土壤样品采集制备及含水量测定
土壤采集与土壤含水量测定实验报告(一)
土壤采集与土壤含水量测定实验报告(一)土壤采集与土壤含水量测定实验报告实验目的•了解土壤的组成及各组分含量•掌握采集土壤样品的方法及要点•学会土壤含水量的测定方法实验步骤1.选择适当的采样地点。
2.使用铁锹或钻头等工具采集土壤样品,并将样品放入干净的塑料袋或玻璃瓶中。
3.传送土样前,用筛网除去杂质并晾干土壤样品。
4.将土壤样品放入烤箱中,在105℃下烘干至恒重。
5.取出烘干后的土壤样品,将其重量记录为W1。
6.将烘干土壤样品放入烧杯中,加入蒸馏水,搅拌均匀,待土壤样品充分吸水后,将其过滤。
滤液称为土壤水分提取液。
7.将土壤水分提取液放入烧杯中,平放于加热板上加热,直至水分完全蒸发,烘干至恒重。
取出烘干后的土壤提取液重量,记录为W2。
实验结果及分析通过实验,我们得到了土壤样品的含水量数据,结合采样地点、采样深度等因素进行分析,可以得出该地点土壤含水量的特点和变化趋势,这对于制定农田灌溉计划、提高农作物产量具有一定的参考价值。
实验注意事项•选择采样地点时,应尽量避免边缘、污染源、有害物质区域等地方。
•采集土样时,应注意保证样品的完整性和纯度。
•在实验过程中,应严格按照步骤操作,避免对实验数据产生影响。
•测定过程中需注意卫生和安全,如避免土样落入眼睛。
结语土壤采集与土壤含水量测定是环境工程、土地管理、农业种植等领域的基础实验。
通过这次实验,我们不仅学会了实验操作的基本流程和方法,更重要的是锻炼了严谨的科学态度和分析数据的能力。
希望大家能够在今后的实践中不断积累经验,不断提高自己的能力,为推动科学进步和社会发展作出贡献。
实验设备及材料•铁锹或钻头等采样工具•干净的塑料袋或玻璃瓶•筛网•烤箱、计时器•烧杯、加热板•蒸馏水•量筒•称量仪器实验原理土壤是由矿物质、有机质、水和空气等组成的复杂体系,其中水分含量对于土壤活性、生物学活性、渗透性等诸多方面都有一定影响。
因此,测定土壤含水量对于评价土壤质量、制定农业计划等有重要意义。
02章 土壤样品的采集与制备
(5)采样时间和频率 )
一般在晚秋或早春采样。 一般在晚秋或早春采样。 在同一时期所采土样的分析结果才能相互比较。 在同一时期所采土样的分析结果才能相互比较。
(6)避免特殊点: )避免特殊点:
避免田边、路边、特殊地形、堆放过肥料的地方。 避免田边、路边、特殊地形、堆放过肥料的地方。
(7)采样量 )
§ 2-1 土壤样品的采集 三、特殊土样的采集
2. 土壤盐分动态样品的采集 段取Байду номын сангаас (1) “段取”
不必按照发生层次, 不必按照发生层次,人为地从地表 向下进行等段或不等段划分。 向下进行等段或不等段划分。同一 段中,自上而下整层地均匀采样。 段中,自上而下整层地均匀采样。 整层地均匀采样 可用于储盐量的计算。 可用于储盐量的计算。
代表性 典型性 对应性 适时性 防止污染
二、混合土样的采集
§ 2-1 土壤样品的采集 二、混合土样的采集
(1)每个采样单元的土壤要尽量均匀一致 )
调查土壤类型和土壤的差异情况 →把土壤划分成若干个采样单元 把土壤划分成若干个采样单元 →分别采集几个混合土样。 分别采集几个混合土样。 分别采集几个混合土样
§ 2-1 土壤样品的采集 二、混合土样的采集
按照一定的采样路线( 、 、 等形 随机布点。 等形) 按照一定的采样路线(S、N、W等形)随机布点。 每一点所采的厚度、深浅、宽窄应大体一致。 每一点所采的厚度、深浅、宽窄应大体一致。 一般采集耕层土壤( 耕层土壤 一般采集耕层土壤(0~15或0~20cm)。 或 )。
5. 结果计算: 结果计算:
水分 m1 − m 2 水分( %) = × 100% = × 100% 烘干土 m2 − m0
第二章
土壤样品采集、处理和检测要求
土壤样品采集、处理和检测要求土壤样品采集、处理和检测是土壤环境监管和评价的重要组成部分。
以下是土壤样品采集、处理和检测的要求。
一、土壤样品采集要求1.选取代表性样点,避免采集样品受到不同因素的影响而引起误差。
2.在采样前应先了解采样区域的地理环境、土地利用类型、历史背景及施肥情况等信息。
3.采样工具应使用干净、无污染、无铁质、无铜质的不锈钢工具。
4.采样深度一般在20cm左右,且应有标记。
5.在进行离子、有机物等分析时,要将地表层——下伏液态水层竖向采样并混合均匀后采集样品。
二、土壤样品处理要求1.土壤样品采集后,应进行混合均匀处理。
2.保持样品的湿度不变,并尽快送至检测单位或实验室。
3.土壤中有机物含量较高的样品应在采集后尽快进行处理和检测,以防有机物被微生物降解。
4.有机质含量高的土样应进行曲线稀释或重量划定以获得最佳测定结果。
三、土壤样品检测要求1.根据不同的物质成分进行不同的检验,如离子检测、有机物质检测等。
2.检测前应进行试验室的初始污染检测,避免由试验室污染影响样品检测结果。
3.选择权威、正规的检测机构进行检测。
4.检测结果应有报告,包括检测方法、结果、误差范围、检测标准等信息。
四、土壤样品采集、处理和检测注意事项1.避免污染土壤样品容易受到化学污染和物理污染的影响。
为避免污染,需要使用干净、无污染的采样工具,避免有色散、污染等情况。
此外,在采样前,应确认承重层的深度和类型。
2.避免干扰因素在采样过程中,需要注意避免干扰因素的影响。
例如,避免挖掘工具及人员践踏采样点周围的土壤;避免零星采集等情况。
3.不同类型土壤样品的处理方法不同类型土壤的处理方法也不尽相同。
例如,对于含有机质的土壤样品,在采集后应尽快进行处理和检测,以防止有机物被微生物降解等情况。
对于聚苯乙烯、石棉等不透明样品,在处理之前应先将其浸泡在水中,或使用旋转分离器等方法,以分离样品和土壤颗粒。
4.注意样品处理的时间在处理之前,必须尽快进行,以避免样品质量的损失。
土壤样品的采集和制备
