(完整word版)离散数学符号表.doc

合集下载

离散数学符号

离散数学符号

《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- (~) 集合的差运算⊕ 集合的对称差运算m + m 同余加m ⨯ m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡ a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离)(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图W(G) 图G 的连通分支数)(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ∆ 图G 的最大点度A(G) 图G 的邻接矩阵P(G) 图G 的可达矩阵M(G) 图G 的关联矩阵n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q 正有理数集-Q 负有理数集R 实数集Z 整数集m Z ]}[,,]2[,]1{[mSet 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号

离散数学符号

离散数学符号《离散数学》符号表全称量词(任意量词)存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足)┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算命题的“双条件”运算的B A ? 命题A 与B 等价关系B A ? 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算(“异或门” )↑ 命题的“与非” 运算(“与非门” )↓ 命题的“或非”运算(“或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(?不属于)A μ(·)集合A 的特征函数P (A )集合A 的幂集A 集合A 的点数nA A A (n A )集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0? 阿列夫零阿列夫包含真包含∪ 集合的并运算∩ 集合的交运算- (~)集合的差运算⊕ 集合的对称差运算m + m 同余加m ? m 同余乘〡限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡ a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R )逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →:(Y X f ?→?) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式k n 二项式系数p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离)(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '? 图G 与图G '同构*G 平面图G 的对偶图W(G) 图G 的连通分支数)(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ? 图G 的最大点度A(G) 图G 的邻接矩阵P(G) 图G 的可达矩阵M(G) 图G 的关联矩阵n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q 正有理数集-Q 负有理数集R 实数集Z 整数集m Z ]}[,,]2[,]1{[mSet 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

(完整word版)离散数学符号表.doc

(完整word版)离散数学符号表.doc

《离散数学》符号表全称量词(任意量词)存在量词├断定符(公式在L 中可证)╞满足符(公式在 E 上有效,公式在 E 上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算命题的“双条件”运算的A B命题A与B等价关系A B 命题 A 与 B 的蕴涵关系A 公式 A的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算(“异或门” )↑命题的“与非” 运算(“与非门”)↓命题的“或非”运算(“或非门” )□模态词“必然”◇模态词“可能”φ空集∈属于(不属于)A (·)集合 A 的特征函数P(A)集合 A 的幂集A 集合 A 的点数A A A (A n)集合A的笛卡儿积R 2R R ( R nR n 1) 关系 R 的“复合”R阿列夫零阿列夫包含真包含∪ 集合的并运算 ∩ 集合的交运算 - (~)集合的差运算集合的对称差运算mm同余加mm同余乘〡限制[ x] R集合关于关系 R 的等价类 A/ R集合 A 上关于 R 的商集 R ( A)集合 A 关于关系 R 的划分 R (A)集合 A 关于划分 的关系 [a]元素 a 产生的循环群 [a] R元素 a 形成的 R 等价类 C r由相容关系 r 产生的最大相容类 I环,理想Z /( n)模 n 的同余类集合a b(mod k)a 与b 模 k 相等r ( R)关系 R 的自反闭包 s( R)关系 R 的对称闭包R ,t( R) 关系 R 的传递闭包R ,rt (R) 关系 R 的自反、传递闭包Hi . 矩阵 H 的第 i 个行向量H. j 矩阵 H 的第 j 个列向量CP 命题演绎的定理( CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)I A,R0 恒等关系A 集合 A 的补集X X 所有 X 到自身的映射Y X 所有从集合 X 到集合 Y 的函数K[ A] ( A) 集合 A 的势(基数)R 关系r 相容关系R 否关系R 补关系R 1 ( R c)逆关系R S 关系 R 与关系 S 的复合R R R , R n 关系 R 的n次幂nB2 B2 , B2r 布尔代数 B2的 r 次幂rB2r 含有 2r个元素的布尔代数domf 函数 f 的定义域(前域)ranf 函数 f 的值域f: X Y ( X f Y ) f 是X到Y的函数GCD (x, y) x, y 最大公约数LCM (x, y) x, y 的最小公倍数e 幺元零元a 1 元素 a 的逆元aH (Ha ) H 关于a的左(右)陪集Ker ( f ) 同态映射 f 的核(或称 f 的同态核)A,B,C 合式公式n二项式系数kn多项式系数n1 ,n2 , , n p[1 ,n] 1 到 n 的整数集合[ x]k x( x 1) (x k 1)[ x]k x( x 1) (x k 1)C n k 组合数d (u, v) 点 u 与点 v 间的距离d (v) 点 v 的度数d (v) 点 v 的出度d (v) 点 v 的入度G (V ,E) 点集为 V ,边集为 E 的图G 图G的补图G G图G与图G同构G平面图 G 的对偶图W(G)图 G 的连通分支数(G)图G的点连通度(G)图G的边连通度(G)图G的最小点度(G)图G的最大点度A(G)图 G 的邻接矩阵P(G)图 G 的可达矩阵M(G)图 G 的关联矩阵K n n 阶完全图K n,m完全二分图C复数集N自然数集(包含0 在内)N正自然数集P素数集Q有理数集Q正有理数集Q负有理数集R实数集Z整数集Z m{[ 1] , [ 2] ,,[ m]}Set集范畴Top拓扑空间范畴Ab交换群范畴Grp群范畴Mon单元半群范畴Ring有单位元的(结合)环范畴Rng环范畴CRng交换环范畴R-mod环R的左模范畴mod-R环R的右模范畴Field域范畴Poset偏序集范畴。

