无损变换和无迹Kalman滤波算法
卡尔曼滤波_卡尔曼算法
卡尔曼滤波_卡尔曼算法1.引言1.1 概述卡尔曼滤波是一种用于估计系统状态的技术,通过融合传感器测量值和系统模型的预测值,提供对系统状态的最优估计。
它的应用十分广泛,特别在导航、图像处理、机器人技术等领域中发挥着重要作用。
在现实世界中,我们往往面临着各种噪声和不确定性,这些因素会影响我们对系统状态的准确估计。
卡尔曼滤波通过动态调整系统状态的估计值,可以有效地抑制这些干扰,提供更加精确的系统状态估计。
卡尔曼滤波的核心思想是利用系统模型的预测和传感器测量值之间的线性组合,来计算系统状态的最优估计。
通过动态地更新状态估计值,卡尔曼滤波可以在对系统状态的准确估计和对传感器测量值的实时响应之间进行平衡。
卡尔曼滤波算法包括两个主要步骤:预测和更新。
在预测步骤中,通过系统模型和上一时刻的状态估计值,预测当前时刻的系统状态。
在更新步骤中,将传感器测量值与预测值进行比较,然后根据测量误差和系统不确定性的权重,计算系统状态的最优估计。
卡尔曼滤波具有很多优点,例如它对传感器噪声和系统模型误差具有鲁棒性,可以提供较为稳定的估计结果。
此外,卡尔曼滤波还可以有效地处理缺失数据和不完全的测量信息,具有较高的自适应性和实时性。
尽管卡尔曼滤波在理论上具有较好的性能,但实际应用中还需考虑诸如系统模型的准确性、测量噪声的特性等因素。
因此,在具体应用中需要根据实际情况进行算法参数的调整和优化,以提高估计的准确性和可靠性。
通过深入理解卡尔曼滤波的原理和应用,我们可以更好地应对复杂环境下的估计问题,从而在实际工程中取得更好的效果。
本文将介绍卡尔曼滤波的基本原理和算法步骤,以及其在不同领域的应用案例。
希望通过本文的阅读,读者们可以对卡尔曼滤波有一个全面的了解,并能够在实际工程中灵活运用。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将围绕卡尔曼滤波和卡尔曼算法展开论述。
首先,我们会在引言部分对卡尔曼滤波和卡尔曼算法进行简要概述,介绍其基本原理和应用领域。
卡尔曼滤波器分类及基本公式
式上,卡尔曼滤波器是5条公式。
对于解决很大部分的问题,他是最优,效率最高甚至 是最有用的。他的广泛应用已经超过了30年,包括机器人 导航、控制,传感器数据融合甚至在军事方面的雷达系统 以及导弹追踪等等。而近年来更被应用于计算机图像处理,
例如头脸识别、图像分割、图像边缘检测等等。
卡尔曼滤波的特点
卡尔曼滤波的特点
你从温度计那里得到了 k时刻的温度值,假设是25 度,同时该
值的偏差是 4 度。
卡尔曼滤波的基本方程
例子
现在,我们用于估算K时刻房间的实际温度有两个温度值:估计值
23度和测量值25度。究竟实际温度是多少呢?是相信自己还是相信 温度计?究竟相信谁多一点?我们需要用他们的均方误差来判断。
52 因为, 2 2 H 0.78(*公式三),所以我们可以估算出K时 H 5 4 刻的最优温度值为:23 0.78* (25 23) 24.56 度(*公式四)。
度。
卡尔曼滤波的基本方程
例子
假如我们要估算 k 时刻的实际温度值。首先你要根据 k-1 时刻
的温度值,来预测 k 时刻的温度(K时刻的经验温度)。因为 你相信温度是恒定的,所以你会得到 k 时刻的温度预测值是跟 k-1 时刻一样的,假设是 23 度(*公式一),同时该值(预测 值)的高斯噪声的偏差是 5 度(5 是这样得到的:如果 k-1 时 刻估算出的最优温度值的偏差是 3,你对自己预测的不确定度 是 4 度,他们平方相加再开方,就是 5(*公式二)) 。然后,
Qk
为过程噪声的协方差,其为非负定阵; 为测量噪声的协方差,其为正定阵。
Rk
1 基于离散系统模型的卡尔曼滤波的基本公式 1.3 离散型卡尔曼滤波方程的一般形式
卡尔曼滤波器的五个公式
卡尔曼滤波器的五个公式
卡尔曼滤波器(Kalman Filter)的五个公式如下:
1. 预测状态:
x̂_k = F_k * x̂_k-1 + B_k * u_k
其中,x̂_k为当前时刻k的状态估计值,F_k为状态转移矩阵,x̂_k-1为上一时刻k-1的状态估计值,B_k为外部输入矩阵,u_k为外部输入。
2. 预测误差协方差:
P_k = F_k * P_k-1 * F_k^T + Q_k
其中,P_k为当前时刻k的状态估计误差协方差矩阵,P_k-1为上一时刻k-1的状态估计误差协方差矩阵,Q_k为系统过程噪声的协方差矩阵。
3. 计算卡尔曼增益:
