FANUC数控机床机械原点的设置及回零常见故障分析

合集下载

数控机床的回零及其常见故障分析[1]

数控机床的回零及其常见故障分析[1]

数控机床参考点的回归及其常见故障诊断数控机床启动后通常需要进行返回参考点的操作,在这个过程中常会遇到各种问题,问题处理的正确与否在很大程度上会直接影响机床的使用及工件的加工精度。

一、为什么要返回参考点在数控机床上,各坐标轴的正方向是定义好的,因此只要机床原点一旦确定,机床坐标系也就确定了。

机床原点往往是由机床厂家在设计机床时就确定了,但这仅仅是机械意义上的,计算机数控系统还是不能识别,即数控系统并不知道以哪一点作为基准对机床工作台的位置进行跟踪、显示等。

为了让系统识别机床原点,以建立机床坐标系,就需要执行回参考点的操作。

如在CK0630型数控车床上,机床原点位于卡盘端面后20mm处,为让数控系统识别该点,需回零操作。

在CK0630型数控车床的操作面板上有一个回零按钮“ZERO”,当按下这个按钮时将会出现一个回零窗口菜单,显示操作步骤。

按照这个步骤,依此按下“X”按钮、“Z”按钮,则机床工作台将沿着X轴和Z轴的正方向快速运动,当工作台到达参考点的接近开关时,工作台减速停止。

回参考点的工作完成后,显示器即显示机床参考点在机床坐标系中的坐标值(X400,Z400),此时机床坐标系已经建立(如图1所示)。

目前,大多数数控机床均采用增量式位置检测装置来做位置环反馈元件,当机床在断电状态时NC系统会失去对机床坐标系值的记忆,因此每次机床重新通电之初,必须手动操作返回机床参考点一次,恢复记忆,以便进行自动加工。

对使用日本FUNAC系统的机床,除通电之初外,在机床工作过程中如出现断电、紧急停止或压下了机床行程限位开关时,也必须返回参考点。

机床返回参考点的方向、速度、参考点的坐标等均可由系统参数设定。

二、返回参考点的原理目前数控机床回参考点的方式有两种:使用脉冲编码器或光栅尺的栅格法和使用磁感应开关的磁开关法。

磁开关法由于存在定位漂移现象,因此较少使用。

大多数数控机床均采用栅格法回参考点。

栅格法根据检测元件计量方法的不同又可分为绝对栅格法和增量栅格法。

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点的设置及回零常见故障分析
俞彬;白洪金;丰崇友
【期刊名称】《中国科技信息》
【年(卷),期】2012(000)010
【摘要】当前大多数数控机床均采用通过减速档块的方式回零,但该方式在日常使用中故障率却很高,有时甚至出现机械原点的丢失.本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对该类数控机床常见回零故障的各种形式进行了分析与总结.
【总页数】2页(P140,148)
【作者】俞彬;白洪金;丰崇友
【作者单位】嘉兴学院机电工程学院,浙江嘉兴314001;嘉兴职业技术学院,浙江嘉兴314036;嘉兴职业技术学院,浙江嘉兴314036
【正文语种】中文
【相关文献】
1.数控机床挡块式回零的控制原理及常见故障分析 [J], 黄登红;熊轶娜
2.基于FANUC Oi系统外部坐标原点偏移功能的数控机床误差补偿研究 [J], 姜辉;孙翰英;范嘉桢;杨建国
3.FANUC 0i-MD系统的数控机床开机无法回零的故障诊断与修复 [J], 廉良冲
4.数控加工中心原点设置原理与常见故障分析 [J], 王艳凤
5.浅谈FANUC数控机床机械原点重置 [J], 朱道景
因版权原因,仅展示原文概要,查看原文内容请购买。

数控机床回不了参考点故障的分析及排除

数控机床回不了参考点故障的分析及排除

数控机床回不了参考点故障的分析及排除1、概述数控机床回参考点时根据检测元件的不同分绝对脉冲编码器方式和增量脉冲编码器方式两种,使用绝对脉冲编码器作为反馈元件的系统,在机床安装调试后,正常使用过程中,只要绝对脉冲编码器的后备电池有效,此后的每次开机,都不必再进行回参考点操作。

而使用增量脉冲编码器的系统中,机床每次开机后都必须首先进行回参考点操作,以确定机床的坐标原点,寻找参考点主要与零点开关、编码器或光栅尺的零点脉冲有关,一般有两种方式。

1)轴向预定点方向快速运动,挡块压下零点开关后减速向前继续运动,直到挡块脱离零点开关后,数控系统开始寻找零点,当接收到第一个零点脉冲时,便以确定参考点位置。

配F ANUC系统和北京KND系统的机床目前一般采用此种回零方式。

2)轴快速按预定方向运动,挡块压向零点开关后,反向减速运动,当又脱离零点开关时,轴再改变方向,向参考点方向移动,当挡块再次压下零点开关时,数控系统开始寻找零点,当接收到第一个零点脉冲,便以确定参考点位置。

配SIEMENS、美国AB 系统及华中系统的机床一般采用这种回零方式。

采用何种方式或如何运动,系统都是通过PLC的程序编制和数控系统的机床参数设定决定的,轴的运动速度也是在机床参数中设定的,数控机床回参考点的过程是PLC系统与数控系统配合完成的,由数控系统给出回零命令,然后轴按预定方向运动,压向零点开关(或脱离零点开关)后,PLC向数控系统发出减速信号,数控系统按预定方向减速运动,由测量系统接收零点脉冲,收到第一个脉冲后,设计坐标值。

所有的轴都找到参考点后,回参考点的过程结束。

数控机床回不了参考点的故障常见一般有以下几种情况:一是零点开关出现问题;二是编码器出现问题;三是系统测量板出现问题;四是零点开关与硬(软)限位置太近;五是系统参数丢失等等。

