微机原理课程设计 步进电机的正反转及调速控制分解

合集下载

微机实验报告 步进电机正反转及调速设计

微机实验报告 步进电机正反转及调速设计

微机原理与接口设计实验报告步进电机正反转及调速设计专业:机械设计制造及其自动化班级:10090112小组成员:周先军 10901239张赓 10901240胡一国 08901312组别: B5摘要:本系统是基于STM8系列单片机的步进电机转速转向控制器。

该系统采用STM8S103F3P6单片机作为主控制器,运用L298全桥驱动器驱动步进电机,通过摇杆、按键控制电机转速,并且通过1602液晶显示器显示当前转速。

该系统中使用的四相步进电机,具有控制精度高,转动扭矩大等特点,实际生产中有广泛的运用。

系统中除了传统按键控制外,还增加遥控控制,单片机通过AD读取摇杆控制信号,实时控制电机转速。

整个系统具有结构简单、可靠性高、成本低和实用性强等特点,具有较高的通用性和应用推广价值。

关键词:四相步进电机 STM8单片机控制 L298驱动电路正反转摇杆控制一、系统方案1.1控制系统方案方案一:采用8086系列单片机。

8086是Inter系列的16位微处理器,数据处理能力强。

但是8086系列的CPU指令数据需要放置在内存中,需要依赖外部非易失存储器和RAM才可以工作,外部电路复杂。

方案二:采用STM8系列单片机。

STM8是意法半导体生产的8位单片机,哈弗结构。

拥有8K字节Flash,1K字节RAM,1K EEPROM,内部集成5路10位ADC,高级控制定时器可带死区控制PWM 、以及SPI 、I2C等接口。

整体性能优越,价格便宜,周边电路简单。

综上对比,选择方案二。

1.2驱动电路方案方案一:采用ULN2003达林顿管阵列控制电机。

ULN2003 是高耐压、大电流复合晶体管阵列,由七个硅NPN 复合晶体管组成,工作电压高,工作电流大,灌电流可达500mA。

但系统采用通用四线四相步进电机,需要两路同时灌、输电流,该驱动设计只能满足5线步进电机的驱动,不符合要求。

方案二;采用L298集成全桥驱动芯片。

L298内部含有4通道逻辑驱动电路,是一种二相和四相电机专业驱动器,内含有两个H桥的高电压大电流双全桥式驱动器,接受标准的TTL逻辑电平信号,可驱动46V、2A以下的电机。

机电一体化设计 步进电机正反转及加减速设计 程序

机电一体化设计 步进电机正反转及加减速设计 程序

单片机课机电一体化课程设计题目:步进电机正反转及加减速设计专业:机械工程及自动化班级:机械092姓名:QCR学号:********指导教师:ZZY2012年6月23日目录1.设计目的 (1)2.题目及要求功能分析 (1)3.三相单、双六拍步进电机的结构和工作原理 (1)4. 步进电机的驱动电源 (2)5.设计方案 (3)5.1 整体方案 (3)5.2 具体方案 (4)6.硬件电路的设计 (4)6.1 硬件线路 (5)6.2 工作原理 (5)6.3 操作时序 (6)7. 软件设计 (6)7.1 软件结构 (6)7.2 程序流程 (6)7.3 源程序清单 (6)8. 系统仿真 (6)9. 设计总结 (7)参考文献 (8)附录 (一) (9)附录 (二) (10)附录 (三) (11)步进电机的正反转控制1.设计目的(1)熟练掌握机电一体化原理。

(2)综合运用51单片机的控制电路和最小系统。

(3)步进电机的正反转驱动负载。

2.设计题目及要求功能分析步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。

3. 三相单、双六拍步进电机的结构和工作原理:三相单、双六拍步进电机通电方式:这种方式的通电顺序是:U -U V-V-VW-W-WU-U或为U-UW-W-WV-V-VU-U。

按前一种顺序通电,即先接通U相定子绕组;接着是U、V两相定子绕组同时通电;断开U相,使V相绕组单独通电;再使V、W两相定子绕组同时通电;W相单独通电;W、U两相同时通电,并依次循环。

