初中数学二次函数的图像与性质教案

合集下载

初中数学_二次函数的图象与性质(2)教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与性质(2)教学设计学情分析教材分析课后反思

《二次函数的图象和性质》教学设计执教者学情分析一、学生的年龄特点和认知特点初三年级的学生性格比较开朗活泼,对新鲜事物比较敏感,有自己的个人判断,因此,在教学过程中创设问题情景,留给他们动手实践、观察思考、自主探究、合作交流、归纳猜想的时间和空间.让他们经历获取知识的过程.二、学生已具备的基本知识与技能学生在八年级已经初步积累了函数知识和利用函数解决问题的经验.初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识.学生具有也一定的数学分析、理解能力.学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力.因此,在本课中,应多让学生动手实践、自主探究、合作交流,从而更好的体会到二次函数的特征.效果分析这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。

通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数图像的性质。

真正的形成往往来源于真实的自主探究。

只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。

在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

首先,要设计适合学生探究的素材。

教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。

当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。

但是能让学生理解和接受的知识才是最好的。

如果牵强的引出来,不一定是好事。

其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。

探究教学是追求教学过程的探究和探究过程的自然和本真。

只有这样探究才是有价值的,真知才会有生长性。

要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。

结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

初中数学_二次函数的图象与性质(第2课时)教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与性质(第2课时)教学设计学情分析教材分析课后反思

《二次函数的图像与性质(第2课时)》课堂教学设计教学目标:1.会画二次函数的图象与22)(h x a y k ax y -=+=2.能结合图象确定抛物线;的对称轴与顶点坐标与22)(h x a y k ax y -=+= 3.通过比较抛物线222)(ax y h x a y k ax y =-=+=同与 的相互关系,培养观察、分析、总结的能力。

教学重点:画出形如 22)(h x a y k ax y -=+=与形如 的二次函数的图象,能指出上述函数图象的开口方向,对称轴,顶点坐标。

教学难点:理解函数 222)(ax y h x a y k ax y =-=+=同与 及其图象间的相互关系。

活动一,温故知新形如 2ax y = 的二次函数的图像和性质各是什么?(多媒体直观展示表格) 活动二,探究新知1请你在同一直角坐标系中,画出二次函数y =x 2,y =x 2+1,y =x 2-1x观察所画的三个函数图像,我能够完成下列填空:归纳:于是,我进一步发现了:函数y=ax2 (a≠0)和函数y=ax2+k (a≠0)的图象的联系。

1.函数y=ax2 (a≠0)和函数y=ax2+k (a≠0)的图象形状,只是位置不同;当k >0时,函数y=ax2+ k的图象可由y=ax2的图象向平移个单位得到,当k<0时,函数y=ax2+ k的图象可由y=ax2的图象向平移个单位得到。

2.a的正负决定开口的;a决定开口的,即a不变,则抛物线的形状。

因为平移没有改变抛物线的开口方向和形状,所以平移前后的两条抛物线a值。

3.抛物线y =ax 2+k 的性质活动三,应用新知1 1.填空2.抛物线y= −2x 2+3是由抛物线y= −2x 2线怎样平移得到的__________。

3.求形状与y=−2x 2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的抛物线解析式。

4.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________。

《二次函数的图像和性质》教学设计与反思

《二次函数的图像和性质》教学设计与反思

《二次函数的图像和性质》教学设计与反思课题:二次函数的图像和性质科目:数学提供者:XXX教学对象:九年级单位:XXX课时:第一课时一、教学内容分析(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一.二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中研究一元二次不等式和圆锥曲线奠定基础。

在历届淮安市中考试题中,二次函数都是不可缺少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会二、教学目标一、知识技能目标1.学生会用描点法画出y ax2的图象;2.掌握二次函数y ax2的性质。

二、过程方法目标1.学生类比前面所学的函数图像的画法,用描点法画二次函数y ax2的图像;2.学生经历观察、考虑、探索二次函数y ax2图象性质的过程,结合解析式特性、图像特性,感知二次函数y ax2的性质。

三、情感立场方针使学生体会数形结合思想,培养学生观察、思考、归纳的良好思维惯三、研究者特性分析我本期才接手的两个班级,大部分学生数学基础不够扎实,理解能力,运算能力,思维能力等方面都还有所欠缺;研究积极性不高。

