内无数条直线”“直线l 垂直于平面α”,故②不正确.“a ·b =a ·c ”“b =c ”,故③不正确.存在性命题的否定为全称命题,④正确.8.已知a 、b ∈R ,那么“0<a <1且0<b <1”是“ab +1>a +b ”的________条件. 答案 充分不必要解析 将ab +1>a +b 整理得,(a -1)(b -1)>0,即判断“0<a <1且0<b <1”是“(a -1)(b -1)>0”的什么条件.由0<a <1且0<b <1可推知(a -1)(b -1)>0,由(a -1)·(b-1)>0⇒⎩⎪⎨⎪⎧ a >1,b >1或⎩⎪⎨⎪⎧ a <1,b <1.故“0<a <1且0<b <1”是“ab +1>a +b ”的充分不必要条件.9.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则綈p 是________________.答案 ∃x ∈A,2x ∉B 解析 全称命题的否定是存在性命题.10.命题“若a >b ,则2a >2b-1”的否命题为________________________________. 答案 若a ≤b ,则2a ≤2b -1解析 一个命题的否命题是对条件和结论都否定.11.命题:存在一个实数对,使2x +3y +3<0成立的否定是________________________________________________________________________. 答案 任意实数对,使2x +3y +3≥0都成立.解析 存在性命题的否定是全称命题.12.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件. 答案 充分不必要解析 綈p :23≤x ≤2.綈q :-1≤x ≤2.綈p ⇒綈q ,但綈q綈p . ∴綈p 是綈q 的充分不必要条件.13.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的________条件.答案 充分不必要解析 若f (x ),g (x )为偶函数,则f (-x )=f (x ),g (-x )=g (x ),故h (-x )=f (-x )+g (-x )=f (x )+g (x )=h (x ).又∵f (x ),g (x )的定义域是R ,∴h (x )是偶函数.∴f (x ),g (x )是偶函数⇒h (x )是偶函数,令f (x )=x ,g (x )=x 2-x ,则h (x )=f (x )+g (x )=x 2是偶函数.而f (x ),g (x )不是偶函数,∴h (x )是偶函数f (x ),g (x )是偶函数.14.在下列四个命题中,真命题的个数是________.①∀x ∈R ,x 2+x +3>0;②∀x ∈Q ,13x 2+12x +1是有理数; ③∃α,β∈R ,使sin(α+β)=sin α+sin β;④∃x 0,y 0∈Z ,使3x 0-2y 0=10.答案 4解析 ①中x 2+x +3=(x +12)2+114≥114>0, 故①是真命题.②中x ∈Q ,13x 2+12x +1一定是有理数, 故②是真命题.③中α=π4,β=-π4时, sin(α+β)=0,sin α+sin β=0,故③是真命题.④中x 0=4,y 0=1时,3x 0-2y 0=10成立,故④是真命题.二、解答题(本大题共6小题,共90分)15.(14分)给出命题p :“在平面直角坐标系xOy 中,已知点P (2cos x +1,2cos2x +2)和Q (cos x ,-1),∀x ∈[0,π],向量OP →与OQ →不垂直”.试写出命题p 的否定,并证明命题p 的否定的真假性.解 綈p :在直角坐标系xOy 中,已知点P (2cos x +1,2cos2x +2)和Q (cos x ,-1),∃x ∈[0,π],向量OP →⊥OQ →,綈p 是真命题,证明如下:由OP →⊥OQ →得cos x (2cos x +1)-(2cos2x +2)=0利用cos2x =2cos 2x -1,化简得:2cos 2x -cos x =0,∴cos x =0或cos x =12. 又∵x ∈[0,π],∴x =π2或x =π3. 故∃x =π2或x =π3,向量OP →⊥OQ →. 16.(14分)求证:“a +2b =0”是“直线ax +2y +3=0和直线x +by +2=0互相垂直”的充要条件.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x +by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b)=-1,两直线互相垂直. 