第二课时 函数的概念(二)
函数的概念及其表示第二课时参考教学方案
《函数的概念及其表示(第二课时)》教学设计教学重点:在理解函数概念的基础上,理解相同函数的含义,掌握相同函数的判定步骤.教学难点:体会函数记号的含义.PPT课件.一、复习引入问题1:在上一小节里,我们重新学习了函数的概念,请你默写这个概念.师生活动:学生可能并不能逐字逐句默写,但是只要抓住它的三个要素就予以肯定.预设的答案:对于数集A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.设计意图:通过默写为本节课的学习奠定基础.引语:函数是本章乃至整个高中数学的核心内容,概念就是它的基石,稳定的基石是搭建知识大厦的前提,我们这节课继续深入研究函数的概念.(板书:函数的概念)二、新知探究1.研读课本,理解区间的概念(1)求函数f (x )的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.师生活动:学生独立完成,老师挑选有代表性的解答进行投影点评,最后用PPT 演示教师点拨:在同时研究两个或多个函数时,常用不同符号表示不同的函数,除用符号f (x )外,还常用g (x )、F (x )、G (x )等符号来表示.设计意图:通过例1的学习,让学生对函数的定义域、对应关系、以及符号“y =f (x )”有具体的感受,能更透彻的理解,并且在求解定义域过程中,熟悉区间的使用.例2 下列函数中哪个与函数y =x 是同一个函数? (1)y =(x )2; (2)u =3v 3; (3)y =x 2;(4)m =n 2n.师生活动:老师先引导学生思考同一个函数的含义,然后让学生尝试判断,在判断中发现问题:正确化简解析式,定义域优先原则的应用以及函数记号的理解等,老师应该给予及时的解答与帮助.预设的答案:解:(1)y =(x )2=x (x ∈[0,+∞)),它与函数y =x (x ∈R )虽然对应关系相同,但是定义域不相同,所以这个函数与函数y=x(x∈R)不是同一个函数.(1)f(x)=14x+7;(2)f(x)=1-x+x+3-1.设计意图:考查函数定义域的求解.2.已知函数f(x)=3x3+2x,(1)求f(2),f(-2),f(2)+f(-2)的值;(2)求f(a),f(-a),f(a)+f(-a)的值.设计意图:通过函数求值问题发现函数的一些性质,可为后面学习函数性质积累素材.3.判断下列各组中的函数是否为同一个函数,并说明理由:(1)表示炮弹飞行高度h与时间t关系的函数h=130t-5t2和二次函数y=130x-5x2;。
第二课时 函数的概念(二)
索引
题型一 区间的应用
例1 把下列数集用区间表示: (1){x|x<0}; (2){x|-1<x<1}; (3){x|0<x<1或2≤x≤4}. 解 (1){x|x<0}=(-∞,0); (2){x|-1<x<1}=(-1,1); (3){x|0<x<1或2≤x≤4}=(0,1)∪[2,4].
索引
题型三 求函数的值域
例 3 求下列函数的值域: (1)y= x-1;(2)y=2xx-+31; 解 (1)(直接法)∵ x≥0, ∴ x-1≥-1, ∴y= x-1 的值域为[-1,+∞). (2)(分离常数法)y=2xx-+31=2(x- x-3) 3 +7=2+x-7 3, 显然x-7 3≠0,所以 y≠2, 故函数的值域为(-∞,2)∪(2,+∞).
则y=-2t2+4t+2=-2(t-1)2+4(t≥0),
结合图象可得函数的值域为(-∞,4].
索引
题型四 抽象函数的定义域
例4 设函数y=f(x)的定义域是[-1,3],求函数g(x)=f(2x+1)+f(x-1)的定义 域. 解 ∵函数f(x)的定义域是[-1,3], ∴要使函数g(x)有意义, 则- -11≤ ≤2xx-+11≤≤33,,解得 0≤x≤1. 故函数g(x)=f(2x+1)+f(x-1)的定义域为[0,1].
A.f(x)=|x|,g(x)= x2
B.f(x)=x2 和 g(x)=(x+1)2
C.f(x)=xx2+-11,g(x)=x-1
D.f(x)= x+1· x-1,g(x)= x2-1
解析 对于 A 项,g(x)= x2=|x|与 f(x)=|x|定义域、对应关系分别对应相同,是
河北省任丘市第一中学人教版高中数学新教材必修第一册:3.1.1 函数的概念(第二课时)
§3.1.1 函数的概念(第二课时)导学目标:1.了解构成函数的三要素,能求具体函数及抽象函数的定义域. 2.了解构成函数的三要素,理解函数值域的含义,能求简单函数的值域.(预习教材P 62~ P 63,回答下列问题) 回忆:函数的三要素是什么? 问题:已知函数()f x x =(1)求函数的定义域;(2)求()1f x -的表达式?你能求()1f x -的定义域吗? (3)你能直接求出()21f x +的定义域吗?【知识点一】函数定义域的求法 (1)具体函数的定义域求法 ①1x出现时要求0x ≠;②x 出现时要求0x ≥;③0x 出现时要求0x ≠. 自我检测1:求函数0()5(1)4f x x x x =+++++的定义域;(2)抽象函数的定义域求法形如()1f x -、()21f x +、()()()211F x f x f x =++-这类函数而言,未直接给出对应法则f 对所施加对象作用后的具体表达形式,我们称之为抽象函数.通过观察,若函数()f x ()1f x -=①函数()f x 与()1f x -的自变量都是自身表达式中的x (定义域是自变量的取值集合); ②在同一题中,对应法则f 的含义一致(即法则f 对施加对象的约束条件相同). 自我检测2:若函数()f x 的定义域为[)0,+∞,则函数()1f x -的定义域是 .(3)实际问题中的自变量还要考虑实际要求:自我检测3:某种笔记本的单价为3元,小明手里有100元钱,设小明一共买了x 个该笔记本,花费为y 元,你能正确写出该问题中自变量x 的约束条件吗?【知识点二】函数值域的求法函数()y f x =的值域即为函数值y 的取值集合,其取值范围受自变量x 的取值范围和对应法则f 共同决定,所以在求值域时,一定要注意定义域以及函数的结构. 常用的求值域的方法有:①图像法(如一次函数、二次函数、反比例函数等已知图像的函数) ②换元法(利用整体换元的思想,将未知函数结构转化成已知函数结构求解)自我检测4:你能将四次函数()4223f x x x =--转化成二次函数模型吗?前后函数自变量有何改变?题型一 函数的定义【例1-1】求下列函数的定义域 (1)求函数221()121f x x x x x =+--+的定义域. (2)求函数21()x f x --=的定义域.【例1-2】求下列函数的定义域(1)已知函数()y f x =定义域是[]1,3-,求()1y f x =-的定义域. (2)已知函数(1)y f x =-定义域是[]1,3-,求()y f x =的定义域. (3)已知函数(1)=-y f x 定义域是[]1,3-,求()21y f x =+的定义域.【例1-3】求下列函数的定义域(1)已知函数()f x 的定义域为[1,2]-,求()()()g x f x f x =+-的定义域. (2)已知函数()f x 的定义域[]4,2-,求()()21f xg x x =+的定义域.【例1-4】求下列函数的定义域一枚炮弹发射后,经过26s 落地后击中目标.炮弹的射高为845m ,且炮弹距地面高度h (单位:m )与时间t (单位:s )的关系为21305h t t =-. 则该函数的定义域为 .题型二 函数的值域【例2-1】求下列函数的值域(1)函数(){}1,1,1,2f x x x =+∈- ; (2)函数()223f x x x =-+,x R ∈ ;(若将定义域改为{1,0,1,2}x ∈-、[)1,4x ∈-,又将如何?)(3)函数()1f x x =,11,2x ⎡⎫∈--⎪⎢⎣⎭ .【例2-2】求下列函数的值域 已知函数()f x x x=+,()0a >的图像如右图所示,请回答: (1)当1a =,(0,)x ∈+∞时,求此函数()f x 的值域; (2)当4a =,[1,3]x ∈时,求此函数()f x 的值域.【例2-3】求下列函数的值域(1)函数()4223f x x x =--,()0,2x ∈的值域为_________________.(2)函数()12g x x x =--的值域为_________________.(3)函数2()(1)1x h x x x =>-的值域为_________________.1.已知函数1()f x x x=+,则( ) A .函数()f x 的定义域为{|0}x x ≠,值域为{|2}y y ≥ B .函数()f x 的定义域为{|0}x x ≠,值域为{|22}y y y ≥≤-或 C .函数()f x 的定义域为{|0}x x ≠,值域为R D .函数()f x 的定义域为R ,值域为R2.已知函数()f x 的定义域为[]1,4,求12f x ⎛⎫+ ⎪⎝⎭的定义域.3.已知函数()f x 的定义域是[0,2],求11()22g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的定义域.4.求下列函数的值域(1)函数()242f x x x =-+-,[)0,3x ∈的值域是___________.(2)求函数()63f x x x =-在区间[]2,4上的值域.§3.1.1 函数的概念(第二课时)参考答案(预习教材P 62~ P 63,回答下列问题) 回忆:函数的三要素是什么? 问题:已知函数()f x x =(1)求函数的定义域;(2)求()1f x -的表达式?你能求()1f x -的定义域吗? (3)你能直接求出()21f x +的定义域吗? 【答案】(1)[)0,+∞(2)()1f x x =-,[)1,+∞(3)1,2⎡⎫-+∞⎪⎢⎣⎭【知识点一】函数定义域的求法 (1)具体函数的定义域求法 ①1x出现时要求0x ≠;②x 出现时要求0x ≥;③0x 出现时要求0x ≠. 