下面以本人在工作中遇到的几个实例介绍维修的过程。

2、维修实例例1)XH714加工中心开机回参考点,X轴向回参考的相反方向移动。

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床板滞本面的树坐及回整罕睹障碍分解之阳早格格创做目前大普遍数控机床均采与通过减速档块的办法回整,但是谊办法正在凡是使用中障碍率却艰下,偶尔以至出现板滞本面的拾得.本文以FANUC系统的台中粗机VCENTER-70加工核心为例浅析了数控机床板滞本面的树坐要领,并对付该类数控机床罕睹回整障碍的百般形式式举止了分解与归纳.板滞本面是机床死产厂家正在死产机床时任机床上树坐的一个物理位子,不妨使统制系统战机床不妨共步,进而建坐起一个用于丈量机床疏通坐目标起初位子面,常常也是步调坐目标参照面.大普遍数控机床正在开机后皆需要回整即回板滞本面的支配.本文以FANUC系统的台中粗机VCENTER-70加工核心为例浅析了数控机床板滞本面的树坐要领,并对付此类数控机床罕睹回整障碍的百般形武举止了分解与归纳.1 板滞本面树坐1.1 板滞本面拾得的本果台中粗机死产的VCENTER-70加工核心采与删量编码器动做机床位子的检测拆置.系统断电后,工件坐标系的坐标值便会得去影象,纵然靠电池不妨保护坐标值的影象,但是不过影象机床断电前的坐标值而出有是机床的本质位子,所以机床尾次开机后要举止返回参照面支配.而当系统断电逢到电池出电或者特殊情况得电时,便会制成板滞本面的拾得.进而使机床回参照面波折而无法平常处事.此时机床会爆收.#306 n轴电池电压0#的报警疑息,而且还会爆收板滞坐标拾得报警.#300第n轴本面复位央供”(n代指X、Y、Z).1.2 板滞本面的树坐正在常常情况下,树坐数控机床板滞本面的要领主要有以下二种:1)脚动使X、Y、Z三轴超程印利用三轴的极限位子采用板滞本面.2)利用各坐标轴的伺服检溯反馈系统提供相映基准脉冲去采用机床参照面即板滞本面.由于第一种要领是机床厂家常常提议的也是较为烦琐战真用的要领.果此本文正在此小心介绍第1种搞法.以X轴为例,树坐步调如下:(1)将机床支配里板上的办法采用开关设定为MDI办法.(2)按下机床MDI里板上的功能键[OFS/SET]数次,加进设定绘里.(3)将写参数中的0改为1,由此,系统加进了参数可写状态.此时机床出现.SWO 100参数写进开关处于挨开”的报警疑息.忽略那条报警疑息,树坐完参数后改回为0即可.(4)按下功能键lsYSTEM】,加进系统参数键里.通过参数搜索找到参数1815(如表l所示)常常情况下,X轴的#4APZ或者#5 APC会隐现为0,若出有为0便将其设定为0.(5)找到参数1320,此参数为保存各轴正背路程的坐标值.将其X轴的正背路程设定为最大值999999.脚段是让X轴的正背硬限位位子值大于其正背硬限位的位子值.(6)将办法采用开关挨到脚轮办法,而后摇动脚轮使处事台碰及X轴的正背限位档块,此时机床会出现“#500+X过路程”报警.(7)按下MDI里板上的[POS]功能键.加进机床坐标隐现键里.挨开相对付坐标隐现键里,按下X+[起源]使X轴的相对付坐标值形成0.(8)按下机床支配里板上的【超程释搁】并摇动脚轮至X-6.5的位子.(9)再次找到参数1815,将X轴的#4APZ或者#5 APC皆设定为1.末尾沉开数控系统,完毕X轴的板滞本面树坐.Y轴战Z轴的板滞本面树坐要领与X轴相共,三轴的板滞本面皆设定佳后沉新挨开写参数设定键里,将其设定为0.此时机床的报警疑息局部消得,完毕了加工核心的板滞本面树坐.利用基准脉冲设定机床整面.正在常常情况下,关环系统曲线的光栅尺每隔50mm 便会爆收一个基准脉冲,但是也会有一些特殊的曲线光栅尺,它会每隔20mm便爆收一个基准脉冲.对付于关环系统中的转动编码器去道,爆收的基准脉冲距离要比曲线光栅尺小很多,比圆惟有6mm.由于那个基准脉冲正在机床上时常会被选定为致控系统计数的基准.果此通过建改机床里的参数便不妨将那个基准面的值设定为0,进而使那个面成为机床的参照面也便是机床的板滞本面.1.3 树坐板滞本面时的注意事项(1)树坐前要查看各坐标轴上要可拆置有机床回整的微动开关,且各微动开关的位子是可符合.(2)正在第一个基准脉冲验出之前,必逆包管该坐标轴到了需要落速的距离上了.而那个落速距离便是所选速度的滞后缺面值.(3)由于使用的是编码器.故二个基准脉冲之间的距离会很小,所以正在回机床整面时,速度要矮一些,进而使滞后缺面出有会下于那个值的500.(4)由于各坐标轴回机床板滞本面时的速度是由机床的相映参效决断的.果此正在树坐那些参数时要注意.保证机床回整速度符合.(5)倘若机床正在回整面时压住了微动开关,那么便必须通过脚轮或者是脚动的办法支配数控机床坐标轴,强制其退出微动开关并退到离微动开关较近的位子,而后再次真止各坐标轴回参照面的支配.2 机床回整罕睹障碍分解及处理2.1 机床开机后出有克出有及回整障碍分解及处理(1)大概系统参数树坐有误.办理要领是小心查看各个相关参数,需要时沉设参数.(2)整脉冲出有良引导的障碍.整脉冲出有良便会使回整时找出有到整脉冲,引起的本果大概是系统轴板障碍或者是编码器及交线出现障碍.办理要领是对付编码器举止调换或者荡涤,查看线路及系统轴板是可有问题.(3)有大概减速开关短路或者是已经益坏.那种障碍会引导减速旗号出有克出有及爆收.办理要领是查看减速开关的线路,对付减速开关举止维建,需要时调换减速开关.(4)大概检测元件已被传染.正在齐关环统制的系统中,若光栅尺沾有油污,便出有克出有及支集到旗号.办理要领是荡涤光栅尺.2.2 机床回整时找出有到整面位子障碍分解及处理(1)减速开关有大概已经益坏或者受污,也大概是线路短路或者断路.办理要领便是即时对付减速开关举止浑理维建,需要时调换减速开关.查看线路连交情况.即时创制问题并办理.(2)大概是减速档块所处位子禁绝确.办理要领是安排减速档块到限位开关的距离,预防二者路程过小激励此障碍.2.3 机床回整后的位子与整面位子爆收螺距偏偏移障碍分解及处理引起那一障碍大概的本果是爆收栅格旗号的时刻与减速旗号从断开到交通的时刻太交近了,再加上存留的传动缺面,便使得机床回整历程中处事台逢到减速开关时,刚刚佳错过了栅格旗号,所以只可等到脉冲编码器再转过一周以去才搞找到下一个栅格旗号.故而出现了此类障碍.简曲分解如下:正在减速开关的旗号从断开回复到交通状态时,随即便出现了栅格旗号,也便是早栅格旗号处正在门临界面上(如图1a所永).那样一去,板滞部分的热变形,减速开关出现“通”、“断”旗号的沉复粗度缺面皆市引导整面爆收位子偏偏离的障碍(如图1b所示).办理要领脚可符合的阔整减速档块所处的位子,进而使整面位子与处事台停止的位子沉合(如图1c所示).也不妨采与建改栅格偏偏移量的要领,使爆收栅格旗号的时划离减速旗号从断开到交通时刻的距离是栅格旗号爆收周期的一半,便可与消此障碍(如图1d所示).图1障碍分解及鳞决要领示意囤2.4 机床幽整位子随机性变更障碍分解及处理(1)脉冲编码器的供电电压太矮.办理要领是安排从主板上输出的电压值,共时查看编码器线路板上的电源电压是可已到了符合的范畴.(2)伺服安排出有良.进而引起追踪缺面偏偏大.办理要领脚建改伺服参数.(3)滚珠丝杠间隙偏偏大或者丝杠与电效果的联轴器出现了紧动.办理的要领是对付演珠丝杠螺母剐的间隙举止安排及劣化,对付联轴器举止紧周或者调换.(4)整咏冲受到搞扰.办理的要领是查看脉冲编码器的电缆安插是可合理,反馈电缆萍蔽是可连交无误.3 结语掌握数拧机床本面的树坐要领战罕睹回整障碍处理办法对付于办理死产试验中的机床回整障碍具备很佳的指挥效率.但是值得证明的是障碍瞅象与障碍本果并出有是是一一对付应的,有大概是几种本困引起的.果此正在维建时要根据机床的本质情况,分离试验体味战维建脚册逐一查看排除假象,找到障碍去由并给予排除.。

数控机床回参考点的故障分析和排除

数控机床回参考点的故障分析和排除

数控机床回参考点的故障分析和排除数控机床参考点又名原点或零点,是机床的机械原点和电气原点相重合的点,是原点复归后机械上固定的点。

机床参考点确立后,各工件坐标系随之确立,即参考点为工件坐标系的原始参照系。

文章通过对数控机床回参考点的确立,并结合回参考点的故障维修实例,从而归纳总结出回参考的故障排除方法。

标签:数控机床;参考点;测量反馈元件1 参考点的确立数控系统按检测反馈元件测量方式的不同分为绝对脉冲编码器方式和增量脉冲编码器方式两种。

数控系统反馈元件采用绝对脉冲编码器,坐标值实际位置是靠位置检测装置的电池来维持,因此系统断电后,绝对脉冲编码器会记住当前位置。

在数控机床正常使用过程中,只要保证绝对脉冲编码器的后备电池有效,机床开机就不需要再进行回参考点操作。

而采用增量脉冲编码器的数控系统,系统断电后,工件坐标系的坐标值就会消失,因此机床每次开机后都必须先进行回参考点操作,通过参考点来确定机床的坐标原点,从而建立正确的机床坐标系。