必要性:如果两条直线互相垂直且斜率都存在, 那么k 1k 2=(-a 2)×(-1b)=-1,所以a +2b =0; 若两直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0.所以a +2b =0.综上,“a +2b =0”是“直线ax +2y +3=0和直线x +by +2=0互相垂直”的充要条件.17.(14分)设p :关于x 的不等式a x >1 (a >0且a ≠1)的解集为{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R .如果p 和q 有且仅有一个正确,求a 的取值范围.解 当p 真时,0<a <1,当q 真时,⎩⎪⎨⎪⎧ a >0,1-4a 2<0, 即a >12, ∴p 假时,a >1,q 假时,a ≤12. 又p 和q 有且仅有一个正确.当p 真q 假时,0<a ≤12,当p 假q 真时,a >1. 综上得,a ∈(0,12]∪(1,+∞). 18.(16分)已知命题p :x 2-8x -20>0,q :x 2-2x +1-m 2>0(m >0),若p 是q 的充分不必要条件,求实数m 的取值范围.解 由x 2-8x -20>0⇒x <-2或x >10,即命题p 对应的集合为P ={x |x <-2或x >10},由x 2-2x +1-m 2>0(m >0)⇔[x -(1-m )][x -(1+m )]>0(m >0)⇔x <1-m 或x >1+m (m >0),即命题q 对应的集合为 Q ={x |x <1-m 或x >1+m ,m >0},因为p 是q 的充分不必要条件,知P 是Q 的真子集.故有⎩⎪⎨⎪⎧m >0,1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧ m >0,1-m >-2,1+m ≤10.解得0<m ≤3. 所以实数m 的取值范围是(0,3]. 19.(16分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解 (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0.解得⎩⎪⎨⎪⎧ -2≤x ≤3,x <-4或x >2.即2<x ≤3.所以q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧ 1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2) 綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q 綈p .设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},则A B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].20.(16分)已知命题p :函数f (x )=lg ⎝⎛⎭⎪⎫ax 2-x +116a 的定义域为R ;命题q :不等式2x +1<1+ax 对一切正实数x 均成立.如果命题p 或q 为真,p 且q 为假,求实数a 的取值范围.解 命题p 为真命题等价于ax 2-x +116a >0对任意实数x 均成立.当a =0时,-x >0,其解集不是R ,∴a ≠0.于是有⎩⎪⎨⎪⎧ a >0,1-14a 2<0,解得a >2,故命题p 为真命题等价于a >2.命题q 为真命题等价于a >2x +1-1x =2xx (2x +1+1)=22x +1+1对一切实数x 均成立. 由于x >0,∴2x +1>1,2x +1+1>2,∴22x +1+1<1,从而命题q 为真命题等价于a ≥1. 根据题意知,命题p 、q 有且只有一个为真命题,当p 真q 假时,实数a 不存在;当p 假q 真时,实数a 的取值范围是1≤a ≤2.。
苏教版数学高二-数学苏教版选修1-1练测 模块检测