自我检测1:求函数0()5(1)4f x x x x =+++++的定义域; 【答案】要使函数有意义,应有504010x x x +≥⎧⎪+≠⎪⎨⎪⎪+≠⎩即541x x x ≥-⎧⎪≠-⎨⎪≠-⎩所以函数的定义域是[)()()54411-----+∞,,,.(2)抽象函数的定义域求法形如()1f x -、()21f x +、()()()211F x f x f x =++-这类函数而言,未直接给出对应法则f 对所施加对象作用后的具体表达形式,我们称之为抽象函数.通过观察,若函数()f x x =,则函数()11f x x -=-,我们可有如下结论:①函数()f x 与()1f x -的自变量都是自身表达式中的x (定义域是自变量的取值集合); ②在同一题中,对应法则f 的含义一致(即法则f 对施加对象的约束条件相同). 自我检测2:若函数()f x 的定义域为[)0,+∞,则函数()1f x -的定义域是 . 【答案】[)1,+∞(3)实际问题中的自变量还要考虑实际要求:自我检测3:某种笔记本的单价为3元,小明手里有100元钱,设小明一共买了x 个该笔记本,花费为y 元,你能正确写出该问题中自变量x 的约束条件吗? 【答案】{}033x x x N ≤≤∈且 【知识点二】函数值域的求法函数()y f x =的值域即为函数值y 的取值集合,其取值范围受自变量x 的取值范围和对应法则f 共同决定,所以在求值域时,一定要注意定义域以及函数的结构. 常用的求值域的方法有:①图像法(如一次函数、二次函数、反比例函数等已知图像的函数) ②换元法(利用整体换元的思想,将未知函数结构转化成已知函数结构求解)自我检测4:你能将四次函数()4223f x x x =--转化成二次函数模型吗?前后函数自变量有何改变?【答案】 令2t x =,由x R ∈,可得0t ≥,223y t t =--,0t ≥;前后函数自变量改变,相应的取值范围也改变.题型一 函数的定义【例1-1】求下列函数的定义域 (1)求函数221()121f x x x x x =+--+的定义域.(2)求函数()f x =的定义域.【答案】(1)11|22x x x ⎧+⎪<->⎨⎪⎪⎩⎭;(2){}|13x x x <>或;【例1-2】求下列函数的定义域(1)已知函数()y f x =定义域是[]1,3-,求()1y f x =-的定义域. (2)已知函数(1)y f x =-定义域是[]1,3-,求()y f x =的定义域. (3)已知函数(1)=-y f x 定义域是[]1,3-,求()21y f x =+的定义域. 【答案】(1)[]0,4 (2)[]2,2- (3)31,22⎡⎤-⎢⎥⎣⎦ (3)13,212x x -≤≤∴-≤-≤,故()f x 的定义域为[2,2]-, 所以令2212x -≤+≤,解得3122x -≤≤, 故()21y f x =+的定义域是31,22⎡⎤-⎢⎥⎣⎦.【例1-3】求下列函数的定义域(1)已知函数()f x 的定义域为[1,2]-,求()()()g x f x f x =+-的定义域. 【答案】[1,1]-由题意,函数()f x 的定义域为[1,2]-,则函数()()()g x f x f x =+-满足1212x x -≤≤⎧⎨-≤-≤⎩,解得1221x x -≤≤⎧⎨-≤≤⎩,即11x -≤≤,即函数()g x 的定义域为[1,1]-.(2)已知函数()f x 的定义域[]4,2-,求()()21f xg x x =+的定义域. 【答案】[)(]2,11,1---;函数()f x 的定义域[]4,2-,即422x -≤≤,可得21x -≤≤ 又分母10x +≠,可得1x ≠-. ∴()()21f xg x x =+的定义域为[)(]2,11,1---.【例1-4】求下列函数的定义域一枚炮弹发射后,经过26s 落地后击中目标.炮弹的射高为845m ,且炮弹距地面高度h (单位:m )与时间t (单位:s )的关系为21305h t t =-. 则该函数的定义域为 .【答案】{}026t t ≤≤题型二 函数的值域【例2-1】求下列函数的值域(1)函数(){}1,1,1,2f x x x =+∈- ; (2)函数()223f x x x =-+,x R ∈ ;(若将定义域改为{1,0,1,2}x ∈-、[)1,4x ∈-,又将如何?) (3)函数()1f x x =,11,2x ⎡⎫∈--⎪⎢⎣⎭ .高中数学必修第一册- 11 -【答案】(1){}0,2,3(2)[)2,+∞,{}6,3,2,[)2,11(3)(]2,1--【例2-2】求下列函数的值域 已知函数()af x x x=+,()0a >的图像如右图所示,请回答: (1)当1a =,(0,)x ∈+∞时,求此函数()f x 的值域; (2)当4a =,[1,3]x ∈时,求此函数()f x 的值域. 【答案】(1)[)2,+∞;(2)[]4,5【例2-3】求下列函数的值域(1)函数()4223f x x x =--,()0,2x ∈的值域为_________________.(2)函数()12g x x x =--的值域为_________________.(3)函数2()(1)1x h x x x =>-的值域为_________________.【答案】(1)[)4,5- (2)1(,]2-∞ (3)[4,)+∞(2)()()224321f x x x x =-+=--,因为1-≤x ≤1,所以3-≤x −2≤1-,所以1≤(x −2)2≤9,则0≤(x −2)21-≤8.故函数()[]243,1,1f x x x x =-+∈-的值域为[0,8].函数()g x 的定义域为1,2⎛⎤-∞ ⎥⎝⎦,令()2112,02t t x x t -=-=≥,得21122y t t =--+,故1,2y ⎛⎤∈-∞ ⎥⎝⎦,所以函数()12g x x x =--的值域为1,2⎛⎤-∞ ⎥⎝⎦.(3)()()()2212111124111x x x h x x x x x -+-+===-++≥---.当且仅当x =2时“=”第三章 函数的概念与性质- 12 -成立,故函数()2(1)1x h x x x =>-的值域为[)4,+∞.1.已知函数1()f x x x=+,则( ) A .函数()f x 的定义域为{|0}x x ≠,值域为{|2}y y ≥ B .函数()f x 的定义域为{|0}x x ≠,值域为{|22}y y y ≥≤-或 C .函数()f x 的定义域为{|0}x x ≠,值域为R D .函数()f x 的定义域为R ,值域为R 【答案】B2.已知函数()f x 的定义域为[]1,4,求12f x ⎛⎫+⎪⎝⎭的定义域. 【答案】(,1]-∞-∪1,2⎡⎫+∞⎪⎢⎣⎭.由1124x ≤+≤,得112x -≤≤,即110x -≤<或102x<≤, 解得x ≤ 1-,或12x ≥.∴函数的定义域为(-∞,1-]∪[12,+∞).3.已知函数()f x 的定义域是[0,2],求11()22g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的定义域.【答案】13,22⎡⎤⎢⎥⎣⎦.高中数学必修第一册- 13 -()f x 的定义域是[0,2],且11()22g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,102,2102,2x x ⎧+⎪⎪∴⎨⎪-⎪⎩则13,2215,22x x ⎧-≤≤⎪⎪⎨⎪≤≤⎪⎩ 即1322x .()g x ∴的定义域为13,22⎡⎤⎢⎥⎣⎦. 4.求下列函数的值域(1)函数()242f x x x =-+-,[)0,3x ∈的值域是___________.【答案】 [2,2]-(2)求函数()3f x x =在区间[]2,4上的值域.【答案】12,4⎤-⎦t =,则26x t =- ∵[]2,4x ∈,2t ≤≤那么函数()f x 转化为()22()36318g t t t tt =--=+-其对称轴16t =-, 故得()f x 的值域为12,4⎤-⎦.。
函数2
7
如何书写呢?
函数的关系式是等式.
那么函数解析式的书写有没有要求呢?
通常等式的右边是含有自变量的代数 式,左边的一个字母表示函数.
根据所给的条件,写出y与x的函数关系式:
矩形的周长是18cm,它的长是y cm,宽是x cm.
8
1.下列各式中,x是自变量,请判断y是不是x的
函数?若是,求出自变量的取值范围。
(1)y=2x+4 1 y ( 3) x 2
(2)y=-2x2
( 4) y
x 3
如果当x=a时, y=b,那么b叫做 当自变量的值为a 时的函数值
解:(1)当x=3时,y=2x+4=2×3+4=10 (2)当x=3时,y=-2x2=-2×32=-18 (3)当x=3时, y
1 1 1 x 2 32
小露牛角
• 完成P26,练习1
当堂检测
1、 求下列函数中自变量x的取值范围 (1)y= (2)
(3)y =-
1、(凉山·中考)函数 是( )
的自变量x的取值范围
A.x≥﹣2且x≠2
C.x≠±2
B.x>﹣2且x≠2
D.全体实数
x 2 0 【解析】 选B.由题意知, 2 解得 x 4 0
由于池中共有300 m3每时排25 m3全部排完 只需300÷25=12(h),故自变量T的取值范 围是0≤t≤12
(3)开始排水后的第5h末,游泳池中还有多 少水? 当t=5,代入上式得Q=-5×25+300=175(m3), 即第5h末池中还有水175 m3
(4)当游泳池中还剩150 m3已经排水多少时? 当Q=150时,由150=-25 t +300,得t =6, 即第6 h末池中有水150m3
《函数》第二课时教学设计(精品课)
板书设计
4
Ⅲ.课堂过关检测
检测题目
1.在△ABC 中, 它的底边长是 10,面积 s 与底边上的高 h 的变化关系式 s= 变量, ,其中常量是 是 ,变量是 , 是自 设计意图 第 1,2 题检查学生对函数 定义的掌握情况.