K_k = P_k * H_k^T * (H_k * P_k * H_k^T + R_k)^-1
其中,K_k为当前时刻k的卡尔曼增益矩阵,H_k为观测矩阵,R_k为观测噪声的协方差矩阵。
4. 更新状态估计值:
x̂_k = x̂_k + K_k * (z_k - H_k * x̂_k)
其中,z_k为当前时刻k的观测值。
5. 更新状态估计误差协方差:
P_k = (I - K_k * H_k) * P_k
其中,I为单位矩阵。
卡尔曼滤波原理
卡尔曼滤波原理卡尔曼滤波(Kalman Filtering)是一种用于估计、预测和控制的最优滤波方法,由美国籍匈牙利裔数学家卡尔曼(Rudolf E. Kalman)在1960年提出。
卡尔曼滤波是一种递归滤波算法,通过对测量数据和系统模型的融合,可以得到更准确、更可靠的估计结果。
在各种应用领域,如导航、机器人、航空航天、金融等,卡尔曼滤波都被广泛应用。
1. 卡尔曼滤波的基本原理卡尔曼滤波的基本原理是基于状态空间模型,将系统的状态用随机变量来表示。
它假设系统的状态满足线性高斯模型,并通过线性动态方程和线性测量方程描述系统的演化过程和测量过程。
具体而言,卡尔曼滤波算法基于以下两个基本步骤进行:1.1 预测步骤:通过系统的动态方程预测当前时刻的状态,并计算预测的状态协方差矩阵。
预测步骤主要是利用前一时刻的状态和控制输入来预测当前时刻的状态。
1.2 更新步骤:通过系统的测量方程,将预测的状态与实际测量值进行融合,得到最优估计的状态和状态协方差矩阵。
更新步骤主要是利用当前时刻的测量值来修正预测的状态。
通过不断迭代进行预测和更新,可以得到连续时间上的状态估计值,并获得最优的估计结果。
2. 卡尔曼滤波的优势卡尔曼滤波具有以下几个优势:2.1 适用于线性系统与高斯噪声:卡尔曼滤波是一种基于线性高斯模型的滤波方法,对于满足这些条件的系统,卡尔曼滤波能够给出最优的估计结果。
2.2 递归计算:卡尔曼滤波是一种递归滤波算法,可以在每个时刻根据当前的测量值和先前的估计结果进行迭代计算,不需要保存过多的历史数据。
2.3 最优性:卡尔曼滤波可以通过最小均方误差准则,给出能够最优估计系统状态的解。
2.4 实时性:由于卡尔曼滤波的递归计算特性,它可以实时地处理数据,并及时根据新的测量值进行估计。
3. 卡尔曼滤波的应用卡尔曼滤波在多个领域都有广泛的应用,以下是一些典型的应用例子:3.1 导航系统:卡尔曼滤波可以用于导航系统中的位置和速度估计,可以结合地面测量值和惯性测量传感器的数据,提供精确的导航信息。
kalman滤波器算法原理
卡尔曼滤波总结假设条件:系统的状态由图1所给出的模型决定。
假定),1(k k+Φ,),1(k k+Γ,)0(P 和)(k Q 是已知的,并且是确定性的。
而观测模型由图2给出,其中)1(+kH 和)(k R 也是已知的,并且是确定性的。
它们可以写为,1,0),(),1()(),1()1(=+Γ++Φ=+k k w k k k x k k k x 状态方程)1()1()1()1(++++=+k v k x k H k z 量测方程)1(+k w激励)1(+k图1 一个离散-时间线性系统的状态方程和输出方程的矢量结构图观测转移矩阵 )1(+k xv (k+1)矢量求和激励)1(+k观测矢量 观测误差新状态矢量图2 观测模型的矢量结构图卡尔曼滤波算法:滤波估计由Kalman 所给出的最优线性滤波估计)1|1(ˆ++k k x是由下面的递归矩阵公式决定的,即,0)0|0(ˆ)]|(ˆ),1()1()1()[1()|(ˆ),1()1|1(≥=+Φ+-++++Φ=++k xk k xk k k H k z k K k k xk k k k x 初始条件这里)1(+kK 称为卡尔曼增益卡尔曼增益卡尔曼增益的表达式为,1,0,)]1()1()|1()1([)1()|1()1(1=+++++⨯++=+-k k R k H k k P k H k H k k P k K TT其中)|1(k kP +表示单步预测误差协方差矩阵。
单步预测误差协方差矩阵(单步性能)1,0)0()0|0(),1()(),1(),1()|(),1()|1(==+Γ+Γ++Φ+Φ=+k P P k k k Q k k k k k k P k k k k P TT,初始条件滤波误差的误差协方差矩阵(协方差递归形式)1,0),|1()]1()1([)1|1(=+++-=+k k k P k H k K I k k P +性能评价(系统状态的卡尔曼滤波估计的协方差矩阵)1,0],))1|1(ˆ)1(ˆ))(1|1(ˆ)1([()1|1(=++-+++-+=+k k k x k x k k xk x E k k P T+11|11|----Γ+Φ=k k k k k k kW XXkkk k V XH Z +=式中:k X —— 是一个1⨯n 维矢量,称为k t 时刻的状态矢量。
卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理
卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波原理所有滤波问题其实都是求感兴趣的状态的后验概率分布,只是由于针对特定条件的不同,可通过求解递推贝叶斯公式获得后验概率的解析解(KF、EKF、UKF),也可通过大数统计平均求期望的方法来获得后验概率(PF)。
1 KF、EKF、UKF1.1 定义KF、EKF、UKF 都是一个隐马尔科夫模型与贝叶斯定理的联合实现。
是通过观测信息及状态转移及观测模型对状态进行光滑、滤波及预测的方法。
而KF、EKF及UKF的滤波问题都可以通过贝叶斯估计状态信息的后验概率分布来求解。
Kalman在线性高斯的假设下,可以直接获得后验概率的解析解;EKF是非线性高斯模型,通过泰勒分解将非线性问题转化为线性问题,然后套用KF的方法求解,缺陷是线性化引入了线性误差且雅克比、海塞矩阵计算量大;而UKF也是非线性高斯模型,通过用有限的参数来近似随机量的统计特性,用统计的方法计算递推贝叶斯中各个积分项,从而获得了后验概率的均值和方差。
1.2 原理KF、EKF、UKF滤波问题是一个隐马尔科夫模型与贝叶斯定理的联合实现。
一般的状态模型可分为状态转移方程和观测方程,而状态一般都是无法直接观测到的,所以时隐马尔科夫模型。
然后,它将上一时刻获得的状态信息的后验分布作为新的先验分布,利用贝叶斯定理,建立一个贝叶斯递推过程,从而得到了贝叶斯递推公式,像常用的卡尔曼滤波、扩展卡尔曼滤波、不敏卡尔曼滤波以及粒子滤波都是通过不同模型假设来近似最优贝叶斯滤波得到的。
这也是滤波问题的基本思路。
所有贝叶斯估计问题的目的都是求解感兴趣参数的后验概率密度。
并且后验概率的求解是通过递推计算目标状态后验概率密度的方法获得的。
在贝叶斯框架下,通过状态参数的先验概率密度和观测似然函数来求解估计问题;在目标跟踪背景下(隐马尔科夫模型),目标动态方差决定状态转移概率,观测方程决定释然函数。
一般化的整个计算过程可以分为3步:01. 一步状态预测:通过状态转移概率及上一时刻的后验概率算出一步预测概率分布。
无迹卡尔曼滤波(UnscentedKalmanFilter)
⽆迹卡尔曼滤波(UnscentedKalmanFilter)
⽆迹卡尔曼滤波不同于扩展卡尔曼滤波,它是概率密度分布的近似,由于没有将⾼阶项忽略,所以在求解⾮线性时精度较⾼。
UT变换的核⼼思想:近似⼀种概率分布⽐近似任意⼀个⾮线性函数或⾮线性变换要容易。
原理:
假设n维随机向量x:N(x均值,Px),x通过⾮线性函数y=f(x)变换后得到n维的随机变量y。
通过UT变换可以⽐较⾼的精度和较低的计算复杂度求得y的均值和⽅差Px。
UT的具体过程如下:
(1)计算2n+1个Sigma点及其权值:
根号下为矩阵平⽅根的第i列
依次为均值、⽅差的权值
式中:
α决定Sigma点的散步程度,通常取⼀⼩的正值;k通常取0;β⽤来描述x的分布信息,⾼斯情况下,β的最优值为2。
(2)计算Sigma点通过⾮线性函数f()的结果:
从⽽得知
由于x的均值和⽅差都精确到⼆阶,计算得到y的均值和⽅差也精确到⼆阶,⽐线性化模型精度更⾼。
卡尔曼滤波原理及其应用
卡尔曼滤波卡尔曼滤波公式推导及应用摘要:卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
它能够从一系列的不完全及包含噪声的测量中,估计动态系统状态。
对于解决大部分问题,它是最优、效率最高甚至是最有用的。
它的的广泛应用已经超过30年,包括机器人导航、控制,传感器数据融合甚至在局势方面的雷法系统及导航追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
关键字:卡尔曼滤波导航机器人一Kalmanl滤波器本质上来讲,滤波就是一个信号处理与变换(去除或减弱不想要的成分,增强所需成分)的过程,这个过程既可以通过硬件来实现,也可以通过软件来实现。