选修1-1模块检测(苏教版选修1-1)一、填空题(本大题共14小题,每小题5分,共 70分)1.下列命题:①2,20x x ∀∈+>R ;②4,1N x x ∀∈≥;③3,1x x ∃∈Z <;④23x x ∀∈≠Z ,,其中假命题的序号是.2.曲线sin y x =在π3P ⎛ ⎝⎭处的切线斜率是. 3.抛物线2(0)y ax a =≠的准线方程是. 4.函数ln y x x =的单调减区间为.5.若双曲线的渐近线方程为3y x =±,它的一个焦点是,则双曲线的方程是.6.一物体做直线运动,其运动方程为43215243s t t t =++(的单位为m ,的单位为s),则物体速度为0的时刻是.7.如果方程22123x y k k+=--表示椭圆,则k 的取值范围是.8.要建造一座跨度为16米,拱高为4米的抛物线拱桥,建桥时,每隔4米用一根柱支撑,两边的柱高应为 米.9.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是.10.已知12,F F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于,A B 两点.若2212F A F B +=,则AB =.11.已知曲线3114:333C y x x =-+,曲线22:C y x =-92x m +,若当[22]x ∈-,时,曲线1C 在曲线2C 的下方,则实数m 的取值范围是.12.函数32(),[22]f x x ax bx c x =+++∈-,表示的曲线过原点,且在1x =±处的切线的斜率均为-1,有以下命题:①()f x 的解析式是3()4,[22]f x x x x =∈-﹣,; ②()f x 的极值点有且只有1个; ③()f x 的最大值与最小值之和为0. 其中真命题的序号是.13.与双曲线22142x y -=有相同的焦点,且过点(2,1)Q 的圆锥曲线方程为.14.已知函数()f x 是定义在R 上的奇函数,(1)0f =,2()()0(0)xf x f x x x '->>,则不等式2()0x f x >的解集是.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(14分)命题p :实数x 满足22430x ax a -+<,其中0a <;命题q :实数x 满足260≤x x --或228>0x x +-;若p ⌝是q ⌝的必要不充分条件,求a 的取值范围.16.(14分)抛物线的顶点在原点,它的准线过椭圆22221(0)x y a b a b +=>>的一个焦点1F 且垂直于椭圆的长轴,抛物线与椭圆的一个交点是23M ⎛ ⎝⎭,求抛物线与椭圆的标准方程.17.(14分)已知函数3()f x ax x =-,其中13a ≤.(1)当1a =时,求曲线()y f x =在点(2, (2))f 处的切线方程;(2)求函数()f x 在[-1,1]上的最大值.18.(16分)设双曲线22213y x a -=的两个焦点分别为12,F F ,离心率为2.(1)求双曲线的渐近线方程;(2)过点(1,0)N 能否作出直线,使与双曲线C 交于,P Q 两点,且0·OPOQ =,若存在,求出直线方程,若不存在,说明理由.19.(16分)设12,F F 分别是椭圆2222:162x y C m m +=(0)m >的左、右焦点.(1)当P C ∈,且120·PF PF =,124·PF PF =时,求椭圆C 的左、右焦点12,F F 的坐标.(2)12,F F 是(1)中椭圆的左、右焦点,已知2⊙F 的半径是1,过动点Q 作2F 的切线QM(M 为切点),使得1QF =,求动点Q 的轨迹.F 2F 1MQyx20.(16分)如图,有一块半椭圆形钢板,其长半轴长为2r ,短半轴长为r .计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x ,梯形面积为S .(1)求面积S 以x 为自变量的函数式,并写出其定义域;(2)求面积S 的最大值.选修1-1模块检测答题纸(苏教版选修1-1)得分:一、填空题1.2.3.4. 5. 6. 7.8.9. 10.11. 12. 13. 14.二、解答题15.16.17.18.19.20.选修1-1模块检测参考答案(苏教版选修1-1)1.②解析:①x ∀∈R ,220x +>是真命题;②0x =∈N ,401x =<,故②是假命题;③0x =∈Z ,301x =<,故③是真命题;④2,3x x ∀∈≠Z 是真命题. 2.12解析:由sin y x = ,得cos y x '= .把π3x =代入,得π312x y ='=.故曲线在点π3P ⎛ ⎝⎭处的切线斜率为12. 3.14y a =-解析:∵2y ax =,∴212x y py a ==,∴12p a =.又∵抛物线的准线方程为2py =-,∴抛物线2y ax =(0)a ≠的准线方程是14y a =-.4.10,e ⎛⎫⎪⎝⎭解析:1ln y x '=+,令0y '<,得1e x <.因为函数ln y x x =的定义域为(0,+∞),所以函数ln y x x =的单调减区间为10,e ⎛⎫⎪⎝⎭.5.2219y x -=解析:因为双曲线的渐近线方程为3y x =±,所以可设双曲线的方程是2209y x λλ-=≠().