的函数;当 h=3 时,面积 s=______. )
2.指出下列变化关系中, y 是 x 的函数是(
x
Ⅱ.教学过程设计
问题及师生行为 一、创设问题,探究新知 【问题 1】.票房收入问题: 每张电影票的售价为 10 元. (1)若一场售出 150 张电影票,则该场的票房收入是 (2)若一场售出 205 张电影票,则该场的票房收入是 (3)若设一场售出 x 张电影票,票房收入为 y 元,则 y= 小结:票房收入随售出的电影票数变化而变化,即 y 随 【问题 2】2.行程问题: 汽车以 60 千米/小时的速度匀速行驶,行驶里程为 s 千米,行驶时间为 t 小时.请根据 题意填表: t(时) 1 2 120 3 180 10 600 元; 元; . 的变化而变化; 设计意图 问题引入, 为 新知作好铺垫. 由教师引导 , 学生观察得出结 论. 体现学生为主 体, 教师为主导的 关系.
(1)对于 x 的每一个值,y 都有唯一的值与之对应吗? (2)y 是 x 的函数吗?为什么? 答:不是,因为 y 的值不是唯一的. 2.求下列函数中自变量 x 的取值范围: (1) y=3x; (2) y=x2+9; (3) y=
8 ; x3
(4) y = 2 x 8 .
分析:如何确定自变量的取值范围? 在二次根号中要使得被开方数≥0;在分母中要使得分母不等于 0; 在整式中自变量的取值范围都是任何实数; 在实际应用题中,还要考虑自变量的实 际意义. 五、指导应用,发展能力 1.求下列函数中自变量 x 的取值范围 : (1)y = 学生通过对 例题的学习, 再做 (2)y = x2-x-2; 一些相应的练习, 巩固和掌握本节
2020高一数学新教材必修1教案学案-3.1.2-函数的概念及表示(第二课时)(解析版)
函数的概念(第二课时)运用一列表法【例1】设f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:则f(g(3))等于( )A.1 B.2C.3 D.不存在【解析】由表格可知g(3)=1,∴f(g(3))=f(1)=3。
故选C。
【触类旁通】、1.(2019·广东高一月考)已知函数f(f)与f(f)的定义如图所示,则方程f(f(f))= f+1的解集是()A.{1}B.{1,2}C.{1,2,3}D.f【答案】A【解析】∵f(1)=2,f(2)=3,f(3)=1,f(g(1))=2,f(g(2))=2,g(2))=3,∴只有f(g(1))=2满足,因此方程f(f(f))=f+1的解集是{1}.故选:A.、2.(2019·遵义航天高级中学高一月考)给出函数f(f),f(f)如下表,则f(f(f))的值域为()A.{1,3} B.{1,2,3,4} C.{4,2} D.{1,2,3}【解析】f (f (1))=f (1)=4,f (f (2))=f (1)=4,f (f (3))=f (3)=2,f (f (4))=f (3)=2,所以值域为{4,2},选C.运用二 解析法【例2】根据条件求下列各函数的解析式:`(1)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x 的解析式;(2)若1)f x =+()f x 的解析式为(3)已知()f x 是一次函数,且满足()()3121217f x f x x +--=+,求()f x 的解析式;(4)已知()f x 满足()12+=3f x f x x ⎛⎫⎪⎝⎭,求()f x 的解析式. 【答案】(1)2()2(2f x x x =-≥或2)x ≤-;(2)2()1(1)f x x x =-≥ ;(3)()=2 +7f x x ;(4) ()()120f x x x x=-≠. 【解析】(1)由于2221112f x x x x x x ⎛⎫⎛⎫+=+=+- ⎪ ⎪⎝⎭⎝⎭,所以2()2f x x =-,由于0x >时,12x x +≥;0x <时,12x x+≤-; !故()f x 的解析式是2()2f x x =- (2x ≥或2x -≤).(2))21)11f x =+=-令()11t t =≥,所以()()211f t t t =-≥所以()()211f x x x =-≥故选C.(3)因为()f x 是一次函数,可设()f x ax b =+ (0a ≠),所以有3[(1)]2[(1)]217a x b a x b x ++--+=+,即(5)217ax a b x ++=+,因此应有2517a ab =⎧⎨+=⎩,解得27a b =⎧⎨=⎩.故()f x 的解析式是()27f x x =+.(4)因为12()3f x f x x ⎛⎫+=⎪⎝⎭,①将x 用1x 替换,得132()f f x x x ⎛⎫+= ⎪⎝⎭,② 由①②解得1()2f x x x =- (0x ≠),即()f x 的解析式是1()2f x x x=- (0x ≠). 【触类旁通】%1.(1)已知3311f x x x x⎛⎫+=+ ⎪⎝⎭,求()f x ; (2)如果11x f x x ⎛⎫=⎪-⎝⎭,则当0x ≠且1x ≠时,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知函数()f x 的定义域为(0,)+∞,且1()21f x f x ⎛=⎝,求()f x . 【答案】(1) 3()3f x x x =-(2x -或2x ≥); (2) 1()(10)1f x x x x =≠≠-且; (3)()27f x x =+; (4) 1()(0)3f x x =>。
函数的概念(第二课时)教案(人教A版)
1.2.1 函数的概念第二课时 函数概念的应用A 【教学目标】1.进一步加深对函数概念的理解,掌握同一函数的标准;2.了解函数值域的概念并能熟练求解常见函数的定义域和值域.3.经历求函数定义域及值域的过程,培养学生良好的数学学习品质。
B 【教学重难点】教学重点能熟练求解常见函数的定义域和值域.教学难点对同一函数标准的理解,尤其对函数的对应法则相同的理解.C 【教学过程】1、创设情境下列函数f (x )与g(x )是否表示同一个函数?为什么?(1)f (x )= (x -1) 0;g(x )=1 ; (2) f (x )=x ;g(x )=x 2;(3)f (x )=x 2;g(x )=(x + 1) 2 ; 、 (4) f (x ) =|x |;g(x )=x 2.2、讲解新课总结同一函数的标准:定义域相同、对应法则相同3、典例例1 求下列函数的定义域:(1)11+⋅-=x x y ; (2)232531x x y -+-=;分析: 一般来说,如果函数由解析式给出,则其定义域就是使解析式有意义的自变量的取值范围.当一个函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.解 : (1)由⎩⎨⎧≥+≥-,01,01x x 得⎩⎨⎧-≥≥,1,1x x 即1≥x ,故函数11+⋅-=x x y 的定义域是1[,)∞+.(2)由⎪⎩⎪⎨⎧≥-≠-,05,0322x x 得⎪⎩⎪⎨⎧≤≤-±≠,55,3x x 即5-≤x ≤5且x ≠±3, 故函数的定义域是{x|5-≤x ≤5且x ≠±3}.点评: 求函数的定义域,其实质就是求使解析式各部分有意义的x 的取值范围,列出不等式(组),然后求出它们的解集.其准则一般来说有以下几个:① 分式中,分母不等于零.② 偶次根式中,被开方数为非负数.③ 对于0x y =中,要求 x ≠0.变式练习1求下列函数的定义域: (1)x x x y -+=||)1(0;(2)x x x y 12132+--+=.解 (2)由⎩⎨⎧>-≠+,0||,01x x x 得⎩⎨⎧<-≠,0,1x x 故函数x x x y -+=||)1(0是{x |x <0,且x ≠1-}. (4)由⎪⎩⎪⎨⎧≠>-≥+,0,02,032x x x 即⎪⎪⎩⎪⎪⎨⎧≠<-≥0,2,23x x x ∴23-≤x <2,且x ≠0, 故函数的定义域是{x |23-≤x <2,且x ≠0}.说明:若A 是函数)(x f y =的定义域,则对于A 中的每一个x ,在集合B 都有一个值输出值y 与之对应.我们将所有的输出值y 组成的集合称为函数的值域.因此我们可以知道:对于函数f :AB 而言,如果如果值域是C ,那么B C ⊆,因此不能将集合B当成是函数的值域.我们把函数的定义域、对应法则、值域称为函数的三要素.如果函数的对应法则与定义域都确定了,那么函数的值域也就确定了.例2.求下列两个函数的定义域与值域:(1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3};(2)f (x )=( x -1)2+1.解:(1)函数的定义域为{-1,0,1,2,3},f (-1)= 5,f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以这个函数的值域为{1,2,5}.(2)函数的定义域为R ,因为(x -1)2+1≥1,所以这个函数的值域为{y ∣y ≥1}点评: 通过对函数的简单变形和观察,利用熟知的基本函数的值域,来求出函数的值域的方法我们称为观察法.变式练习2 求下列函数的值域:(1)642+-=x x y ,1[∈x ,)5; (2)113+-=x x y ;解:(1)2)2(2+-=x y . 作出函数642+-=x x y ,1[∈x ,)5的图象,由图观察得函数的值域为2|{y ≤y <}11.(2)解法一:14)1(3+-+=x x y 143+-=x ,显然14+x 可取0以外的一切实数,即所求函数的值域为{y |y ≠3}. 解法二:把113+-=x x y 看成关于x 的方程,变形得(y -3)x +(y +1)=0,该方程在原函数定义域{x |x ≠-1}内有解的条件是⎩⎪⎨⎪⎧y -3≠0,-y +1y -3≠-1,解得y ≠3,即即所求函数的值域为{y |y ≠3}. 点评:(1)求函数值域是一个难点,应熟练掌握一些基本函数的值域和求值域的一些常用方法;(2)求二次函数在区间上的值域问题,一般先配方,找出对称轴,在对照图象观察.4、 课堂小结(1)同一函数的标准:定义域相同、对应法则相同(2)求解函数值域问题主要有两种方法:一是根据函数的图象和性质(或借助基本的函数的值域)由定义域直接推算;二是对于分式函数,利用分离常数法得到y 的取值范围.。
函数的概念和图象(2)_韦余玲
2.1.1函数的概念和图象(2)教学背景:1.面向学生:高中2.学科:数学教材分析:函数一章在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数的思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。
本小节介绍了函数概念和图象,我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。
这里我仅谈函数概念的教学。
函数的概念部分用三个实际例子设计数学情境,让学生探寻变量和变量的对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数的概念,体验结合旧知识,探索新知识,研究新问题的快乐。
教学目标:1.进一步理解用集合与对应的语言来刻画的函数的概念,进一步理解函数的本质是数集之间的对应;2.进一步熟悉与理解函数的定义域、值域的定义,会利用函数的定义域与对应法则判定有关函数是否为同一函数;3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重、难点:用对应来进一步刻画函数;求基本函数的定义域和值域.教学方法:采用设问、引导、启发、发现的方法,并灵活应用多媒体手段,以学生为主体,创设和谐、愉悦互动的环境,组织学生自主、合作的探究活动,引导学生探索新知识。