针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和研究积极性,指导学生积极思维、主动获取知识,养成良好的研究惯。

并逐步学会独立提出问题、解决问题。

引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

四、讲授策略挑选与设计1.探究引导策略:商量式研究;教师开导引导。

2.自主合作探究式研究策略:相互讨论、交流、合作的课堂氛围。

五、教学重点及难点讲授重点:会用描点法画出二次函数y=ax2的图象,探索二次函数性质教学难点:探索二次函数性质学生活动设计意图教师引导学生回顾:先画出一次函数的图象,然后创设问题情观察、分析、归纳得到一境,让学生通过一、情境引入可以用研类比学过的知识一次函数的性质是如何研究的?我们能否类次函数的性质。

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。

学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。

之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。

重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。

教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。

4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。

观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。

(指名学生回答)。

师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。

师:这个猜想是否正确呢?这节课我们一起来验证一下。

(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。

2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。

3、通过学生共同观看和争论,培育大家的合作沟通意识。

(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。

2、具有初步的创新精神和实践力量。

教学重点1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1、探究方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法争论探究法。

教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。

创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步进展估算力量。

(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

初中数学教案:二次函数的性质与图像

初中数学教案:二次函数的性质与图像

初中数学教案:二次函数的性质与图像一、二次函数的基本性质二次函数是指形式为y=ax^2+bx+c的函数,其中a、b、c分别为实数且a≠0。

在初中数学中,学习二次函数的性质和图像是非常重要的内容,掌握了这些基本知识后能够更好地理解和应用二次函数。

1. 首先是关于二次函数的开口方向。

通过观察函数的系数a可以判断其开口方向:当a>0时,二次函数的图像开口朝上;当a<0时,二次函数的图像开口朝下。

这个特点可以通过对比正负值来判断。

2. 其次是关于二次函数的顶点。

顶点是二次函数图像上最高或最低点的坐标,在解析式中可以通过完成平方项得到。

顶点坐标表达形式为(-b/2a, f(-b/2a))或者(xv, yv),其中xv=-b/2a为顶点横坐标,yv=f(xv)为纵坐标。

3. 还有关于二次函数的对称轴。

对称轴是指经过顶点并与抛物线相切或相交于一点(即x=xv)的某条直线,一般表示为x=xv。

在求出顶点后很容易确定对称轴的方程。

4. 最后是关于二次函数的零点。

零点是使得函数值为0的横坐标,即f(x)=0的解。

求解零点需要将二次函数设置为0,通过公式或者配方法求解出x的值,得到的结果一般有两个,表示抛物线与x轴交点。

二、二次函数图像的绘制了解了二次函数的基本性质后,我们可以通过这些性质来绘制出准确的二次函数图像。

1. 根据顶点和开口方向确定图像大致形状。

如果a>0,则开口朝上,在顶点上方开始从左到右逐渐增大;如果a<0,则开口朝下,在顶点下方开始从左到右逐渐减小。

2. 再通过计算找出顶点坐标和对称轴方程。

根据公式-xv=b/2a,可以求得顶点横坐标xv;然后将xv代入原始方程求得纵坐标yv;对称轴即为x=xv。

3. 找出零点(若存在)。

将函数设置为0,并使用公式或配方法求解出零点。

此时可以用一个特殊符号表示两个实数解。

4. 在坐标系中画出对称轴,并以对称轴为中心按照函数的开口方向分别标出顶点和零点。

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。

2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。

教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。

问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。

初中数学_二次函数的图象与性质教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与性质教学设计学情分析教材分析课后反思

《二次函数的图象与性质》教学设计一、教材分析函数的知识贯穿于整个初等数学体系之中,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,更为以后学习一元二次不等式等奠定基础。

在历届中考试题中,二次函数都是不可缺少的内容。

中考中主要考查二次函数的基础知识、二次函数关系式的求法、二次函数的实际应用。

在复习二次函数的基础知识时,要注重待定系数法、函数思想、数形结合思想的应用。

二、学情分析1、初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

2、学生的分析、理解能力较学习新课时有明显提高。

3、初三学生具有一定的自主探究和合作学习的能力。

4、学生能力差异较大,两极分化明显。

三、教学目标(一)知识与技能:复习巩固二次函数的图象及其性质(二)过程与方法:提高学生应用能力和知识迁移能力(三)情感态度价值观:使学生进一步认识到数学源于生活,用于生活的辩证观点。