除此之外,机床在按下急停开关及机床出现故障并修复后都需要进行一次手动回参考点的操作。

数控机床各轴回参考点的运动中,各轴的运动速度是在机床参数中设定的,并且数控系统是通过PLC的程序编制和数控系统的参数设定决定的,因此,数控机床各轴回参考点是通过PLC和数控系统配合完成的。

2 数控机床回参考点的故障维修实例下面介绍几个第一重型机械集团公司的数控机床回参考点的故障维修实例:例1军工分厂一台型号为TK6516数控铣镗床,数控系统为SIEMENS840D,Y轴出现回参考点位置的准确性差的故障,从而影响加工精度的故障。

维修人员首先检查该机床Y轴测量编码器的+5V电压是正常的,并且该轴在手动方式下能正常工作,回参考点的动作过程也正常,再检查参考点减速速度参数MD34040、位置环增益参数MD32200设置也都正确。

分析可能是由于编码器“零脉冲”受到干扰而引起的此故障,再经过仔细检查该故障轴后,发现该轴编码器的连接电缆的屏蔽线脱落,重新连接脱落的屏蔽线后,该故障轴回参考点位置准确,机床加工精度恢复。

FANUC数控机床返回参考点常见故障的诊断与分析

FANUC数控机床返回参考点常见故障的诊断与分析

FANUC数控机床返回参考点常见故障的诊断与分析禚玉宝【摘要】In the CNC machine tool repair, the fault of NC machine tool reference point return rate is o very high. For the machine often return reference point fault, clear back to the function and principle of the reference point is very important. In order to facilitate the NC repair personnel can quickly and accurately determine the fault point, the CNC machine to configure FANUC 0i system as an example, the machine back to the reference point of principle, course of action and failure is analyzed, so that to understand fundamentally and remove the faults of CNC machine tools in the return reference point.%在数控机床的维修中,有关数控机床回参考点方面的故障率非常高。

对于机床经常出现的回参考点故障,搞清楚回参考点的作用与原理是非常重要的。

为了便于数控维修人员能够迅速准确地判断故障点,以配置FANUC 0i系统的数控机床为例,把有关机床回参考点的原理、动作过程以及故障现象进行了分析,以使大家能够从根本上了解和排除数控机床在返回参考点方面出现的各种故障。

FANUC、SIEMENS数控机床参考点的原理、设置与维修

FANUC、SIEMENS数控机床参考点的原理、设置与维修

FANUC、SIEMENS数控机床参考点的原理、设置与维修当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内的机械绝对位置数据丢失了,或者机床回参考点后发现参考点和更换前发生了偏移,这就要求我们重新设定参考点,所以我们对了解参考点的工作原理十分必要。

参考点是指当执行手动参考点回归或加工程序的G28指令时机械所定位的那一点,又名原点或零点。

每台机床有一个参考点,根据需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。

通过G28指令执行快速复归的点称为第一参考点(原点),通过G30指令复归的点称为第二、第三或第四参考点,也称为返回浮动参考点。

由编码器发出的栅点信号或零标志信号所确定的点称为电气原点。

机械原点是基本机械坐标系的基准点,机械零件一旦装配好,机械参考点也就建立了。

为了使电气原点和机械原点重合,将使用一个参数进行设置,这个重合的点就是机床原点。

机床配备的位置检测系统一般有相对位置检测系统和绝对位置检测系统。

相对位置检测系统由于在关机后位置数据丢失,所以在机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。

绝对位置检测系统即使在电源切断时也能检测机械的移动量,所以机床每次开机后不需要进行原点回归。

由于在关机后位置数据不会丢失,并且绝对位置检测功能执行各种数据的核对,如检测器的回馈量相互核对、机械固有点上的绝对位置核对,因此具有很高的可信性。

当更换绝对位置检测器或绝对位置丢失时,应设定参考点,绝对位置检测系统一般使用无挡块式零点回归。

一:使用相对位置检测系统的参考点回归方式:1、FANUC系统:1)、工作原理:当手动或自动回机床参考点时,首先,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。

当挡块离开参考点接近开关时,继续以FL速度移动。

当走到相对编码器的零位时,回归电机停止,并将此零点作为机床的参考点。

2)、相关参数:参数内容系统0i/16i/18i/21i0所有轴返回参考点的方式: 0. 挡块、 1. 无挡块1002.10076各轴返回参考点的方式: 0. 挡块、 1. 无挡块1005.10391各轴的参考计数器容量18210570~0575 7570 7571每轴的栅格偏移量18500508~0511 0640 0642 7508 7509是否使用绝对脉冲编码器作为位置检测器: 0. 不是、是 1815.50021 7021 绝对脉冲编码器原点位置的设定:0. 没有建立、 1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037快速进给加减速时间常数16200522快速进给速度14200518~0521FL速度14250534手动快速进给速度14240559~0562伺服回路增益182505173)、设定方法:a、设定参数:所有轴返回参考点的方式=0;各轴返回参考点的方式=0;各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定;是否使用绝对脉冲编码器作为位置检测器=0 ;绝对脉冲编码器原点位置的设定=0;位置检测使用类型=0;快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定。

fanuc数控机床参考点的设置与维修

fanuc数控机床参考点的设置与维修

fanuc数控机床参考点的设置与维修数控机床参考点的设置与维修摘要:这里详细地介绍了发那克,三菱,西门子几种常用数控系统参考点的工作原理、调整和设定方法,并举例说明参考点的故障现象,解决方法。

关键词:参考点相对位置检测系统绝对位置检测系统前言:当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内的机械绝对位置数据丢失了,或者机床回参考点后发现参考点和更换前发生了偏移,这就要求我们重新设定参考点,所以我们对了解参考点的工作原理十分必要。

参考点是指当执行手动参考点回归或加工程序的G28指令时机械所定位的那一点,又名原点或零点。

每台机床有一个参考点,根据需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。

通过G28指令执行快速复归的点称为第一参考点(原点),通过G30指令复归的点称为第二、第三或第四参考点,也称为返回浮动参考点。

由编码器发出的栅点信号或零标志信号所确定的点称为电气原点。

机械原点是基本机械坐标系的基准点,机械零件一旦装配好,机械参考点也就建立了。

为了使电气原点和机械原点重合,将使用一个参数进行设置,这个重合的点就是机床原点。

机床配备的位置检测系统一般有相对位置检测系统和绝对位置检测系统。

相对位置检测系统由于在关机后位置数据丢失,所以在机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。

绝对位置检测系统即使在电源切断时也能检测机械的移动量,所以机床每次开机后不需要进行原点回归。

由于在关机后位置数据不会丢失,并且绝对位置检测功能执行各种数据的核对,如检测器的回馈量相互核对、机械固有点上的绝对位置核对,因此具有很高的可信性。

当更换绝对位置检测器或绝对位置丢失时,应设定参考点,绝对位置检测系统一般使用无挡块式零点回归。

一:使用相对位置检测系统的参考点回归方式:1、发那克系统:1)、工作原理:当手动或自动回机床参考点时,首先,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。