卡尔曼滤波属于一种软件滤波方法,基本思想是:以最小均方差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方差的估计。
二Kalman滤波起源及发展1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。
斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与Kalman and Bucy (1961)发表.卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。
扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。
十大滤波算法范文
十大滤波算法范文滤波算法是信号处理中常用的一种技术,用于去除噪声、平滑数据、提取频率成分等。
以下是十大常用的滤波算法:1. 均值滤波算法(Mean Filter):计算邻域像素的平均值来代替当前像素值,适用于去除随机噪声。
2. 中值滤波算法(Median Filter):用邻域像素的中值来代替当前像素值,适用于去除脉冲噪声。
3. 高斯滤波算法(Gaussian Filter):按照高斯函数计算权重,对邻域像素进行加权平均,适用于光滑数据且保留边缘细节。
4. 锐化滤波算法(Sharpening Filter):增强图像的边缘和细节,通过将原始图像与低通滤波器生成的图像相减得到。
5. 无限脉冲响应滤波算法(Infinite Impulse Response Filter,IIR Filter):使用递归差分方程计算输出,具有较低的计算复杂度和较好的频率响应。
6. 有限脉冲响应滤波算法(Finite Impulse Response Filter,FIR Filter):使用有限长度的冲激响应作为滤波器的权重系数,适用于数字滤波器设计。
7. 快速傅里叶变换滤波算法(Fast Fourier Transform Filter,FFT Filter):将时域信号转换为频域信号进行滤波,适用于频域处理。
8. 卡尔曼滤波算法(Kalman Filter):通过将测量值与模型预测值进行加权平均,适用于估计系统状态和减少噪声。
9. 维纳滤波算法(Wiener Filter):通过最小均方误差准则对输入信号进行估计,适用于信号恢复和去噪。
10. 自适应滤波算法(Adaptive Filter):根据输入信号的特性调整滤波器的参数,适用于未知统计特性的信号处理。
以上是十大常用的滤波算法,它们都有各自的适用场景和优劣势。
在实际应用中,选择合适的滤波算法对于信号处理的效果至关重要。
卡尔曼(Kalman)滤波
第4章 卡尔曼(Kalman )滤波卡尔曼滤波的思想是把动态系统表示成状态空间形式,是一种连续修正系统的线性投影算法。
功能 1) 连续修正系统的线性投影算法。
2)用于计算高斯ARMA 过程的精确有限样本预测和精确的似然函数。
3) 分解矩阵自协方差生成函数或谱密度。
4)估计系数随时间变化的向量自回归。
第一节 动态系统的状态空间表示一.假设条件令t y 表示时期t 观察到变量的一个()1n ×向量。
则t y 的动态可以用不可观测的()1r ×向量t ξ来表示,t ξ为状态向量。
t y 的动态系统可以表示为如下的状态空间模型:11t t t F v ξξ++=+ (1)t t t t y A x H w ξ′′=++ (2)其中′′F,A ,H 分别为()r r ×,()n k ×和()n r ×矩阵,t x 是外生变量或前定变量的()1k ×向量。
方程(1)称为状态方程,方程(2)称为观察方程。
其中()1r ×向量t v 和()1n ×向量t w 为向量白噪声:()()00t t Qt E v v t R t E w w t ττττττ=⎧′=⎨≠⎩=⎧′=⎨≠⎩ (3)其中,Q R 为()(),r r n n ××矩阵。
假定扰动项t v 和t w 在所有阶滞后都不相关:()0t t E v w ′= 对所有的t 和τ (4)t x 为前定或外生变量,意味着对0,1,2,....,s =除包含在121,,...,t t y y y −−之内的信息外,t x 不再能提供关于t s ξ+以及t s w +的任何信息。
即t x 可能包含y 的滞后值或所有与τ、τξ和w τ不相关变量。