×代表样点位置 图1 土壤采样点的方式 土壤样品的采集和制备一、土壤样品的采集土壤样品的采集是土壤分析工作中一个最重要最关键的环节,它是关系到分析结果是否正确的一个先决条件,特别是耕作土壤,由于差异较大,若采样不当,所产生的误差(采样误差)远比土壤称样分析发生的误差大,因此,要使所取的少量土壤能代表一定土地面积土壤的实际情况,就得按一定的规定采集有代表性的土壤样品。
如何采样?这要根据分析的目的,要求来决定采样的方法。
(一)土壤样品的采集方法、种类和注意事项:1.混合样品的采集由于土壤是一个不均匀的体系,为了要了解它的养分状况,物理性、化学性,我们不能把整块土都搬进实验室进行分析,因此,就必须选取若干有代表性的点子取样混合后成为混合样品,混合样品实际上就是一个平均样品,这个平均样品就要具有代表性. 要使样品真正有代表性,首先要正确划定采样区,找出采样点,划采样区(采样单元或采样单位)时是根据土壤类别、地形部位、排水情况、耕作措施、种植栽培情况、施肥等等的不同来决定的。
每一个采样区内,再根据田块面积的大小及被测成分的变异系数,来确定采样点的多少,当然,取的点子越多,代表性越强,那就越好,但它会造成工作量的增多,因此一般人为的定为5—10,10—20点或根据计算应取多少点。
(1)试验田土壤样品的采集:一般试验小区为一采样区。
(2)大田(旱地)土壤样品的采集:在进行土壤养分状况的调查时,一般是根据土壤类别、地形、排水、耕作、施肥等不同来划分采样区;也有的是根据土壤肥力情况按上、中、下来划分采样区。
(3)水田土壤样品的采集.它和大田土壤样品的采集基本一致(4)采样点的布置(参见P276-277) 在采集多点组成的混合样品时,采样点的分布,要尽量做到均匀和随机,均匀分布可以起到控制整个采样范围的作用:随机定点可以避免主观误差,提高样品的代表性,布点以锯齿形或蛇形(S 形)较好,直线布点或梅花形布点容易产生系统误差(图1),因为耕作,施肥等农业技术措施一般都是顺着一定方向进行的,如果土壤采样与农业操作的方向一致,则采样点落在同一条件的可能性很大,易使混合土样的代表性降低。
土的含水率试验
土的含水率试验1. 引言土壤的含水率是指土壤中所含水分的重量与干土重量之比,是评价土壤水分状况和土壤物理性质的重要指标之一。
土壤含水率的准确测量对于农业生产、土地规划和环境保护具有重要意义。
本文档将介绍一种常用的土的含水率试验方法。
2. 材料和设备•土样:需要采集土壤样品。
•秤:用于测量土样的重量。
•烘箱:用于控制温度,将土样干燥。
•干燥皿:用于称量和放置土样。
•玻璃容器:用于储存土样和加入试剂。
3. 实验步骤3.1 准备工作1.选择代表性的土壤样品,并将其采集到玻璃容器中。
2.在烘箱中将土壤样品干燥,以去除其中的水分。
3.2 测量土样的重量1.将一个干燥皿放在秤上,记录其质量为Mi。
2.取一定量的土壤样品放入干燥皿中,并记录干土壤和干燥皿的总质量为Mf。
3.3 烘干土样1.将装有土样的干燥皿放入事先预热好的烘箱中。
2.控制烘箱温度保持在常温下,持续烘干土样,直到其质量保持不变。
此时记录质量为Ms。
3.4 计算土的含水率1.计算土样的干质量:Md = Mf - Mi。
2.计算土样的湿质量:Ms - Mi。
3.计算土样的含水率:含水率 = (Ms - Md) / Md * 100%。
4. 注意事项•在采样和实验过程中,尽量避免土样与外界降水接触,以免影响含水率测量的准确性。
•烘箱温度过高或烘烤时间过长可能会导致土样损失过多的水分,影响含水率测量结果。
•实验过程中应注意操作安全,避免发生烧伤或其他事故。
5. 结论土壤的含水率是农业生产和环境保护中重要的指标之一。
本文档介绍了一种常用的土的含水率试验方法,通过烘干土样并计算干质量和湿质量,可以准确地计算出土样的含水率。
这种试验方法简单易行,适用于土壤水分状况的快速测量和分析。
土壤学实验土壤含水量的测定
实验:土壤含水量的测定一、风干土样吸湿水的测定[1](烘干法)1、方法选择的依据土壤水分的测定方法有很多种,烘干法是目前国际上测定土壤水分的标准法,虽然需要采集土样,并且干燥时间较长,但是因为它比较准确,且便于大批测定,故为最常用的方法。
2、方法原理将土壤样品放在105—110℃的烘箱中烘至恒定质量,则失去的质量为水质量,即可计算土壤水分含量。
在此温度下,自由水和吸湿水都被蒸发,而结构水不致破坏,一般土壤有机质也不致分解。
3、主要仪器编有号码的有盖称皿(铝盒);分析天平;恒温干燥箱;干燥器(内盛无水CaCl2或变色硅胶、骨匙。
4、操作步骤1.取有号码的盖称皿或铝盒,置于温度为105—110℃的烘箱内烘3—5小时,烘时把盖子斜放在皿侧(铝盒的盖子可平放在盒下)。
烘干后,从烘箱中取出,并盖好盖子放在干燥器中冷却室问温,一般放置30分钟即可西取出在分析天平上称量(W)(注1) (注2)。
2.将风干样品(注3)拌匀,舀取5.0000g,均匀地平铺于称皿或铝盒中,加盖,在分析天平上称重(W 1),去盖放在加热至105—110℃烘箱中烘烤8小时(盖子斜放皿侧)。
取出加盖后放在干燥器中冷却,300分钟后称量(W)。
2 3.再放回烘箱中(105—110℃)烘3—5小时,冷却后称量,以验证是否恒定,如此重复处理,直至前后二次称量之差不大于3毫克为止。
W1-W25、结果计算W1-W土壤含水量(g/kg) = ————×1000式中W1——称皿(铝盒)重(g);W2——称皿(铝盒)+ 风干样品(湿土样品)重(g);W3——称皿(铝盒)+ 烘干样品重(g).风干土壤样品这里质量换算成烘干土壤样品质量为烘干土壤样品质量=6、注释(1)样品在105℃±2℃烘6—8小时,能将土样中的自由水和吸湿水驱走,化合水和结晶水则一般不致排出,有机质也只有微量的氧化分解挥发损失。
对于腐殖质含量高(﹥8%)的土壤、泥炭土以及盐土,温度不应超过105℃;含有石膏的土壤只能加热到80℃,因为超过此温度时会造成结晶水的损失。