教学过程:一、问题情境1.情境.复述函数及函数的定义域的概念.2.问题.概念中集合A为函数的定义域,集合B的作用是什么呢?二、学生活动1.理解函数的值域的概念;2.能利用观察法求简单函数的值域;3.探求简单的复合函数f(f(x))的定义域与值域.三、数学建构1.函数的值域:(1)按照对应法则f,对于A中所有x的值的对应输出值组成的集合称之为函数的值域;(2)值域是集合B的子集.2.x→ g(x)⇒ f(x) → f(g(x)),其中g(x)的值域即为f(g(x))的定义域;四、数学运用(一)例题.例1已知函数f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).例2根据不同条件,分别求函数f(x)=(x-1)2+1的值域.(1)x∈{-1,0,1,2,3};(2)x∈R;(3)x∈[-1,3];(4)x∈(-1,2];(5)x∈(-1,1).例3求下列函数的值域:①y=;②y.例4已知函数f(x)与g(x)分别由下表给出:分别求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.(二)练习.(1)求下列函数的值域:①y=2-x2;②y=3-|x|.(2)已知函数f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).(3)已知函数f(x)=2x+1,g(x)=x2-2x+2,试分别求出g(f(x))和f(g(x))的值域,比较一下,看有什么发现.(4)已知函数y=f(x)的定义域为[-1,2],求f(x)+f(-x)的定义域.(5)已知f(x)的定义域为[-2,2],求f(2x),f(x2+1)的定义域.五、回顾小结函数的对应本质,函数的定义域与值域;利用分解的思想研究复合函数.六、作业课本P31-5,8,9.教学反思:在学习用集合与对应的语言刻画函数之前,还可以让学生先复习初中学习过的函数概念,并用课件进行模拟实验,画出某一具体函数的图像,在函数的图像上任取一点P,测出点P的坐标,观察点P 的坐标横坐标与纵坐标的变化规律。
3.1函数的概念及其表示3.1.1函数的概念(二)(第二课时)教案Word版含答案
函数的概念(二)本节课选自?普通高中课程标准数学教科书-必修一?〔人教A版〕第三章?函数的概念与性质?,本节课是第1课时。
函数的根本知识是高中数学的核心内容之一,函数的思想贯穿于整个初中和高中数学. 对于高一学生来说,函数不是一个陌生的概念。
但是,由于局限初中阶段学生的认知水平;学生又善未学习集合的概念,只是用运动变化的观点来定义函数,通过对正比例函数、反比例函数、一次和二次函数的学习来理解函数的意义,对于函数的概念理解并不深刻.高一学生学习集合的概念之后,进一步运用集合与对应的观点来刻画函数,突出了函数是两个集合之间的对应关系,领会集合思想、对应思想和模型思想。
所以把第一课时的重点放在函数的概念理解,通过生活中的实际事例,引出函数的定义,懂得数学与人类生活的密切联系,通过对函数三要素剖析,进一步理解充实函数的内涵。
所以在教学过程中分别设计了不同问题来理解函数的定义域、对应法那么、函数图象的特征、两个相同函数的条件等问题.学生在初中阶段,已经知道函数的定义域是使函数解析式有意义、实际问题要符合实际意义的自变量的范围,所以在教学中进一步强调定义域的集合表示.:函数的概念,函数的三要素;2.教学难点:求函数的值域。
多媒体思考2:求二次函数2(0)y ax bx c a =++≠的值域时为什么分0a >和0a <两种情况?提示:当a >0时,二次函数的图象是开口向上的抛物线,观察图象得值域为{y |y ≥4ac -b 24a}. 当a <0时,二次函数的图象是开口向下的抛物线,观察图象得值域为{y |y ≤4ac -b 24a }.例1.判断正误(对的打“√〞,错的打“×〞)(1)f (x )=x 2x与g (x )=x 是同一个函数.( ) (2)假设两个函数的定义域与值域都相同,那么这两个函数是同一个函数.( )(3)函数f (x )=x 2-x 与g (t )=t 2-t 是同一个函数.( )[解析] (1)f (x )=x 2x与g (x )=x 的定义域不相同,所以不是同一个函数. (2)例如f (x )=3x 与g (x )=5x的定义域与值域相同,但这两个函数不是同一个函数. (3)函数f (x )=x 2-x 与g (t )=t 2-t 的定义域都是R ,对应关系完全一致,所以这两个函数是同一个函数.例2 (2021·江苏启东中学高一检测)以下图中,能表示函数y =f(x)的图象的是( )[解析] 由函数定义可知,任意作一条垂直于x 轴的直线x =a ,那么直线与函数的图象至多有一个交点,可知选项D 中图象能表示y 是x 的函数.例3.假设函数y =x 2-3x 的定义域为{-1,0,2,3},那么其值域为( A )A .{-2,0,4}B .{-2,0,2,4}C .{y |y ≤-94}D .{y |0≤y ≤3}例4.下表表示y 是x 的函数,那么函数的值域是( )A .{y|-1≤y ≤1}B .RC .{y|2≤y ≤3}D .{-1,0,1}[解析] 函数值只有-1,0,1三个数值,故值域为{-1,0,1}.关键能力·攻重难题型一 函数的值域1、函数21,12y x x =-+-≤<的值域是( )A .(-3,0]B .(-3,1]C .[0,1]D .[1,5) [分析] 首先看二次函数的开口方向,再考虑二次函数的对称轴与限定区间的位置关系.[解析] 由21,12y x x =-+-≤<,可知当x =2时,min 413y =-+=-;当x =0时,max 1y =,因为x≠2,所以函数的值域为(-3,1].[归纳提升] 二次函数2(0)y ax bx c a =++>的值域(1)对称轴在限定区间的左边,那么函数在限定区间左端点取最小值,右端点取最大值;(2)对称轴在限定区间的右边,那么函数在限定区间左端点取最大值,右端点取最小值;(3)对称轴在限定区间内,那么函数在对称轴处取最小值,限定区间中距离对称轴较远的端点取最大值.题型二 同一个函数2、判断以下各组函数是否是同一个函数,为什么?(1)y =x x与y =1; (2)y =x 2与y =x ;(3)y =x +1·1-x 与y =1-x 2.[分析] 判断两个函数是否是同一个函数,只须看这两个函数的定义域和对应关系是否函数概念理解有误1、设集合M ={x|0≤x ≤2},集合N ={y|0≤y ≤2},给出以下四个图形(如下图),其中能表示集合M 到N 的函数关系的个数是( )A .0B .1C .2D .3[错解]函数的对应关系可以一对一,也可以多对一,故(1)(2)(3)正确,选D .[错因分析] 不但要考虑几对几的问题,还要考虑定义域中的元素x 在值域中是否有相应的y 值与之对应.[正解] 图(1)定义域M 中的(1,2]局部在值域N 中没有和它对应的数,不符合函数的定义;图(2)中定义域、值域及对应关系都是符合的;图(3)显然不符合函数的定义;图(4)中在定义域(0,2]上任给一个元素,在值域(0,2]上有两个元素和它对应,因此不唯一.故只有图(2)正确.答案为B .[方法点拨] 函数的定义中,从数的角度描述了函数的对应关系,首先它是两个非空数集之间的对应,它可以一对一,也可以多对一,除此之外,还要弄清定义域与数集A 、值域与数集B 之间的关系.学科素养求函数值域的方法——转化与化归思想及数形结合思想的应用1.别离常数法求函数y =3x +2x -2的值域. [分析] 这种求函数值域的问题,我们常把它们化为y =a +c x +b的形式再求函数的值域.[解析] ∵y =3x +2x -2=(3x -6)+8x -2=3+8x -2, 又∵8x -2≠0,∴y ≠3.∴函数y =3x +2x -2的值域是{y |y ∈R ,且y ≠3}. [归纳提升] 求y =ax +c x +b这种类型的函数的值域,应采用别离常数法,将函数化为y =a +c -ab x +b 的形式.。
《函数的概念及其表示》教案完美版
《函数的概念及其表⽰》教案完美版《函数的概念及其表⽰》教案第⼀课时: 1.2.1 函数的概念(⼀)教学要求:通过丰富实例,进⼀步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习⽤集合与对应的语⾔来刻画函数,体会对应关系在刻画函数概念中的作⽤;了解构成函数的要素;能够正确使⽤“区间”的符号表⽰某些集合。
教学重点、难点:理解函数的模型化思想,⽤集合与对应的语⾔来刻画函数。
教学过程:⼀、复习准备:1. 讨论:放学后骑⾃⾏车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在⼀个变化过程中,有两个变量x 和y ,对于x 的每⼀个确定的值,y 都有唯⼀的值与之对应,此时y 是x 的函数,x 是⾃变量,y 是因变量. 表⽰⽅法有:解析法、列表法、图象法.⼆、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .⼀枚炮弹发射,经26秒后落地击中⽬标,射⾼为845⽶,且炮弹距地⾯⾼度h (⽶)与时间t (秒)的变化规律是21305h t t =-.B .近⼏⼗年,⼤⽓层中臭氧迅速减少,因⽽出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞⾯积的变化情况.(见书P16页图)C .国际上常⽤恩格尔系数(⾷物⽀出⾦额÷总⽀出⾦额)反映⼀个国家⼈民⽣活质量的⾼低。
“⼋五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每⼀个x ,按照某种对应关系f ,在数集B 中都与唯⼀确定的y 和它对应,记作::f A B →③定义:设A 、B 是⾮空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意⼀个数x ,在集合B 中都有唯⼀确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的⼀个函数(function ),记作:(),y f x x A =∈.其中,x 叫⾃变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?⼀次函数(0)y ax b a =+≠、⼆次函数2(0)y ax bx c a =++≠的定义域与值域?⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。
新人教版高中数学必修一3.1.1函数的概念(第二课时)(17张PPT)
(1){x|5 ≤ x<6} (2) {x|x ≥9}
[5,6)
[9,)
(3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (,1] [5,2)
(4) {x|x < -9}∪{x| 9 < x<20} (,9) (9,20)
练一练 求下列函数的定义域:
(1) f (x) 1 x2
(2) f (x) 3x 2 (3) f (x) x 1 1
√ (4) f (x) x ; g(x) x2
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
例题3: 求下列函数的值域:
y x2 2x 1
( x 1)2 2
x [1, 2] x [0,) x [1, 3)
不等于零的实数的集合 . (3)如果f(x)是二次根式,那么函数的定义域是使根号
内的式子大于或等于零的实数的集合. (4)a0有意义,a≠0。
(5)如果f(x)是由几个部分的数学式子构成的,那么 函数定义域是使各部分式子都有意义的实数集合(即 求各集合的交集).