离散数学符号表

离散数学符号表

《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数n A A A ⨯⨯⨯ (nA ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合”0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包 +R ,)(R t关系R 的传递闭包 *R ,)(R rt关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r r B B B 222,⨯⨯ 布尔代数2B 的r 次幂r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ∆ 图G 的最大点度 A(G) 图G 的邻接矩阵 P(G) 图G 的可达矩阵 M(G) 图G 的关联矩阵 n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q 正有理数集-Q 负有理数集R 实数集Z 整数集m Z ]}[,,]2[,]1{[m Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴 Rng 环范畴CRng 交换环范畴R-mod 环R 的左模范畴 mod-R 环R 的右模范畴 Field 域范畴Poset 偏序集范畴。

离散数学符号

离散数学符号

《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足)┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” )↑ 命题的“与非” 运算( “与非门” )↓ 命题的“或非”运算( “或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合”0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪集合的并运算 ∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集)(f Ker 同态映射f 的核(或称f 的同态核)A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk nC 组合数 ),(v u d 点u 与点v 间的距离)(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图W(G) 图G 的连通分支数)(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ图G 的最小点度 )(G ∆图G 的最大点度 A(G)图G 的邻接矩阵 P(G)图G 的可达矩阵 M(G)图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集(包含0在内) +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴仅供个人用于学习、研究;不得用于商业用途。

离散数学符号大全

离散数学符号大全

离散数学符号大全├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算A<=>B 命题A 与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A 的对偶公式wff 合式公式iff 当且仅当↑ 命题的“与非” 运算(“与非门” )↓ 命题的“或非”运算(“或非门” )□模态词“必然”◇模态词“可能”φ 空集∈属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”∪集合的并运算∩集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X→Y f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号大全