四、教学重难点重点:把实际问题转化成二次函数问题并利用二次函数的性质来解决。

难点:理解数形结合的思想解二次函数五、教学过程(一)创设情境,导入新课:让知道学生这节课的主要形式是竞赛活动,以提高学生参与课堂的兴趣。

(二)知识梳理:知识梳理的目的是让学生对前段时间所学内容的一个简单整理,让学生明白这一章中应该掌握的最基础的内容有哪些,同时也是为本节课的内容做好准备。

本环节是学生的第一个分组活动。

各小组共同完成知识网路表格,然后小组间相互交换进行评阅,并给出评分。

(三)例题导析通过前一环节对知识的回顾使复习的内容条理清晰地呈现在学生面前,完成“由厚到薄”的学习过程。

此时就应该让学生学会怎样将这些知识运用到解题中去:例:已知二次函数y=x2-x+c。

(1)求它的图象的开口方向、顶点坐标和对称轴;(2)c取何值时,顶点在x轴上?(3)若此函数的图象过原点,求此函数的解析式。

(4)如果c=-2,画出此时的抛物线的图像,并判断x取何值时y 随x的增大而减小。

初中数学教案 二次函数的图像与性质

初中数学教案 二次函数的图像与性质

初中数学教案二次函数的图像与性质教案教学目标:1. 熟练掌握二次函数的概念和基本性质;2. 能够准确绘制二次函数的图像;3. 理解二次函数图像的平移、伸缩和翻转变化。

前置知识:1. 熟练掌握一元二次方程的解法;2. 了解坐标系及其基本概念;3. 理解函数的概念和函数图像的基本特征。

教学过程:一、导入(5分钟)为了引起学生的兴趣,教师可以提出以下问题:什么是函数?你能举出一些例子吗?请简要解释一下函数的特点。

二、概念讲解(15分钟)1. 二次函数的定义二次函数是指形如 f(x) = ax² + bx + c 的函数,其中a ≠ 0。

2. 二次函数的图像特征a) 抛物线的开口方向与 a 的正负相关,当 a > 0 时,抛物线开口向上,当 a < 0 时,抛物线开口向下;b) 顶点坐标为 (-b/2a, f(-b/2a));c) 对称轴的方程为 x = -b/2a。

三、图像绘制(25分钟)1. 绘制基本二次函数 y = x²由于 a = 1,b = 0,c = 0,教师可以引导学生逐点绘制函数图像,并强调顶点和对称轴的位置。