浅谈数控机床回参考点及故障分析处理

浅谈数控机床回参考点及故障分析处理
浅 谈 数 控 机 床 回 考 点 及故 障 分 新 处 理
摘 要: 机床 参考点是机床机械 原点与 电气原点 相重合的 点, 是建立工件 坐标 系的关
键, 本文主要介 绍 了机床 回参 考点 的几种 常见方 法及回参 考点 的动作过 程 , 而形成数 从
控机床 回参考点故障分析 思路 , 同时介 绍 了常见的机床 回参 考点故障原 因与处理方法 。
得准 确的位置值 。
关 ,采用何种 方式或如 何运行 ,系统都 是通 过 P C的程 序编制 和数控 系统 的机 床参数 设定来 L
决 定 , 的运动速度 也是在机 床参数 中设定 的。 轴 数 控系统 回参考点 的过程是 P C系统与数控 系 L 统 配合完 成的 ,由数控 系统给 出 回参 考点 的命
速挡块 位置不 正确或松动 ;减 速挡块 的长度 太 短; 回参考点 用的减速 开关的位 置不 当或松 动 , 该 故障一般在 机床大修 后或 长期使用 未保 养 时
发生 。
检测 反馈元件 发 出的栅 点信号 或零标志 信号确
立 的参考点 。每 台数 控机床 可以有一个 参考 原 点 , 可以按需要设 置多个参考原 点。控制 系统 也 启动 后 , 多数 机床要 自动返 回参考点 , 并重新 获
关键 词 : 参考点 ; 减速 开关 ; 故障 分析
黑龙江 李 战梅
数控 机床 是集 机械 制 造 、 计算 机 、 液压 、 气
即停 止 , 该停止点被认 做参考点 。 栅点法 的特点
是 如果接近 原点速度小 于某一 固定值 ,则伺 服 电机 总是停 止于 同一点 , 也就是说 , 在进 行 回参 考 点操作后 , 机床参 考点的保持性好 。磁 开关 法 的特点是软 件及硬件 简单 ,但参 考点位 置 随着 伺 服电机速 度的变化 而成 比例地漂移 ,即参 考 点 不确定 。 目前 , 多数机床采 用栅点 法 。栅 点法 中 , 大 按 照检测元 件测量方 式 的不 同分为 以绝对 脉冲 编 码器方式 回参考点 和 以增量 脉冲 编码 器方 式 回参考点 。在使用绝 对脉 冲编码器作 为测 量反 馈 元件 的系统 中, 床调试 时第 一次 开机后 , 机 通 过参数设 置配合机床 回零操 作调整 到合适 的参 考点后 , 只要绝对 脉冲编码 器的后备 电池有 效 , 此后每次 开机 , 不必进行 回参考 点操作 。在使用

fanuc原点的设定方法

fanuc原点的设定方法

fanuc原点的设定方法Fanuc原点的设定方法Fanuc原点的设定是CNC加工中非常重要的一步,它确定了工件坐标系与机床坐标系的关系,对于后续的加工操作具有决定性的影响。

下面将详细介绍Fanuc原点的设定方法。

一、Fanuc原点的概念Fanuc原点是指机床坐标系中的零点位置,也可以称之为零点坐标。

在Fanuc系统中,通常有三个原点,分别是X轴原点、Y轴原点和Z轴原点。

根据机床的不同类型和控制系统的不同,Fanuc原点的设定方法也有所区别。

二、Fanuc原点设定的准备工作在设定Fanuc原点之前,需要进行一些准备工作,以确保设定的准确性和安全性。

1. 确定机床的固定位置:机床在设定Fanuc原点时需要保持稳定的位置,确保不会发生移动或晃动。

2. 检查机床的零件状态:检查机床的各个零件是否完好,如导轨、螺杆等,确保没有松动或损坏的情况。

3. 清理机床工作台面:清理机床的工作台面,确保上面没有杂物或残留物。

三、Fanuc原点的设定方法1. 打开Fanuc控制面板:按下机床上的电源开关,打开Fanuc控制面板。

2. 进入原点设定界面:在控制面板上选择“参数设置”菜单,进入参数设置界面。

3. 选择轴向参数设定:在参数设置界面中选择“轴向参数设定”选项,进入轴向参数设定界面。

4. 选择原点设定功能:在轴向参数设定界面中选择“原点设定”功能,进入原点设定界面。

5. 选择需要设定的轴向:在原点设定界面中选择需要设定的轴向,如X轴、Y轴或Z轴。

6. 移动轴向到设定位置:根据实际需求,通过手动操作或使用机床的快速移动功能,将选定的轴向移动到设定位置。

7. 确定设定位置:当轴向移动到设定位置后,按下“确定”按钮,确认设定位置。

8. 完成设定:完成一个轴向的设定后,可以选择设定其他轴向的原点,或者退出设定界面。

四、Fanuc原点设定的注意事项在进行Fanuc原点设定时,需要注意以下几点,以确保设定的准确性和安全性。

1. 设定前确认坐标轴位置:在设定Fanuc原点之前,应该先确认坐标轴的起始位置,确保设定的位置不会超出机床的工作范围。

数控车床工作台回零故障分析及处理

数控车床工作台回零故障分析及处理

摘要在FANUC 0i数控系统中,对于维修经常出现的回参考点故障来说,弄清楚回参考点的作用及机械与电气原理是非常重要的。

根据我们的维修实践来看。

有关数控机床回参考点方面的故障率还相当高,为了便于数控维修人员能够迅速准确地判断故障点,在这里把有关机床回参考点过程中各种形式的故障进行分析、如机床不能归参考点、归参考点失败、归参考点不准确等,找出了这些故障的产生原因并给出了其排除方法及总结。

【关键词】参考点,故障诊断,分析,排除目录摘要第1章绪论 (1)1.1、数控机床的发展 (1)1.2、数控机床故障诊断技术的发展 (3)第2章数控机床的参考点 (5)2.1、什么是参考点 (5)2.2、回参考点的目的 (6)2.3、回参考点的原理 (6)2.4、回参考点的方式 (10)第3章回零点的故障案例与分析 (13)3.1、故障类型与分析 (13)第4章小结 (18)参考文献 (19)第1章绪论1.1 数控机床的发展数字控制(Numerical Control)技术,简称数控(CNC)技术,是指用数字指令来控制机器的动作。

采用数控技术的控制系统成为数控系统。

采用存贮程序的专用计算机来实现部分或全部基本数控功能的数控系统,称为计算机数控(CNC)系统。

装备了数控系统的机床称为数控机床.数控技术是为了解决复杂型面零件加工的自动化而生产的。

1948年,美国PARSONS公司在研制加工直升飞机叶片轮廓用检查样板的机床时,首先提出了数控机床的设想,在麻省理工学院的协助下,于1952年试制成功了世界上第一台数控机床样机。

后又经过三年时间的改进和自动程序编制的研究,数控机床进入了实用阶段,市场上出现了商品化数控机床。

1958年,美国KEANEY AND TRECKER公司在世界上首先研制成功了带有自动换刀装置的加工中心。

我国于1958年开始研制数控机床,到了60年代末和70年代初,简易的数控线切割机床已在广泛使用。

80年代初,我国引进了国外先进的数控技术,是我国的数控机床在质量和性能上都有了很大提高。

FANUC数控机床不能返回参考点的故障处理

FANUC数控机床不能返回参考点的故障处理

FANUC数控机床不能返回参考点的故障处理摘要:FANUC数控机床是高性能机电一体化产品,其位置检测用的是串行脉冲编码器,由于串行脉冲编码器的特点,机床在开机和急停的情况下,都要执行返回参考点的操作。

