第2章 有机高分子材料的性能、应用和制备

合集下载

高分子材料技术手册

高分子材料技术手册

目录第一章高分子材料的合成工艺 (1)1.1 基本概念 (1)1.2 高分子聚合物的聚合反应 (3)1.2.1 缩合聚合 (3)1.2.2 加成聚合 (3)1.2.3 开环聚合 (5)1.3 高分子聚合物的聚合方法 (6)1.3.1本体聚合 (6)1.3.2 溶液聚合 (6)1.3.3悬浮聚合 (7)1.3.4乳液聚合 (8)1.4 高分子塑料的混合与塑化 (8)1.4.1原料的准备 (9)1.4.2 混合 (9)1.4.3塑化 (10)1.4.4粉碎和粒化 (11)第二章高分子材料的成型加工工艺 (13)2.1 成型工艺原理 (13)2.2 可加工性质 (13)2.3成型加工工艺 (14)2.3.1挤出 (14)2.3.2 注射模塑 (16)2.3.3 中空吹塑成型 (19)2.3.4 热成型 (19)2.3.5 拉幅薄膜成型 (20)2.3.6 冷成型 (20)2.4 橡胶的塑炼与混炼 (21)2.4.1 生胶的塑炼 (21)2.4.2 塑炼工艺 (23)2.4.3、胶料的混炼 (25)2.4.5 混炼工艺 (27)第三章高分子材料改性 (30)3.1 绪论 (30)3.2 化学改性 (30)3.2.1 化学反应的特征 (31)3.2.2 聚合物的基团反应 (32)3.2.3 聚合物的共聚反应 (35)3.2.4 氧化处理改性 (35)3.3物理改性 (36)3.3.1 高分子共混 (36)3.3.2 有机小分子共混 (38)3.3.3 无机小分子共混 (38)3.4 加工工艺改性 (38)3.4.1 聚合物聚合度的改变 (38)3.4.2 等离子体处理 (39)3.4.3 热处理 (39)第四章塑料性能检测 (40)4.1 绪论 (40)4.2.塑料性能测试的概述 (40)4.2.1 概述 (40)4.2.2 塑料性能测试的标准 (41)4.2.3 热塑性塑料性能测试样条制备 (42)4.2.4 性能测试时试验条件 (42)4.3 塑料物理性能测试 (43)4.3.1 塑料密度与相对密度的测定 (43)4.3.2 塑料吸水性的测试 (44)4.4 塑料力学性能测试 (44)4.4.1 拉伸性能测试 (44)4.4.2 弯曲性能测试 (45)4.4.3 冲击性能测试 (45)4.4.4 塑料硬度测试 (45)4.5塑料热性能测试 (46)4.5.1 塑料的热稳定性能测试 (46)4.5.2 塑料流动性测试 (47)4.6塑料老化性能测试 (49)4.6.1定义 (49)4.6.2 引起老化的原因 (50)4.6.3老化现象 (50)4.6.4研究老化的意义 (50)4.6.5 老化试验方法 (50)4.7 塑料其他性能测试 (50)4.7.1透光率与雾度的测试 (50)4.8 常用的性能测试仪器操作 (54)4.8.1 力学性能检测设备 (54)4.8.2 热学性能检测设备 (55)4.8.3 光学性能检测设备 (55)4.8.4 塑料老化性能及有关理化性能检测设备 (56)4.8.5 实验室加工设备 (56)附表:各种高分子材料的简称 (57)第一章高分子材料的合成工艺1.1 基本概念单体(Monomer)----高分子化合物是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。

高分子加工思考题解答

高分子加工思考题解答

第一章绪论1.高分子材料分为哪几类?(高分子材料是一定配合的高分子化合物(由主要成分树脂或橡胶和次要成分添加剂组成)在成型设备中,受一定温度和压力的作用熔融塑化,然后通过模塑制成一定形状,冷却后在常温下能保持既定形状的材料制品。

分为塑料、橡胶、纤维三类)2.塑料、橡胶、纤维分类?3.名词解释:工程塑料通用塑料特种塑料化学纤维合成纤维4.生产塑料制品的完整工序有哪五个?原料准备、成型、机械加工、修饰和装配5. 热塑性高分子材料和热固性高分子材料得物理性质及加工性能比较(见讲义)。

第二章高分子材料成型原理1.高分子材料的熔融性能热传递三种方式:热传导、对流、辐射聚合物的加热与冷却都不易由于聚合物的表观粘度随摩擦升温而降低,使物料熔体烧焦的可能性不大2.聚合物的流动和流变性能拉伸流动和剪切流动,各类型流体的流动曲线,影响高聚物熔体粘度的因素,粘度、流动稠度、流动指数、流动性的关系,熔体流动速率熔体流动速率——在规定的温度、压力(2160×9.81×10-3N)下,每10min内通过国标指定尺寸(书P76装料筒直径φ9.55±0.025mm, 出料口直径φ2.095±0.005mm)毛细管的试样总质量(克数)单位:克/10分钟3.聚合物熔体的弹性流动缺陷:管壁上的滑移,端末效应,离模膨胀,弹性对层流的干扰,熔体破裂,鲨鱼皮,产生原因熔体破裂——当挤出速率逐渐增加,挤出物表面将出现不规则现象(畸变、支离和断裂),甚至使内在质量受到破坏。

离模膨胀——被挤出的聚合物熔体断面积远比口模断面积大,称为离模膨胀鲨鱼皮——挤出物周边具有周期性的皱褶波纹。

4.高分子材料的成型性能聚合物的聚集态:结晶态、玻璃态、高弹态、粘流态等聚集态可挤压性、可模塑性、可纺性、可延性概念5.成型过程中的取向作用拉伸取向(薄膜双向拉伸后,拉伸后的薄膜在拉伸方向上的拉伸强度和抗蠕变性能会提高。