状态空间系统描述有限观察值序列{}1,...,T y y ,需要知道状态向量的初始值1ξ,根据状态方程(1),t ξ可写作()123,,,...,t v v v ξ的线性函数: 2211221....t t t t t t v Fv F v F v F ξξ−−−−=+++++ 2,3,...,t T = (5)这里假定1ξ与t v 和t w 的任何实现都不相关:()()1101,2,...,01,2,...,t t E v TE w Tξτξτ′==′== (6)根据(3)和(6),得t v 和ξ的滞后值不相关:()0t E v τξ′= 1,2,...,1t t τ=−− (7) ()0t E w τξ′= 1,2,...,T τ= (8) ()()()0t t E w y E w A x H w ττττξ′′′=++= 1,2,...,1t t τ=−− (9) ()0t E v y τ′= 1,2,...,1t t τ=−− (10)二.状态空间系统的例子例1 ()AR p 过程,()()()112111...t t t p t p t y y y y µφµφµφµε+−−++−=−+−++−+ (11)()2t t E t τστεετ⎧==⎨≠⎩ (12) 可以写作状态空间形式。
卡尔曼滤波详解
卡尔曼滤波详解卡尔曼滤波是一种常用的状态估计方法,它可以根据系统的动态模型和观测数据,对系统的状态进行估计。
卡尔曼滤波广泛应用于机器人导航、飞行控制、信号处理等领域。
本文将详细介绍卡尔曼滤波的原理、算法及应用。
一、卡尔曼滤波原理卡尔曼滤波的基本思想是利用系统的动态模型和观测数据,对系统的状态进行估计。
在卡尔曼滤波中,系统的状态被表示为一个向量,每个元素表示系统的某个特定状态量。
例如,一个机器人的状态向量可能包括机器人的位置、速度、方向等信息。
卡尔曼滤波的基本假设是系统的动态模型和观测数据都是线性的,而且存在噪声。
系统的动态模型可以表示为:x(t+1) = Ax(t) + Bu(t) + w(t)其中,x(t)表示系统在时刻t的状态向量,A是状态转移矩阵,B是控制矩阵,u(t)表示外部控制输入,w(t)表示系统的过程噪声。
观测数据可以表示为:z(t) = Hx(t) + v(t)其中,z(t)表示系统在时刻t的观测向量,H是观测矩阵,v(t)表示观测噪声。
卡尔曼滤波的目标是根据系统的动态模型和观测数据,估计系统的状态向量x(t)。
为了达到这个目标,卡尔曼滤波将状态估计分为两个阶段:预测和更新。
预测阶段:根据系统的动态模型,预测系统在下一个时刻的状态向量x(t+1)。
预测的过程可以表示为:x^(t+1|t) = Ax^(t|t) + Bu(t)其中,x^(t|t)表示在时刻t的状态向量的估计值,x^(t+1|t)表示在时刻t+1的状态向量的预测值。
卡尔曼滤波还需要对状态的不确定性进行估计,这个不确定性通常用协方差矩阵P(t)表示。
协方差矩阵P(t)表示状态向量估计值和真实值之间的差异程度。
预测阶段中,协方差矩阵也需要进行更新,更新的过程可以表示为:P(t+1|t) = AP(t|t)A' + Q其中,Q表示过程噪声的协方差矩阵。
更新阶段:根据观测数据,更新状态向量的估计值和协方差矩阵。
更新的过程可以表示为:K(t+1) = P(t+1|t)H'(HP(t+1|t)H' + R)^-1x^(t+1|t+1) = x^(t+1|t) + K(t+1)[z(t+1) - Hx^(t+1|t)]P(t+1|t+1) = (I - K(t+1)H)P(t+1|t)其中,K(t+1)表示卡尔曼增益,R表示观测噪声的协方差矩阵,I是单位矩阵。
卡尔曼滤波算法ppt课件
ppt课件.
测量更新(修正) (1)计算加权矩阵(卡尔曼增益)
Kg(k)=P(k|k-1)H’/(HP(k|k-1) H’ +R) (2)对预测值进行修正
x(k|k)=x(k|k-1) + Kg(k) (Z(k)-H X(k|k-1)) (3)更新修正值的协方差
P(k|k)=(I-Kg(k)H)P(k|k-1)
二:状态估计原理简介
状态估计是卡尔曼滤波的重要组成部分。
观测数据
定量判断 随机状态量
估计问题: (可以直接得到)
(很难直接得到)
例如,飞机实时的位置、速度等状态参数需要通过雷达或其它
测量装置进行观测,而雷达等测量装置也存在随机干扰, 因此在观测到飞机的位置、速度等信号中就夹杂着随机干 扰,要想正确地得到飞机的状态参数是不可能的,只能根 据观测到的信号来估计和预测飞机的状态。
卡尔曼将状态变量引入虑波理论,提出了递推滤波算法, 建立了后来被自动控制界称道的“卡尔曼滤波”。
ppt课件.