又它的一个焦点是,所以910λλ+=,所以λ=1,2219y x -=.6. =0或1或4解析:由题意可知3254s t t t '=+﹣.令32540t t t -+=,解得=0或1或4.7.552,,322⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭解析:∵ 方程22123x y k k +=--表示椭圆,∴ 20,30,23.k k k k ->⎧⎪->⎨⎪-≠-⎩解得23k <<且52k ≠. 8.3 解析:由题意设抛物线的方程为22(0)x py p =>-,又抛物线的跨度为16,拱高为4,所以点(8,-4)为抛物线上的点,代入求得8p =,即抛物线的方程为216x y =-.所以当4x =时,1y =-,所以柱子的高度为4-1=3(米).9.[2,+∞) 解析:已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F .若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴b a2e =222224c a b a a +=≥,∴2≥e .10.8解析:由椭圆的定义,得121210,10.AF AF BF BF +=⎧⎨+=⎩两式相加,得2220AB AF BF ++=,即1220AB +=,∴8AB =.11.3m >解析:令23914()3233F x x x m x x =-+-+-,故()>0F x 在[22]x ∈-,上恒成立.∵23()202F x x x '=-+-<在[22]x ∈-,上恒成立,∴()F x 在[﹣2,2]上单调递减,∴(2)30F m =->,即3m >.12.①③ 解析:由函数32()f x x ax bx c =+++的图象过原点,可得0c =.又2()32f x x ax b '=++,且()f x 在1x =±处的切线斜率均为-1,则有321,321,a b a b ++=-⎧⎨-+=-⎩解得0,4.a b =⎧⎨=-⎩所以3()4f x x x =-,2()34f x x '=-.①可见3()4f x x x =-,因此①正确.②令()0f x '=,得x =.又()f x 在⎡⎢⎣⎦内递减,且()f x 的极大值为f ⎛= ⎝⎭f =⎝⎭两端点处(2)(2)0f f ==-,所以()f x 的最大值为M =,最小值为m =0M m +=,因此③正确.13.22182x y +=或22133x y -=解析:由题意知双曲线的焦点坐标为12(F F ,(1)可设所求双曲线方程为222216x y a a-=-,而点(2,1)Q 在曲线上,代入得23a =,∴双曲线的方程为22133x y -=. (2)可设所求椭圆方程为222216x y a a +=-,点(2,1)Q 在曲线上,代入得28a =,∴椭圆的方程为22182x y +=. 14.(1,0)(1,)+∞-解析:由2()()0(0)xf x f x x x '->>,即()0f x x '⎡⎤>⎢⎥⎣⎦,得()f x x 在(0,+∞)上为增函数,且当1x =时,有(1)(1)01f f ==. 故函数()f x x 在(0,1)上有()0f x x<,又0x >,则此时()<0f x . 同理函数()f x x 在(1,)+∞上有()f x x>0,又0x >,则此时()>0f x . 又函数()f x 是定义在R 上的奇函数,∴当(,1)x ∈∞--时,()<0f x ;当(1,0)x ∈-时,()>0f x . 而2()0x f x >⇔()>0f x ,故不等式2()0x f x >的解集为(1,0)(1,)+∞-.二、解答题 15.解:22430x ax a +=-的根为3a a ,. 当0a <时,22430x ax a +-<的解集为(3,)a a .故命题p 成立有(3,)x a a ∈.由260x x --≤,得[23]x ∈-,.由2280x x +>-,得(,4)(2,)x ∈∞-+∞-.故命题q 成立有(,4)[2,)x ∈∞--+∞-.若p ⌝是q ⌝的必要不充分条件,则p 是q 的充分不必要条件,因此有(3,)(,4)a a ⊆∞--或(3,)[2,)a a ⊆-+∞.又0a <,解得4a -≤或2<03≤a -. 故a 的取值范围是4a -≤或2<03≤a -.16.解:由题意可设抛物线方程为22(0)y px p =>.∵点23M ⎛ ⎝⎭在抛物线上,∴2p =.∴抛物线的方程为24y x =. ∴12(1,0),(1,0)1F F c =-,.∴1224,2,a MF MF a b =+===. ∴椭圆的方程为22143x y +=. 17.