(6)满足实际问题有意义。
4.已学函数的定义域和值域
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
新人教版高中数学必修一3.1.1函数的 概念( 第二课 时)( 17张PP T)
练习 下列各组中的两个函数是否为相同的函数?
(1) y (x 3)( x 5) 与 y x 5 x3
(2) y x 1 x 1 与 y (x 1)( x 1) (3) f (x) ( 2x 5)2 与 f (x) 2x 5 (1)定义域不同。 (2)定义域不同。 (3)定义域和值域都不同。
高中数学 1.2.1函数的概念(第2课时)课件 新人教A版必
前后整体范围一致
f (x 1)的定义域为 (0,2]
定义域就是指x的取值范围
题型三:
抽象函数的定义域
已知f (g(x))的定义域,求f ((x))的定义域
2.已知函数f (x2 2)的定义域为[1, ) 求f ( x )的定义域
2
f ( x )的定义域为[2,) 2
本课小结
• 复习并巩固了函数的概念
下列函数的定义域。
(1) f (2x 1) (2) f (1 x) f (x)
(1)[1,0] (2)[0,1]
可简要概括为:
1.定义域仅指x的取值;
2.对同一对应法则括号里的
整体范围一致
题型二:
抽象函数的定义域
已知f (g(x))的定义域,求f (x)的定义域
例2.已知f (x 1)的定义域为[1,1],
求f ( x )的定义域 2
题型三:
抽象函数的定义域
已知f (g(x))的定义域,求f ((x))的定义域
练习 : 1.已知函数f (2x 1)的定义域 0,1 ,
求f ( x 1)的定义域
解:f (2x 1)中0 x 1
定义域就是指x的取值范围
1 2x 11
f (x 1)中1 x 1 1 0 x 2
练:已知f ( x 3)的定义域为[4,9], 求函数f (x)的定义域。
f (x)的定义域为:[1,0]
题型三:
抽象函数的定义域
已知f (g(x))的定义域,求f ((x))的定义域
练习 : 1.已知函数f (2x 1)的定义域 0,1 ,
求f ( x 1)的定义域
2.已知函数f (x2 2)的定义域为[1, )
函数的概念
函数的概念(第二课时)
(2)若 f(x)为分式,其定义域为分母不为 0 的自变量的取值组成的集合 例:求下列函数的定义域
f
(x)=
x 2 -9 x -3
f
(x )=
x 2 -3 x+2
(3)若 f(x)为二次根式,被开方数必须为非负 例:求下列函数的定义域
f ( x) = x+1
2 f ( x ) = (x+3)
(4)若 f(x)为以上几部分构成,则同时满足各自条件,即取交集
例:求下列函数的定义域
( 3) f
(x)=
1 + x+3
-x +
x+ 4
f
(x )=
x +1 x -2
三、练习
( 1) f
(x)=
x -2 x+ 2
( 2) f ( x ) =
x+1 x-2
(3)f ( x) =
1 + -x+ x+4 x+3
四、简单函数值的求法
例:已知函数f ( x ) = x+3+ (1)求函数的定义域
课题 教法、学法 学习目的 学习重点 学习难点
函数的概念(第二课时) 2011 年 月 2 函数的概念(第二课时) 课时数 讲练结合 课型 新授课 1.会用区间表示函数的定义域和值域 2.会求一些简单函数的定义域 求函数的定义域 求函数的定义轴表示 {x|a≤x≤b} 闭区间 {x|a<x<b} 开区间 {x|a≤x<b} 半开半闭区间 {x|a<x≤b} 半开半闭区间 {x|x≤b} 半开半闭区间 {x|x<b} 半开半闭区间 {x|x>b} 半开半闭区间 {x|x≥b} 半开半闭区间 二、简单函数的定义域的求法 (1)若 y=f(x)为整式,其定义域为 R 例:求下列函数的定义域 f(x)=2x+3 f(x)=x2+3
示范教案( 函数的概念 第二课时)
第2课时 函数相等复 习1.函数的概念.2.函数的定义域的求法.导入新课思路1.当实数a 、b 的符号相同,绝对值相等时,实数a=b;当集合A 、B 中元素完全相同时,集合A=B;那么两个函数满足什么条件才相等呢?引出课题:函数相等.思路2.我们学习了函数的概念,y=x 与y=xx 2是同一个函数吗?这就是本节课学习的内容,引出课题:函数相等.推进新课新知探究提出问题①指出函数y=x+1的构成要素有几部分?②一个函数的构成要素有几部分?③分别写出函数y=x+1和函数y=t+1的定义域和对应关系,并比较异同.④函数y=x+1和函数y=t+1的值域相同吗?由此可见两个函数的定义域和对应关系分别相同,值域相同吗?⑤由此你对函数的三要素有什么新的认识?讨论结果:①函数y=x+1的构成要素为:定义域R ,对应关系x→x+1,值域是R.②一个函数的构成要素为:定义域、对应关系和值域,简称为函数的三要素.其中定义域是函数的灵魂,对应关系是函数的核心.当且仅当两个函数的三要素都相同时,这两个函数才相同. ③定义域和对应关系分别相同.④值域相同.⑤如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.应用示例思路11.下列函数中哪个与函数y=x 相等? (1)y=(x )2;(2)y=33x ;(3)y=2x ;(4)y=x x 2. 活动:让学生思考两个函数相等的条件后,引导学生求出各个函数的定义域,化简函数关系式为最简形式.只要它们定义域和对应关系分别相同,那么这两个函数就相等.解:函数y=x 的定义域是R ,对应关系是x→x.(1)∵函数y=(x )2的定义域是[0,+∞),∴函数y=(x )2与函数y=x 的定义域R 不相同.∴函数y=(x )2与函数y=x 不相等.(2)∵函数y=33x 的定义域是R , ∴函数y=33x 与函数y=x 的定义域R 相同. 又∵y=33x =x,∴函数y=33x 与函数y=x 的对应关系也相同. ∴函数y=33x 与函数y=x 相等.(3)∵函数y=2x 的定义域是R ,∴函数y=2x 与函数y=x 的定义域R 相同.又∵y=2x =|x|,∴函数y=2x 与函数y=x 的对应关系不相同.∴函数y=2x 与函数y=x 不相等. (4)∵函数y=xx 2的定义域是(-∞,0)∪(0,+∞), ∴函数y=xx 2与函数y=x 的定义域R 不相同, ∴函数y=(x )2与函数y=x 不相等.点评:本题主要考查函数相等的含义.讨论函数问题时,要保持定义域优先的原则.对于判断两个函数是否是同一个函数,要先求定义域,若定义域不同,则不是同一个函数;若定义域相同,再化简函数的解析式,若解析式相同(即对应关系相同),则是同一个函数,否则不是同一个函数. 变式训练判断下列各组的两个函数是否相同,并说明理由.①y=x-1,x ∈R 与y=x-1,x ∈N ;②y=4-x 2与y=2-x ·2x +;③y=1+x 1与u=1+x1; ④y=x 2与y=x 2x ;⑤y=2|x|与y=⎩⎨⎧<-≥;0,2,0,2x x x x ⑥y=f(x)与y=f(u).是同一个函数的是________(把是同一个函数的序号填上即可).解:只需判断函数的定义域和对应法则是否均相同即可.①前者的定义域是R ,后者的定义域是N ,由于它们的定义域不同,故不是同一个函数;②前者的定义域是{x|x≥2或x≤-2},后者的定义域是{x|x≥2},它们的定义域不同,故不是同一个函数;③定义域相同均为非零实数,对应法则相同都是自变量取倒数后加1,那么值域必相同,故是同一个函数;④定义域是相同的,但对应法则不同,故不是同一个函数;⑤函数y=2|x|=⎩⎨⎧<-≥,0,2,0,2x x x x 则定义域和对应法则均相同,那么值域必相同,故是同一个函数;⑥定义域相同,对应法则相同,那么值域必相同,故是同一个函数.故填③⑤⑥.思路21.判断下列函数f(x)与g(x)是否表示同一个函数,说明理由.(1)f(x)=(x-1)0,g(x)=1. (2)f(x)=x-1,g(x)=12x -x 2+.(3)f(x)=x 2,g(x)=(x+1)2.(4)f(x)=x 2-1,g(u)=u 2-1.活动:学生思考函数的概念及其三要素,教师引导学生先判断定义域是否相同,当定义域相同时,再判断它们的对应关系是否相同.解:(1)∵f(x)=(x-1)0的定义域是{x|x≠1},函数g(x)=1的定义域是R ,∴函数f(x)=(x-1)0与函数g(x)=1的定义域不同.∴函数f(x)=(x-1)0与函数g(x)=1不表示同一个函数.(2)∵f(x)=x-1的定义域是R ,g(x)=12x -x 2+=21)-(x 的定义域是R , ∴函数f(x)=x-1与函数g(x)=12x -x 2+的定义域相同.又∵g(x)=12x -x 2+=21)-(x =|x-1|, ∴函数f(x)=x-1与函数g(x)=12x -x 2+的对应关系不同.∴函数f(x)=x-1与函数g(x)=12x -x 2+不表示同一个函数.(3)很明显f(x)=x 2和g(x)=(x+1)2的定义域都是R ,又∵f(x)=x 2和g(x)=(x+1)2的对应关系不同,∴函数f(x)=x 2和g(x)=(x+1)2不表示同一个函数.(4)很明显f(x)=x 2-1与g(u)=u 2-1的定义域都是R ,又∵f(x)=x 2-1与g(u)=u 2-1的对应关系也相同,∴函数f(x)=x 2-1与g(u)=u 2-1表示同一个函数.