就是让机床坐标轴移动到一个预先制定的准确位置,如不能返回参考点,数控机床将不能正常工作。

关键词:数控机床,参考点,编码器数控机床是高性能机电一体化设备,FANUC-OTD数控机床在开机、断电、急停的情况下,需要机床返回参考点。

参考点是机床坐标轴需要移动到一个预先指定的准确位置,这一位置成为机床的参考点,执行回参考点操作是为了建立机床坐标系。

机床通电后刀具的位置是随机的,因此CRT显示的坐标值也是随机的,必须进行手动返回参考点的操作,系统才能捕捉到刀具的位置,然后机床才能转入正常工作。

机床不能返回参考点是数控机床的常见故障。

一、FANUC-OTD数控机床不能返回参考点的常见原因如下:1、刀具偏离参考点一个栅格的距离。

⑴参考点减速挡块位置不正确;⑵参考点减速挡块的长度太短;⑶参考点用的接近开关位置不当;该故障一般发生在数控机床的大修后,可通过重新调整参考点挡块的位置来解决。

2、偏离参考点任意位置,即偏离一个随机值。

这种故障一般与下列因素有关:⑴外界的干扰,如电缆屏蔽层接地不良,脉冲编码器的信号线与强电电缆靠的太近;⑵脉冲编码器用的电源电压太低(低于4.75V),或有其它故障。

(注:脉冲编码的电源电压来自于系统主板电源)⑶数控系统主板的位置控制部分接触不良;⑷位置进给轴与伺服电机的连接器松动;经常加强数控系统维护、检修和管理,消除干扰源,保证数控系统、脉冲编码器正常运行电压。

3、参考点微小偏移。

其主要原因:⑴电缆连接器接触不良或电缆损坏;⑵漂移补偿电压变化或系统主板不良。

采取措施见图1(开始)图1 FANUC数控机床微小偏移故障排除模块图二、返回参考点位置异常(90号报警)系统在返回参考点的过程中,屏幕显示界面上出现90号报警,即返回参考点位置异常报警。

机床回零方式,故障分析

机床回零方式,故障分析
2.回零故障现象及诊断步骤
回零点的故障可分为找不到参考点和找不准参考点两类。前一类故障主要是回参考点减速开关产生的信号或零标志脉冲信号失效所致。排除故障时先要搞清机床回参考点的方式,再对照故障现象来分析,首先根据 CNC 系统 PLC 接口 I/O状态指示直接观察信号的有无,来分析安装在机床外部的挡块和参考点开关是否工作正常;其次,用示波器检测脉冲编码
(4)坐标轴先以较快速度v1快速向零点靠近,当坐标轴压下零点开关后,被制
动到速度为零,再反向微动直至脱离零点开关,然后又沿原方向以速度v2向零点慢速移动。当到达测量系统零标志产生栅格信号时,轴即制动到速度为零,再前移参考点偏移量而停止到参考点,回零结束。
则每次开机均必须进行回零操作。在栅格法中,检测器随着电机一转信号同时产生一个栅点或一个零位脉冲,在机械本体上安装一个减速撞块及一个减速开关后,数控系统检测到的第一个栅点或零位信号即为原点。栅格法回零的特点是如果接近原点速度小于某一固定值,则伺服电机总是停止于同一点,也就是说,在进行回原点操作后,机床原点的保持性好。目前,几乎所有的数控机床都采用栅格法回零。采用增量栅格法回零的数控机床一般有以下四种回参考点方式:
(2)坐标轴先以较快速度v1快速向零点靠近,当轴部压块压下零点开关后,在减速信号的控制下,减速到速度v2并继续向前移动,当越过零点开关后,系统开始寻找零标志。当轴到达测量系统零标志发出栅格信号时,轴即制动到速度为零,然后再以v2速度前移参考点偏移量而停止到参考点。
(3)坐标轴先以较快速度v1快速向零点靠近,当轴部压块压下零点开关后,由数控系统控制坐标轴制动到速度为零,然后反向以速度v2慢速移动,当到达测量系统零标志产生栅格信号时,轴即制动到速度为零,再前移参考点偏移量而停止到参考点,回零结束。

数控机床的回零及其常见故障分析[1]

数控机床的回零及其常见故障分析[1]

数控机床参考点的回归及其常见故障诊断数控机床启动后通常需要进行返回参考点的操作,在这个过程中常会遇到各种问题,问题处理的正确与否在很大程度上会直接影响机床的使用及工件的加工精度。

一、为什么要返回参考点在数控机床上,各坐标轴的正方向是定义好的,因此只要机床原点一旦确定,机床坐标系也就确定了。

机床原点往往是由机床厂家在设计机床时就确定了,但这仅仅是机械意义上的,计算机数控系统还是不能识别,即数控系统并不知道以哪一点作为基准对机床工作台的位置进行跟踪、显示等。

为了让系统识别机床原点,以建立机床坐标系,就需要执行回参考点的操作。

如在CK0630型数控车床上,机床原点位于卡盘端面后20mm处,为让数控系统识别该点,需回零操作。

在CK0630型数控车床的操作面板上有一个回零按钮“ZERO”,当按下这个按钮时将会出现一个回零窗口菜单,显示操作步骤。

按照这个步骤,依此按下“X”按钮、“Z”按钮,则机床工作台将沿着X轴和Z轴的正方向快速运动,当工作台到达参考点的接近开关时,工作台减速停止。

回参考点的工作完成后,显示器即显示机床参考点在机床坐标系中的坐标值(X400,Z400),此时机床坐标系已经建立(如图1所示)。

目前,大多数数控机床均采用增量式位置检测装置来做位置环反馈元件,当机床在断电状态时NC系统会失去对机床坐标系值的记忆,因此每次机床重新通电之初,必须手动操作返回机床参考点一次,恢复记忆,以便进行自动加工。

对使用日本FUNAC系统的机床,除通电之初外,在机床工作过程中如出现断电、紧急停止或压下了机床行程限位开关时,也必须返回参考点。

机床返回参考点的方向、速度、参考点的坐标等均可由系统参数设定。

二、返回参考点的原理目前数控机床回参考点的方式有两种:使用脉冲编码器或光栅尺的栅格法和使用磁感应开关的磁开关法。

磁开关法由于存在定位漂移现象,因此较少使用。

大多数数控机床均采用栅格法回参考点。

栅格法根据检测元件计量方法的不同又可分为绝对栅格法和增量栅格法。

数控机床回参考点故障诊断与维修

数控机床回参考点故障诊断与维修
2、系统开关量输入电缆接错或短路。
3、PLC软件。
4、硬件板卡损坏。
故障排除
1、更换轴板电缆,需更换开关量输入电缆。
3、检查PLC程序。
4、需更换系统或送厂维修。
数控机床回参考点故障诊断与维修
故障一
机床类型
FANUC 0i-Mate数控铣床
故障现象
X轴回参考点时,动作正常,但最后出现超程报警
故障分析
1、因CNC的后备电池失效,造成参数丢失,用计算机将备份参数重新装入后,再回参考点时出现各轴在行程范围中间位置处发生软限位超程报警,此时用手动方式移动各轴,既使其机械位置在行程范围中间,CRT也显示各轴位置坐标软限位超程报警。
FANUC 0i-Mate数控铣床
故障现象
Y轴回参考点时,动作正常(先正方向快速移动,碰到减速开关后,能以慢速运动),但一直运动直到超程报警。其他轴回零正常。
故障分析
1、根据故障现象和返回参考点控制原理,可以判定减速信号正常,位置检测装置的零标志脉冲信号不正常。产生该故障的原因可能是来自x轴进给电动机的编码器故障(包括连接的电缆线)或系统轴板故障。因为此时Z轴回零动作正常,所以可以通过采取交换方法来判断故障部位。交换后,发现故障转移到Z轴上(X轴回零操作正常而Z轴回零出现报警),则判定故障在系统轴板。
2、由于减速开关无问题,而回参考点的过程还未完成,且出现的是软限位超程。说明挡块没有松劲,有可能是减速开关的位置松劲了。
故障排除
1、先将各个轴正向软限位值设成最大值,再作三轴回参考点,建立正确的机床零点,仍后再将三轴软限位改为原值。
2、经重新调整减速开关的位置,并拧紧固定锣钉,问题解决。
故障二
机床类型

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点得设置及回零常见故障分析当前大多数数控机床均采用通过减速档块得方式回零,但谊方式在日常使用中故障率却艰高,有时甚至出现机械原点得丢失。