7
三:卡尔曼滤波引例
卡尔曼滤波:是一种高效率的递归滤波器(自回归滤波器) ,它能够从
一系列完全包含噪声的测量中, 估计动态系统的状态。
➢ 基本思想:采用信号与噪声的状态空间模型,利用前一时
刻的估计值和现时刻的观测值来更新对状态变量的估计,求 出现在时刻的估计值。它适合于实时处理和计算机运算。
各局部最优估计
。
2.将全部局部最优估计送到融合中心进行
全局融合。
3.融合中心按照“信息分配”原则形成 的信息分配量,向雷达与电视进行信息 反馈。
ppt课件.
பைடு நூலகம்
滤波结构框图
29
卡尔曼(kalman)滤波算法特点及其应用
Kalman滤波算法的特点:(1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。
(2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。
系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。
(3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。
(4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。
在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。
另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。
Kalman滤波的应用领域一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。
Kalman滤波主要应用领域有以下几个方面。
(1)导航制导、目标定位和跟踪领域。
(2)通信与信号处理、数字图像处理、语音信号处理。
(3)天气预报、地震预报。
(4)地质勘探、矿物开采。
(5)故障诊断、检测。
(6)证券股票市场预测。
具体事例:(1)Kalman滤波在温度测量中的应用;(2)Kalman滤波在自由落体运动目标跟踪中的应用;(3)Kalman滤波在船舶GPS导航定位系统中的应用;(4)Kalman滤波在石油地震勘探中的应用;(5)Kalman滤波在视频图像目标跟踪中的应用;。
卡尔曼滤波入门、简介及其算法MATLAB实现代码
卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。
卡尔曼滤波也可进行系统辨识。
卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。
用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。
这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓“最佳”与“最优”是以最小均方误差为准则的。
维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。
因此在平稳条件下,它们所得到的稳态结果是一致的。
然而,它们解决的方法有很大区别。
维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。
而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。
卡尔曼滤波(Kalman Filter)原理与公式推导
一、背景---卡尔曼滤波的意义随着传感技术、机器人、自动驾驶以及航空航天等技术的不断发展,对控制系统的精度及稳定性的要求也越来越高。
卡尔曼滤波作为一种状态最优估计的方法,其应用也越来越普遍,如在无人机、机器人等领域均得到了广泛应用。
对于Kalman Filter的理解,用过的都知道“黄金五条”公式,且通过“预测”与“更新”两个过程来对系统的状态进行最优估计,但完整的推导过程却不一定能写出来,希望通过此文能对卡尔曼滤波的原理及状态估计算法有更一步的理解。
二、卡尔曼滤波的基本模型假设一离散线性动态系统的模型如下所示:x_{k} = A*x_{k-1} + B*u_{k} + w_{k-1}-------(1)z_{k} = H*x_{k} + v_{k} --------------------(2)其中,各变量表征的意义为:———————————————————————————x_{k}\Rightarrow 系统状态矩阵,-------, z_{k}\Rightarrow 状态阵的观测量(实测)A\Rightarrow 状态转移矩阵,-------, B\Rightarrow 控制输入矩阵H\Rightarrow 状态观测矩阵w_{k-1}\Rightarrow 过程噪声,-------,v_{k}\Rightarrow 测量噪声———————————————————————————如果大家学过《现代控制理论》的话,对上述模型的描述形式一定不会陌生,只是多了变量 w_{k-1} 与 v_{k} 。
其中,随机变量w_{k-1} 代表过程噪声(process noise), v_{k} 代表测量噪声(measurement noise),且为高斯白噪声,协方差分别为 Q 和 R ,即 p(w) \in N(0,Q) , p(v) \in N(0,R) 。