微机原理步进电机课程设计

微机原理步进电机课程设计

微机原理步进电机课程设计一、课程目标知识目标:1. 让学生掌握微机原理在步进电机控制中的应用,理解步进电机的结构、原理及其特点。

2. 使学生了解步进电机与微控制器之间的接口技术,掌握步进电机的驱动程序编写方法。

3. 让学生掌握步进电机速度和位置控制的基本算法,并运用到实际项目中。

技能目标:1. 培养学生运用微机原理解决实际问题的能力,学会编写和调试步进电机控制程序。

2. 培养学生的动手实践能力,能独立完成步进电机的组装、调试和故障排查。

3. 培养学生团队协作能力,通过分组合作完成课程设计任务。

情感态度价值观目标:1. 激发学生对微机原理和步进电机控制技术的兴趣,培养其探索精神和创新意识。

2. 培养学生严谨、认真的学习态度,养成良好的实验操作习惯。

3. 增强学生的环保意识,关注步进电机在节能环保领域的应用。

本课程针对高年级学生,课程性质为理论与实践相结合。

在分析课程性质、学生特点和教学要求的基础上,将课程目标分解为具体的学习成果。

教学过程中,注重培养学生的实际操作能力和团队协作精神,使学生在完成课程设计任务的过程中,达到知识、技能和情感态度价值观的全面提升。

二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 微机原理基础:回顾微控制器的基本原理,重点讲解微控制器与步进电机的接口技术,涉及课本第3章相关内容。

2. 步进电机原理与结构:介绍步进电机的种类、结构、原理及特点,对应课本第5章内容。

3. 步进电机驱动技术:讲解步进电机的驱动电路设计,包括驱动芯片的选型、接口电路设计等,参考课本第6章相关内容。

4. 步进电机控制算法:学习步进电机的速度和位置控制算法,如PID控制、闭环控制等,结合课本第7章内容。

5. 实践操作:分组进行步进电机的组装、调试及控制程序编写,巩固理论知识,培养实际操作能力。

教学大纲安排如下:第1周:微机原理基础回顾,了解步进电机接口技术;第2周:学习步进电机原理与结构,选型及参数了解;第3周:步进电机驱动技术学习,驱动电路设计;第4周:步进电机控制算法学习,编写控制程序;第5周:实践操作,步进电机组装、调试及故障排查;第6周:课程设计总结,成果展示及评价。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制
一、PLC实现步进电机的控制原理
拿步进电机举例,大家可以把它想象成一个隔著一定距离的圆盘,隔着每一环的距离形成齿轮的节点。

步进电机的正向或反向转动,就是将这一环索引和圆盘一起发动转动。

步进电机的转动,是靠每一步索引圆盘来完成的,每一步都有一个控制信号来告诉电机从哪一环节点开始转动,当接收到控制信号时,电机开始转动,并且每转一圈循环转动几个索引。

1、正向、反向控制
要实现步进电机的正向反向控制,就要在PLC程序中控制信号形式来实现,一般可以使用两个控制信号,一个是正反控制信号,一个是步进电机转动的速度,要求PLC程序根据正反控制信号来实现正向和反向控制。

正反控制信号就是设置一个开关量变量,当这个开关量为ON时,电机运行正转,当开关量为OFF时,电机运行反转,具体可以采用T函数来实现,T11=1,电机正转,T12=0,电机反转。

由于步进电机的转动是一布一射的过程,所以需要用一个电位器来控制步进电机的转动速度,当电位器的旋钮调整到一定位置时,就会给出一定频率的步进信号,PLC程序可以根据此步进信号,来控制步进电机的转动速度。