2. 变化一:改变 a 的值教师可以指导学生通过改变a 的值,观察抛物线开口的变化。

例如:若 a > 1,抛物线会变窄;若 0 < a < 1,抛物线会变宽。

3. 变化二:改变 b 的值教师可以指导学生通过改变b 的值,观察抛物线的位置变化。

例如:若 b > 0,抛物线会向左平移;若 b < 0,抛物线会向右平移。

4. 变化三:改变 c 的值教师可以指导学生通过改变 c 的值,观察抛物线的顶点高低变化。

例如:若 c > 0,抛物线的顶点会上移;若 c < 0,抛物线的顶点会下移。

四、图像分析(25分钟)1. 零点与解(交点与解的关系)引导学生通过观察二次函数图像,理解零点表示函数与 x 轴的交点,而解则代表对应的一元二次方程的解。

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。

2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。

3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。

二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。

2. 教学难点:通过图像理解和应用二次函数的性质。

三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。

四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。

2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。

3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。

4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。

五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。

六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。

初中数学人教九年级上册第二十二章 二次函数2二次函数一般式的图像及性质教案

初中数学人教九年级上册第二十二章 二次函数2二次函数一般式的图像及性质教案

二次函数c bx ax y ++=2的图象和性质第1课时教学目标:知识与技能:能熟练地将二次函数一般式化为顶点式,并能求出它的顶点坐标,对称轴. 过程与方法:经历一般式化为顶点式的过程,进一步体会转化的数学思想.情感态度与价值观:在学生探究问题的过程中,发展学生合作意识,培养刻苦钻研的精神. 教学重难点:重点:会熟练求出二次函数一般式c bx ax y ++=2的顶点坐标、对称轴.难点:会用配方法或公式法将一般式c bx ax y ++=2化成顶点式()k h x a y +-=2教学过程:一、温故知新:填空:回顾()k h x a y +-=2的性质:开口方向、对称轴、顶点坐标、增减性 二、探究新知:我们已经知道()k h x a y +-=2的图像和性质,能否利用这些知识来讨论26212+-=x x y 的图像和性质呢?问题1 怎样将26212+-=x x y 化成()k h x a y +-=2的形式?(学生思考回答,教师引导完成配方).问题2 怎么去画出26212+-=x x y 的函数图象? 学生思考回答:1.平移及过程,教师演示平移动画(几何画板);2.直接作图:列表、描点、连线,教师演示画图过程.归纳:1.26212+-=x x y 的图象的性质 开口方向: 对称轴: 定点坐标: 增减性: 图象: 2.二次函数26212+-=x x y 图象的画法:①化:化为顶点式;②定:开口方向、对称轴、顶点坐标;③画:列表、描点、连线. 问题3 你能把c bx ax y ++=2配成()k h x a y +-=2的形式吗? 学生活动,教师指导,集体订正.结论:c bx ax y ++=2→a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛+=对比顶点式,你能说出c bx ax y ++=2的对称轴、顶点坐标吗?归纳:c bx ax y ++=2的图象和性质观看趣味视频:从一般式到顶点式三、例题解析: 写出抛物线c bx ax y ++=2的开口方向、对称轴、顶点坐标练习:写出下列抛物线的开口方向、对称轴、顶点坐标开口方向 对称轴顶点坐标(1)x x y 232+=(2)x x y 22--=+2四、课堂小结:1.同学们,这节课的学习你有哪些收获呢?学生自行归纳总结2.知识框架图五、提升训练:练习册28页例3及变式训练六、教学反思:教学流程设计合理,教学过程学生反馈较好,但是未能及时对部分学困生进行辅导,学生动手操作的时间较少,应对部分环节进行处理,突出学生学习的主体性。