为什么要引入这两个变量呢?对于大多数实际的控制系统(如倒立摆系统)而言,它并不是一个严格的线性时变系统(Linear Time System),亦或系统结构参数的不确定性,导致估计的状态值x_{k} 存在偏差,而这个偏差值由过程噪声 w_{k} 来表征。
卡尔曼滤波器分类及基本公式
卡尔曼滤波器分类及基本公式根据其应用领域和实现方式,卡尔曼滤波器可以分为线性卡尔曼滤波器、扩展卡尔曼滤波器和无迹卡尔曼滤波器等。
1. 线性卡尔曼滤波器(Linear Kalman Filter):线性卡尔曼滤波器适用于状态变量和观测变量均为线性的情况。
它基于线性动态系统和高斯噪声的假设。
线性卡尔曼滤波器的基本公式为:预测步骤:$\hat{x}_{k,k-1} = F\hat{x}_{k-1,k-1} + Bu_{k-1}$$P_{k,k-1}=FP_{k-1,k-1}F^T+Q$更新步骤:$y_k = z_k - H\hat{x}_{k,k-1}$$S_k=HP_{k,k-1}H^T+R$$K_k=P_{k,k-1}H^TS_k^{-1}$$\hat{x}_{k,k} = \hat{x}_{k,k-1} + K_ky_k$$P_{k,k}=(I-K_kH)P_{k,k-1}$其中,$\hat{x}$ 表示状态变量的估计值,$P$ 表示状态变量估计值的方差,$F$ 表示状态转移矩阵,$B$ 表示输入矩阵,$u$ 表示系统输入,$Q$ 表示系统模型噪声协方差矩阵,$H$ 表示观测矩阵,$z$ 表示观测值,$y$ 表示观测残差,$R$ 表示观测噪声协方差矩阵,$K$ 表示卡尔曼增益,$I$ 表示单位矩阵。
2. 扩展卡尔曼滤波器(Extended Kalman Filter):扩展卡尔曼滤波器适用于状态变量和观测变量为非线性的情况。
它通过对非线性系统进行线性化,然后应用线性卡尔曼滤波器的思想来进行滤波。
扩展卡尔曼滤波器的基本公式与线性卡尔曼滤波器类似,只是在预测步骤和更新步骤中,将线性化的系统模型和观测模型代替原始非线性模型。
3. 无迹卡尔曼滤波器(Unscented Kalman Filter):无迹卡尔曼滤波器通过使用无迹变换,避免了非线性系统线性化的过程,从而提高了滤波精度,并且对于非线性系统更加稳健。
卡尔曼滤波的基本原理
卡尔曼滤波的基本原理1. 任务名称卡尔曼滤波的基本原理2. 引言卡尔曼滤波是一种用于估计动态系统状态的方法,它通过融合系统测量和模型预测的信息,提供对系统状态的最优估计。
该滤波器在众多领域,如导航、信号处理、机器人技术等方面得到了广泛应用。
本文将详细介绍卡尔曼滤波的基本原理及其应用。
3. 卡尔曼滤波器的算法卡尔曼滤波器的算法主要由两个步骤组成:预测步骤和更新步骤。
在预测步骤中,根据系统的动力学模型,利用上一时刻的状态估计和模型进行预测;在更新步骤中,根据测量值和预测值之间的差异,对状态进行修正。
3.1 预测步骤预测步骤中,卡尔曼滤波器通过状态转移矩阵和控制向量对上一时刻的状态估计进行预测。
预测的状态向量可由以下公式表示:x k=Fx k−1+Bu k其中,x k表示当前时刻的状态估计,x k−1表示上一时刻的状态估计,F表示状态转移矩阵,B表示控制向量,u k表示当前时刻的控制输入。
预测的协方差矩阵可由以下公式表示:P k=FP k−1F T+Q其中,P k表示当前时刻的协方差矩阵,P k−1表示上一时刻的协方差矩阵,Q表示过程噪声的协方差矩阵。
3.2 更新步骤更新步骤中,卡尔曼滤波器将测量值与预测值进行比较,通过计算卡尔曼增益,对预测的状态进行修正。
卡尔曼增益的计算公式如下所示:K k=P k H T(HP k H T+R)−1其中,K k表示卡尔曼增益,H表示测量矩阵,R表示测量噪声的协方差矩阵。
修正后的状态向量可由以下公式表示:x k=x k+K k(y k−Hx k)修正后的协方差矩阵可由以下公式表示:P k=(I−K k H)P k3.3 初始化在使用卡尔曼滤波器之前,需要对状态向量和协方差矩阵进行初始化。
通常情况下,初始状态向量和协方差矩阵可通过经验估计或历史数据进行初始化。
4. 卡尔曼滤波器的应用卡尔曼滤波器具有很广泛的应用领域,下面将介绍其中几个典型的应用。
4.1 导航在导航领域,卡尔曼滤波器常用于姿态估计、位置估计和速度估计等方面。
卡尔曼滤波算法(含详细推导)
y ( n ) y ( n y ( 1 ),..., y ( n 1 )) ˆ ˆ 1
(1)、新息过程的性质 y(n)的新息过程定义为:
def
( n ) y ( n ) y ( n )......... .( 6 ) ˆ 1
(n ) 表示观测数据y(n)的新的信息,简称新息。 式中,N 1向量
2、新息过程
新息 (n) 具有以下性质: 性质1 n时刻的新息 (n) 与所有过去的观测数据y(1), ..., y(n-1)正交,即:
E { ( n ) y( k )} 0 , 1 k n 1 .......( 7 )
H
E { ( n ) ( k )} 0 , 1 k n 1 ......... ( 8 )
将式(18)代入(19),并利用新息过程的正交性,得到
H H