变式训练1.2007湖北黄冈模拟,理13已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=_______. 解:由题意得f(36)=f(6×6)=f(6)+f(6)=2f(6)=2f(2×3)=2[f(2)+f(3)]=2p+2q.答案:2p+2q2.函数y=f(x)的图象与直线x=2的公共点共有( )A.0个B.1个C.0个或1个D.不确定答案:C2.设y 是u 的函数y=f(u),而u 又是x 的函数u=g(x),设M 表示u=g(x)的定义域,N 是函数y=f(u)的值域,当M∩N≠∅时,则y 成为x 的函数,记为y=f[g(x)].这个函数叫做由y=f(u)及u=g(x)复合而成的复合函数,它的定义域为M∩N,u 叫做中间变量,f 称为外层函数,g 称为内层函数.指出下列复合函数外层函数和内层函数,并且使外层函数和内层函数均为基本初等函数. (1)y=11+x ;(2)y=(x 2-2x+3)2;(3)y=x x112+-1. 活动:让学生思考有哪些基本初等函数,它们的解析式是什么. 解:(1)设y=u 1,u=x+1, 即y=11+x 的外层函数是反比例函数y=u1,内层函数是一次函数u=x+1. (2)设y=u 2,u=x 2-2x+3,即y=(x 2-2x+3)2的外层函数是二次函数y=u 2,内层函数是二次函数u=x 2-2x+3.(3)设y=u 2+u-1,u=x 1, 即y=xx 112+-1的外层函数是二次函数y=u 2+u-1,内层函数是反比例函数u=x 1. 点评:到目前为止,我们所遇到的函数大部分是复合函数,并且是由正、反比例函数和一、二次函数复合而成的,随着学习的深入,我们还会学习其他复合函数.复合函数是高考重点考查的内容之一,应引起我们的重视.变式训练1.2004重庆高考,文2设f(x)=1122+-x x ,则)21()2(f f =_______. 答案:-12.2006安徽高考,理15函数f(x)对任意实数x 满足条件f(x+2)=)(1x f ,若f(1)=-5,则f [f(5)]=.分析:∵函数f(x)对任意实数x 满足条件f(x+2)=)(1x f ,∴f(x+4)=f [(x+2)+1]=)2(1+x f =f(x). ∴f(1)=f(1+4)=f(5).又∵f(1)=-5,∴f(5)=-5.∴f [f(5)]=f(-5)=f(-5+4)=f(-1)=f(-1+4)=f(3)=f(1+2)=)1(1f =51-. 答案:51-知能训练1.下列给出的四个图形中,是函数图象的是( )A.①B.①③④C.①②③D.③④图1-2-1-2答案:B2.函数y=f(x)的定义域是R ,值域是[1,2],则函数y=f(2x-1)的值域是_______.答案:[1,2]3.下列各组函数是同一个函数的有________.①f(x)=3x ,g(x)=x x ;②f(x)=x 0,g(x)=01x ; ③f(x)=u 2-,g(u)=u2-;④f(x)=-x 2+2x,g(u)=-u 2+2u. 答案:②③④拓展提升问题:函数y=f(x)的图象与直线x=m 有几个交点?探究:设函数y=f(x)定义域是D,当m ∈D 时,根据函数的定义知f(m)唯一,则函数y=f(x)的图象上横坐标为m 的点仅有一个(m,f(m)),即此时函数y=f(x)的图象与直线x=m 仅有一个交点;当m D 时,根据函数的定义知f(m)不存在,则函数y=f(x)的图象上横坐标为m 的点不存在,即此时函数y=f(x)的图象与直线x=m 没有交点.综上所得,函数y=f(x)的图象与直线x=m 有交点时仅有一个,或没有交点.课堂小结(1)复习了函数的概念,总结了函数的三要素;(2)学习了复合函数的概念;(3)判断两个函数是否是同一个函数.作业1.设M={x|-2≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示以集合M 为定义域,N 为值域的函数关系是( )图1-2-1-3分析:A 中,当0<x≤2时,N 中没有元素与x 对应,不能构成函数关系;C 中一个x 有两个y 与之对应,所以不是函数关系;D中,表示函数关系,但是表示的函数值域不是N.答案:B2.某公司生产某种产品的成本为1000元,以1100元的价格批发出去,随生产产品数量的增加,公司收入_______,它们之间是关系________.分析:由题意,多生产一单位产品则多收入100元.生产产品数量看成是自变量,公司收入看成是因变量,容易得出对于自变量的每一个确定值,因变量都有唯一确定值与之对应,从而判断两者是函数关系.答案:增加函数3.函数y=x2与S=t2是同一函数吗?答:函数的确定只与定义域与对应关系有关,而与所表示的字母无关,因此y=x2与S=t2表示的是同一个函数.因此并非字母不同便是不同的函数,这是由函数的本质决定的.设计感想本节教学内容主要是依据高考说明,对课本内容适当拓展,重点对函数的相等问题进行了引申,设计时对拓展的内容采取渐进式,设计时本着逐步提高、拓展,不能急于求成,否则事倍功半.。
1.2.1函数的概念(2)
回顾3.函数 f ( x) 1 | x | 的定义域如何?怎 样表示? 区间 问、 上述集合还有更简单的表示方法吗?
四、区间概念:
定义 名称 符号 [ a, b ]
( a, b ) a a a
数轴表示
a b
b
{x|a≤x≤b} 闭区间
{x|a<x<b} 开区间
b
{x|a≤x<b} 半开半闭 [ a, b ) 区间 {x|a<x≤b} 半开半闭 ( a, b ] 区间
b
这里的实数a与b都叫做相应区间的端点.
思考1:变量x相对于常数a有哪几种大小关系?用不等 式 怎样表示? x a, x a, x a, x a 思考2:满足不等式 的实数x的集合也可以看成区间,那么这些ቤተ መጻሕፍቲ ባይዱ合如何用 区间符号表示? [a,+∞),(a,+∞), (-∞,a],(-∞,a).
课题: 1、2、1函数的概念
第二课时
知识回顾
回顾1.什么叫函数?用什么符号表示函数?
设A,B是非空的数集,如果按照某种确定的对应关系 f,使对于集合A中的任意一个数x,在集合B中都有唯一确 回顾2.什么是函数的定义域?值域? 定的数f(x)和它对应, 自变量的取值范围A叫做函数的定义域; 那么就称f:A→B为从集合A到集合B的一个函数,记作 函数值的集合{f(x)|x∈A}叫做函数的值域. y=f(x),x∈A. 其中,x叫做自变量,与x值相对应的y值叫做函数值.
五、复合函数 由简单函数复合而成 的函数叫做复合函数. 若y= f (u), u= g(x), 则y= f [g(x)],
例2. 已知 f -5x+2, g (x)=2x-1 求f(3), g(-1),f[g(1)],f[f(1)]. f [g(3)].
函数的表示法(第二课时)
特点
表格表示法直观、易于理 解,可以展示函数在不同 自变量值下的取值情况。
示例
一个气温随时间变化的表 格,通过表格可以清晰地 看出不同时间的气温值。
图象表示法
定义
图象表示法是指将函数关 系以图像的形式呈现出来 的一种方法。
特点
图象表示法形象、直观, 可以展示函数的变化趋势 和性质,便于观察和分析。
THANKS FOR WATCHING
感谢您的观看
复合函数
定义
复合函数是指由两个或两个以 上的函数通过复合运算得到的
函数。
形式
设$y = f(u)$,$u = g(x)$,则 复合函数可以表示为$y = f(g(x))$。
性质
复合函数具有链式法则,即 $f(g(h(x))) = f(u) circ g(x) circ h(x)$。
应用
在数学、物理、工程等领域中 ,复合函数的应用非常广泛。
函数的表示法(第二课时)
contents
目录
• 函数的概念 • 函数的表示方法 • 函数的应用 • 函数的扩展知识
01 函数的概念
函数的定义
函数是数学上的一个概念,它描述了两个集合之间的关系。对于集合A中的每一个元素x, 按照某种对应关系f,在集合B中都有唯一确定的元素y与之对应。
函数的定义可以表示为:如果存在一个对应关系f,对于集合A中的每一个元素x,在集合B 中都有唯一确定的元素y与之对应,则称f为从集合A到集合B的函数。
示例
一个正弦函数的图像,通 过图像可以清晰地看出函 数的周期性、振幅等性质。
03 函数的应用
函数在实际生活中的应用
金融计算
函数可以用来描述金融数据之间 的关系,如利率、本金、利息等,
《函数的概念及其表示》教案完美版
《函数的概念及其表示》教案第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。
教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域? ⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。
3.1.1函数的概念(第二课时)课件(人教版)
x2
(1)求函数的定义域;
f (a):当x=a时函数f(x)的取值
2
f(a)是f(x)的一个特殊值,是一个相对确定的
(2)求 f ( 3),f ( ) 的值;
3
数.