6.高分子材料的降解与交联交联、交联度熟化降解——高分子材料化学键的断链、交联、主链化学结构改变、侧基改变以及上述四种作用的综合交联——线性大分子链之间以新的化学键连接、形成三维网状或体型结构的反应。

高分子材料的结构及其性能PPT(36张)

高分子材料的结构及其性能PPT(36张)
态。 此时,只有比链段更小的结构单元如链节、侧基等能够运动。 受外力作用时,只能使主链的键长和键角有微小的改变,外力去除后形变能迅速回复,这 是一种普弹性状态。
B、高弹性 随着温度的升高,当T>Tg 时,分子的动能增加,使链段的自由旋转成为可能,此时,试
样的形变明显增加,在这一区域中,试样变成柔软的弹性体,称为高弹态。 高弹态时,弹性模量显著降低,外力去除后,变形量可以回复,有明显的时间依赖性。由
如图16-7,在间同立构高聚物中, 原子或原子团会交替分布在主链两侧; 在全同立构高聚物中,原子或原子团 则全部排列在主链同一侧;而在无规立构高聚物中,主链两侧原子分布是随机的。
这种化学成分相同,但由于不对称取代基沿分子主链分布不同的现象,就叫做 高分子的立体异构现象。
2、大分子链的构象及柔性 高聚物结构单元是通过共价键重复连接形成线型大分子,共价键的特点是键能
2、单体 高分子化合物是由低分子化合物通过聚合反应获得。
组成高分子化合物的低分子 化合物称作单体。所以我们经 常说,高分子化合物是由单体 合成的,单体是高分子化合物 的合成原料。如图16-2,聚乙 烯是由乙烯(CH2=CH2)单 体聚合而成的。 高分子化合物的相对分子质 量很大,主要呈长链形,因此 常称作大分子链或者分子链。 大分子链极长,可达几百纳米以上,而截面一般小于1nm。
物,简称高聚物材料,是以高分子化合物为主要组分的有机 材料,可分为天然高分子材料和人工合成高分子材料两大类。 天然高分子材料包括如蚕丝、羊毛、纤维素、油脂、天然橡 胶、淀粉和蛋白质等。 人工合成高分子材料包括如塑料、合成橡胶、胶粘剂和涂料 等。工程上使用的主要是人工合成的高分子材料。
一、高聚物的基本概念 1、高聚物和低聚物 高分子化合物是指相对分子质量很大的化合物,其相对分子质量在5000

高分子材料成型加工考试重点及部分习题答案

高分子材料成型加工考试重点及部分习题答案

高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。

受热不熔融,达到一定温度分解破坏,不能反复加工。

在溶剂中不溶。

化学结构是由线型分子变为体型结构。

举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。

再次受热,仍可软化、熔融,反复多次加工。

在溶剂中可溶。

化学结构是线型高分子。

举例:PE聚乙烯,PP聚丙烯,PVC 聚氯乙烯。

3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。

4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。

举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。

透明度不好,强度较大。

6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。

结晶度小,透明度好,韧性好。

定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。

7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。

透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。

9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。

第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。

针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。

热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。

高分子材料与应用各章习题总结

高分子材料与应用各章习题总结

高分子材料及应用各章试题总结第一章绪论1【单选题】材料研究的四要素是?∙A、合成/加工、结构/成分、性质、实用性能∙∙B、合成/加工、结构/成分、性质、使用性能∙∙C、分子结构、组分、性质、使用性能∙∙D、分子结构、组分、性质、实用性能∙我的答案:B2【多选题】未来新一代材料主要表现在哪些方面?∙A、既是结构材料又具有多种功能的材料∙∙B、具有感知、自我调节和反馈等能力的智能型材料∙∙C、制作和废弃过程中尽可能减少污染的绿色材料∙∙D、充分利用自然资源,能循环作用的可再生材料∙我的答案:ABCD3【判断题】材料的性能可分为两类,一种是材料本身所固有的称之为功能物性,另一种是通过外场刺激所转化的性能称为特征性能。

∙我的答案:∙4【判断题】材料的特征性能是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一种作用的性质。

例如许多材料具有把力、热、电、磁、光、声等物理量通过“物理效应”、“化学效应”、“生物效应”进行相互转换的特性。

∙我的答案:∙5【判断题】材料的功能物性是指材料本身所固有的性质,包括热学、电学、磁学、力学、光学等。

∙我的答案:6【简答题】材料科学的内容是什么?∙我的答案:一是从化学角度出发,研究材料的化学组成,健性,结构与性能的关系规律;二是从物理学角度出发,阐述材料的组成原子,分子及其运动状态与各种物性之间的关系。

在此基础上为材料的合成,加工工艺及应用提出科学依据。

∙7【简答题】材料的基本要素有哪些?∙我的答案:1,一定的组成和配比∙2,具有成型加工性∙3,具有一定的物理性质,并能够保持∙4,回收,和再生性∙5,具有经济价值∙8【简答题】材料科学的主要任务是什么?∙我的答案:就是以现代物理学,化学等基础学科理论为基础,从电子,原子,分子间结合力,晶体及非晶体结构,显微组织,结构缺陷等观点研究材料的各种性能,以及材料在制造和应用过程中的行为,了解结构-性能-应用之间的规律关系,提高现有材料的性能,发挥材料的潜力并探索和发展新型材料以满足工业,农业,生产,国防建设和现代技术发展对材料日益增长的需求。

高分子材料成型加工(考试重点及部分习题答案)

高分子材料成型加工(考试重点及部分习题答案)