2022年初中数学《二次函数y=ax2的图象和性质1》精品教案》公开课教案

2022年初中数学《二次函数y=ax2的图象和性质1》精品教案》公开课教案

21.2二次函数的图象和性质1.二次函数y=ax2的图象和性质1.正确理解抛物线的有关概念;(重点)2.会用描点法画出二次函数y=ax2的图象,概括出图象的特点;(重点)3.掌握形如y=ax2的二次函数图象的性质,并会应用;(难点)4.通过动手操作、合作交流,积累数学活动经验,培养动手能力和观察能力.一、情境导入我们都见过篮球运发动投篮,你知道篮球从出手到落入篮圈内的路线是什么图形吗?它是如何画出来的?我们把篮球从出手到落入篮圈内的曲线叫抛物线,你还能举出一些抛物线的例子吗?二、合作探究探究点一:二次函数y=ax2的图象【类型一】画二次函数y=ax2的图象在同一平面直角坐标系中,画出以下函数的图象:①y=12x2;②y=2x2;③y=-12x2;④y=-2x2.根据图象答复以下问题:(1)这些函数的图象都是轴对称图形吗?如果是,对称轴是什么?(2)图象有最高点或最低点吗?如果有,最高点或最低点的坐标是什么?解析:要画出四个函数的图象,需先列表,因为在这些函数中,自变量的取值范围是全体实数,故应以原点O为中心,对称地选取x的值,列出函数的对应值表.解:列表:描点、连线,函数图象如以下图.(1)这四个函数的图象都是轴对称图形,对称轴都是y 轴;(2)函数y =2x 2和y =12x 2的图象有最低点,函数y =-12x 2和y =-2x 2的图象有最高点,这些最低点和最高点的坐标都是(0,0).方法总结:(1)画形如y =ax 2(a ≠0)的图象时,x 的值应从最低(或最高)点起左右两边对称地选取.(2)连线时,一般按从左到右的顺序将点连接起来,一定注意连线要平滑,不能画成折线.(3)抛物线的概念:二次函数y =ax 2(a ≠0)的图象是抛物线,简称为抛物线y =ax 2.(4)抛物线的特点:①有开口方向;②有对称轴;③有顶点——对称轴与抛物线的交点.抛物线的顶点也是它的最低点或最高点.【类型二】同一坐标系中两种不同图象的判断当ab >0时,抛物线y =ax 2与直线y =ax +b 在同一直角坐标系中的图象大致是( )解析:根据a、b的符号来确定.当a>0时,抛物线y=ax2的开口向上.∵ab>0,∴b>0.∴直线y=ax+b过第一、二、三象限.当a<0时,抛物线y=ax2的开口向下.∵ab>0,∴b<0.∴直线y=ax+b过第二、三、四象限.应选D.方法总结:本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.探究点二:抛物线y=ax2的开口方向、大小与系数a的关系如图,四个二次函数图象中,分别对应:①y=ax2;②y=bx2;③y=cx2;④y=dx2,那么a、b、c、d的大小关系为()A.a>b>c>dB.a>b>d>cC.b>a>c>dD.b>a>d>c答案:A方法总结:抛物线y=ax2的开口大小由|a|确定,|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大.探究点三:二次函数的图象与几何图形的综合应用二次函数y=ax2(a≠0)与直线y=2x-3相交于点A(1,b),求:(1)a,b的值;(2)函数y=ax2的图象的顶点M的坐标及直线与抛物线的另一个交点B的坐标;(3)△AMB的面积.解析:直线与二次函数y=ax2的图象交点坐标可利用方程求解,而求△AMB的面积,一般应画出草图进行解答.解:(1)∵点A (1,b )是直线y =2x -3与二次函数y =ax 2的图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1; (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0).由-x 2=2x -3,解得x 1=1,x 2=-3,∴y 1=-1,y 2=-9,∴直线与二次函数的另一个交点B 的坐标为(-3,-9);(3)如以下图,作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C 、D ,根据点的坐标的意义,可知MD =3,MC =1,CD =1+3=4,BD =9,AC =1,∴S △AMB =S 梯形ABDC -S △ACM -S △BDM =12×(1+9)×4-12×1×1-12×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题.探究点四:二次函数y =ax 2的性质【类型一】二次函数y =ax 2的增减性作出函数y =-x 2的图象,观察图象,并利用图象答复以下问题:(1)在y 轴左侧图象上任取两点A (x 1,y 1),B (x 2,y 2),使x 2<x 1<0,试比拟y 1与y 2的大小;(2)在y 轴右侧图象上任取两点C (x 3,y 3),D (x 4,y 4),使x 3>x 4>0,试比拟y 3与y 4的大小.解析:根据画出的函数图象来确定有关数值大小比拟,是一种比拟常用的方法.解:(1)图象如以下图,由图象可知y 1>y 2;(2)由图象可知y 3<y 4.方法总结:解有关二次函数的性质问题,最好利用数形结合思想,在草稿纸上画出抛物线的草图,进行观察和分析以免解题时产生错误.