(3)当a>0时,求f (a),f (a-1)的值.
x 3 0
解 : (1)由
得 x 3,且x 2.
x 2 0
函数f ( x )的定义域为 { x | x 3且x 2}.
(2) f ( 3)
2
f( )
3
1
3 3
1,
3 2
2
1
3
3
2
3
8
2
3
33
.
3
1
(3) f (a ) a 3
,
a2
f (a 1) a 1 3
1
1
a2
+
≥ .
解: 由题知 =
−
+
=
+−
+
=+
∵ ≥ ,∴ + ≥ ,∴ <
∴ − ≤
−
+
< , ∴ − ≤ +
+
−
+
−
.
+
≤ ,
< . ∴ 函数的值域为 [−, ) .
分离常数法:此方法主要针对有理分式,即将有理分式转化为“反比例函数
所以 的定义域为 [0,2) ,
1
1
则在 1 − 3 中,由 0 ≤ 1 − 3 < 2 解得 − < ≤ ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时函数的概念(二)课标要求素养要求1.会判断两个函数是否为同一函数.2.能正确使用区间表示数集.3.会求一些简单函数的值域.1.通过对区间概念的理解及判断两个函数为同一函数,提升数学抽象素养.2.通过求一些简单函数的值域,提升逻辑推理、数学运算素养.新知探究设计运行时速达350公里的京津城际列车呈现出超越世界的“中国速度”,使得新时速旅客列车的运行速度值界定在200公里/时与350公里/时之间.问题1如何表示列车的运行速度的范围?提示我们已学习不等式、集合知识,所以用不等式可表示为200<v<350,用集合可表示为{v|200<v<350}.问题2还可以用其他形式表示列车的运行速度的范围吗?提示还可以用区间表示为(200,350),这就是我们今天要学习的知识.1.区间注意区间端点的开闭设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b } 半开半闭区间(a ,b ] {x |x ≥a } [a ,+∞) {x |x >a }(a ,+∞){x |x ≤a } (-∞,a ] {x |x <a } (-∞,a )R(-∞,+∞)2.同一个函数 函数的三要素完全相同 (1)前提条件:①定义域相同;②对应关系相同. (2)结论:这两个函数为同一个函数.3.常见函数的值域(1)一次函数f (x )=ax +b (a ≠0)的定义域为R ,值域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的定义域是R , 当a >0时,值域为⎢⎡⎭⎪⎫4ac -b 24a ,+∞, 当a <0时,值域为⎝ ⎛⎥⎤-∞,4ac -b 24a .拓展深化[微判断]1.已知定义域和对应关系就可以确定一个函数.(√)2.两个函数的定义域和值域相同就表示同一函数.(×)提示 两个函数的定义域、值域相同,而对应关系不一定相同. 3.函数y =1+x 2的值域为(1,+∞).(×) 提示 y =1+x 2的值域为[1,+∞). [微训练]1.下表表示y 是x 的函数,则函数的值域是( )x x<22≤x≤3x>3y -10 1A.{y|-1≤y≤1}C.{y|2≤y≤3}D.{-1,0,1}解析由表格知,对应的y的值为-1,0,1,故选D.答案 D2.区间[1,2)表示的集合为________.解析根据区间的定义,可表示为{x|1≤x<2}.答案{x|1≤x<2}3.已知函数f(x)=2x-3,x∈A的值域为{-1,1,3},则定义域A为________. 解析函数f(x)=2x-3的值域为{-1,1,3},令f(x)分别等于-1,1,3,求出对应的x分别为1,2,3,则由x组成的集合{1,2,3},即为定义域A.答案{1,2,3}[微思考]1.函数的值域与定义域、对应关系是相互独立的吗?提示不是.函数的值域是由定义域和对应关系共同确定的,只要函数的定义域及其对应关系确定,函数的值域也就随之确定.2.区间与集合有什么联系?提示区间实际上是一种特殊的数集(连续的)的符号表示,是集合的另一种表达方式.集合和区间都是表示取值范围的方法,至于选用哪种方法,原则上应与原题的表达方式一致.题型一区间的应用【例1】把下列数集用区间表示:(1){x|x≥-1};(2){x|x<0};(3){x|-1<x<1};(4){x|0<x<1或2≤x≤4}.解(1){x|x≥-1}=[-1,+∞);(2){x|x<0}=(-∞,0);(3){x|-1<x<1}=(-1,1);(4){x|0<x<1或2≤x≤4}=(0,1)∪[2,4].规律方法用区间表示数集的方法:(1)区间左端点值小于右端点值;(2)区间两端点之间用“,”隔开;(3)含端点值的一端用中括号,不含端点值的一端用小括号;(4)以“-∞”,“+∞”为区间的一端时,这端必须用小括号.【训练1】(1)用区间表示{x|x≥0且x≠2}为________.(2)已知区间[a,2a+1],则a的取值范围是________.解析(1){x|x≥0且x≠2}=[0,2)∪(2,+∞).(2)由2a+1>a,得a>-1,则a的取值范围为(-1,+∞).答案(1)[0,2)∪(2,+∞)(2)(-1,+∞)题型二同一函数的判断【例2】(1)下列各组函数:①f(x)=x2-xx,g(x)=x-1;②f(x)=xx,g(x)=xx;③f(x)=(x+3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t≤5)与一次函数g(x)=80x(0≤x≤5).其中表示同一函数的是________(填序号).解析 ①f (x )与g (x )的定义域不同,不是同一函数;②f (x )与g (x )的对应关系不同,不是同一函数;③f (x )=|x +3|,与g (x )的对应关系不同,不是同一函数;④f (x )与g (x )的定义域不同,不是同一函数;⑤f (x )与g (x )的定义域、对应关系皆相同,故是同一函数. 答案 ⑤(2)试判断函数y =x -1·x +1与函数y =(x +1)(x -1)是否为同一函数,并说明理由.解 不相同.对于函数y =x -1·x +1,由⎩⎪⎨⎪⎧x -1≥0,x +1≥0,解得x ≥1,故定义域为{x |x ≥1},对于函数y =(x +1)(x -1),由(x +1)(x -1)≥0解得x ≥1或x ≤-1,故定义域为{x |x ≥1或x ≤-1},显然两个函数定义域不同,故不是同一函数. 规律方法 判断两个函数为同一函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是同一函数,即使定义域与值域都相同,也不一定是同一函数.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.(3)在化简解析式时,必须是等价变形.【训练2】 (1)下列各组函数是同一函数的是( ) A.y =1,y =xxB.y =x -2·x +2,y =x 2-4C.y =|x |,y =(x )2D.y =x ,y =3x 3(2)下列各组函数是同一函数的是________(填序号).①f (x )=-2x 3与g (x )=x -2x ;②f (x )=x 0与g (x )=1x 0;③f (x )=x 2-2x -1与g (t )=t 2-2t -1.解析 (1)A ,B ,C 中的两函数定义域均不相同,故选D. (2)①f (x )=-x-2x ,g (x )=x-2x ,对应关系不同,故f (x )与g (x )不是同一函数;②f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一函数;③f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一函数.答案 (1)D (2)②③ 题型三 求函数的值域 【例3】 求下列函数的值域: (1)y =x -1;(2)y =x 2-2x +3,x ∈{-2,-1,0,1,2,3}; (3)y =2x +1x -3; (4)y =2x -x -1.解 (1)(直接法)∵x ≥0,∴x -1≥-1,∴y =x -1的值域为[-1,+∞). (2)(观察法)∵x ∈{-2,-1,0,1,2,3},把x 代入y =x 2-2x +3得y =11,6,3,2,∴y =x 2-2x +3的值域为{2,3,6,11}. (3)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2,故函数的值域为(-∞,2)∪(2,+∞). (4)(换元法)设t =x -1,则t ≥0,且x =t 2+1,所以y =2(t 2+1)-t =2⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,结合函数的图象可得原函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.规律方法求函数值域的常用方法(1)观察法:通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出函数的值域.(2)配方法:若函数是二次函数形式,即可化为y=ax2+bx+c(a≠0)型的函数,则可通过配方再结合二次函数的性质求值域,但要注意给定区间的二次函数最值的求法.(3)换元法:通过对函数的解析式进行适当换元,可将复杂的函数化归为简单的函数,从而利用基本函数自变量的取值范围求函数的值域.(4)分离常数法:此方法主要是针对分式函数,即将分式函数转化为“反比例函数”的形式,便于求值域.【训练3】求下列函数的值域:(1)y=16-x2;(2)y=x2-4x+6(1≤x≤5);(3)y=xx+1;(4)y=2x+41-x.解(1)∵0≤16-x2≤16,∴0≤16-x2≤4,即函数y=16-x2的值域为[0,4].(2)y=x2-4x+6=(x-2)2+2,因为1≤x≤5,由函数图象可知y∈[2,11].(3)(分离常数法)∵y=xx+1=1-1x+1,且定义域为{x|x≠-1},∴1x+1≠0,即y≠1.∴函数y=xx+1的值域为{y|y∈R,且y≠1}.(4)(换元法)令t=1-x(t≥0),则x=1-t2,则y=-2t2+4t+2=-2(t-1)2+4(t≥0),结合图象可得函数的值域为(-∞,4].一、素养落地1.