离散数学符号大全

离散数学符号⼤全├断定符(公式在 L 中可证)╞满⾜符(公式在 E上有效,公式在 E上可满⾜)┐命题的 “⾮”运算∧命题的 “合取 ”(“与”)运算∨命题的 “析取 ”(“或”,“可兼或 ”)运算→命题的 “条件 ”运算A<=>B 命题 A 与 B 等价关系A=>B 命题 A 与 B 的蕴涵关系A* 公式 A 的对偶公式wff 合式公式iff 当且仅当↑命题的 “与⾮ ” 运算( “与⾮门 ” )↓命题的 “或⾮ ”运算( “或⾮门 ” )□模态词 “必然 ”◇模态词 “可能 ”φ空集∈属于( ??不属于)P(A)集合 A 的幂集|A| 集合 A 的点数R^2=R○R [R^n=R^(n-1)○R] 关系 R 的“复合 ”∪集合的并运算∩集合的交运算- (~)集合的差运算〡限制[X](右下⾓ R) 集合关于关系 R 的等价类A/ R 集合 A 上关于 R 的商集[a] 元素 a 产⽣的循环群I (i ⼤写 ) 环,理想Z/(n) 模 n 的同余类集合r(R) 关系 R 的⾃反闭包s(R) 关系的对称闭包CP 命题演绎的定理( CP 规则)EG 存在推⼴规则(存在量词引⼊规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推⼴规则(全称量词引⼊规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X →Y f是 X 到 Y的函数GCD(x,y) x,y最⼤公约数LCM(x,y) x,y最⼩公倍数aH(Ha) H 关于 a 的左(右)陪集Ker(f) 同态映射 f 的核(或称 f 同态核)[1,n] 1 到 n 的整数集合d(u,v) 点 u 与点 v 间的距离d(v) 点 v 的度数G=(V,E) 点集为 V,边集为 E的图W(G) 图 G 的连通分⽀数k(G) 图 G 的点连通度△( G) 图 G 的最⼤点度A(G) 图 G 的邻接矩阵P(G) 图 G 的可达矩阵M(G) 图 G 的关联矩阵C 复数集N ⾃然数集(包含 0 在内)N* 正⾃然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环 R 的左模范畴mod-R 环 R 的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号

离散数学符号

《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- (~) 集合的差运算⊕ 集合的对称差运算m + m 同余加m ⨯ m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡ a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ 图G 的最小点度 )(G ∆ 图G 的最大点度 A(G) 图G 的邻接矩阵 P(G) 图G 的可达矩阵 M(G) 图G 的关联矩阵 n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q 正有理数集-Q 负有理数集R 实数集Z 整数集m Z ]}[,,]2[,]1{[mSet 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号

离散数学符号

《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数4434421ΛnA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R ο=2 )(1R R R n n ο-= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪集合的并运算 ∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R ο 关系R 与关系S 的复合n nR R R R ,4434421οΛοο 关系R 的n 次幂r rB B B 222,43421Λ⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21Λ 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k Λ)1()1(][-++=k x x x x k Λk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ图G 的最小点度 )(G ∆图G 的最大点度 A(G)图G 的邻接矩阵 P(G)图G 的可达矩阵 M(G)图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集(包含0在内) +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Λ Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

Qmzeao离散数学符号表

Qmzeao离散数学符号表

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足)┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” )↑ 命题的“与非” 运算( “与非门” )↓ 命题的“或非”运算( “或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集↔ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合”0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- (~) 集合的差运算⊕ 集合的对称差运算m + m 同余加m ⨯ m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡ a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r r B B B 222,⨯⨯ 布尔代数2B 的r 次幂r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集)(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图W(G) 图G 的连通分支数 )(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ∆ 图G 的最大点度A(G) 图G 的邻接矩阵P(G) 图G 的可达矩阵M(G) 图G 的关联矩阵n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q 正有理数集-Q 负有理数集R 实数集Z 整数集m Z ]}[,,]2[,]1{[m Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴 Rng 环范畴CRng 交换环范畴R-mod 环R 的左模范畴mod-R 环R 的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号

离散数学符号

《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪集合的并运算 ∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ图G 的最小点度 )(G ∆图G 的最大点度 A(G)图G 的邻接矩阵 P(G)图G 的可达矩阵 M(G)图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集(包含0在内) +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