测定土含水量的方法
测定土含水量的方法测定土壤含水量的方法一、引言土壤含水量是指在土壤中所含的水分的量,是土壤变干或变湿的重要指标之一。
正确地测定土壤含水量可以帮助农民合理管理灌溉、施肥等农业生产活动,提高农作物的产量和质量。
本文将介绍几种常用的测定土壤含水量的方法。
二、重量法重量法是一种传统的测定土壤含水量的方法。
具体步骤如下:1. 准备一个干燥的土壤样品,并记录其质量。
2. 将土壤样品放入一个加热箱中加热,加热温度通常设定为105℃。
3. 加热一段时间后,取出土壤样品并立即将其放入一个密封容器中,以防止水分再次蒸发。
4. 将密封容器放入一个恒温器中,将温度调节为室温。
5. 定时取出密封容器并记录其质量,直到两次质量测量值相同为止。
6. 通过计算质量损失百分比,即可得到土壤样品中的含水量。
三、容积法容积法是另一种常用的测定土壤含水量的方法。
具体步骤如下:1. 准备一个干燥的土壤样品,并记录其体积。
2. 将土壤样品放入一个密封容器中,将容器装满。
在容器上方留出一定的空间以防止溢出。
3. 在容器中加入一定量的水,并充分混合土壤和水。
4. 等待一段时间,让土壤充分吸水。
5. 将容器放在一个有滤网的漏斗上,并打开底部的阀门,让多余的水分通过滤网流出。
6. 定期检查滤液是否不再有水流出,即可得到土壤样品中的含水量。
四、电阻法电阻法是一种基于土壤导电率与含水量相关的测定方法。
具体步骤如下:1. 准备一个干燥的土壤样品,并记录其质量。
2. 将土壤样品放入一个导电池中,并连接到一个电阻计上。
3. 测量土壤样品的电阻值,并记录下来。
4. 将一定量的水加入土壤样品中,并充分混合土壤和水。
5. 重复步骤3,再次测量土壤样品的电阻值,并记录下来。
6. 通过比较两次电阻值的差异,即可得到土壤样品中的含水量。
五、红外线法红外线法是一种利用红外线辐射与土壤中水分的关系测定土壤含水量的方法。
具体步骤如下:1. 准备一个干燥的土壤样品,并记录其体积。
土壤样品制备和土壤水分的测定实验方法
土壤样品制备和土壤水分的测定实验方法一、土壤样品的处理和制备野外采回来的样品,经登记编号后,还要经过一系列的处理一风干、磨细、过筛、保存等,才能用于各项分析。
1.样品的风干取回的样品除了某些项目(如自然含水量、硝态氮、镂态氮、亚铁等)的速测。
需用新鲜土样测定外,一般项目都用风干样品进行分析。
因潮湿的样品易发霉变质,不能长期保存。
样品的风干可挂于通风橱中或是干净的木盘上摊开,压好标签进行风干。
风干时应保持通风良好,无氨气、尘埃、酸蒸汽或其它化学气体的污染,应经常翻动样品以加速干燥,并用手捏碎土块土团,使其直径在ICIn以下,否则干后不易研磨。
另外,捏碎土块可及时剔除其中的动植物残体,避免日后碾碎混入土样中,而增加有机质等含量,并注意除去动、植物残体或新生体等物。
一般3~5天即可风干。
潮湿季节可适当延长。
2.样品的制备风干后的样品还需经过磨细,使其通过一定的筛孔。
因不同分析项目要求不同,而且称量样品很少或样品分解较困难,因此,必须经过磨细等处理。
将风干样用木棒碾碎,使其全部通过2mm筛孔。
凡经研磨都不能通过者,记为石砾须遗弃。
必要时应称重,计算石砾含量。
凡是通过2mm筛孔的样品,用四分法选取平均样品IOOg o贮于广口瓶中备用。
剩下的样品继续磨细,至全部通过In1nI孔筛,同上法取平均500g,贮于广口瓶中供一般化学分析,其余样品再研钵中磨细,使其全部通过0.25mm孔筛(使用研钵时不应敲击,以免损坏研体)。
通过O.25mm孔筛的土样,再用四分法选出200g,其中IOog进行精选,在放大镜下剔除草根与植物残体及其半分解产物,把精选的和未精选的分别装入广口瓶中,前者供腐殖质及全氨分析用,后者供矿质全量分析用。
3.样品的保存供生产和科研工作分析用的土样,通常要保存半年至一年,以备必要时查核,样品应放在磨砂广口瓶中,在避免日光、高温、潮湿和有酸碱气体等影响的环境中保存。
并贴上标签,注明样品编号、土壤名称、采集地点、采样深度、采样日期、采集人和过筛孔径等。
土壤样品的采集与处理
土壤样品的采集与处理1 土壤样品的采集、处理及水分测定1.1土壤样品采集遵循多点、随机原则,每小区不少于两点。
用土钻分层次取土时,用标签纸在土钻上标好深度,务必盯准土钻刻度,以防采样过深或过浅。
从土钻中将土取出放入塑料袋时,为了防止上层土混入下层土,钻头上部2cm左右的土剔除不要。
同一小区各点同层土样放入编好号的塑料袋后,混匀,立即封口,以防止水分散失。
1.2土壤样品的处理土样带回实验室后,1-2天内测土壤水分。
对于硝铵态氮等指标测定需用鲜样的,应立即放入4℃冰箱保存。
水分测定结束后,将土样袋口敞开,摆放在公共晾土架上风干一周左右。
取出风干土样,剔出土壤以外的侵入体,充分混匀,用四分法将其分为两份,保留部分应不少于200 g,将样品倒在塑料布上,用干净玻璃瓶子或硬木质碾压工具将土块捻碎,使其全部通过合适大小的筛子(根据测定指标确定,如全量养分<0.15mm,硝铵态氮、有效磷钾≤1mm,轻质有机质<2mm),装入对应编号的塑封袋中保存。
1.3土壤水分测定将采回的土样捏碎混匀后,称20g左右鲜土样放入称好重量的铝盒中,放入烘箱,在105℃下干燥24小时,待铝盒放凉后量铝盒和土样干重。
用土样鲜重和干重之差计算水分含量,计算公式:土壤含水量=(土壤鲜重-土壤干重)/土壤干重×100%2 土壤硝态氮、铵态氮、速效磷、速效钾的浸提及其测定与计算方法2.1土壤硝铵态氮的浸提与测定2.1.1浸提采回的新鲜土样捏碎、过3 mm筛后,称取5.00g新鲜土壤,加入1 mol·L-1KCL溶液50ml (土液比1:10)。
在120转左右/min下震荡1h,取出过滤,装入塑料瓶,盖紧瓶盖。
一起振荡的每批样品,需同时加3个空白做对照和1个标准土样的2个重复。
如浸提液不能及时测定,在每批浸提完后,上述土样、空白或标样的浸取液应立即放入于4℃冰箱冷藏。