通过本节课的学习,重点提升学生的数学抽象、数学运算、逻辑推理素养.2.区间实质上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,即用端点所对应的数、“+∞”(正无穷大)、“-∞”(负无穷大)、方括号(包含端点)、小圆括号(不包含端点)等来表示的部分实数组成的集合.3.同一函数的概念的理解(1)函数有三个要素:定义域、值域、对应关系.函数的定义域和对应关系共同确定函数的值域,因此当且仅当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一个函数.(2)定义域和值域都分别相同的两个函数,它们不一定是同一函数,因为函数对应关系不一定相同.二、素养训练1.函数y=2x+1,x∈N*,且2≤x≤4,则函数的值域为()A.(5,9)B.[5,9]C.{5,7,9}D.{5,6,7,8,9}解析由题意知,函数的定义域为{2,3,4},依次代入y=2x+1得y=5,7,9,所以函数的值域为{5,7,9}.故选C.答案 C2.已知四组函数:①f(x)=x,g(x)=(x)2;②f(x)=x,g(x)=3x3;③f(n)=2n-1,g(n)=2n+1(n∈N);④f(x)=x2+3x-1,g(t)=t2+3t-1.其中是同一函数的是()A.没有B.仅有②C.有②④D.有②③④解析对于第一组,定义域不同;对于第三组,对应关系不同;对于第二、四组,定义域与对应关系都相同.答案 C3.函数f(x)=11+x2(x∈R)的值域是()A.[0,1]B.[0,1)C.(0,1]D.(0,1)解析因为x2≥0,所以x2+1≥1,所以0<1x2+1≤1,所以函数的值域为(0,1],故选C.答案 C4.下列函数中值域为(0,+∞)的是()A.y=xB.y=1 xC.y=1x D.y=x2+1解析y=x的值域为[0,+∞),y=1x的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞),故选B.答案 B5.将下列集合用区间以及数轴表示出来:(1){x|x<2};(2){x|x=0或1≤x≤5};(3){x|x=3或4≤x≤8};(4){x|2≤x≤8且x≠5};(5){x|3<x<5}.解 (1){x |x <2}可以用区间表示为(-∞,2);用数轴表示如图①.(2){x |x =0或1≤x ≤5}可以用区间表示为{0}∪[1,5];用数轴表示如图②. (3){x |x =3或4≤x ≤8}用区间表示为{3}∪[4,8];用数轴表示如图③.(4){x |2≤x ≤8且x ≠5}用区间表示为[2,5)∪(5,8];用数轴表示如图④. (5){x |3<x <5}用区间表示为(3,5);用数轴表示如图⑤.图⑤基础达标一、选择题 1.函数f (x )=x +2x -2的定义域是( ) A.[-2,2) B.[-2,2)∪(2,+∞) C.[-2,+∞)D.(2,+∞)解析 x 应满足⎩⎪⎨⎪⎧x +2≥0,x -2≠0,即x ≥-2,且x ≠2.∴函数f (x )=x +2x -2的定义域是[-2,2)∪(2,+∞).故选B.答案 B2.下列各组函数为同一函数的是( ) A.f (x )=x ,g (x )=x 2x B.f (x )=1,g (x )=(x -1)0C.f(x)=(x)2x,g(x)=x(x)2D.f(x)=x2-9x+3,g(x)=x-3解析 A.因为这两个函数的定义域不同,所以这两个函数不是同一函数;B.这两个函数的定义域不同,所以这两个函数不是同一函数;C.这两个函数的定义域与对应关系均相同,所以这两个函数为同一函数;D.这两个函数的定义域不同,所以这两个函数不是同一函数.故选C.答案 C3.若函数f(x)=ax2-1,a为一个正数,且f(f(-1))=-1,那么a的值是()A.1B.0C.-1D.2解析∵f(x)=ax2-1,∴f(-1)=a-1,f(f(-1))=f(a-1)=a·(a-1)2-1=-1,∴a(a-1)2=0.又∵a为正数,∴a=1.答案 A4.函数y=x-1x+1(x≥0)的值域为()A.[-1,1)B.[-1,1]C.[-1,+∞)D.[0,+∞)解析由题知y=x-1x+1=x+1-2x+1=1+-2x+1.∵x≥0,∴x+1≥1,∴0<1x+1≤1,∴-2≤-2x+1<0,∴-1≤1+-2x+1<1.∴函数y=x-1x+1的值域为[-1,1).故选A.答案 A5.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”.函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A.10个B.9个C.8个D.4个解析 由2x 2-1=1,得x 1=1,x 2=-1;由2x 2-1=7,得x 3=-2,x 4=2,所以定义域为2个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.答案 B二、填空题6.下列各对函数中是同一函数的是________(填序号).①f (x )=2x -1与g (x )=2x -x 0;②f (x )=(2x +1)2与g (x )=|2x +1|;③f (n )=2n +2(n ∈Z )与g (n )=2n (n ∈Z );④f (x )=3x +2与g (t )=3t +2.解析 ①函数g (x )=2x -x 0=2x -1,函数g (x )的定义域为{x |x ≠0},两个函数的定义域不相同,不是同一函数;②f (x )=(2x +1)2=|2x +1|与g (x )=|2x +1|的定义域和对应关系相同,是同一函数;③f (n )=2n +2(n ∈Z )与g (n )=2n (n ∈Z )的对应关系不相同,不是同一函数;④f (x )=3x +2与g (t )=3t +2的定义域和对应关系相同,是同一函数.答案 ②④7.函数y =6-x |x |-4的定义域用区间表示为________. 解析 要使函数有意义,需满足⎩⎪⎨⎪⎧6-x ≥0,|x |-4≠0,即⎩⎪⎨⎪⎧x ≤6,x ≠±4,∴定义域为(-∞,-4)∪(-4,4)∪(4,6].答案(-∞,-4)∪(-4,4)∪(4,6]8.在实数的原有运算中,我们定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.设函数f(x)=(1⊕x)-(2⊕x),x∈[-2,2],则函数f(x)的值域为________.解析由题意知,当x∈[-2,1]时,f(x)=-1;当x∈(1,2]时,f(x)=x2-2∈(-1,2].所以当x∈[-2,2]时,f(x)∈[-1,2].答案[-1,2]三、解答题9.求下列函数的值域:(1)y=5x+4 x-1;(2)y=x-1-2x;(3)y=2--x2+4x.解(1)y=5x+4x-1=5(x-1)+9x-1=5+9x-1,且9x-1≠0,∴y≠5,∴函数的值域是{y|y≠5}.(2)令t=1-2x(t≥0),∴x=-12t2+12,∴y=-12t2-t+12=-12(t+1)2+1,当t≥0时,y≤12,∴函数的值域为⎝⎛⎦⎥⎤-∞,12.(3)y=2--x2+4x=2--(x-2)2+4,∵0≤-(x-2)2+4≤4=2,所以y=2--x2+4x的值域为[0,2].10.已知函数f (x )=12x 2-x +32,是否存在实数m ,使得函数的定义域和值域都是[1,m ](m >1)?若存在,求出m 的值;若不存在,说明理由.解 存在.理由如下:f (x )=12x 2-x +32=12(x -1)2+1的对称轴为x =1,顶点(1,1)且开口向上.∵m >1,∴当x ∈[1,m ]时,y 随x 的增大而增大,∴要使f (x )的定义域和值域都是[1,m ],则有⎩⎪⎨⎪⎧f (1)=1,f (m )=m ,∴12m 2-m +32=m ,即m 2-4m +3=0,∴m =3或m =1(舍)∴存在实数m =3满足条件.能力提升11.已知f (x )=1-x 1+x(x ∈R 且x ≠-1),g (x )=x 2-1(x ∈R ),则f (g (x ))=________. 解析 f (g (x ))=1-g (x )1+g (x )=1-(x 2-1)1+(x 2-1) =2-x 2x 2(x ≠0).答案 2-x 2x 2(x ≠0)12.对于函数f (x ),若f (x )=x ,则称x 为f (x )的“不动点”,若f (f (x ))=x ,则称x 为f (x )的“稳定点”,函数f (x )的“不动点”和“稳定点”的集合分别记为A 和B ,即A ={x |f (x )=x },B ={x |f (f (x ))=x }.(1)求证:A ⊆B ;(2)设f (x )=x 2+ax +b ,若A ={-1,3},求集合B .(1)证明 若A =∅,则A ⊆B 显然成立.若A ≠∅,设t ∈A ,则f (t )=t ,f (f (t ))=t ,t ∈B ,从而A ⊆B ,故A ⊆B 成立.(2)解 因为A ={-1,3},所以f (-1)=-1,且f (3)=3.即⎩⎪⎨⎪⎧(-1)2-a +b =-1,32+3a +b =3,所以⎩⎪⎨⎪⎧a -b =2,3a +b =-6,所以⎩⎪⎨⎪⎧a =-1,b =-3,所以f (x )=x 2-x -3. 因为B ={x |f (f (x ))=x },所以(x 2-x -3)2-(x 2-x -3)-3=x ,所以(x 2-x -3)2-x 2=0,即(x 2-3)(x 2-2x -3)=0,所以(x 2-3)(x +1)(x -3)=0,所以x =±3或x =-1或x =3.所以B ={-3,-1,3,3}.创新猜想13.(多空题)若对任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________,f (-1)=________.解析 对∀x ∈R ,有2f (x )-f (-x )=3x +1,令x =1,则2f (1)-f (-1)=4,①令x =-1,则2f (-1)-f (1)=-2.②由①②解得f (1)=2,f (-1)=0.答案 2 014.(多空题)已知f (x )的图象如图所示,则f (x )的定义域为________,值域为________.解析函数的定义域对应图象上所有点横坐标的取值集合,值域对应纵坐标的取值集合.答案[-2,4]∪[5,8][-4,3]。