解:(1)当1a =时,3()f x x x =-,(2)6f =,(2)11f '=,所以曲线()y f x =在点(2,(2))f 处的切线方程为611(2)y x -=-,即11160x y --=.(2)2()31f x ax '=-.当a ≤0时,2()310f x ax '=-<,()y f x =在[-1,1]上单调递减,所以max ()(1)1f x f a ==-+-. 当103≤a <时,令()0f x '=,解得12x x = 因为103≤a <,所以21x =且11x =-. 又当11x -<<时,()<0f x ',故()y f x =在[-1,1]上单调递减, 所以max ()(1)1f x f a ==-+-.综上,函数()f x 在[-1,1]上的最大值为1a -+.18.解:(1)∵e =21a =.∴双曲线的渐近线方程为y =. (2)假设过点(1,0)N 能作出直线,使与双曲线C 交于,P Q 两点,且0OP OQ =. 若过点(1,0)N 的直线斜率不存在,则不适合题意,舍去.设直线方程为1122(1)(,)(,)y k x P x y Q x y =-,,,∴ 22(1),1. 3y k x x y =-⎧⎪⎨-=⎪⎩①②①代入②并整理,得2222(31)6330k x k x k --+-=.∴ 221222122310,0,6,3133.31k k x x k k x x k ∆⎧-≠⎪>⎪⎪⎨+=-⎪⎪-⎪=-⎩∵ 0OP OQ =•,∴12120y y x x +=.∴2221212(1)()0k x x k x x k +-++=.∴ 223031k k +=-.∴23k =-不合题意.∴不存在这样的直线.19.解:(1)∵ 120PF PF =,∴2221212PF PF F F +=,∴2221216PF PF m +=. 又∵ 124PF PF =,∴2212()816PF PF m +-=.∴21m =.∴12(2,0),(2,0)F F -.(2)设(,)Q x y ,连接2QF 及2F M .∵QM 是2F 的切线,∴22222QM QF F M =-.∴222(2)1QM x y =-+-.又∵ 12QF QM ,∴2212QF QM =.∴2222(2)2[(2)1]x y x y ++=-+-.∴22(6)34x y -+=.∴动点Q 的轨迹是以(6,0)为圆心,34.20.解:(1)依题意,以AB 的中点O 为原点建立平面直角坐标系(如图),则点C 的横坐标为x ,纵坐标为y ,满足方程22221(0)4x y y r r +=≥.解得222(0)y r x x r =-<<.22221(22)22()2S x r r x x r r x =+-+-•其定义域为{|0}x x r <<.(2)记222()4()()(0)f x x r r x x r =+-<<,则2()8()(2)f x x r r x '=+-. 令()0f x '=,得12x r =.因为当02rx <<时,()>0f x ';当2rx r <<时,()<0f x ',所以12f r ⎛⎫ ⎪⎝⎭是()f x 的最大值.因此,当12x r =时,S 21332f r ⎛⎫ ⎪⎝⎭.故梯形面积S 233.。
高二数学选修11第一章常用逻辑用语单元检测(含答案)题型归纳
高二数学选修11第一章常用逻辑用语单元检测(含答案)题型归纳常用逻辑用语是高二数学最常考察的知识点,以下是第一章常用逻辑用语单元检测,希望对大家有帮助。
一、填空题1.下列语句中命题的个数为________.①空集是任何非空集合的真子集.②三角函数是周期函数吗?③若_R,则_2+4_+70.④指数函数的图象真漂亮!2.在空间中,下列命题正确的是________.(填序号)①平行直线的平行投影重合;②平行于同一直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.3.命题若a-3,则a-6以及它的逆命题、否命题、逆否命题中,真命题的个数为________.4.对于命题若数列{an}是等比数列,则an,下列说法正确的是________.(填序号)①它的逆命题是真命题;②它的否命题是真命题;③它的逆否命题是假命题;④它的否命题是假命题.5.命题若函数f(_)=loga_(a0,a1)在其定义域内是减函数,则loga2的逆否命题是________________________________.6.有下列四个命题,其中真命题有________.(填序号)①若_+y=0,则_,y互为相反数的逆命题;②全等三角形的面积相等的否命题;③若q1,则_2+2_+q=0有实根的逆命题;④不等边三角形的三个内角相等的逆否命题.7.