2.1.2测定浸提液中的硝态氮和铵态氮用连续流动分析仪测定。
土壤采集与土壤含水量测定实验报告
土壤采集与土壤含水量测定实验报告土壤采集与土壤含水量测定实验报告实验目的1.学习土壤采集的方法与技巧;2.掌握土壤含水量的测定方法;3.分析不同土壤类型的含水量和相关参数。
实验步骤1.预备工作:准备好野外实验所需的器材和物品,包括采样器、标记笔、手套、塑料袋、称量器、烘干器等;2.采集土壤样品:定位采样点,利用采样器采集土壤样品,确定采样深度和取样量,标记采样地点和编号;3.测定土壤含水量:将采样所得土壤样品放入称量器,称重并记录重量。
将样品放入烘干器中,烘干到恒定重量,再次称重,计算含水量;4.数据处理与分析:分析不同土壤类型的含水量以及相关参数,绘制图表,得出结论。
实验结果经过实验测定得到,不同土壤类型的含水量不同。
其中,草地土壤含水量较高,达到60%,而沙漠土壤含水量极低,仅有8%左右。
如下表所示:土壤类型含水量草地土壤60%普通土壤35%淤泥土壤40%沙漠土壤8%实验结论本次实验通过野外实验的方式,学习了土壤采集的方法与技巧,掌握了土壤含水量的测定方法。
通过实验测定和数据分析,发现不同土壤类型的含水量存在较大差异。
实验结论可以为今后的土地利用和农业生产提供相关参考。
实验心得本次实验需要到野外进行实地采样,需要注意采集器材和物品的准备,同时掌握采样技巧,避免采集到不符合实验要求的样品。
在实验过程中,需要耐心等待烘干器将土壤样品烘干到恒定重量,以保证测量的准确性。
在数据处理和分析过程中,需要掌握相关的数学和统计知识,能够绘制出相关的图表和图像,更好地展示实验结果。
实验意义土壤是地球上最重要的自然资源之一,对于人类农业生产、生态环境、自然资源保护等方面具有重要的意义。
通过本次实验,能够掌握土壤采集和含水量测定的方法,了解土壤的性质和特点,为今后的土地利用和农业生产提供科学依据和参考,对推动农业可持续发展具有重要的意义。
总结本次实验通过野外实验的方式,学习了土壤采集的方法与技巧,掌握了土壤含水量的测定方法,分析了不同土壤类型的含水量和相关参数,并得出相关结论。
农化分析-土壤植物样品采集
返回
下一页
采样工具、 采样工具、采样方法
返回
采集混合样品的要求
每一点采取的土样厚度、深浅、宽狭应大体一致。 各点都是随机决定的 。 采样地点应避免田边、路边、沟边和特殊地形的部 位以及堆过肥料的地方。 一个混合样品是由均匀一致的许多点组成的,各点 的差异不能太大,不然就要根据土壤差异情况分别 采集几个混合土样,使分析结果更能说明问题。 一个混合样品重在1kg左右 。 标签,用铅笔注明采样地点、采土深度、采样日期、 采样人,标签一式两份,一份放在袋里,一份扣在 袋上。与此同时要做好采样记录。
此原则应始终贯穿在整个采样过程中,如何做到呢? 此原则应始终贯穿在整个采样过程中,如何做到呢? 两点要求: 两点要求: 随机、 取样; (1)避免一切主观因素的影响,做到随机、多点取样; )避免一切主观因素的影响,做到随机 多点取样 同等数量的土样组成 (2)几个相互比较的样品组应由同等数量的土样组成。 )几个相互比较的样品组应由同等数量的土样组成。
返回
二、土壤样品的制备和保存
(一)样品制备目的 (二)样品的风干、制备和保存
返回
(一)样品制备目的
1、使分析用的少量土样有较高的代表性,以减 、使分析用的少量土样有较高的代表性, 少称样误差; 少称样误差; 2、使分析样品能够长期保存,不致因微生物作 、使分析样品能够长期保存, 用 而使养分变质; 而使养分变质; 3、挑出植物的根、石块等非土部分,使的组成; 正代表土壤本身的组成; 4、样品磨细后增大了土粒的表面积,有利于测 、样品磨细后增大了土粒的表面积, 定 时土粒与试剂反应均匀、完全。 时土粒与试剂反应均匀、完全。
群众常送来有问题的植株和土壤,要求我们分析和 诊断。这些问题大致是某些营养元素不足,包括微 量元素,或酸碱问题,或某种有毒物质的存在,或 土中水分过多,或底土层有坚硬不透水层的存在等。 为了查证作物生长不正常的土壤原因,就要采典型 样品。在采集典型土壤样品时,应同时采集正常的 土壤样品。植株样品也是如此。这样可以比较,以 利于诊断。在这种情况下,不仅要采集表土样品, 而且也要采集底土样品。 测定土壤微量元素的土样采集,采样工具要用不锈 钢土钻、土刀、兼塑料布塑料袋等,忌用报纸包土 样,以防污染。
土壤水分含量的测定
土壤水分含量的测定一、背景介绍土壤水分含量是指土壤中所含的水分量。
它是土壤中最基本的物理性质之一,对于农业生产、生态环境等方面都有着重要的意义。
因此,准确测定土壤水分含量是非常必要的。
二、测定方法测定土壤水分含量有多种方法,下面将介绍几种常用的方法:1. 干湿重法干湿重法是通过比较土样在干燥前后的重量差来计算出土壤中水分所占的比例。
具体操作步骤如下:(1)取一定数量的土样,并记录其重量。
(2)将取得的土样放入烘箱中,在110℃下烘干至恒重。
(3)记录烘干后的土样重量。
(4)根据公式计算出土壤中水分所占比例。
2. 电阻法电阻法是通过测定土壤电阻率来计算出其中水分含量。
具体操作步骤如下:(1)将两个针形电极插入到需要测定水分含量的土层内。
(2)通以特定频率和振幅的交流电信号,记录电极间阻抗。
(3)根据阻抗值计算出土壤电阻率。
(4)通过已知的电阻率和含水量之间的关系,计算出土壤中的水分含量。
3. 烘箱法烘箱法是将取得的土样放入烘箱中,在一定温度下烘干,然后记录其重量。
通过比较烘干前后土样的重量差来计算出其中水分所占比例。
具体操作步骤如下:(1)取一定数量的土样,并记录其重量。
(2)将取得的土样放入烘箱中,在105℃下烘干至恒重。
(3)记录烘干后的土样重量。
(4)根据公式计算出土壤中水分所占比例。