高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。

受热不熔融,达到一定温度分解破坏,不能反复加工。

在溶剂中不溶。

化学结构是由线型分子变为体型结构。

举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。

再次受热,仍可软化、熔融,反复多次加工。

在溶剂中可溶。

化学结构是线型高分子。

举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。

3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。

4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。

举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。

透明度不好,强度较大。

6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。

结晶度小,透明度好,韧性好。

定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。

7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。

透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。

9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。

第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。

针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。

热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。

第2章 高分子材料的高弹性与粘弹性

第2章 高分子材料的高弹性与粘弹性

14
高分子材料性能学
高弹形变可分为平衡态形变(可逆)和非平衡态
形变(不可逆)两种
假设橡胶被拉伸时发生高弹形变,除去外力后可
完全回复原状,即变形是可逆的,所以可用热力
学第一定律和第二定律来进行分析
15
高分子材料性能学
dl
f
f
体系的内能受三个因素影响: (1)拉伸功 (2)体积变化功 (3)热量变化
h2 S KN 2 ( 21 2 2 32 3) 3
交联网络的构象熵
1 2 2 S Nk (1 2 3 3) 2 2
33
高分子材料性能学
⊿F= ⊿U-T⊿S;⊿U=0 根据赫姆霍尔兹自由能定义:恒温过程中,外力对 体系作的功等于体系自由能的增加。 橡胶弹性贮能方程
粘弹性
同时具有弹性形变和粘 性形变
橡胶:施加外力时发生大的形变,外力除去后 可以恢复的弹性材料
3
高分子材料性能学
2.1 高弹性
高弹性——聚合物(在Tg以上)处于高弹态时所表
现出的独特的力学性质,又称橡胶弹性
橡胶、塑料、生物高分子在Tg~Tf间都可表现 出一定的高弹性
4
高分子材料性能学
2.1.1 高弹性的特点
使Байду номын сангаас胶的内能随伸长变化
使橡胶的熵变随伸长变化
17
高分子材料性能学
理想弹性变形时,体系内能不变化
U 0 l T ,V
S f T l T ,V
只对理想橡胶成立
理想橡胶在等温拉伸过程中,弹性回复力主要
是由体系熵变所贡献的。
据上式拉伸功-fdl=TdS=dQ,将转变成热量,若过程进行的快, 体系来不及与外界进行热交换,拉伸功使橡胶升温.

高分子基础概论—北京化工大学—第2章

高分子基础概论—北京化工大学—第2章
向溶剂或链转移剂转移

向单体转移
向引发剂转移
向大分子转移
链转移反应使聚合物分子量降低。
分子量调节剂(十二硫醇)
长链支化
(向大分子转移)
2.1.3 逐步缩聚反应
• 基本特征 是在低分子单体转变成高分子的过程中 反应是逐步进行的,且有小分子生成。 在高分子工业中占有重要地位,合成 了大量有工业价值的聚合物,涤纶、尼龙、
缩聚反应(Condensation Polymerization)
是指缩合反应多次重复而形成聚合物的过程 兼有缩合出低分子和聚合成高分子的双重含义。
CH3 n HO C CH3 OH + n Cl O C Cl [ O CH3 C CH3 O O C ]n + (n-1) HCl
其特征: 缩聚反应通常是官能团间的聚合反应
第二章 高分子化学基础
2.1 高分子的合成
2.1.1 聚合反应分类 2.1.2 自由基聚合 2.1.3 逐步缩聚反应
2.1.4 聚合实施方法
2.2
高分子的化学反应
2.1 高分子的合成
聚合反应: 由低分子单体合成聚合物的反应
2.1.1 聚合反应的分类
按单体和聚合物在组成和结构上发生 的变化来分 加聚反应
单体B (至少带两个可与A相互反应的官能团)
反应结束
……….s 2×10-5S 10-5S
逐步聚合反应分类:
1、按反应机理:
逐步缩聚反应:官能团之间缩合,有小分子副产物。
逐步加聚反应:官能团之间的加成,没有小分子副产物。
逐步聚合反应分类:
2、按聚合物链结构: 线形逐步缩聚反应:参加聚合反应的单体都只带有两 个官能度,聚合过程中,分子链在两个方向增长,分 子量逐步增大、体系的粘度逐渐上升。获得的是可溶 可熔的线型聚合物。 支化、交联聚合反应:参加聚合反应的单体至少有一 个含有两个以上官能团时,反应过程中,分子链从多 个方 向增长。调节两种单体的配比,可以生成支化聚 合物或交联聚合物(体型聚合物)。

聚合物成型加工习题答案

聚合物成型加工习题答案

高分子材料加工工艺第一章绪论1.材料的四要素是什么?相互关系如何?答:材料的四要素是:材料的制备(加工)、材料的结构、材料的性能和材料的使用性能。

这四个要素是相互关联、相互制约的,可以认为:1)材料的性质与现象是新材料创造、发展及生产过程中,人们最关注的中心问题。

2)材料的结构与成分决定了它的性质和使用性能,也影响着它的加工性能。

而为了实现某种性质和使用性能,又提出了材料结构与成分的可设计性。

3)材料的结构与成分受材料合成和加工所制约。

4)为完成某一特定的使用目的制造的材料(制品),必须是最经济的,且符合社会的规范和具有可持续发展件。

在材料的制备(加工)方法上,在材料的结构与性能关系的研究上,在材料的使用上,各种材料都是相互借鉴、相互渗透、相互补充的。

2.什么是工程塑料?区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”。

答:按用途和性能分,又可将塑料分为通用塑料和工程塑料。

工程塑料是指拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性优良等的、可替代金属用作结构件的塑料。

但这种分类并不十分严格,随着通用塑料工程化(亦称优质化)技术的进展,通过改性或合金化的通用塑料,已可在某些应用领域替代工程塑料。

热塑性塑料一般是线型高分子,在溶剂可溶,受热软化、熔融、可塑制成一定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加工。

例如:PE、PP、PVC、ABS、PMMA、PA、PC、POM、PET、PBT。

热固性塑料一般由线型分子变为体型分子,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成一定形状,在热或固化剂作用下,一次硬化成型;一当成型后,再次受热不熔融,达到一定温度分解破坏,不能反复加工。