命题各位数字之和是3的倍数的正整数,可以被3整除的逆否命题是_______________________________________;逆命题是____________;否命题是________________________.8.有下列四个命题:①若_y=1,则_、y互为倒数的逆命题;②相似三角形的周长相等的否命题;③若b-1,则方程_2-2b_+b2+b=0有实根的逆否命题;④若AB=B,则AB的逆否命题.其中真命题有________.(填序号)二、解答题9.命题:已知a、b为实数,若关于_的不等式_2+a_+b0有非空解集,则a2-4b0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.10.设有两个命题:p:_2-2_+2m的解集为R;q:函数f(_)=-(7-3m)_是减函数,若这两个命题中有且只有一个是真命题,求实数m的取值范围.能力提升11.设非空集合S={_|ml}满足:当_S时,有_2S.给出如下三个命题:①若m=1,则S={1};②若m=-12,则14③若l=12,则-220.其中正确命题的序号为________.12.已知函数f(_)是(-,+)上的增函数,a,bR.证明:若f(a)+f(b)f(-a)+f(-b),则a+b0.1.命题的最主要的特征是能够判断真假.2.互为逆否的命题真假性相同.3.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.答案解析1.2解析①是命题;②是疑问句,故不是命题;③是命题;④是感叹句,所以不是命题.2.④3.2解析由aa-6,但由a-3,故真命题为原命题及原命题的逆否命题.4.④5.若loga20,则函数f(_)=loga_(a0,a1)在其定义域内不是减函数解析由互为逆否命题的关系可知,原命题的逆否命题为:若loga20,则函数f(_)=loga_(a0,a1)在其定义域内不是减函数.6.①③解析①的逆命题显然成立;②的否命题为如果三角形不全等,则它们的面积不相等,由三角形的面积公式可知②的否命题为假命题;③的逆命题中,因方程_2+2_+q=0有实根,则=4-4q0,即q1,故③的逆命题为真命题;④的逆否命题与命题④同真假,④是假命题.7.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除8.①③9.解逆命题:已知a、b为实数,若a2-4b0,则关于_的不等式_2+a_+b0有非空解集.否命题:已知a、b为实数,若关于_的不等式_2+a_+b0没有非空解集,则a2-4b0. 逆否命题:已知a、b为实数,若a2-4b0,则关于_的不等式_2+a_+b0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.10.解若命题p为真命题,则m若命题q为真命题,则7-3m1,即m2.所以命题p和q中有且只有一个是真命题时,有p真q假或p假q真,即m1,m2或m1,m2.故m的取值范围是111.①②③解析①m=1时,lm=1且_21,l=1,故①正确.②m=-12时,m2=14,故l14.又l1,②正确.③l=12时,m212且m0,则-220,③正确.12.证明要证明命题不易入手,则证明其逆否命题即可.原命题的否命题为若a+b0,则f(a)+f(b)若a+b0,则a-b,b-a,又∵f(_)在(-,+)上是增函数,f(a)f(a)+f(b)第一章常用逻辑用语单元检测的全部内容就是这些,预祝大家新学期可以取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 常用逻辑用语(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是________.2.设a ∈R ,则a >1是1a<1的________条件. 3.与命题“若x ∈A ,则y ∉A ”等价的命题是________.(填序号)①若x ∉A ,则y ∉A ;②若y ∉A ,则x ∈A ;③若x ∉A ,则y ∈A ;④若y ∈A ,则x ∉A .4.对于命题“我们班学生都是团员”,给出下列三种否定:①我们班学生不都是团员;②我们班有学生不是团员;③我们班学生都不是团员. 正确答案的序号是________.5.已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题.其中正确的是________.(填序号)6.下列命题是真命题的为________.(填序号) ①若1x =1y,则x =y ; ②若x 2=1,则x =1;③若x =y ,则x =y ;④若x <y ,则x 2<y 2.7.命题“若x 2<1,则-1<x <1”的逆否命题是______.