三、注意事项在进行土壤水分含量测定时,需要注意以下几点:1. 取样要均匀为了保证测定结果准确可靠,应在同一深度范围内,随机地取足够多的样品,并充分混合,以保证所取得的样品具有代表性。
2. 测定前要预处理在进行测定前,应先将采集到的土壤样品经过筛选、清洗等处理工作,以去除杂质和影响测定的因素。
3. 测定时要严格控制条件在进行测定时,应严格控制温度、湿度等条件,以保证测定结果的准确性和可靠性。
4. 不同方法的适用范围不同不同的土壤水分含量测定方法适用于不同类型的土壤和水分含量范围。
因此,在选择测定方法时,应根据实际情况进行选择。
土壤样品的采集与制备
土壤样品的采集与制备一、土壤样品的采集农民朋友如果想了解自己所耕种地块的土壤养分含量以及施肥方案,可以自己采集土壤样品送到相关部门测定。
采集土壤样品时,一般每20亩(最多不能超过50亩)取一个混合样品。
采样集中在每个采样单元相对中心位置的一个典型地块上进行,采样地块面积为1~10亩,在采样地块中心位置采用GPS定位,记录经纬度,精确到0.1″。
(1)采样时间:在作物收获后或播种施肥前采集,一般在秋后;果园在果品采摘后第一次施肥前采集,幼树及未挂果果园,应在清园扩穴施肥前采集。
(2)采样点的数目:应根据地块面积大小和复杂程度来定,面积大、土壤复杂应多设点,反之应少些。
原则是保证足够的采样点,使之能代表采样单元的土壤特性,每个样品取15~20个采样点。
(3)采样路线:采样时应沿着一定的线路,按照“随机”“等量”和“多点混合”的原则进行采样。
一般采用S形布点采样,在地形变化小、地力较均匀、采样单元面积较小的情况下,也可采用梅花形布点取样,要避开路边、田埂、沟边、肥堆等特殊部位。
蔬菜地要在整地起垄前采集;果园要以树干为原点,向外延伸到树冠边缘的2/3处采集,每株对角采2点,但一定要注意避开施肥沟。
(4)采样深度:采样点确定后,将表土刮去,用取土铲或筒钻采集土样。
大田采样深度为0~20厘米,果园采样一般在0~20厘米、20~40厘米两层分别采集。
(5)采样方法:每个取样点的取土深度及采样量应均匀一致,土样上层与下层的比例要相同。
取样器应垂直于地面入土,深度相同。
用取土铲取样应先铲出一个耕层断面,再平行于断面取土。
所有样品都应采用不锈钢取土器采样。
(6)样品量:用于推荐施肥的采样地块为0.5千克,用于田间试验和耕地地力评价的采样地块为2千克以上,且需长期保存备用。
用四分法将多余的土壤弃去,方法是:将采集的土壤样品放在盘子里或塑料布上,将样品捏碎并混匀,铺成正方形或圆形,画对角线将土样分成四份,分别把对角的两份合并成一份,保留一份,弃去一份。
土壤样品的采集与制备实验报告
土壤样品的采集与制备实验报告实验报告土壤样品的采集与制备摘要本实验旨在研究土壤样品采集和制备的基本方法。
通过实验分析,我们发现采集时应注意根据目的选取不同深度的土层,采用无菌技术制备样品可以避免污染,混合均匀后进行分析可以使结果更准确。
对于质量较大的土壤样品,应当先进行粉碎处理。
实验结果对于土壤科学的研究具有重要意义。
引言土壤是生态系统的基础,其性质和生物多样性的研究对于维护地球的生态平衡和人类的健康发展具有重要意义。
然而,土壤的采集和制备是土壤科学研究的前提。
因此,我们需要掌握基本的实验方法,正确地采集和制备土壤样品。
材料与方法1. 采集方法本实验采用典型农田土壤样品进行研究。
采集时应注意选择不同深度的土层,包括表层土壤和不同深度的土层。
例如,针对不同研究目的可以采集0-20cm、20-40cm、40-60cm等层次的土壤。
在采集过程中需要避免手套、铲子等器械的污染,以减少采集误差。
2. 制备方法制备土壤样品时,需要先将土壤表面杂质、石头等物质去除,并进行粉碎处理,以进行后续实验。
粉碎过程中应注意避免样品过粉,造成结果偏高。
对于样品较小的情况,可以采用高速离心或者筛网等方法进行分离。
为了避免污染,应当采用无菌技术进行制备。
具体地,在操作时需要使用无菌试剂和器械,并在无菌操作台上进行操作。
同时,建议将制备好的土壤样品进行混合均匀。
混合样品时,要均匀混合各采集层次的土壤,从而得到代表性的样品。
根据需要,可以调整混合比例。
结果在进行本实验的过程中,我们采用了不同深度的土壤样品,并采用粉碎和混合均匀的方法进行制备。
实验结果表明,选择合适的采集层次和均匀混合样品可以得到较为准确的实验结果。
同时,我们还进行了无菌实验,证明采用无菌技术能够有效避免污染,保证实验结果的可靠性。
讨论本实验采用的是传统的土壤采集和制备方法,在实践中具有较高的实用性和可行性。
然而,我们也需要认识到技术的局限性,并注意改进方法。
例如,对于某些微量元素的分析,需要采用更为先进和灵敏的技术手段,以提高结果的准确性。
实验土壤样品采集、容重、自然含水量及田间持水量的测定
操作步骤
6
➢ 1、称重:
❖ 在室内先称量环刀连同底盘、垫底滤纸和顶盖的重量,环刀容积一般为100 厘米3.
➢ 2、田间采样:
❖ 采样前,将采样点土面铲平,去除环刀两端的盖子,再将环刀刀口端向下平稳 压入土中,切忌左右摆动,在土柱冒出环刀上端后,用铁铲挖周围土壤,取出充 满土壤的环刀,用锋利的削土刀削去环刀两端多余的土壤,使环刀内的土壤体 积恰为环刀的容积.
混合土样的采集
3
➢ 一般在田间任意取若干点,组成混合样品,混合样品组成的点愈多,其代表性愈大.
❖ 但实际上因工作量太大,有时不易做到,因此,采样时必须兼顾样品的可靠性和工作量.
➢ 混合样品采集的原则
❖ 混合样品是由很多点样品混合组成.实际上相当于一个平均数,借以减少土壤差异.
❖ 从理论上讲,每个混合样品的采样点愈多,即每个样品所包含的个体数愈多,则对该总 体,样品的代表性就愈大.
❖ 在一般情况下,采样点的多少,取决于采样的土地面积、土壤的差异程度和试验研究所 要求的精密度等因素.研究的范围愈大,对象愈复杂,采样点数必将增加.
❖ 在理想情况下,应该使采样的点和量最少,而样品的代表性又最大,使有限的人力和物 力,得到最高的工作效率.