E { x ( n 1 ) ( k )} W ( k ) E { ( k ) ( k )} 1 W ( k ) R ( k ) 1
由此可以求出权矩阵的表达式:
H 1 W ( k ) E { x ( n 1 ) ( k )} R (K)......... ...( 20 ) 1
H F ( n 1 , n ) E { x ( n ) ( k )}...... .( 22 )
将式(22)代入式(21)右边第一项(求和项),可将其 化简为:
H 1 E { x ( n 1 ) ( k ) } R (k) (k) k 1 n 1
F(n1 ,n ) E {x(n ) H (k)} R1(k) (k)
将式(27)代入式(24),便得到kalman增益的计算公式如下:
无迹卡尔曼滤波算法
无迹卡尔曼滤波算法
无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是一种基于非线性系统的状态估计方法,它可以对输入的数据进行跟踪与估计,使得结果更加精确和准确。
UKF的优势在于它可以处理非线性系统,而传统的卡尔曼滤波(Kalman Filter,KF)只能处理线性系统。
它通过采用一种称为“无迹点”(sigma points)的技术,来模拟非线性系统的行为,进而对非线性系统进行有效的状态估计。
与KF相比,UKF还具有更高的精度和更低的计算复杂度。
它可以改善KF的精度,使其更加准确,并且更少需要计算。
此外,UKF 更加灵活,可以适应不同的系统结构,从而获得更好的性能。
UKF的应用非常广泛,可以用于机器人导航、航天飞行、视觉定位、无人驾驶等多领域。
它能够有效地处理非线性系统,使得结果更加准确,更加精确。
总之,无迹卡尔曼滤波(UKF)是一种非常有效的状态估计方法,它可以有效地处理非线性系统,使得结果更加准确、更加精确。
它的应用非常广泛,可以用于机器人导航、航天飞行、视觉定位、无人驾驶等多领域,为系统的状态估计提供了有效的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UT 变换
核心思想:近似一种概率分布比近似任意一个非线性函数或非线性变换要容易。
假设n 维向量x 经过一个非线性变换得到y ,即()y g x =,x 的均值为ˆx
,协方差矩阵为xx P 。
步骤1:根据x 的均值ˆx
和协方差矩阵xx P ,采用一定的采样策略(此处采用对称采样)得到sigma 点集{}i χ。
0ˆˆˆ1,2,...,i i i n i x
x
x i n χχχ+==+=-=
其中,i 表示矩阵的第i 列。
(0)(0)2()
()/()
/()(1)
1/2(),1,2,...,21/2(),
1,2,...,2m c i m i c W n W n W n i n
W n i n λλλλαβλλ=+=++-+=+==+= 注,这里sigma 点集{}i χ乘以对应的权重{}i m W ,可得sigma 点集的均
值为ˆx
,协方差为xx P 。
步骤2:对所采样的sigma 点集{}i χ中的每个sigma 点通过非线性变
换g(*),得到采样后的sigma 点集{}i y 。
()i i y g χ=
步骤3:对变换后的sigma 点集{}i y 进行加权处理,得到输出变量y
的均值ˆy
和协方差yy P 。
2()02()0ˆˆˆ()()n
i m i
i n i T yy c i i i y W y P W y y
y y ====--∑∑
UKF
非线性系统模型为: ()((1))(1)()(())()
x k f x k V k y k h x k W k =-+-=+ 1) 状态初始条件为 ˆ(0|0)((0|0))ˆˆ(0|0)(((0|0)(0|0))((0|0)(0|0)))T xx x
E x P E x x x x ==--
2) Sigma 点采样
ˆˆ(1|1)[(1|1)(1|1)ˆ(1|1)k k x
k k x k k x k k χ--=----+--
3) 时间更新
202020(|1)((1|1))
ˆ(|1)(|1)
(|1)((|1))
ˆ(|1)(|1)
ˆˆ(|1)(((|1)(|1))((|1)(|1)))(1)n
i m i i n i m i i n
i T xx c i i i k k f k k x k k W k k k k h k k y k k W k k P k k W k k x
k k k k x k k Q k χχχμχμχχ===-=---=--=--=--=------+-∑∑∑
4) 测量更新
20
20
1ˆˆ(|1)((|1)(|1))((|1)(|1))ˆˆ(|1)((|1)(|1))((|1)(|1))()(|1)*(|1)ˆˆˆ(|)(|1)()(()(|1))(|)n i T xy c i i i n i T yy c i i i xy yy xx P k k W k k x
k k k k y k k P k k W k k y
k k k k y k k K k P k k P k k x
k k x k k K k y k y k k P k k χμμμ==--=-------=------=--=-+--∑∑(|1)()(|1)()T xx yy P k k K k P k k K k =---。