(填序号)①若x 2≥1,则x ≥1或x ≤-1;②若-1<x <1,则x 2<1;③若x >1或x <-1,则x 2>1;④若x ≥1或x ≤-1,则x 2≥1.8.下列有关命题的说法正确的是________.(填序号)①命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”;②“x=-1”是“x2-5x-6=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.9.设x,y∈R,命题p:|x-y|<1,命题q:|x-y|≤1,则p是q的______________条件.10.下列四个命题中①“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;②“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直”的充要条件;③函数y=x2+4x2+3的最小值为2.其中是假命题的为________(将你认为是假命题的序号都填上)11.已知命题p:∃x∈R,使tan x=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题;②命题“p∧綈q”是假命题;③命题“綈p∨q”是真命题;④命题“綈p∨綈q”是假命题其中正确的是________.(填序号)12.设A、B为两个集合,下列四个命题:①A⊆B⇔对任意x∈A,有x∉B;②A⊆B⇔A∩B=∅;③A⊆B⇔A⊉B;④A⊆B⇔存在x∈A,使得x∉B.其中真命题的序号是________(把符合要求的命题的序号都填上).13.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b无公共点;命题q:α∥β,则p是q的__________条件.14.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是__________.二、解答题(本大题共6小题,共90分)15.(14分)(1)当c<0时,若ac>bc,则a<b.请写出该命题的逆命题、否命题、逆否命题,并分别判断真假;(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形,请写出“p或q”,“p且q”,“非p”形式的命题.16.(14分)判断命题“已知a、x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.17.(14分)设α、β是方程x2-ax+b=0的两个实根,试分析“a>2且b>1”是“两根都大于1”的什么条件?18.(16分)已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.19.(16分)已知c>0,c≠1,设命题p:函数y=c x在R上单调递减,命题q:不等式x2-2x+c>0的解集为R.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数c的取值范围.20.(16分)已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a =0至少有一个方程有实数根,求实数a的取值范围.单元检测卷答案解析第1章 常用逻辑用语(A )1.2解析 原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.2.充分不必要解析 ∵a>1⇒1a <1;1a<1⇒a>1或a<0 a>1, ∴是充分不必要条件.3.④解析 原命题与它的逆否命题为等价命题.故④正确.4.①②5.②③解析 因p 为假命题,q 为真命题,故綈p 真,綈q 假;所以p ∧q 假,p ∧綈q 假,綈p ∨q 真,綈p ∨綈q 真.6.①解析 由1x =1y得x =y ,①正确,②、③、④错误. 7.④解析 因“-1<x<1”的否定为“x ≥1,或x ≤-1”;“x 2<1”的否定为“x 2≥1”.又因“若p ,则q ”的逆否命题为“若綈q ,则綈p ”,故④正确.8.④9.充分不必要解析 由命题p 可以推出命题q ,而由命题q 不能推出命题p.10.①②③解析 ①“k =1”可以推出“函数y =cos 2kx -sin 2kx 的最小正周期为π”,但是函数y =cos 2kx -sin 2kx 的最小正周期为π,即y =cos 2kx ,T =2π|2k|=π,k =±1. ②“a =3”不能推出“直线ax +2y +3a =0与直线3x +(a -1)y =a -7相互垂直”,反之垂直推出a =25; ③函数y =x 2+4x 2+3=x 2+3+1x 2+3=x 2+3+1x 2+3,令x 2+3=t ,t ≥3,y min =3+13=433. 