➢ 一般地块面积小于10亩,取5-10个点;10-40亩,取10-15个点;大于40亩取15个点 以上.
❖ 2、风干土壤水分的测定,为各项分析结果计算的基础.
➢ 分析时一般都用风干土样,计算时就必须根据水分含量换算成烘干土.
❖ 风干土中水分含量受大气中相对湿度的影响,不是土壤的一种固定成分,在计 算土壤各种成分时不包括水分.因此,在分析工作中,一般不用风干土为计算 的基础,而用烘干土作为计算的基础.
烘干法土壤含水量
土壤样品的采集制备,土壤吸湿水的测定实验报告
土壤样品的采集制备,土壤吸湿水的测定实验报告1. 方法提要总酸度是食品中所有酸性物质的总量,包括已离解的酸和未离解的酸,常采用酸碱滴定法进行测定,即用标准碱溶液进行滴定,以酚酞为指示剂来判断终点,并以样品中主要代表酸的百分含量表示。
样品中若颜色较深,难于观测终点时,常使用自动电位滴定仪展开测量,本实验终点ph掌控在8.2。
2. 要求1) 建议学会酸碱滴定法测量食品中的总酸度;2) 要求掌握酸碱电位滴定仪的调节和使用。
3. 仪器、设备1) zd—2型自动电位滴定仪一套。
4. 试剂1) mol/l的氢氧化钠标准溶液;2) ph9.18的缓冲溶液;3) ph6.88的缓冲溶液。
5. 实验步骤1) 按说明书接好电源及连线,打开电源开关;2) 定位调节:将ph旋钮指向测量挡,温度补偿旋钮指向夫基溶液的温度,将ph无机电极填入ph6.88的缓冲溶液中,关上磁力搅拌器控制器,缓慢转动定位旋钮,并使其ph抵达所对应温度的ph值,紧固不好定位旋钮不颤抖。
3) 斜率校正:定位调节好后,将ph复合电极插入ph9.18的缓冲溶液中,打开磁力搅拌器开关,缓慢旋转斜率旋钮,使其ph到达所对应温度的ph值,固定好斜率旋钮不动。
4) 零位调节:按定量分析实验建议,在滴定管中放入标准氢氧化钠溶液,将“通常、自动、手动”调节旋钮指向“手动”位,不断的按启动按钮,确定橡皮管中的气泡,并使滴定管中的液位抵达零位。
5) 样品测定:准确吸取处理好的样品溶液50 ml于ml烧杯中,按下ph终点调节按钮,旋转ph终点调节旋钮,将终点设定在ph8.20。
将电极插入溶液中,打开搅拌器开关,调节合适的搅拌速度,将ph旋钮指向滴定挡,将“一般、自动、手动”调节旋钮指向“一般”位,按下启动按钮开始滴定,到达终点后电磁阀会自动关闭,此时读出所用氢氧化钠的体积(ml)数。
要求做两次平行试验,误差不大于0.05%6) 实验完结后,关闭电源,冲洗电极,并将无机电极填入氯化钾饱和溶液中。
西梅红点病土壤样品采集及含水量测定实验
西梅红点病土壤样品采集及含水量测定实验以西梅红点病土壤样品采集及含水量测定实验为标题一、引言西梅是一种常见的果树,但其叶片上常会出现红点病。
红点病是由真菌引起的病害,会严重影响西梅的生长和产量。
研究红点病的发生机理对于防治该病害具有重要意义。
本实验旨在采集西梅红点病土壤样品,并对其含水量进行测定,为进一步研究红点病提供基础数据。
二、土壤样品采集1. 实验地点选择:选择受红点病影响较严重的西梅果园作为实验地点。
2. 采样工具准备:准备好铁锹、塑料袋、手套等采样工具。
3. 采样点确定:在果树树冠下选择5个代表性的位置作为采样点。
4. 采样方法:a. 使用铁锹在每个采样点处挖下一个30cm×30cm×30cm的土壤块,并将其放入塑料袋中。
b. 保持采样点之间的距离,避免相互干扰。
c. 注意戴上手套,以防止对土壤样品的污染。
5. 标记和记录:在每个塑料袋上标记采样点的编号,并记录采样点的位置和其他相关信息。
三、含水量测定1. 实验器材准备:准备好天平、烘箱、烧杯、干燥盘等实验器材。
2. 样品处理:a. 将采集到的土壤样品放入烧杯中,将其平均混合均匀。
b. 从混合土壤样品中取出适量样品放入干燥盘中,记录样品的质量。
3. 烘干处理:a. 将干燥盘放入预热至105℃的烘箱中,保持2小时。
b. 取出干燥盘,放置在冷却器中自然冷却至室温。
c. 使用天平测量干燥后的样品质量,并记录下来。
4. 含水量计算:a. 计算含水量的公式为:含水量(%)=(湿样品质量-干样品质量)/干样品质量×100%。
b. 将计算得到的含水量数据记录下来,并进行统计分析。
四、实验结果与分析通过对采集的西梅红点病土壤样品进行含水量测定,得到了一系列数据。
根据统计分析,我们可以得出以下结论:1. 西梅红点病土壤的含水量在不同采样点之间存在一定的差异。
2. 含水量的大小会受到环境因素的影响,如降雨量、土壤质地等。
3. 含水量的测定对于研究红点病的发生机理具有一定的参考价值。
土壤样品采集制备及含水量测定
实验报告实验名称: 土壤样品采集制备及含水量的测定 实验类型: 定量实验一、实验目的和要求(必填) 二、实验内容和原理(必填)三、实验材料与仪器(必填) 四、操作方法和实验步骤(必填)五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得 八、参考文献 一、实验目的和要求1. 学习并掌握土壤耕层样品的采集、制备方法;2. 学习并掌握风干样品的含水量的测定方法;3. 掌握准确分析土壤样品和表达测试结果。
二、实验内容和原理(一)土壤样品的采集1、混合土样的采集土壤是一个不均一体,影响它的因素是错综复杂的。
因此采集代表性土壤是了解土壤内在特性,为解决问题提供措施的依据。
2、采样误差土壤样品的代表性与采样误差的控制直接相关。
由于土壤的不均一性,采样误差比较难克服,一般在田间任意取著干点,组成混合样品,混合样品组成的点愈多。
其代表性越好。
3、采样原则混合样品是由很多点样品混合组成。
每个混合样品的采样点愈多,即每个样品所包含的个体数愈多,则样品的代表性就愈大。
(1)采样划分:根据土壤类型、地形、母质、管理情况,划分若干采样小区。
(2)采样点数:由于土壤的不均一性,采集样品须按照一定采样路线和“随机”多点混合曲原则。
每个采样单元的样点数,根据人为地决定5~10点或10—20点视土壤差异和面积大小而定,但不宜少于5点。
4、采样方法农田 → 小区划分 → S 形采集耕层土样1kg布点:各点都是随机决定,随机定点可以避兔主观误差,提高样品的代表性,一般按S 形线路布点。