《离散数学》符号表之欧阳治创编

《离散数学》符号表之欧阳治创编

《离散数学》符号表时间2021.03.10 创作:欧阳治全称量词(任意量词)存在量词├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E 上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算↔命题的“双条件”运算的A⇔命题A与B等价关系BA⇒命题A与B的蕴涵关系B*A公式A的对偶公式wff合式公式iff当且仅当V 命题的“不可兼或”运算( “异或门” )↑ 命题的“与非” 运算( “与非门” )↓ 命题的“或非”运算( “或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(不属于)A μ(·) 集合A 的特征函数P (A )集合A 的幂集A 集合A 的点数n A A A ⨯⨯⨯(n A ) 集合A 的笛卡儿积R R R =2)(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- (~) 集合的差运算集合的对称差运算m+m 同余加 m ⨯m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量jH .矩阵H 的第j 个列向量 CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数 )(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1 R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r r B B B 222,⨯⨯ 布尔代数2B 的r 次幂r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f是X 到Y 的函数 ),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集)(f Ker 同态映射f 的核(或称f 的同态核)A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合k n C 组合数),(v u d 点u 与点v 间的距离)(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图W(G) 图G 的连通分支数)(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ∆ 图G 的最大点度A(G) 图G 的邻接矩阵P(G) 图G 的可达矩阵M(G) 图G 的关联矩阵n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内)+N正自然数集P 素数集Q 有理数集+Q正有理数集-Q负有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号表

离散数学符号表

《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数n A A A ⨯⨯⨯ (nA ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合”0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包 +R ,)(R t关系R 的传递闭包 *R ,)(R rt关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r r B B B 222,⨯⨯ 布尔代数2B 的r 次幂r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ∆ 图G 的最大点度 A(G) 图G 的邻接矩阵 P(G) 图G 的可达矩阵 M(G) 图G 的关联矩阵 n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q 正有理数集-Q 负有理数集R 实数集Z 整数集m Z ]}[,,]2[,]1{[m Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴 Rng 环范畴CRng 交换环范畴R-mod 环R 的左模范畴 mod-R 环R 的右模范畴 Field 域范畴Poset 偏序集范畴。

《离散数学》符号表之欧阳家百创编

《离散数学》符号表之欧阳家百创编

《离散数学》符号表欧阳家百(2021.03.07)全称量词(任意量词)存在量词├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算↔命题的“双条件”运算的A⇔命题A与B等价关系BBA⇒命题A与B的蕴涵关系*A公式A的对偶公式wff合式公式iff当且仅当V命题的“不可兼或”运算(“异或门”)↑命题的“与非”运算(“与非门”)↓命题的“或非”运算(“或非门”)□模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(不属于)A μ(·) 集合A 的特征函数P (A )集合A 的幂集 A 集合A 的点数n A A A ⨯⨯⨯(n A ) 集合A 的笛卡儿积R R R =2)(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- (~) 集合的差运算集合的对称差运算m+m 同余加 m ⨯m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类 I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包 .i H 矩阵H 的第i 个行向量jH .矩阵H 的第j 个列向量 CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数 )(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合 n nR R R R ,关系R 的n 次幂 r r B B B 222,⨯⨯ 布尔代数2B 的r 次幂r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域) ranf 函数f 的值域Y X f →: (Y X f −→−) f是X 到Y 的函数 ),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合 k n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ 图G 的最小点度 )(G ∆ 图G 的最大点度 A(G) 图G 的邻接矩阵 P(G) 图G 的可达矩阵 M(G) 图G 的关联矩阵 n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q正有理数集-Q负有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号表

离散数学符号表

离散数学符号表∀ 全称量词任意量词∃ 存在量词├ 断定符公式在L 中可证╞ 满足符公式在E 上有效,公式在E 上可满足 ┐ 命题的“非”运算∧ 命题的“合取”“与”运算∨ 命题的“析取”“或”,“可兼或”运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算 “异或门” ↑ 命题的“与非” 运算 “与非门” ↓ 命题的“或非”运算 “或非门” □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于∉不属于A μ· 集合A 的特征函数P A 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ n A 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- ~ 集合的差运算⊕ 集合的对称差运算m + m 同余加m ⨯ m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类 I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡ a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理CP 规则EG 存在推广规则存在量词引入规则ES 存在量词特指规则存在量词消去规则 UG 全称推广规则全称量词引入规则 US 全称特指规则全称量词消去规则 A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数 )(][A A K 集合A 的势基数R 关系r 相容关系 R 否关系R 补关系1-R c R 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域前域ranf 函数f 的值域Y X f →: Y X f −→−f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元 )(Ha aH H 关于a 的左右陪集 )(f Ker 同态映射f 的核或称f 的同态核 A,B,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数 ⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数1,n 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数 )(v d + 点v 的出度 )(v d - 点v 的入度 ),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 WG 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ图G 的最小点度 )(G ∆图G 的最大点度 AG图G 的邻接矩阵 PG图G 的可达矩阵 MG图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集包含0在内 +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的结合环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