单片机(微机)原理课程设计 步进电机正反转 2秒内加减速程序

单片机(微机)原理课程设计 步进电机正反转 2秒内加减速程序

30转每分钟正转ORG 0000H;起始地址LJMP MAIN;长跳转到mainORG 001BH;定时器1中断入口LJMP ZD;跳转到中断指令ORG 002FH;随便给一个数MAIN: MOV SP,#6FH;给堆栈赋地址MOV SCON,#00H;串口工作于方式0MOV TMOD,#15H;定时器1工作于方式1,计数器0工作于方式1MOV TH0,#00H;计数器的高8位为零MOV TL0,#00H;计数器的低8位为零MOV TH1,#3CH;即十位数的60MOV TL1,#0B0H;即十位数的176,定时器1赋初值,3CB0H的值为15536,65536-15536=50000,一个机器周期为1us,十六进制为3CB0;定时50ms,计数器0计数MOV R7,#20;循环计数20次共定时1sMOV P1,#00H;以正传为例MOV 30H,#01HMOV 31H,#02HMOV 32H,#04HMOV 33H,#08HMOV 34H,#08HMOV 35H,#04HMOV 36H,#02HMOV 37H,#01HSETB EA;允许中断SETB ET1;允许定时器/计数器1中断SETB TR1;启动定时器1SETB TR0;启动计数器0START: MOV R0,#30HMOV R6,#4LOOP1: MOV A,@R0MOV P1,ALCALL DELAYINC R0DJNZ R6,LOOP1SJMP STARTZD: MOV TH1,#3CHMOV TL1,#0B0HDJNZ R7,HHMOV A,TL0MOV TL0,#00HMOV B,#5MUL ABMOV B,#3DIV AB;计算转速,存于A中LCALL BCDLCALL DISPLAYMOV R7,#20HH: RETIDELAY: MOV R5,#50;150000/(50*100)=30r/minDE1: MOV R4,#100DE2: DJNZ R4,DE2DJNZ R5,DE1RETBCD: MOV B,#100DIV ABMOV 78H,AMOV A,#10XCH A,BDIV ABMOV 79H,AMOV 7AH,BRETDISPLAY:MOV R3,#3MOV R1,#7AHMOV DPTR,#TABLELOOP3: MOV A,@R1MOVC A,@A+DPTRMOV SBUF,ADEC R1LOOP4: JNB TI,LOOP4CLR TIDJNZ R3,LOOP3RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH 30转每分钟反转反转只需把START子程序中第一句话的#30H改为#34H即可2秒内加减速ORG 0000H;起始地址LJMP MAIN;长跳转到mainORG 001BH;定时器1中断入口LJMP ZD;跳转到中断指令ORG 002FH;随便给一个数MAIN: MOV SP,#6FH;给堆栈赋地址MOV R2,#2MOV SCON,#00H;串口工作于方式0MOV TMOD,#15H;定时器1工作于方式1,计数器0工作于方式1MOV TH0,#00H;计数器的高8位为零MOV TL0,#00H;计数器的低8位为零MOV TH1,#3CH;即十位数的60MOV TL1,#0B0H;即十位数的176,定时器1赋初值,3CB0H的值为15536,65536-15536=50000,一个机器周期为1us,十六进制为3CB0;定时50ms,计数器0计数MOV R7,#20;循环计数20次共定时1sMOV P1,#00H;以正传为例MOV 30H,#01HMOV 31H,#02HMOV 32H,#04HMOV 33H,#08HMOV 34H,#08HMOV 35H,#04HMOV 36H,#02HMOV 37H,#01HSETB EA;允许中断SETB ET1;允许定时器/计数器1中断SETB TR1;启动定时器1SETB TR0;启动计数器0START: MOV R0,#30HMOV R6,#4LOOP1: MOV A,@R0MOV P1,ALCALL DELAYINC R0DJNZ R6,LOOP1SJMP STARTZD: MOV TH1,#3CHMOV TL1,#0B0HDJNZ R7,HHMOV A,TL0MOV TL0,#00HMOV B,#5MUL ABMOV B,#3DIV AB;计算转速,存于A中LCALL BCDLCALL DISPLAYMOV R7,#20DJNZ R2,HHMOV R2,#1HH: RETIDELAY: MOV R5,#200MOV A,#2SUBB A,R2MOV B,#180MUL ABMOV R5,AMOV A,#200SUBB A,R5MOV R5,ADE1: MOV R4,#100DE2: DJNZ R4,DE2DJNZ R5,DE1RETBCD: MOV B,#100DIV ABMOV 78H,AMOV A,#10XCH A,BDIV ABMOV 79H,AMOV 7AH,BRETDISPLAY:MOV R3,#3MOV R1,#7AHMOV DPTR,#TABLELOOP3: MOV A,@R1MOVC A,@A+DPTRMOV SBUF,ADEC R1LOOP4: JNB TI,LOOP4CLR TIDJNZ R3,LOOP3RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH。

步进电机正反转和调速控制中功能指令的应用

步进电机正反转和调速控制中功能指令的应用
2021/8/7
三菱FX2N系列PLC功能指令的应用
步进电机正反转和调速控制中功能指令的应用 五、部分功能指令
1、数据变换指令 BCD/BIN BCD变换指令的编号为FNC18。它是将源元件中的二进制数转换成BCD码 送到目标元件中,如图。如果指令进行16位操作时,执行结果超出0~9999 范围将会出错;当指令进行32位操作时,执行结果超过0~99999999范围也 将出错。
1、控制要求 以三相六拍步进电动机为例,要求PLC产生脉冲序列,作为步进 电动机驱动电源功放电路的输入。脉冲正序列为A-AB-B-BC-C-CA,脉 冲反序列CA-C-BC-B-AB-A。
2021/8/7
三菱FX2N系列PLC功能指令的应用
步进电机正反转和调速控制中功能指令的应用
2、PLC的I/O分配表:
(1)单三拍工作方式:三相步进电动如果按A-B-C-A方式循环通电工作, 就称这种工作方式为单三拍工作方式。
(2)双三拍工作方式:每次对两相同时三拍”,转子转动一个齿距角。
(3)三相六拍工作方式:即以一相和两相相间隔轮流通电的方式运行, 如A-AB-B-BC-C-CA。 2021/8/7
输入 总开关 手动/自动 单步按钮 反转按钮
输出
X0
A相功放电路
X1
B相功放电路
X2
C相功放电路
X3
3、接线图:
Y0 Y1 Y2
减速按钮
X4
加速按钮
X5
2021/8/7
三菱FX2N系列PLC功能指令的应用
步进电机正反转和调速控制中功能指令的应用 3、梯形图及程序分析 参阅配套课本
2021/8/7
电气控制与PLC技术
电气控制与PLC技术