(如图)混合土样一般采集耕层土壤(1~15cm 或0~20cm );有时为了了解各土种的肥力差异和自然肥力变化趋势,可适当的采集底土(15~30cm 或20~40cm )的混合样品。
(二)土壤样品的制备与保存基本步骤:土样→塑料袋→放入写有采样人、地点、时间、深度、土壤类型的标签→托盘中风干→去除树叶、草根、石子等非土壤物质→碾碎→全过18目筛→一部分装瓶、一部分研碎全过100目再装瓶→贴上写有采样人、地点、时间、深度、土壤类型的标签→备用。
土壤样品的采集
5.甲种比重计(鲍氏比重计):刻度范围为0—60,最小刻度单位1克/升。刻度代表比重计所处深度上的土壤悬液的平均比重。
四、操作步骤:
1.称取通过1毫米孔径筛子的风干土50克,如为砂土则称取100克,精确至0.01克,放入有柄瓷钵中。
2.根据土壤pH分别选用下列分散剂:
石灰性土壤(50克样品):加0.5 mol·L-1(NaPO3)6六偏磷酸钠60毫升。
五、结果计算
1.将风干土重换算成烘干土重
烘干土重=
2.计算小于0.01毫米土粒的百分含量
<0.01毫米土粒% =
根据<0.01毫米土粒%,查卡庆斯基质地分类表(见表2—2),确定土壤质地名称。
六、记录格式和思考题
比重计速测法结果登记表
土壤名称吸湿水%测定日期
风干土重
(g)
烘干土量
(g)
样品读数
(g/l)
司笃克斯定律:
其中:V半径为r的土粒在介质中沉降的速度,
g重力加速度
r土粒的半径
d1土粒的密度,平均为2.65克/厘米3
d2介质(水)的密度
μ介质(水)的粘滞系数
三、试剂及仪器:
1.0.5mol·L-1( Na2C2O4)草酸钠溶液:称取33.5克草酸钠(化学纯),加蒸馏水溶液解后稀释至1升,摇匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告实验名称: 土壤样品采集制备及含水量的测定 实验类型: 定量实验一、实验目的和要求(必填) 二、实验内容和原理(必填)三、实验材料与仪器(必填) 四、操作方法和实验步骤(必填)五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得 八、参考文献 一、实验目的和要求1. 学习并掌握土壤耕层样品的采集、制备方法;2. 学习并掌握风干样品的含水量的测定方法;3. 掌握准确分析土壤样品和表达测试结果。
二、实验内容和原理(一)土壤样品的采集1、混合土样的采集土壤是一个不均一体,影响它的因素是错综复杂的。
因此采集代表性土壤是了解土壤内在特性,为解决问题提供措施的依据。
2、采样误差土壤样品的代表性与采样误差的控制直接相关。
由于土壤的不均一性,采样误差比较难克服,一般在田间任意取著干点,组成混合样品,混合样品组成的点愈多。
其代表性越好。
3、采样原则混合样品是由很多点样品混合组成。
每个混合样品的采样点愈多,即每个样品所包含的个体数愈多,则样品的代表性就愈大。
(1)采样划分:根据土壤类型、地形、母质、管理情况,划分若干采样小区。
(2)采样点数:由于土壤的不均一性,采集样品须按照一定采样路线和“随机”多点混合曲原则。
每个采样单元的样点数,根据人为地决定5~10点或10—20点视土壤差异和面积大小而定,但不宜少于5点。
4、采样方法农田 → 小区划分 → S 形采集耕层土样1kg布点:各点都是随机决定,随机定点可以避兔主观误差,提高样品的代表性,一般按S 形线路布点。
(如图)混合土样一般采集耕层土壤(1~15cm 或0~20cm );有时为了了解各土种的肥力差异和自然肥力变化趋势,可适当的采集底土(15~30cm 或20~40cm )的混合样品。
(二)土壤样品的制备与保存基本步骤:土样→塑料袋→放入写有采样人、地点、时间、深度、土壤类型的标签→托盘中风干→去除树叶、草根、石子等非土壤物质→碾碎→全过18目筛→一部分装瓶、一部分研碎全过100目再装瓶→贴上写有采样人、地点、时间、深度、土壤类型的标签→备用。
称样误差主要取决于混合程度和样品的粗细。
一个混合均匀的土样,在称量过程中大小不同的土粒有分离现象。
而大小不同的土粒化学成分有不同,会给分析结果带来误差。
称样量越少,这种影响越大。
一般常根据称样量的多少来决定样品的细度。
(三)土壤含水量的测定概念:土壤中所含水分的数量。
一般是指土壤绝对含水量,即100g烘干土中含有若干克水分,也称土壤含水率原理:选取通过1mm筛有代表性的风干土壤样品,把土样放在105-110℃的烘箱中烘至恒重,失去的质量为水分质量,即可计算土壤水分百分数。
在此温度下土壤吸着水被蒸发而结构水不致破坏,土壤有机质也不致分解。
计算公式:水分(%)=(风干重-烘干重)/ 烘干重×100(%)三、实验材料与仪器实验材料:土壤样本。
主要仪器:小土铲,管型土钻,塑料袋,碾土盘,分样筛,牛皮纸,镊子,广口瓶,标签纸,天平,电热恒温烘箱。
四、操作方法和实验步骤1、土壤的采集依照采样原则采取土壤样品,并做好标记,带回实验室。
2、土壤样品的制备和保存将采回的样品,放在碾土盘上,摊成薄薄的一层,置于室内通风阴干,并经常翻动,切忌阳光暴晒。
在土样半干时,须将大土块捏碎(尤其是黏性土壤),以免完全干后结成硬块,难以磨细。
样品风干后,应拣去动植物残体(如根、茎、叶、虫体等,以及石块和石灰、铁、锰等的结核)。
风干后的土样倒入土盘中,用木棍研细,使那些由土壤粘土矿物或腐殖质胶结起来的土壤团粒或结粒破碎。
使之全部通过18目的筛子。
充分混匀后用“四分法”分成两份,一份作为物理分析用,另一份进一步研细,全部通过100目的筛子,化学分析用。
“四分法”操作:四分法的做法是:将采集的土壤样品放在干净的塑料薄膜上弄碎,混合均匀并铺成四方形,划分对角线,分成四份,成对角的两份并为一份。
将研细的样品用磨口塞广口瓶或塑料瓶保存,一般的样品保存半年至一年,以备必要时核查之用。
样品瓶上的标签须注明样号、采样地点、土类名称、试验区号、深度、采集人、采样日期、筛孔等项目。
3、土壤含水量的测定(1)取取经烘干、干净且有标号的铝盒称重为A。
(2)加入风干土样5—10g(精确到0.0001g)称重为B。
(3)铝盒盖斜盖在铝盒上放入烘箱,于105±2℃烘干。
(4)16小时后,土样至恒重,至干燥器冷却,称重为C。