11.①②③④解析 易知命题p 为真,命题q 也为真命题,所以p ∧q 为真,故①正确;由于p 真綈q 假,故p ∧綈q 为假,所以②正确;由于綈p 假q 真,故綈p ∨q 为真,所以③为正确;由于綈p ,綈q 都是假命题.故綈p ∨綈q 也为假命题,所以④正确.12.④解析 ∵A ⊆B ,∴有两种可能:(1)A ∩B ≠∅;(2)A ∩B =∅.∴①②③都不对,只有④对.13.必要不充分解析 q ⇒p ,p ⇒q.14.[-3,0]解析 ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立; 当a ≠0时,由⎩⎨⎧a<0Δ=4a 2+12a ≤0得-3≤a<0; ∴-3≤a ≤0.15.解 (1)逆命题:当c<0时,若a<b ,则ac>bc(真命题)否命题:当c<0时,若ac ≤bc ,则a ≥b(真命题)逆否命题:当c<0时,若a ≥b ,则ac ≤bc(真命题).(2)p 或q :对角线互相垂直的四边形或对角线互相平分的四边形是菱形.p 且q :对角线互相垂直的四边形且对角线互相平分的四边形是菱形.非p :对角线互相垂直的四边形不是菱形.16.解 方法一 (直接法)逆否命题:已知a 、x 为实数,如果a<1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.判断如下:二次函数y =x 2+(2a +1)x +a 2+2图象的开口向上,判别式Δ=(2a +1)2-4(a 2+2)=4a -7.∵a<1,∴4a -7<0.即二次函数y =x 2+(2a +1)x +a 2+2与x 轴无交点,∴关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集,故逆否命题为真.方法二 (先判断原命题的真假)∵a 、x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空, ∴Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a ≥74,∵a ≥74>1, ∴原命题为真.又∵原命题与其逆否命题等价,∴逆否命题为真.方法三 (利用集合的包含关系求解)命题p :关于x 的不等式x 2+(2a +1)x +a 2+2≤0有非空解集. 命题q :a ≥1.∴p :A ={a|关于x 的不等式x 2+(2a +1)x +a 2+2≤0有实数解}={a|(2a +1)2-4(a 2+2)≥0}=⎩⎨⎧⎭⎬⎫a|a ≥74, q :B ={a|a ≥1}.∵A ⊆B ,∴“若p ,则q ”为真,∴“若p ,则q ”的逆否命题“若綈q ,则綈p ”为真. 即原命题的逆否命题为真.17.解 由根与系数的关系得⎩⎪⎨⎪⎧ α+β=a αβ=b ,判定的条件是p :⎩⎨⎧ a>2b>1,结论是q :⎩⎨⎧α>1β>1(Δ≥0).①由α>1且β>1⇒a =α+β>2,b =αβ>1⇒a>2且b>1,故q ⇒p.②取α=4,β=12,则满足a =α+β=4+12>2,b =αβ=4×12=2>1,但pD ⇒/q. 综上所述,“a>2且b>1”是α>1且β>1的必要不充分条件.18.解 令f(x)=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔ ⎩⎪⎨⎪⎧ Δ=(2k -1)2-4k 2≥0-2k -12>1f (1)>0,即k<-2.所以其充要条件为k<-2.19.解 ∵y =c x 在R 上单调递减,∴0<c <1,命题p :0<c <1.∵不等式x 2-2x +c >0的解集为R ,∴Δ=(-2)2-4c <0,c >12, ∴命题q :c >12. ∵“p ∨q ”为真命题,“p ∧q ”为假命题,∴命题p 与命题q 恰好一真一假,∴p 为真q 为假,或p 为假q 为真,即⎩⎪⎨⎪⎧ 0<c <1c ≤12或⎩⎪⎨⎪⎧c ≤0或c ≥1c >12,解得 0<c ≤12或c ≥1. 综上可知,实数c 的取值范围是(1,12]∪[1,+∞). 20.解 假设三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0都没有实数根,则⎩⎪⎨⎪⎧ Δ1=(4a )2-4(-4a +3)<0Δ2=(a -1)2-4a 2<0Δ3=(2a )2-4(-2a )<0,即⎩⎨⎧ -32<a <12a >13,或a <-1,-2<a <0得-32<a <-1. ∴所求实数a 的范围是a ≤-32或a ≥-1.。