如PF(酚醛树脂)、UF(脲醛树脂)、MF(三聚氰胺甲醛树脂)、EP(环氧树脂)、UP(不饱和树脂)等。

3.与其它材料相比,高分子材料具有那些特征(以塑料为例)?答:与其他材料相比,高分子材料有以下特性(以塑料为例)。

高分子材料制备技术作业指导书

高分子材料制备技术作业指导书

高分子材料制备技术作业指导书第1章引言 (4)1.1 高分子材料概述 (4)1.2 制备技术简介 (4)第2章高分子合成基本原理 (5)2.1 高分子合成方法 (5)2.1.1 加聚反应 (5)2.1.2 缩聚反应 (5)2.1.3 模板聚合 (5)2.1.4 原子转移自由基聚合 (5)2.2 高分子聚合反应 (5)2.2.1 自由基聚合 (5)2.2.2 离子聚合 (6)2.2.3 配位聚合 (6)2.2.4 缩聚反应 (6)2.3 高分子结构及其功能 (6)2.3.1 高分子链结构 (6)2.3.2 高分子结晶性 (6)2.3.3 高分子取向 (6)2.3.4 高分子复合材料 (6)2.3.5 高分子功能材料 (6)第3章均相聚合反应 (7)3.1 溶液聚合 (7)3.1.1 原理 (7)3.1.2 操作步骤 (7)3.1.3 注意事项 (7)3.2 乳液聚合 (7)3.2.1 原理 (7)3.2.2 操作步骤 (7)3.2.3 注意事项 (7)3.3 悬浮聚合 (7)3.3.1 原理 (8)3.3.2 操作步骤 (8)3.3.3 注意事项 (8)第4章非均相聚合反应 (8)4.1 本体聚合 (8)4.1.1 概述 (8)4.1.2 基本原理 (8)4.1.3 实验操作 (8)4.2 熔融聚合 (8)4.2.1 概述 (8)4.2.2 基本原理 (9)4.3 水相聚合 (9)4.3.1 概述 (9)4.3.2 基本原理 (9)4.3.3 实验操作 (9)第5章高分子材料添加剂 (9)5.1 稳定剂 (9)5.1.1 光稳定剂 (9)5.1.2 热稳定剂 (10)5.1.3 抗氧化剂 (10)5.2 填充剂 (10)5.2.1 无机填充剂 (10)5.2.2 有机填充剂 (10)5.3 润滑剂 (10)5.3.1 外润滑剂 (10)5.3.2 内润滑剂 (10)5.4 阻燃剂 (10)5.4.1 无机阻燃剂 (10)5.4.2 有机阻燃剂 (11)第6章热塑性高分子材料制备 (11)6.1 热塑性塑料概述 (11)6.2 聚乙烯制备 (11)6.2.1 制备方法 (11)6.2.2 工艺流程 (11)6.2.3 影响因素 (11)6.3 聚丙烯制备 (11)6.3.1 制备方法 (12)6.3.2 工艺流程 (12)6.3.3 影响因素 (12)6.4 聚氯乙烯制备 (12)6.4.1 制备方法 (12)6.4.2 工艺流程 (12)6.4.3 影响因素 (12)第7章热固性高分子材料制备 (13)7.1 热固性塑料概述 (13)7.2 酚醛树脂制备 (13)7.2.1 原料选择与配比 (13)7.2.2 缩合反应 (13)7.2.3 凝胶化与固化 (13)7.2.4 后处理 (13)7.3 环氧树脂制备 (13)7.3.1 原料选择与配比 (13)7.3.2 开环聚合 (13)7.3.3 固化 (14)7.4 不饱和聚酯树脂制备 (14)7.4.1 原料选择与配比 (14)7.4.2 酯化反应 (14)7.4.3 固化 (14)7.4.4 后处理 (14)第8章橡胶材料制备 (14)8.1 天然橡胶 (14)8.1.1 橡胶树种植与采集 (14)8.1.2 天然橡胶的制备 (14)8.1.3 天然橡胶的性质与应用 (14)8.2 合成橡胶 (14)8.2.1 丁苯橡胶 (14)8.2.2 顺丁橡胶 (15)8.2.3 丁腈橡胶 (15)8.2.4 氯丁橡胶 (15)8.3 硫化橡胶 (15)8.3.1 硫化橡胶的制备原理 (15)8.3.2 硫化橡胶的配方设计 (15)8.3.3 硫化橡胶的功能评价 (15)8.3.4 硫化橡胶的应用 (15)8.4 特种橡胶 (15)8.4.1 硅橡胶 (15)8.4.2 氟橡胶 (15)8.4.3 聚氨酯橡胶 (15)8.4.4 氯磺化聚乙烯橡胶 (15)8.4.5 热塑性弹性体橡胶 (15)第9章复合材料制备 (15)9.1 复合材料概述 (16)9.2 纤维增强复合材料 (16)9.2.1 纤维的选择 (16)9.2.2 基体材料 (16)9.2.3 制备工艺 (16)9.3 层状复合材料 (16)9.3.1 层状复合材料的结构 (16)9.3.2 制备工艺 (16)9.4 颗粒增强复合材料 (17)9.4.1 颗粒的选择 (17)9.4.2 制备工艺 (17)第10章功能性高分子材料制备 (17)10.1 功能性高分子概述 (17)10.1.1 功能性高分子的定义与分类 (17)10.1.2 功能性高分子的基本性质与特点 (17)10.1.3 功能性高分子的应用领域 (17)10.2.1 导电高分子材料的类型与结构 (17)10.2.2 导电高分子材料的制备方法 (17)10.2.3 导电高分子材料的应用实例 (17)10.3 磁性高分子材料 (17)10.3.1 磁性高分子材料的结构与分类 (18)10.3.2 磁性高分子材料的制备技术 (18)10.3.3 磁性高分子材料的应用研究 (18)10.4 光学活性高分子材料 (18)10.4.1 光学活性高分子材料的特性与分类 (18)10.4.2 光学活性高分子材料的制备方法 (18)10.4.3 光学活性高分子材料的应用领域 (18)10.5 生物医用高分子材料 (18)10.5.1 生物医用高分子材料的特性与要求 (18)10.5.2 生物医用高分子材料的分类与选用 (18)10.5.3 生物医用高分子材料的制备与加工技术 (18)10.5.4 生物医用高分子材料的应用实例 (18)第1章引言1.1 高分子材料概述高分子材料是一类由相对分子质量较高的化合物构成的材料,具有独特的物理、化学及生物学功能。