《离散数学》符号表之欧阳光明创编

《离散数学》符号表之欧阳光明创编

《离散数学》符号表欧阳光明(2021.03.07)全称量词(任意量词)存在量词├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算↔命题的“双条件”运算的A⇔命题A与B等价关系BBA⇒命题A与B的蕴涵关系*A公式A的对偶公式wff合式公式iff当且仅当V命题的“不可兼或”运算(“异或门”)↑命题的“与非”运算(“与非门”)↓命题的“或非”运算(“或非门”)□模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(不属于)A μ(·) 集合A 的特征函数P (A )集合A 的幂集 A 集合A 的点数n A A A ⨯⨯⨯(n A ) 集合A 的笛卡儿积R R R =2)(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- (~) 集合的差运算集合的对称差运算m+m 同余加 m ⨯m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类 I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包 .i H 矩阵H 的第i 个行向量jH .矩阵H 的第j 个列向量 CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数 )(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合 n nR R R R ,关系R 的n 次幂 r r B B B 222,⨯⨯ 布尔代数2B 的r 次幂r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域) ranf 函数f 的值域Y X f →: (Y X f −→−) f是X 到Y 的函数 ),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合 k n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ∆ 图G 的最大点度A(G) 图G 的邻接矩阵 P(G) 图G 的可达矩阵M(G) 图G 的关联矩阵 n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q正有理数集-Q负有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学符号表

离散数学符号表

离散数学符号表∀ 全称量词任意量词∃ 存在量词├ 断定符公式在L 中可证╞ 满足符公式在E 上有效,公式在E 上可满足 ┐ 命题的“非”运算∧ 命题的“合取”“与”运算∨ 命题的“析取”“或”,“可兼或”运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算 “异或门” ↑ 命题的“与非” 运算 “与非门” ↓ 命题的“或非”运算 “或非门” □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于∉不属于A μ· 集合A 的特征函数P A 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ n A 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- ~ 集合的差运算⊕ 集合的对称差运算m + m 同余加m ⨯ m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类 I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡ a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理CP 规则EG 存在推广规则存在量词引入规则ES 存在量词特指规则存在量词消去规则 UG 全称推广规则全称量词引入规则 US 全称特指规则全称量词消去规则 A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数 )(][A A K 集合A 的势基数R 关系r 相容关系 R 否关系R 补关系1-R c R 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域前域ranf 函数f 的值域Y X f →: Y X f −→−f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元 )(Ha aH H 关于a 的左右陪集 )(f Ker 同态映射f 的核或称f 的同态核 A,B,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数 ⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数1,n 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数 )(v d + 点v 的出度 )(v d - 点v 的入度 ),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 WG 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ图G 的最小点度 )(G ∆图G 的最大点度 AG图G 的邻接矩阵 PG图G 的可达矩阵 MG图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集包含0在内 +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的结合环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《离散数学》符号表
全称量词(任意量词)
存在量词
├断定符(公式在L 中可证)
╞满足符(公式在 E 上有效,公式在 E 上可满足)┐命题的“非”运算
∧命题的“合取”(“与”)运算
∨命题的“析取”(“或”,“可兼或”)运算
→命题的“条件”运算
命题的“双条件”运算的
A B命题A与B等价关系
A B 命题 A 与 B 的蕴涵关系
A 公式 A的对偶公式
wff 合式公式
iff 当且仅当
V 命题的“不可兼或”运算(“异或门” )
↑命题的“与非” 运算(“与非门”)
↓命题的“或非”运算(“或非门” )
□模态词“必然”
◇模态词“可能”
φ空集
∈属于(不属于)
A (·)集合 A 的特征函数
P(A)集合 A 的幂集
A 集合 A 的点数
A A A (A n)集合A的笛卡儿积
R 2
R R ( R n
R n 1
) 关系 R 的“复合”
R
阿列夫零
阿列夫
包含
真包含
∪ 集合的并运算 ∩ 集合的交运算 - (~)
集合的差运算
集合的对称差运算
m
m
同余加
m
m
同余乘