【类型二】二次函数y =ax 2的最值函数y =(1-n )xn 2+n -4是关于x 的二次函数,当n 为何值时,抛物线有最低点?并求出这个最低点的坐标.这时当x 为何值时,y 随x 的增大而增大?解:∵函数y =(1-n )xn 2+n -4是关于x 的二次函数,∴⎩⎪⎨⎪⎧n 2+n -4=2,1-n ≠0.解得n =2或n =-3.∵抛物线有最低点,∴1-n >0,即n <1.∴n =-3.∴当x >0时,y 随x 的增大而增大.方法总结:抛物线有最低点或最高点是由抛物线y =ax 2(a ≠0)的二次项系数a 的符号决定的;当a >0时,抛物线有最低点;当a <0时,抛物线有最高点.而此题常错误地认为n >0时,抛物线有最低点.正确的答案应为1-n >0,即n <1时,抛物线有最低点,因为二次项系数是(1-n ).探究点五:利用二次函数y =ax 2的图象和性质解题 【类型一】利用二次函数y =ax 2的性质解题当m 为何值时,函数y =mxm 2-m 的图象是开口向下的抛物线?当x 为何值时,y 随x 的增大而增大?这个函数有最大值还是最小值?这个值是多少?解:由题意,得m 应满足⎩⎪⎨⎪⎧m <0,m 2-m =2,解得m =-1.当x <0时,y 随x 的增大而增大.这个函数有最大值,最大值是0.方法总结:此题主要考查函数y =ax 2(a ≠0)的有关性质.当a >0时,图象开口向上,函数有最小值0;当a <0时,图象开口向下,函数有最大值0.当a <0且x <0时,y 随x 的增大而增大.【类型二】二次函数y =ax 2的图象和性质的实际应用如图,是一座抛物线形拱桥的示意图,在正常水位时,水面AB 的宽为20m ,如果水位上升3m ,水面CD 的宽为10m.(1)建立如以下图的坐标系,求此抛物线的函数表达式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,甲地距此桥280km(桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶了1h 时,突然接到紧急通知:前方连降暴雨,造成水位以每小时的速度持续上涨(货车接到通知时,水位在CD 处,当水位涨到桥拱最高点O 时,禁止车辆通行).问:如果货车按原来速度行驶,能否平安通过此桥?假设能,请说明理由;假设不能,要使货车平安通过此桥,速度应超过每小时多少千米?解:(1)设抛物线的函数表达式为y =ax 2(a ≠0),拱桥最高点O 到水面CD 的距离为h m ,那么D (5,-h ),B (10,-h -3).∴⎩⎪⎨⎪⎧25a =-h ,100a =-h -3,解得⎩⎪⎨⎪⎧a =-125,h =1.∴抛物线的函数表达式为y =-125x 2; (2)水位由CD 处涨到最高点O 的时间为h ==4(h),货车按原来速度行驶的路程为40×1+40×4=200<280,∴货车按原来速度行驶不能平安通过此桥.设货车速度提高到x km/h ,即当4x +40×1=280时,x =60.∴要使货车平安通过此桥,货车的速度应超过60km/h.方法总结:一般地,求二次函数y =ax 2的表达式时,只需一个点(坐标原点除外)的坐标即可.而此题由于点B ,D 的纵坐标未知,故需设出CD 到桥顶的距离h 作为辅助未知数.三、板书设计二次函数y =ax 2的图象和性质⎩⎪⎪⎪⎨⎪⎪⎪⎧图象⎩⎪⎨⎪⎧画y =ax 2图象y =ax 2图象的形状、特点性质⎩⎪⎪⎨⎪⎪⎧a >0⎩⎪⎨⎪⎧当x <0时,函数y 随x 的增大而减小当x >0时,函数y 随x 的增大而增大当x =0时,函数取得最小值,y 最小值=0,且y 没有最大值,即y ≥0a <0⎩⎪⎨⎪⎧当x <0时,函数y 随x 的增大而增大当x >0时,函数y 随x 的增大而减小当x =0时,函数取得最大值,y 最大值=0,且y 没有最小值,即y ≤0教学过程中,强调学生的自主探索和合作交流,在操作中探究二次函数的图象和性质,体会数学建模的数形结合的思想方法.第2课时用科学记数法表示较小的数1.理解并掌握科学记数法表示小于1的数的方法;(重点)2.能将用科学记数法表示的数复原为原数.一、情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?二、合作探究探究点:用科学记数法表示较小的数【类型一】用科学记数法表示绝对值小于1的数2021年6月18日中商网报道,一种重量为千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人用科学记数法可表示为()A×10-4×10-5×10-5D.106×10-6解析:×10-4.应选A.方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】将用科学记数法表示的数复原为原数用小数表示以下各数:(1)2×10-7; ×10-5;×10-3; ×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7×10-5=0.0000314;×10-3=0.00708;×10-1=0.217.方法总结:将科学记数法表示的数a×10-n复原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活泼,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