功能高分子05第2章吸附性高分子材料PPT

功能高分子05第2章吸附性高分子材料PPT
特性
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。

简述ATRP在制备高分子复合材料的应用

简述ATRP在制备高分子复合材料的应用

简述ATRP在制备高分子复合材料的应用1引言高分子的合成中,连锁聚合反应需要活性中心,活性中心可以是自由基、阳离子或阴离子,因此根据活性中心的不同连锁聚合反应可分为自由基聚合、阳离子聚合和阴(负)离子聚合。

自由基型聚合反应是指在光、热、辐射或引发剂的作用下,单体分子被活化变为活性自由基,并以自由基型聚合机理进行的聚合反应。

自由基聚合反应是合成高聚物的一种重要反应,许多塑料、合成橡胶和合成纤维都是通过这种反应合成。

离子聚合中,以阴离子为反应活性中心进行的反应称为阴离子型聚合反应。

阴离子聚合是最早实现活性聚合的聚合物合成方法,在聚合物分子结构设计,新材料开发方面应用十分广泛。

2主题2.1 原子转移自由基聚合在高分子材料领域中,精确控制分子的尺寸、拓扑结构、组成和功能性等,是发展新材料的前提。

然而,由于工业生产中大多数聚合物都是在更为宽松的条件下通过缩聚、自由基聚合生产出来的,故所得产物的结构难以控制。

因此,将活性聚合技术扩展到自由基聚合中是十分必要的。

可控/活性自由基聚合(CRP)自产生以来得到人们的广泛关注,目前已开发出多种技术,如NMP(氮氧自由基调控聚合)、ATRP(原子转移自由基聚合)和衰减转移体系等。

ATRP 使用过渡金属作为催化剂,采用过渡金属的氧化还原反应可使活性增長的高分子链与处于休眠的非活性高分子链之间形成动态平衡,从而有效降低了体系中活性种的浓度、抑制了链终止反应和不可逆链转移反应,进而实现了“活性”聚合。

与其他可控活性聚合方法相比,ATRP不需要很高的聚合温度,并且可适用单体的范围更广。

在合成复杂结构聚合物(如嵌段、星型和接枝共聚物等)方面,ATRP 也是最有效的方法之一;此外,ATRP在表面修饰方面也具有简单易行之特点,可将聚合物接枝至各种无机材料、有机材料和蛋白质材料的表面。

2.1.1 ATRP的动力化模型研究为了能够更深入地了解和控制聚合过程,通过ATRP动力学模型化并耦合不同操作方式下的反应器模型已成为必然,它可以更精确地控制大分子链结构,如分子量及其分布、共聚组成及组成分布,同时还能优化聚合条件。

高分子材料思考题答案

高分子材料思考题答案

《高分子材料导论》思考题第一章材料科学概述1.试从不同角度把材料进行分类,并阐述三大材料的特性。

按化学组成分类:金属材料无机材料.有机材料(高分子材料)按状态分类:气态。

固态:单晶.多晶.非晶.复合材料.液态按材料作用分类:结构材料,功能材料按使用领域分类:电子材料。

耐火材料。

医用材料。

耐蚀材料。

建筑材料三大材料:(1)金属材料富于展性和延性,有良好的导电及导热性、较高的强度及耐冲击性。

(2)无机材料一般硬度大、性脆、强度高、抗化学腐蚀、对电和热的绝缘性好。

(3)高分子材料的一般特点是质轻、耐腐蚀、绝缘性好、易于成型加工,但强度、耐磨性及使用寿命较差。

2.说出材料、材料工艺过程的定义。

材料——具有满足指定工作条件下使用要求的形态和物理性状的物质。

由化学物质或原料转变成适用于一定用场的材料,其转变过程称为材料化过程或材料工艺过程。

3.原子之间或分子之间的结合键一般有哪些形式?试论述各种结合键的特点。

离子键:无方向性,键能较大。

由离子键构成的材料具有结构稳定、熔点高、硬度大、膨胀系数小的特点。

共价键:具有方向性和饱和性两个基本特点。

键能较大,由共价结合而形成的材料一般都是绝缘体。

金属键:无饱和性和方向性。

具有良好的延展性,并且由于自由电子的存在,金属一般都具有良好的导电、导热性能。

4.何为非晶态结构?非晶态结构材料有何共同特点?原子排列近程有序而远程无序的结构称为非晶态结构或无定形结构,非晶态结构又称玻璃态结构。

共同特点是:结构长程无序,物理性质一般是各向同性的;没有固定的熔点,而是一个依冷却速度而改变的转变温度范围;塑性形变一般较大,导热率和热膨胀性都比较小。

5.材料的特征性能主要哪些方面?热学、力学、电学、磁学、光学、化学等性能6.什么是材料的功能物性?材料的功能物性包括哪些方面?功能物性,是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一形式功能的性质。

包括:1热电转换性能2光-热转换性能3光-电转换性能4力-电转换性能5磁-光转换性能6电-光转换性能7声-光转换性能7.材料工艺与材料结构及性能有何关系?材料工艺,包括材料合成工艺及材料加工工艺,影响材料的组织结构,因而对材料的性能有显著的影响。