限制
[ x] R
集合关于关系 R 的等价类 A/ R
集合 A 上关于 R 的商集 R ( A)
集合 A 关于关系 R 的划分 R (A)
集合 A 关于划分 的关系 [a]
元素 a 产生的循环群 [a] R
元素 a 形成的 R 等价类 C r
由相容关系 r 产生的最大相容类 I
环,理想
Z /( n)
模 n 的同余类集合
a b(mod k)
a 与
b 模 k 相等
r ( R)
关系 R 的自反闭包 s( R)
关系 R 的对称闭包
R ,t( R) 关系 R 的传递闭包
R ,rt (R) 关系 R 的自反、传递闭包
H
i . 矩阵 H 的第 i 个行向量
H
. j 矩阵 H 的第 j 个列向量
CP 命题演绎的定理( CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
I A,R0 恒等关系
A 集合 A 的补集
X X 所有 X 到自身的映射
Y X 所有从集合 X 到集合 Y 的函数
K[ A] ( A) 集合 A 的势(基数)
R 关系
r 相容关系
R 否关系
R 补关系
R 1 ( R c)逆关系
R S 关系 R 与关系 S 的复合
R R R , R n 关系 R 的n次幂
n
B2 B2 , B2r 布尔代数 B2的 r 次幂
r
B2r 含有 2r个元素的布尔代数
domf 函数 f 的定义域(前域)
ranf 函数 f 的值域
f: X Y ( X f Y ) f 是X到Y的函数GCD (x, y) x, y 最大公约数
LCM (x, y) x, y 的最小公倍数
e 幺元
零元
a 1 元素 a 的逆元
aH (Ha ) H 关于a的左(右)陪集
Ker ( f ) 同态映射 f 的核(或称 f 的同态核)A,B,C 合式公式
n
二项式系数
k
n
多项式系数
n1 ,n2 , , n p
[1 ,n] 1 到 n 的整数集合
[ x]k x( x 1) (x k 1)
[ x]k x( x 1) (x k 1)
C n k 组合数
d (u, v) 点 u 与点 v 间的距离
d (v) 点 v 的度数
d (v) 点 v 的出度
d (v) 点 v 的入度
G (V ,E) 点集为 V ,边集为 E 的图
G 图G的补图
G G图G与图G同构
G平面图 G 的对偶图
W(G)图 G 的连通分支数(G)图G的点连通度
(G)图G的边连通度
(G)图G的最小点度
(G)图G的最大点度
A(G)图 G 的邻接矩阵
P(G)图 G 的可达矩阵
M(G)图 G 的关联矩阵
K n n 阶完全图
K n,m完全二分图
C复数集
N自然数集(包含0 在内)N正自然数集
P素数集
Q有理数集
Q正有理数集
Q负有理数集
R实数集
Z整数集
Z m{[ 1] , [ 2] ,,[ m]}
Set集范畴
Top拓扑空间范畴
Ab交换群范畴
Grp群范畴
Mon单元半群范畴
Ring有单位元的(结合)环范畴Rng环范畴
CRng交换环范畴
R-mod环R的左模范畴
mod-R环R的右模范畴
Field域范畴
Poset偏序集范畴。

相关文档
最新文档