人教初中数学 《二次函数的图象和性质(第4课时)》教案 (公开课获奖)

人教初中数学 《二次函数的图象和性质(第4课时)》教案 (公开课获奖)

22.1 二次函数的图象和性质教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.D CA BD CABDC A BⅢ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

22.1.2二次函数y=ax2的图像和性质教案

22.1.2二次函数y=ax2的图像和性质教案
1.注重个体差异,针对不同学生的理解程度,进行有针对性的讲解和指导。
2.增加课堂互动,鼓励学生提问和发表观点,提高他们的课堂参与度。
3.丰富教学手段,运用多媒体、实物演示等手段,让学生更直观地理解二次函数的性质。
4.加强课后辅导,关注学生对知识点的掌握情况,及时解答他们的疑问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数y=ax2的基本概念。二次函数是形如y=ax2的函数,其中a为常数,且a≠0。它是描述物体抛物线运动、图形变换等方面的重要数学工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次函数y=ax2在抛物线运动中的应用,以及它如何帮助我们解决问题。
3.掌握二次函数y=ax2的增减性,会判断给定区间内函数的增减情况;
4.掌握二次函数y=ax2的最大(小)值及其取值情况。
二、核心素养目标
(1)通过探究二次函数y=ax2的图像和性质,培养学生的直观想象和逻辑推理能力;
(2)使学生能够运用数学语言表达二次函数的性质,提高学生的数学表达能力;
(3)培养学生运用二次函数解决实际问题的能力,增强数学应用意识;
4.学生小组讨论环节,大家围绕二次函数在实际生活中的应用展开了热烈的讨论。但在分享成果时,我发现有些小组的成果过于表面,没有深入挖掘二次函数的性质。为此,我将在接下来的教学中,加强引导,让学生更好地运用所学知识解决实际问题。
结回顾环节,学生对本节课的知识点有了更深入的理解,但仍有个别学生对二次函数的增减性和最值掌握不够牢固。在今后的教学中,我会加强这些知识点的巩固。
(4)通过小组合作学习,培养学生的团队协作能力和交流沟通能力;
(5)引导学生发现二次函数图像与性质之间的关系,提高学生的数据分析能力。

二次函数的图像及其性质教案

二次函数的图像及其性质教案

教学过程一、复习预习1. 常量、变量和函数在某一过程中可以取不同数值的量,叫做变量.在整个过程中保持统一数值的量或数,叫做常量或常数.一般地,设在变化过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量.2. 函数的表示方法(1) 解析法(2) 列表法(3) 图像法3. 函数的图像若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x)),这些点构成一个图形F,这个图形F就是函数y=f(x)的图像.知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤.4、正比例函数:一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k 叫做变量y与x之间的比例常数,确定了比例常数k,就可以确定一个正比例函数.正比例函数y=kx有下列性质:(1) 当k>0时,它的图像经过第一、三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二、四象限,y随着x的增大而减小.(2)随着比例常数的绝对值的增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k 和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率.二、知识讲解考点1 二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.考点2二次函数的基本形式及图像性质1. 二次函数基本形式:2y ax =(b 、c 为0 时)的性质: a 的绝对值越大,抛物线的开口越小。