高分子材料基础第一二章

高分子材料基础第一二章

2.挤出过程
(P222-232)
注塑成型过程及注塑模具计算机辅助设计中的流变学问题 高分子熔体流动不稳定性及滑壁现象
1.注塑成型过程的流变分析(P255-262)
1.挤出成型过程中的熔体破裂行为
(P286-292)
4
高分子材料基础 第一、二章
第一章
1.1 1.2
材料科学概论
材料与材料科学 材料结构简述
例: 聚甲醛 ━ O ━ CH2 ━
尼龙6
━ NH ━(CH2)5 ━ CO ━
元素有机聚合物:是指大分子主链中没有碳原子,主要由硅、硼、铝、
氧、氮、硫、磷等原子组成,但侧基却由有机团如甲基、乙基、芳基等组 成。 CH3 │ 例:硅橡胶 ━ O ━ Si ━ │ CH3 22 高分子材料基础 第一、二章
缩写
聚合物
聚丙烯
缩写
ABS
PVC
PP
聚酰胺
PA
聚乙烯
PE
聚苯乙烯
PS
21
高分子材料基础 第一、二章
2.1.3
分类
2.1.3.1 按大分子链结构分类
碳链聚合物:是指大分子链完全由碳原子组成。
例:聚乙烯 ━CH2━CH2━ 聚丙烯 ━CH2━CH━ │ CH3
杂链聚合物:是指大分子链中除碳原子外,还有氧、氮、硫等杂质。
金属材料 黑色金属——主要以铁—碳为基的合金,包括碳钢、合金钢、不锈钢、 铸铁。钢的性能主要由渗碳体的数量、尺寸、形状
及分布决定的。
有色金属——除铁之外的纯金属或以其为基的合金。
如铝合 金、铜合金、镁合金、钛合金等
无机材料——是由无机化合物构成的材料,其中包括如锗、硅、碳之类的单质所构成的料。 有机材料(高分子材料)——是由脂肪族和芳香族的C—C 共价键为基本结构的高分子构成的,也

高分子材料制备方法

高分子材料制备方法
29
N
O
第三章 功能高分子的制备方法
R nM R [ M ]n -1 M

0 N
O N
nM R O N R [ M ]n O N
图3—5 TEMPO引发体系的引发机理
30
第三章 功能高分子的制备方法
3. 可逆加成-断裂链转移自由基聚合(RAFT) TEMPO引发体系导致自由基活性聚合的原理是 增长链自由基的可逆链终止,而可逆加成-断裂链 转移自由基聚合过程则实现了增长链自由基的可逆 链转移。
单官能度 CH2 SCN S C2H5 C2H5 CH3CH2OCCH2SCN O C2H5 C2H5 S C2H5 C2H5
CH3CH2CH2CH2OCCH2SCN O S
CH3
NHCCH2SCN O S
C2H5 C2H5
双官能度
C2H5 NCS C2H5 S
SCN S
C2H5 C2H5
C2H5 NCS C2H5 S CH2 CH2 SCN S
13
引发
M A + ROH RO M + CH2 O RO M CH2 + AH RO CH2 CH2 O M
增长
RO CH2 CH2 O M + CH2 O RO [CH2 CH2 O] nCH2 CH2 O M CH2
14
第三章 功能高分子的制备方法
四氢呋喃为五元环,较稳定,阴离子聚合不能 进行,而只能进行阳离子聚合。碳阳离子与较大的 反离子组成的引发剂可引发四氢呋喃的阳离子活性 聚合。例如 Ph3C+SbF6- 可在-58℃下引发四氢呋 喃聚合,产物的相对分子质量分散指数为1.04。
21
第三章 功能高分子的制备方法

材料科学与工程复习思考题

材料科学与工程复习思考题

第1章绪论思考题1.材料科学与工程的四个基本要素解:制备与加工、组成与结构、性能与应用、材料的设计与应用2.材料科学与工程定义解:关于材料组成、结构、制备工艺与其性能及使用过程间相互关系的知识开发及应用的科学。

3.按材料特性,材料分为哪几类?金属通常分哪两大类?无机非金属材料分哪四大类?高分子材料按使用性质哪几类?解:按材料特性,材料分为:金属材料、无机非金属材料、和有机高分子材料三类。

金属材料分为:黑色金属材料和有色金属材料。

无机非金属材料分为:混泥土(水泥)、玻璃、砖及耐火材料、陶瓷四大类。

高分子材料按使用性能分为:塑料、橡胶、纤维、粘合剂、涂料等类。

4.金属﹑无机非金属材料﹑高分子材料的基本特性解:①金属材料的基本特性:a.金属键;b.常温下固体,熔点较高;c.金属不透明,具有光泽;d.纯金属范性大、展性、延性大;e.强度较高;f.导热性、导电性好;g.多数金属在空气中易氧化。

②无机非金属材料的基本性能:a.离子键、共价键及其混合键;b.硬而脆;c.熔点高、耐高温,抗氧化;d.导热性和导电性差;e.耐化学腐蚀性好;f.耐磨损;g.成型方式:粉末制坯、烧结成型。

③高分子材料的基本特性:a.共价键,部分范德华键;b.分子量大,无明显熔点,有玻璃化转变温度(Tg)和粘流温度(Tf );c.力学状态有三态:玻璃态、高弹态和粘流态;d.质量轻,比重小;e.绝缘性好;f.优越的化学稳定性;g.成型方法较多。

第2章物质结构基础 Structure of Matter思考题1. 原子中一个电子的空间位置和能量可用哪四个量子数来决定?解:主量子数n、角量子数l、磁量子数m l、自旋量子数m s2.在多电子的原子中,核外电子的排布应遵循哪些原则?解:泡利不相容原理、能量最低原理、洪特规则3.配位数及其影响配位数的因素解:配位数:一个原子周围具有的第一邻近原子(离子)数。

影响因素:①共价键数;②原子的有效堆积(离子和金属键合)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 有机高分子材料的性能、应用和制备2.1引论在前一章中我们集中论述了高分子材料的结构特点和结构模型,在本章中将对高分子材料的特性、应用和制备方法作一个简要的论述。