本文以FANUC系统得台中精机VCENTER-70加工中心为例浅析了数控机床机械原点得设置方法,并对该类数控机床常见回零故障得各种形式式进行了分析与总结。

机械原点就是机床生产厂家在生产机床时任机床上设置得一个物理位置,可以使控制系统与机床能够同步,从而建立起一个用于测量机床运动坐标得起始位置点,通常也就是程序坐标得参考点。

大多数数控机床在开机后都需要回零即回机械原点得操作。

本文以FANUC 系统得台中精机VCENTER-70加工中心为例浅析了数控机床机械原点得设置方法,并对此类数控机床常见回零故障得各种形武进行了分析与总结。

1机械原点设置1、1 机械原点丢失得原因台中精机生产得VCENTER—70加工中心采用增量编码器作为机床位置得检测装置。

系统断电后,工件坐标系得坐标值就会失去记忆,尽管靠电池能够维持坐标值得记忆,但只就是记忆机床断电前得坐标值而不就是机床得实际位置,所以机床首次开机后要进行返回参考点操作。

而当系统断电遇到电池没电或特殊情况失电时,就会造成机械原点得丢失.从而使机床回参考点失败而无法正常工作。

此时机床会产生。

#306n轴电池电压0#得报警信息,并且还会产生机械坐标丢失报警。

#300第n轴原点复位要求”(n代指X、Y、Z)。

1、2 机械原点得设置在通常情况下,设置数控机床机械原点得方法主要有以下两种:1)手动使X、Y、Z三轴超程印利用三轴得极限位置选择机械原点。

2)利用各坐标轴得伺服检溯反馈系统提供相应基准脉冲来选择机床参考点即机械原点。

由于第一种方法就是机床厂家通常建议得也就是较为简便与实用得方法.因此本文在此详细介绍第1种做法。

以X轴为例,设置步骤如下:(1)将机床操作面板上得方式选择开关设定为MDI方式。

(2)按下机床MDI面板上得功能键[OFS/SET]数次,进入设定画面。

数控机床回原点故障诊断及排除5例

数控机床回原点故障诊断及排除5例

操作 及维 修 人 员 的 反 映 , t 其 把 故 障 介 绍 清 楚 ,但 卜
也须 注意 ,有 些 操 作 人 员 为脱 卸 责 任避 重 就 轻 地 反 映情 况 。如 本 案 例 中 维修 人 员就 没 有 直 接 反 映 地 线 及短 路的情 况 。 接地 是 菱 C C必须 严 格 执 行 的 规 范 。检 查 电 N 恒 的接地 是检 杏和排 除故 障 的第一 步 。 经过 强 电的袭击 ,数 控 系统 的功 能 会受 到损 坏 , 会 产生一 些隐形 故 障 必 须根 据实 际情 况予 以排 除。 3 .系统 原 点 漂 移 ( )故 障 现 象 1 一 台控 制 系统 为 M6 4的 铣 床
为 电 气 原 点 ,所 以 原 点 就 相 差 了 一 个 螺 距 。
看来 这参 数确 实有影 响 。
没 参 数 # 2 1=1 # 2 2=4 4 反 复 执 行 回 原 20 、 20 6。 点 ,每次都 能准 确 网原点 。
装机 后运行 正 常 加 工 程 序 ,无 误 差 无 报 警 。故 障排 除 。 ( 4)经验 总 结 在 排 除故 障前 ,必须 充分 听取
( ) 分析 与 调试 出现 的 误 差 为 9 8 m,而 螺 2 .r a
凋 整参 数# 0 8栅 罩量 ( 22 挡块 延 长量 )后 , “ 栅 格 量 ” = . nn,此数值 正 常 。必须 注意 :# 0 8和 4 91 2 22 螺 距 的 单位 不 一 样 ,调 整 # 0 8栅 罩 量 时 ,必 须 以 22
1 1O 0 / 0 mm 为 单 位 ,例 如 欲 设 定 5 m 的 栅 罩 量 , 必 a r 须 设 定 # 0 8= 50 。 另 外 ,必 须 注 意 设 定 参 数 # 22 00

FANUC机床伺服电机原点恢复的方法

FANUC机床伺服电机原点恢复的方法

第 1 页,共 1 页 关于FANUC机床伺服电机的原点恢复方法拔下伺服马达脉冲编码器的连接器后再连接时,由于找不到原点位置,将会发生请求伺服马达返回原点的报警『DS300 APC报警 :n轴 须回参考点』。

(n轴表示X,Y,Z,)或者脉冲编码器电池低电压丢掉数据及丝杆更换后重设坐标。

此时,需要进行伺服马达的原点恢复。

① 参照安装在机床的X,Y,Z各轴上的标记(见下图)进行原点恢复。

② 在发生了报警DS300的状态下,选择手轮模式,用手轮移动要恢复的轴,距离为移动轴的一圈以上(X,Y,Z轴均为12mm),暂时关闭机床电源,然后再重新接通电源。