二次函数一般式的图像和性质 初中九年级数学教案教学设计课后反思 人教版

二次函数一般式的图像和性质 初中九年级数学教案教学设计课后反思 人教版

义务教育课程标准试验教科书九年级上册22.1.4二次函数的图象和性质(第一课时)一、内容和内容解析1.内容二次函数的图象与性质.2.内容解析了二次函数的图象和性质的基础上对二次函数的图主要的研究方法是从一个具体的二次函数开始,通过配方将向转化,体会知识之间内在的联系究过程中,再从特殊例子归纳一般结论得出的图象和性质,体现类比、数形结合和归纳的思想.化为的形式,并由此得到二次函数的图象和性质.二、目标和目标解析1.目标)理解二次函数与之间的联系,会指出二次函数的图象的开口方向、顶点坐标、对称轴)能熟练地用描点法画二次函数的图象.(3)能观察图象并描述二次函数图象的性质.2.目标解析达成目标(1)的标志是:会通过配方将数字系数的二次函数的解析式化为的形式,并能由此得到二次函数图象的开口方向、顶点坐标、对称轴.达成目标(2)的标志是:经历画二次函数图象的一般过程,能体会对称轴在画抛物线中的作用.达成目标(3)的标志是:经历通过观察二次函数图象得出二次函数性质的研究过程,体会数形结合和从特殊到一般的数学思想以及研究函数的一般思路.三、教学问题诊断分析在本节课前,学生已经探究过二次函数的图象和性质.面对形如的二次函数,要想到将其转化为的形式,这种化归.在将通过配方化为时,.基于以上分析,本节课的教学难点是:如何想到将转化为的形式来研究它的图象和性质.四、教学过程设计(一)探索新知尝试发现1.探索二次函数的图象和性质问题1:如何探究二次函数的图象和性质?分析:要画出这知道图象的对称轴和顶点,即需要将转化成的形式.【设计意图】学生对画的图象可能会比较盲目或无从下手,教师适时地引导,帮助学生建立已知与未知的桥梁.问题2:如何将转化成的形式?根据已有的知识对进行配方,教师展示配方过程.问题3:如何直接画的图象?确定顶点,利用抛物线的对称性画出图象.感受画的图象的一般过程:首先通过配方将解析式化为的形式,然后确定图象的开口方向、对称轴、顶点坐标,最后利用对称性描点连线.问题4:你能通过观察图象,描述出二次函数学生正确描述图象的性质,能否准确的分段说明,能否从抛物线的最低点得出函数有最小值..2.探索二次函数的图象和性质问题5:你能说出二次函数的对称轴和顶点坐标吗?将二次函数转化为的形式.确定图象的对称轴和顶点坐标.问题6:你能描述二次函数的图象和性质吗?类比前面的两个具体函数例子得出:对于一般的二次函数,如果a>0,当x<时,y随x的增大而减小;当x>时,y随x的增大而增大.如果a<0,当x<时,y随x的增大而增大;当x>时,y随x的增大而减小.这里我们借助从特殊例子归纳一般结论的研究思路,通过针对性的类比、对比引导,这样既突破了难点,又升华了新知,也体现了从特殊到一般的研究思路.由浅入深,由一般到特殊能有效地促进学生对本节课知识的理解,让学生体会到问题之间的内在联系.利用这种由一般到特殊的教学培养了学生思维的灵活性和深刻性,同时也让他们学会从变化问题中去寻找不变的数学本质.(五)归纳小结归纳小结:学生对二次函数的图象特征的理解及怎样通过配方法研究函数性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13课时二次函数的图像与性质(二)
【复习目标】
1.能根据图象确定a、b、c的符号.
2.会用待定系数法求二次函数的解析式.
3.理解二次函数与一元二次方程的关系.并能用二次函数图象解一元二次方程的根及确定当函数值大于或小于0时自变量的取值范围.
【知识梳理】
1.二次函数解析式的求法:
(1)若给出抛物线上三点,通常可设一般式:________(a≠0).
(2)若给宝抛物线的顶点坐标或对称轴与最值,通常可设顶点式:________(a≠0),其中点(h,k)为顶点,对称轴为直线x=h.
(3)若给出抛物线与x轴的两个交点(x1,0)、(x2,0)及其他一个条件,通常可设交点式:_______(a≠0).其中x1,x2是抛物线与x轴的交点的横坐标.
2.对于二次函数y=ax2+bx+c(a≠0),当给定y的值时,二次函数可转化为一元二次方程,所以我们可ax2+bx+c=_______.
3.当b2-4ac>0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则二次函数y=ax2+bx+c的图象与x轴有_______交点.
4.当b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根,则二次函数y=ax2+bx+c的图象与x轴有_______交点.
5.当b2-4ac-<0时,方程ax2+bx+c=0(a≠0)没有实数根,则二次函数y=ax2+bx+c 的图象与x轴_______交点.
【考点例析】
考点一二次函数的各项系数与图象之间的关系
例1已知二次函数y=ax2+bx+c=0(a≠0)的图象如图所示,现有下列结论:①abc>0;②b2-4ac<0;③4a-2+c<0;④b=-2a,其中结论正确的是( ) A.①③B.③④C.②③D.①④
提示 抛物线y =ax 2+bx +c(a ≠0)与a 、b 、c 及其代数式的关系:a>0,开口向上;a<0,开口向下,对称轴为直线x =-2b a
,当a ,b 同号时,对称轴在y 轴的左侧;当a 、b 异号时,对称轴在y 轴的右侧,抛物线与y 轴的交点为(0,c),c>0,与y 轴正半轴相交;c<0,与y 轴负半轴相交;c =0,过原点.根据以上这些知识要点解决问题.
考点二 求二次函数的解析式
例2 (1)任选以下三个条件中的一个,求二次函数y =ax 2+bx +c 的解析式. ①y 随x 变化的部分数值规律如下表:
②有序数对(-1,0)、(1,4)、(3,0)满足y =ax 2+bx +c ;
③已知函数y =ax 2+bx +c 的图象的一部分(如图).
(2)直接写出(1)中二次函数y =ax 2+bx +c 的三个性质.
提示 (1)利用待定系数法得到有关a 、b 、c 的方程组,从而得到该函数的解析式;(2)结合二次函数解析式可写出相应的性质.
考点三 利用图象求一元二次方程的解
例3二次函数y =ax 2+bx 的图象如图,若一元二次方程ax 2+bx +m =0有实数根.则m 的最大值为 ( )
A .-3
B .3
C .-6
D .9。

相关文档
最新文档