我们首先讨论高分子材料的力学和热机械力学性能。

然后再着重讨论制备方法和应用的有关问题。

2.2应力应变性能有机材料的力学性能描述许多都延续了对金属材料适用的特性参数,如弹性模量、抗拉强度、冲击强度和疲劳强度等,对许多有机高分子材料用简单的拉伸实验就可描述以上这些常用的性能特征。

但对绝大多数有机高分子材料而言,它们对延伸速率、温度和环境的化学条件(如水、氧、有机溶剂等)特别敏感。

鉴于这样的情况,对有机高分子材料而言,适当改变一下测试手段和测试方法是完全有必要的,特别是对如橡胶这类高聚物。

对高分子聚合物应力-应变曲线有三种类型,如图2.1所示。

图16高分子聚合物应力-应变曲线图2.1类型的高分子聚合物应力-应变曲线曲线A 表示的是脆断型的高分子材料应力应变曲线,它只有弹性变形,在弹性区就发生脆断。

曲线B 表示的是和金属韧性断裂差不多的断裂方式,这类高分子材料在拉伸初期有一定的弹性变形,然后是屈服和塑性变形,最终断裂。

曲线C 所表示的是另一类只是弹性变形的高分子材料,这些类似橡胶弹性(很大的塑性变形量发生在应力不大的区域内)的10 应变应力(M P a )2030405060 01 2 3 4 5 6 78ABC高分子材料被称为弹性体。

高分子材料在许多性能方面和金属都不一样,比如拿弹性模量来说,高分子材料可低到7Mpa 但对一些刚性好的高分子材料也可高达35000MPa ;而金属的弹性模量的典型值在48000到410000MPa 之间,比高分子材料高很多。

高分子材料的最大抗拉强度在240MPa ,而金属约为4100MPa 。

金属材料的延伸率一般在100%以下,而高分子材料最大延伸率可达1000%。

表2.1中给出一些常见的高分子材料室温下的有关力学性能。

另外,高分子材料的力学性能对温度十分敏感,图2.2是有机玻璃在不同温度下的拉伸曲线示意图。

图中有几点值得注意,随温度增加:(1)弹性模量降低;(2)抗拉强度减低;(3)韧性增强。

在4℃下有机玻璃是脆性断裂,然而在60℃是就变成了韧性断裂。

形变速率对力学性能也有很大影响,形变速率越低,则它和温度升高有同样的效应。

表2.1 常用高分子材料的性能材料比重 g/cm 3弹性模量 102MPa 抗拉强度MPa 断裂延伸率% 聚乙烯 0.917-0.932 1.7-2.8 9.0-14.5 100-650 聚乙烯 (高密度) 0.952-0.96510.6-10.922-3110-1200聚氯乙烯 1.30-1.58 24-41 6.0-7.5 40-80 聚四氟乙烯 2.14-2.20 4.0-5.5 14-34 200-400 聚丙烯 0.90-0.91 11-16 31-41 100-600 聚苯乙烯 1.04-1.05 23-33 36-52 1.0-2.5 有机玻璃 1.17-1.20 22-31 48-76 2-10 酚醛塑料 1.24-1.32 28-48 34-62 1.5-2.0 尼龙66 1.13-1.15 76-83 60-300 聚酯(PET) 1.34-1.39 28-41 59-72 50-300 聚碳酸酯1.202466110对有机高分子材料的变形机制的了解有利于我们对它的力学性能的掌握。

在这个问题上,有两个值得注重的模型。

其中之一就是半晶态模型,我们将立即在下一节进行讨论。

这些材料的强度是主要的考虑因素。

另一个模型就是弹性体的特别的力学性能,这将在稍后讨论。

应力(M P a )10 020 304050 60 70 80 4℃20℃30℃ 40℃50℃60℃图17 有机玻璃在不同温度下的拉伸曲线6图2.2 有机玻璃在不同温度下的拉伸曲线示意图2.3半晶态高分子材料的形变许多半晶态高分子材料具有球晶结构,球晶是由辐射状的晶片和非晶区组成,晶片是由折叠链分子构成。

形变过程中,晶片和非晶过渡区的形变模型如图2.3所示,它分几个不同的形变过程。

在形变初期,在非晶区的调整下,晶片带相互关联并滑移;在第二阶段中,晶片带发生转动,晶片中的折叠链向应力方向取向;在继续的过程中晶片开始解体,各个小片和非晶区内的纽链相连;在最后一个形变过程中,晶片和非晶区的纽链都沿应力方向取向。

因此相当大的形变在高分子材料中形成一种取向性很强的结构。

当然,在此过程中,晶球发生相应的形变。

半晶态的高分子材料的特性在变形中经历了一个较大的变化过程,在图中所示的各个阶段,如果遇上阻碍,那么形变抗力都将加大。

比如,如果分子链缠结,则会干扰链的运动,因此有机物得到强化。

分子链的缠结可以是由射线照射产生,当一个有机高分子材料暴露于射线时,射线将某些分子链折断并重组,这就是分子链缠结的一个原因。

尽管分子键(即范德瓦尔斯键)比共价键弱得多,但是它们是分子链形变运动的主要限制力,事实上,有机高分子材料的的机械性能主要决定于这种弱键的大小。

结晶度对有机高分子材料的力学性能有较大的影响,其主要原因就是它对范德瓦尔斯键有较大影响。

在结晶区,分子排列长程有序,原子结构紧密,因此,范德瓦尔斯力作用大大加强;然而,在非晶区内,情况恰恰相反,由于原子排列杂乱无章,原子间距大,范德瓦尔斯键大大削弱。