2-1. 在更换丝杆需要回零的情况下,如果没有出现“300”号报警,此时则需要更改参数 1815 。

按“设定”键,再按“后页”,可调出“设定画面”,将“写参数”中的“0”更改 为“1”即可以写参数2-2.当参数写入模式打开后,找到1815参数,进行更改。

将APZ=1更改为APZ=0。

此时会出现“000”报警,和“300”报警,需关闭电源再启动机床。

重启机床后即可原点恢复了。

③ 在快捷画面选择电机原点恢复。

[快捷画面⇒按软键 维修/设定(MAINTE/SET),或者输入[5]+前/后翻页键,出现如下所示画④ 选择『电机原点恢复(MOTOR ORIGIN)』。

按下[2]再按[输入]键后,出现如下画面。

(以 X 轴回原点为例)⑤ 利用操作面板上的向上[ ↑ ]或向下[ ↓ ] 光标键来选择待恢复轴。

⑥ 按软键 ,出现如下所示画面。

⑦ 按照提示“1.”,使菱形标记与圆形标记离开30mm以上的距离。

若已经离开足够的距离,则不需要此项操作。

⑧ 按照提示“2.”,选择手轮模式,用手轮使X轴向[―]方向移动,使菱形标记进入2个圆形标记的中间位置。

而后按下软键 。

如果伺服轴在移动过程中出现限位报警时,修改下面的参数。

把参数改到-999999 。

⑨ 按照提示“3.”(如下图),按软键 。

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点的设置及回零常见故障分析

FANUC数控机床机械原点的设置及回零罕有故障剖析【1 】当前大多半数控机床均采取经由过程减速档块的方法回零,但谊方法在日常应用中故障率却艰高,有时甚至消失机械原点的丧掉.本文以FANUC体系的台中精机VCENTER-70加工中间为例浅析了数控机床机械原点的设置办法,并对该类数控机床罕有回零故障的各类情势式进行了剖析与总结.机械原点是机床临盆厂家在临盆机床时任机床上设置的一个物理地位,可以使控制体系和机床可以或许同步,从而树立起一个用于测量机床活动坐标的肇端地位点,平日也是程序坐标的参考点.大多半数控机床在开机后都须要回零即回机械原点的操纵.本文以FANUC体系的台中精机VCENTER-70加工中间为例浅析了数控机床机械原点的设置办法,并对此类数控机床罕有回零故障的各类形武进行了剖析与总结.1 机械原点设置1.1 机械原点丧掉的原因台中精机临盆的VCENTER-70加工中间采取增量编码器作为机床地位的检测装配.体系断电后,工件坐标系的坐标值就会掉去记忆,尽管靠电池可以或许保持坐标值的记忆,但只是记忆机床断电前的坐标值而不是机床的现实地位,所以机床初次开机后要进行返回参考点操纵.而当体系断电碰到电池没电或特别情形掉电时,就会造成机械原点的丧掉.从而使机床回参考点掉败而无法正常工作.此机会床会产生.#306 n轴电池电压0#的报警信息,并且还会产活力械坐标丧掉报警.#300第n轴原点复位请求”(n代指X.Y.Z).1.2 机械原点的设置在平日情形下,设置数控机床机械原点的办法重要有以下两种:1)手动使X.Y.Z三轴超程印应用三轴的极限地位选择机械原点.2)应用各坐标轴的伺服检溯反馈体系供给响应基准脉冲来选择机床参考点即机械原点.因为第一种办法是机床厂家平日建议的也是较为轻便和适用的办法.是以本文在此具体介绍第1种做法.以X轴为例,设置步调如下:(1)将机床操纵面板上的方法选择开关设定为MDI方法.(2)按下机床MDI面板上的功效键[OFS/SET]数次,进入设定画面.(3)将写参数中的0改为1,由此,体系进入了参数可写状况.此机会床消失.SWO 100参数写入开关处于打开”的报警信息.疏忽这条报警信息,设置完参数后改回为0即可.(4)按下功效键lsYSTEM】,进入体系参数键面.经由过程参数搜刮找到参数1815(如表l 所示)平日情形下,X轴的#4APZ或#5 APC会显示为0,若不为0就将其设定为0.(5)找到参数1320,此参数为存储各轴正向行程的坐标值.将其X轴的正向行程设定为最大值999999.目标是让X轴的正向软限位地位值大于其正向硬限位的地位值.(6)将方法选择开关打到手轮方法,然后摇着手轮使工作台碰及X轴的正向限位档块,此机会床会消失“#500+X过行程”报警.(7)按下MDI面板上的[POS]功效键.进入机床坐标显示键面.打开相对坐标显示键面,按下X+[来源]使X轴的相对坐标值变成0.(8)按下机床操纵面板上的【超程释放】并摇着手轮至X-6.5的地位.(9)再次找到参数1815,将X轴的#4APZ或#5 APC都设定为1.最后重启数控体系,完成X轴的机械原点设置.Y轴和Z轴的机械原点设置办法与X轴雷同,三轴的机械原点都设定好后从新打开写参数设定键面,将其设定为0.此机会床的报警信息全体消掉,完成了加工中间的机械原点设置.应用基准脉冲设定机床零点.在平日情形下,闭环体系直线的光栅尺每隔50mm就会产生一个基准脉冲,但也会有一些特别的直线光栅尺,它会每隔20mm就产生一个基准脉冲.对于闭环体系中的扭转编码器来说,产生的基准脉冲距离要比直线光栅尺小许多,比方只有6mm.因为这个基准脉冲在机床上经常会被选定为致控体系计数的基准.是以经由过程修正机床里的参数就可以将这个基准点的值设定为0,从而使这个点成为机床的参考点也就是机床的机械原点.1.3 设置机械原点时的留意事项(1)设置前要检讨各坐标轴上要否装配有机床回零的微动开关,且各微动开关的地位是否合适.(2)在第一个基准脉冲验出之前,必顺包管该坐标轴到了须要降速的距离上了.而这个降速距离就是所选速度的滞后误差值.(3)因为应用的是编码器.故两个基准脉冲之间的距离会很小,所以在回机床零点时,速度要低一些,从而使滞后误差不会高于这个值的500.(4)因为各坐标轴回机床机械原点时的速度是由机床的响应参效决议的.是以在设置这些参数时要留意.确保机床回零速度合适.(5)倘使机床在回零点时压住了微动开关,那么就必须经由过程手轮或是手动的方法操纵数控机床坐标轴,强迫其退出微动开关并退到离微动开关较远的地位,然后再次履行各坐标轴回参考点的操纵.2 机床回零罕有故障剖析及处理2.1 机床开机后不克不及回零故障剖析及处理(1)可能体系参数设置有误.解决办法是细心检讨各个相干参数,须要时重设参数.(2)零脉冲不良导致的故障.零脉冲不良就会使回零时找不到零脉冲,引起的原因可能是体系轴板故障或是编码器及接线消失故障.解决办法是对编码器进行改换或清洗,检讨线路及体系轴板是否有问题.(3)有可能减速开关短路或是已经破坏.这种故障会导致减速旌旗灯号不克不及产生.解决办法是检讨减速开关的线路,对减速开关进行维修,须要时改换减速开关.(4)可能检测元件已被污染.在全闭环控制的体系中,若光栅尺沾有油污,就不克不及收集到旌旗灯号.解决办法是清洗光栅尺.2.2 机床回零时找不到零点地位故障剖析及处理(1)减速开关有可能已经破坏或受污,也可能是线路短路或断路.解决办法就是实时对减速开关进行清算维修,须要时改换减速开关.检讨线路衔接情形.实时发明问题并解决.(2)可能是减速档块所处地位不准确.解决办法是调剂减速档块到限位开关的距离,防止两者行程过短序发此故障.2.3 机床回零后的地位与零点地位产生螺距偏移故障剖析及处理引起这一故障可能的原因是产生栅格旌旗灯号的时刻与减速旌旗灯号从断开到接通的时刻太接近了,再加上消失的传动误差,就使得机床回零进程中工作台碰着减速开关时,刚好错过了栅格旌旗灯号,所以只能等到脉冲编码器再转过一周今后才干找到下一个栅格旌旗灯号.故而消失了此类故障.具体剖析如下:在减速开关的旌旗灯号从断开恢复到接通状况时,随即便消失了栅格旌旗灯号,也就是晚栅格旌旗灯号处在门临界点上(如图1a所永).如许一来,机械部分的热变形,减速开关消失“通”.“断”旌旗灯号的反复精度误差都邑导致零点产生地位偏离的故障(如图1b所示).解决办法足可恰当的阔整减速档块所处的地位,从而使零点地位与工作台停滞的地位重合(如图1c 所示).也可以采取修正栅格偏移量的办法,使产生栅格旌旗灯号的时划离减速旌旗灯号从断开到接通时刻的距离是栅格旌旗灯号产生周期的一半,就可清除此故障(如图1d所示).图1故障剖析及鳞决办法示意囤2.4 机床幽零地位随机性变更故障剖析及处理(1)脉冲编码器的供电电压太低.解决办法是调剂从主板上输出的电压值,同时检讨编码器线路板上的电源电压是否已到了合适的规模.(2)伺服调节不良.从而引起跟踪误差偏大.解决办法足修正伺服参数.(3)滚珠丝杠间隙偏大或丝杠与电念头的联轴器消失了松动.解决的办法是对演珠丝杠螺母剐的间隙进行调剂及优化,春联轴器进行紧周或改换.(4)零咏冲受到干扰.解决的办法是检讨脉冲编码器的电缆安插是否合理,反馈电缆萍蔽是否衔接无误.3 结语控制数拧机床原点的设置办法和罕有回零故障处理方法对于解决临盆实践中的机床回零故障具有很好的指点感化.但值得解释的是故障不雅象与故障原因并不是是一一对应的,有可能是几种原困引起的.是以在维修时要依据机床的现实情形,联合实践经验和维修手册一一检讨清除假象,找到故障原由并予以清除.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FANUC数控机床机械原点的设置及回零常见故障分析
当前大多数数控机床均采用通过减速档块的方式回零,但谊方式在日常使用中故障率却艰高,有时甚至出现机械原点的丢失。

本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对该类数控机床常见回零故障的各种形式式进行了分析与总结。

机械原点是机床生产厂家在生产机床时任机床上设置的一个物理位置,可以使控制系统和机床能够同步,从而建立起一个用于测量机床运动坐标的起始位置点,通常也是程序坐标的参考点。

大多数数控机床在开机后都需要回零即回机械原点的操作。

本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对此类数控机床常见回零故障的各种形武进行了分析与总结。