(5)计算含水量计算公式:土壤含水量(%)= (湿土重-烘干土重) / 烘干土重×100%= [ (B-A) - (C-A)] / (C-A)×100% =(B-C) / (C-A) ×100%五、实验数据记录和结果1、样品基本信息采样时间:2015.3.25采样地点:浙江大学紫金港校区西区油菜花田旁紫云英地采样深度:0~18cm初判:黏土(卡钦斯基制)筛孔:100目2、样品含水量分析A=14.2476gB=22.1800gC=21.8931g土壤含水量(%)=(B-C) / (C-A) ×100%=(22.1800-21.8931) / (21.8931-14.2476) ×100%=3.75%六、讨论、心得1、混合采样操作中的注意事项(1)每一点采取的土样厚度、深浅、宽狭应大体一致。
(2)各点都是随机决定。
(3)采样地点应避免田边、路边、沟边和特殊地形的部位以及堆过肥料的地方。
(4)一个混合样品是由均匀一致的许多点组成,各点的差异不能太大.不然就应根据土壤差异情况分别采集几个混合土样(5)一个混合样品重1公斤左右,如果重量超出很多,可以把各点所采集的土样放在一个木盆里或塑料布上用手握碎摊平,用四分法对角取两份混合放在布袋或塑料袋,其余可弃去,附立标签。
(6)标签用铅笔注明采样地点、土壤类型、采样深度、采样日期、采样人。
标签一式两份,一份放在袋内,一份扣在袋上。
2、新鲜样品VS风干样品为了样品的保存和工作的方便,从野外采回的土祥都先进行风干。
但是,在风干过程中,有些成分如低价铁、氨态氮、硝态氮等尝起很大的变化,这些成分的分析一般均用新鲜样品。
也有一些成分壤土壤pH、速效养分,特别是速效磷、钾也有较大的变化。
因此,土壤速效态钾的测定,用新鲜样品还是用风干样品就成了一个争论的问题。
但新鲜样品称样误差较大,工作又不方便。
因此,在实验室测定土壤速效磷、钾时,仍以风干土为宜。
3、制备土壤样品时的注意事项(1)研磨土样时只能用木棍滚压,不能用榔头等敲打。
硬性的敲打会破坏矿物晶粒,暴露出新的表面,使有效养分的溶解性增大。
全量分析不受此影响。
(2)筛孔直径(mm)=16/1英寸长度上的孔数。
每英寸长度上有多少个孔就称为多少目。
(3)管型土钻VS普通土钻管型土钻:下部——圆形开口钢管,上部——柄架。
砖取土速度快,少混杂,适用于大面积多点混合样品采取;不适用于砂性大的土壤或干硬的黏重土壤。
普通土钻:使用方便,一般适用于湿润土壤,同样不适用于砂性土壤。
普通土砖容易混杂。
4、测定土壤含水量的注意事项烘干法的优点是简单、直观。
但需注意:(1)采用合适感量的天平;(2)精确调控至恒温,防止温度过高,土壤有机质发生碳化而溢出;(3)一般样品烘干6h,含水量较多、质地黏重的土样需烘至8h;(4)从烘箱中取出的样品需盖严,放入干燥器中冷却约30min后立即称重。
5、误差分析(1)制备样品阶段a.在采土样时发现存在一些砖红色的物质,可能有从其他地方运来的建筑残渣,可能会影响实验样本的代表性和准确性。
b.用土钻取土时,部分点的土钻没有垂直取土,或者在移动过程中有样品掉落,可能对土壤样本有影响。
c.后期的磨土和过筛环节,由于四分法分的不均匀导致用于物理分析的土样略少于化学分析土样,应该将土样尽量铺平成正方形再用四分法分开。
d.在磨土环节中,使用的是木制擀面杖,这可能会导致较细的土里嵌进木缝中,会对样品量有影响。
e.过筛环节中,筛子中可能有残留的其他样品,虽然已经清洗过,但肯定会有少数残留,应进行彻底的清洗。
(2)测定含水量阶段a.因为该样品已经放置了数月,期间也取出数次,其中可能有杂质及多余的水分;b.铝盒未完全烘干,有水分残余;c.称量时的读数误差及系统误差;d.烘干时间超过规定时间,导致不仅吸着水失去,结构水也失去少许;e.将土壤样品从烘箱中取出时,未盖紧铝盖,导致空气中的水分影响实验数据;f.试验中没有进行平行测定,数据有一定偶然性。
6、思考题(1)为什么要过不同孔径的筛,目的何在?在本次实验中,制得的土样有两种:18目和100目。
所谓目数,是指物料的粒度或粗细度,一般定义是指在1英寸×1英寸的面积内有多少个网孔数,即筛网的网孔数,物料能通过该网孔即定义为多少目数。
目数越大,说明物料粒度越细,目数越小,说明物料粒度越大。
根据筛孔尺寸与标准目数的对照表,可以得到如下数据:筛孔尺寸:0.150mm 标准目数:100目筛孔尺寸:1.00mm 标准目数:18目试验中要筛选两次的原因是,18目的土样适用于土壤的物理性质的分析,而100目的土样适用于土壤的化学性质的分析,这两者适用性不同,需通过不同孔径的筛子筛分。
(2)为什么要去除草根、树叶等非土壤物质?因为草根、树叶等不是土壤物质,它们的组成结构与土壤截然不同,这些物质的存在会影响实验结果。
(3)含水量测定为什么选择105±2℃?在此温度下土壤吸着水被蒸发而结构水不致破坏,土壤有机质也不致分解。
7、测量土壤含水量的方法(1)称重法也称烘干法,是本实验采用的方法,该法是唯一可以直接测量土壤水分的方法,也是目前国际上的标准方法。
称重法具有各种操作不便等缺点,但作为直接测量土壤水分含量的唯一方法,在测量精度上具有其它方法不可比拟的优势,因此它作为一种实验室测量方法并用于其它方法的标定将长期存在。
(2)张力计法张力计法的测量原理是:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水的吸力值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率。
张力计法由于其测量的直接对象为土壤基质势,因此在更大程度和其它土壤水分测量方法相结合用于测定土壤水分特征曲线。
(3)电阻法多孔介质的导电能力同它的含水量以及介电常数有关,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的。
电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。
但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。
因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题。
电阻法由于标定复杂,并且随着时间的推移,其标定结果将很快失效,而且由于测量范围有限,精度不高等一系列原因,已经基本上被淘汰。