因此,结晶度的提高对高分子材料的力学性能有增进和加强的作用。

有关化学组成、分子链的支链大小等对结晶度的影响等,我们在前面的讲授中已经提及,在此不再赘述。

(a)(b)图2.3 高分子材料的不同变形阶段的分子形态和微观结构另一个对机械性能有较大影响的是分子链的分子量,对分子量不是很高的高聚物,机械强度随分子量的增加而增强,聚乙烯的强度和结晶度和分子量的关系图如图2.4所示。

图2.4 聚乙烯的强度和结晶度和分子量的关系图(c)(d)(e)204060801001000020000 3000040000分子量结晶度(%)粘滑液 软蜡 脆蜡韧蜡硬塑料软塑料在商业上用以增强塑料的是图2.3(e)中所示的预拉伸方法,以便它事先取向并由此得到强化。

这个过程和金属冷拉强化似乎非常相似。

预拉伸常用于材料纤维的强化。

以上我们描述了高分子材料变形的微观机制,但是半晶态高分子材料变形的宏观机制也值得我们的注意,图2.5中表示的是这个过程。

上屈服点下屈服点图2.5半晶态高分子材料变形的宏观机制图2.5中可见上下屈服点清晰可辨,在上屈服点,试样中部出现一小的缩颈,在这个缩颈区内,分子链开始了向应力方向取向,并导致局域的强化。

因此,在这个缩颈区内的样品不再缩颈,而是缩颈区长度不断沿样品长度方向增加,伴随这个现象,分子链向应力方向的取向也不断进行。

这种拉伸现象可和金属的变形作比较,对金属,一旦形成了缩颈,则变形只在缩颈区内进行。

2.4熔融和玻璃转变现象2.4.1 T m和T g的定义由于高分子材料对温度敏感,所以以下章节的讨论都围绕这个问题进行,我们将从熔融和玻璃化转变入手,逐一讨论高分子材料对温度敏感的有关问题。

熔点或玻璃转变点的确定是用和陶瓷完全相同的方式,即用比容和温度的相关曲线来描述的,右图就是这样的曲线图,A 和C 两条曲线分别表示无定形态(非晶态)和晶态固体的比容-温度曲线,和陶瓷材料中没有什么不同。

晶态材料在熔点T m 处比容有一个跃变;而完全非晶态的材料,曲线是平稳变化的,只是在温度降低时在玻璃转变温度T g 处有一个曲线斜率的轻微变化,在T g 以下材料处于固态,在T g 以上固体先呈橡胶似固体,然后随温度增加而变为粘滞液体。

对于半晶态的高分子材料(曲线B ),情况介于以上两种情况之间,可观察到熔点和玻璃转变温度两图2.6 几个典型温度个现象,这两个温度点是十分重要的特征,许多高分子材料就是由这两个温度的大小来表征的。

2.4.2影响T m 和T g 的因素晶体高分子材料在熔化过程中,从固态时分子原子排列长程有序变成为粘滞液态时的长程无序状态。

在低温下,原子在静止位置微微振动,相互之间不是独立的,因此,在分子链的相邻原子之间有很多范德瓦尔斯键的作用,随温度升高,振动加强,甚至是可以达到相互同步,这样分子链横向的运动也产生了,在高温时它影响到很多分子链原子;在熔融时,它的作用足以解除范德瓦尔斯力的作用,因此可产生完全无规的分子原子结构。

晶态和半晶态高分子材料熔点的高低和影响分子链原子的范德瓦尔斯键成键的因素有关,如分子支链的多少,结晶度,分子量等。

例如,支链越多,分子链间原子的成键越困难,因此熔点低;因而,分子量或分子链长增加,熔点上升。

分子链的端点极易参与热振动,因此分子链加长,链端减少,结果为了引起振动需要提供更多的能量,这个能量体现为熔点的增高。

表2.1中列出了若干高分子材料的熔点和玻璃转变点。

表2.1部分典型高分子材料的熔点和玻璃转变点材料玻璃转变温度T g (℃)熔点T m (℃)T gT m晶态 玻璃液体过冷液体 结晶容比 温度 A B C聚乙烯(高密度) 聚乙烯(低密度)聚氯乙烯 聚四氟乙烯 聚丙烯 聚苯乙烯 尼龙66 聚酯 聚碳酸酯-110 -90 87 -90 -14 100 57 73 150115 137 212 327 176 239 265 265 265对非晶态材料而言,玻璃转变点对应着从固体向橡胶状固体的转变。

玻璃转变温度和结构参量有关,温升时这些参量或多或少地影响到分子链的振动和转动。

链的柔度对此影响最大,链刚度越好,温升时转动的可能性越小,玻璃转变点越高。

链的柔度可以通过加入大体积的支链和原子团得到降低,另外键交联的增加也会限制旋转降低柔度,由此玻璃转变点提高。

T m 和T g 随分子量变化的关系图如图2.7所示,T m 和T g 在分子量不是很高时对分子量的增加很敏感。

但是分子量达到一定程度后就不再对T m 和T g 有重大影响。

图中也显示出高分子材料的性能随温度和分子量的变化情况。

在分子量较低、温度较高时,高分子材 料呈液态;对分子量中等和很高时,在高温 区高分子材料呈粘液和橡胶状。

在分子量不 高、温度较低时,高分子材料呈晶态固体, 然而在分子量增加时,结晶度逐步减小。

2.5热塑性和热固性高分子材料高分子材料的一种分类就是通过它们对高温环境反应出的力学性能不同而分类的,因此就有热塑性和热固性高分子材料之分。

热塑性高分子材料的性质是,在高温下变软可塑,最后可以变为液体,但是冷却时又会恢复固性,这个过程是可逆的并且可以多次重复。

这些高分子材料常用热压法生产成型。

从分子角度说,由于温升,原子、分子的范德瓦尔斯键被解除,分子链可以相对自由的移动,受力时自然易变形。

当温度高到足以破坏原子间的共价键时,这些塑料遭到破坏,热塑性塑料一般较软富有韧性,但也有较好的冲击韧性。

相关文档
最新文档