1 机械原点设置
1.1 机械原点丢失的原因
台中精机生产的VCENTER-70加工中心采用增量编码器作为机床位置的检测装置。

系统断电后,工件坐标系的坐标值就会失去记忆,尽管靠电池能够维持坐标值的记忆,但只是记忆机床断电前的坐标值而不是机床的实际位置,所以机床首次开机后要进行返回参考点操作。

而当系统断电遇到电池没电或特殊情况失电时,就会造成机械原点的丢失.从而使机床回参考点失败而无法正常工作。

此时机床会产生。

#306 n轴电池电压0#的报警信息,并且还会产生机械坐标丢失报警。

#300第n轴原点复位要求”(n代指X、Y、Z)。

1.2 机械原点的设置
在通常情况下,设置数控机床机械原点的方法主要有以下两种:1)手动使X、Y、Z三轴超程印利用三轴的极限位置选择机械原点。

2)利用各坐标轴的伺服检溯反馈系统提供相应基准脉冲来选择机床参考点即机械原点。

由于第一种方法是机床厂家通常建议的也是较为简便和实用的方法.因此本文在此详细介绍第1种做法。

以X轴为例,设置步骤如下:
(1)将机床操作面板上的方式选择开关设定为MDI方式。

(2)按下机床MDI面板上的功能键[OFS/SET]数次,进入设定画面。

(3)将写参数中的0改为1,由此,系统进入了参数可写状态。

此时机床出现。

SWO 100参数写入开关处于打开”的报警信息。

忽略这条报警信息,设置完参数后改回为0即可。

(4)按下功能键lsYSTEM】,进入系统参数键面。

通过参数搜索找到参数1815(如表l 所示)通常情况下,X轴的#4APZ或#5 APC会显示为0,若不为0就将其设定为0。

(5)找到参数1320,此参数为存储各轴正向行程的坐标值。

将其X轴的正向行程设定为最大值999999。

目的是让X轴的正向软限位位置值大于其正向硬限位的位置值。

(6)将方式选择开关打到手轮方式,然后摇动手轮使工作台碰及X轴的正向限位档块,此时机床会出现“#500+X过行程”报警。

(7)按下MDI面板上的[POS]功能键.进入机床坐标显示键面。

打开相对坐标显示键面,按下X+[起源]使X轴的相对坐标值变为0。

(8)按下机床操作面板上的【超程释放】并摇动手轮至X-6.5的位置。

(9)再次找到参数1815,将X轴的#4APZ或#5 APC都设定为1。

最后重启数控系统,完成X轴的机械原点设置。

Y轴和Z轴的机械原点设置方法与X轴相同,三轴的机械原点都设定好后重新打开写参数设定键面,将其设定为0。

此时机床的报警信息全部消失,完成了加工中心的机械原点设置。

利用基准脉冲设定机床零点。

在通常情况下,闭环系统直线的光栅尺每隔50mm就会产生一个基准脉冲,但也会有一些特殊的直线光栅尺,它会每隔20mm就产生一个基准脉冲。

对于闭环系统中的旋转编码器来说,产生的基准脉冲距离要比直线光栅尺小很多,比如只有6mm。

由于这个基准脉冲在机床上经常会被选定为致控系统计数的基准.因此通过修改机床里的参数就可以将这个基准点的值设定为0,从而使这个点成为机床的参考点也就是机床的机械原点。

1.3 设置机械原点时的注意事项
(1)设置前要检查各坐标轴上要否安装有机床回零的微动开关,且各微动开关的位置是否适合。

(2)在第一个基准脉冲验出之前,必顺保证该坐标轴到了需要降速的距离上了。

而这个降速距离就是所选速度的滞后误差值。

(3)由于使用的是编码器.故两个基准脉冲之间的距离会很小,所以在回机床零点时,速度要低一些,从而使滞后误差不会高于这个值的500。

(4)由于各坐标轴回机床机械原点时的速度是由机床的相应参效决定的.因此在设置这些参数时要注意.确保机床回零速度合适。

(5)倘若机床在回零点时压住了微动开关,那么就必须通过手轮或是手动的方式操作数控机床坐标轴,强制其退出微动开关并退到离微动开关较远的位置,然后再次执行各坐标轴回参考点的操作。

2 机床回零常见故障分析及处理
2.1 机床开机后不能回零故障分析及处理
(1)可能系统参数设置有误。

解决方法是仔细检查各个相关参数,必要时重设参数。

(2)零脉冲不良导致的故障。

零脉冲不良就会使回零时找不到零脉冲,引起的原因可能是系统轴板故障或是编码器及接线出现故障。

解决方法是对编码器进行更换或清洗,检查线路及系统轴板是否有问题。

(3)有可能减速开关短路或是已经损坏。

这种故障会导致减速信号不能产生。

解决方法是检查减速开关的线路,对减速开关进行维修,必要时更换减速开关。

(4)可能检测元件已被污染。

在全闭环控制的系统中,若光栅尺沾有油污,就不能采集到信号。

解决方法是清洗光栅尺。

2.2 机床回零时找不到零点位置故障分析及处理
(1)减速开关有可能已经损坏或受污,也可能是线路短路或断路。

解决方法就是及时对减速开关进行清理维修,必要时更换减速开关。

检查线路连接情况.及时发现问题并解决。

(2)可能是减速档块所处位置不准确。

解决方法是调整减速档块到限位开关的距离,避免两者行程过小引发此故障。

2.3 机床回零后的位置与零点位置发生螺距偏移故障分析及处理
引起这一故障可能的原因是产生栅格信号的时刻与减速信号从断开到接通的时刻太接近了,再加上存在的传动误差,就使得机床回零过程中工作台碰到减速开关时,刚好错过了栅格信号,所以只能等到脉冲编码器再转过一周以后才能找到下一个栅格信号。

故而出现了此类故障。

具体分析如下:
在减速开关的信号从断开恢复到接通状态时,随即便出现了栅格信号,也就是晚栅格信号处在门临界点上(如图1a所永)。

这样一来,机械部分的热变形,减速开关出现“通”、“断”信号的重复精度误差都会导致零点发生位置偏离的故障(如图1b所示)。

解决方法足可适当的阔整减速档块所处的位置,从而使零点位置与工作台停止的位置重合(如图1c所示)。

也可以采用修改栅格偏移量的方法,使产生栅格信号的时划离减速信号从断开到接通时刻的距离是栅格信号产生周期的一半,就可消除此故障(如图1d所示)。

图1故障分析及鳞决方法示意囤
2.4 机床幽零位置随机性变化故障分析及处理
(1)脉冲编码器的供电电压太低。

解决方法是调整从主板上输出的电压值,同时查看编码器线路板上的电源电压是否已到了合适的范围。

(2)伺服调节不良.从而引起跟踪误差偏大。

解决方法足修改伺服参数。

(3)滚珠丝杠间隙偏大或丝杠与电动机的联轴器出现了松动。

解决的方法是对演珠丝杠螺母剐的间隙进行调整及优化,对联轴器进行紧周或更换。

(4)零咏冲受到干扰。

解决的方法是检查脉冲编码器的电缆布置是否合理,反馈电缆萍蔽是否连接无误。

3 结语
掌握数拧机床原点的设置方法和常见回零故障处理方式对于解决生产实践中的机床回零故障具有很好的指导作用。

但值得说明的是故障观象与故障原因并非是一一对应的,有可能是几种原困引起的。

因此在维修时要根据机床的实际情况,结合实践经验和维修手册逐一检查排除假象,找到故障起因并予以排除。

其中专业理论知识内容包括:保安理论知识、消防业务知识、职业道德、法律常识、保安礼仪、救护知识。

作技能训练内容包括:岗位操作指引、勤务技能、消防技能、军事技能。

二.培训的及要求培训目的。

相关文档
最新文档