步进电机正反转及调速设计

步进电机正反转及调速设计

步进电机正反转及调速设计陈超渭南师范学院物理与电气工程系2008级电气(1)班摘要:本系统用52系列单片机和LY-36电机驱动芯片并加入了按钮来控制步进电机实现转向、转速等。

系统中使用的四相步进电机,相应的驱动和控制电路对于其整体性能起着非常重要的作用。

经系统调试,能够很好的控制步进电机的正反转、加减速,从而达到预期目的。

整个系统具有结构简单、可靠性高、成本低和实用性强等特点,具有较高的通用性和应用推广价值。

关键词:四相步进电机 52单片机控制 YL-36驱动电路正反转1 绪论1.1 概述步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化系统中,与其他类型的电机相比具有易于精确控制,无累积误差等优点。

步进电机是一种将电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,就驱动步进电机按设定的方向转一个固定的角度,它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机可以作为一种控制用的特种电机,利用其没有累积误差的特点,广泛应用于各种开环控制。

单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上,用它来做一些控制电器一类不是很复杂的工作[1]。

单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件。

本文设计一种用STC89C52作为核心部件进行逻辑控制及信号产生的步进电机控制系统。

为使步进电机系统的可靠性、通用性、可维护性以及性价比最优,根据系统的功能要求,通过单片机存储器、I/O口、中断、键盘、LED显示器的扩展来实现步进电机的启停、正反转、加减速等功能。

1.2 步进电机及单片机的发展趋势步进电机的发展,将依赖于新型材料的应用、设计手段,以及与驱动技术的最佳匹配。

随着自动控制技术、计算机网络通信技术在众多领域中的快速发展,以及进一步数字化、智能化,步进电机将会在更深入广泛的领域中得意应用。

微机原理及接口技术课程设计(步进电机)

微机原理及接口技术课程设计(步进电机)
第一次自己通过编写程序来完成一个实际问题,感觉很难,感觉到问题很难,无从下手。但是后面不断的编写,不断地在机器上调试,边学习边修改从中得到了锻炼与提升,使我增加了不少信心。在编写程序过程中巩固了在计算机原理课程中学到的理论知识,在调试的时候体会到了程序的编写必须非常的细心,有时候一不小心输错一个字母,一个符号,都容易导致调试不出来,从而浪费很多时间。体会到在课程设计的过程中,我还学到了其他很多平时学不到的东西,比如怎样发挥团队的力量,遇到问题困难的时候要懂得虚心去请教别人。中和大家的想法,不断地头脑碰撞,才能有好的创新。因为每个人的想法不同,程序的编写是没有定式的,只要最后的目的达到就可以,但是程序却是要不断简短的才是好程序。要写好一个程序就必须不断地修改,不断地尝试。
三、硬件系统的基本原理:
1、系统硬件子系统的构成:
本设计采用的步进电机为35BYJ46型四相八拍电机,电压为DC12V,其励磁线圈及其励磁顺序如下图及下表所示:
1
2
3
4
5
6
7
8
5
+
+
+
+
+
+
+
+
4
-
-
3
-
-
-
2
-
-
-
1
-
-
-பைடு நூலகம்
2、步进电机控制原理:
接线图:
B4区8255的PC0、PC1、PC2、PC3分别接E1区步进电机的A、B、C、D;
DEC BX
DECDX
JZ M1
LOOPA5
JMPM2
M2:MOV BX,OFFSET TAB
MOVAX,0007H

PLC实现步进电机正反转和调速控制

PLC实现步进电机正反转和调速控制

PLC实现步进电机正反转和调速控制PLC(可编程逻辑控制器)是一种专门用于工业自动化控制系统的计算机控制设备。

它可以实现对多种设备和机器的控制,包括步进电机。

步进电机是一种通过步进角度来控制转动的电机,其转动可以精确地控制在每个步进角度停留一段时间。

步进电机的正反转和调速控制是实现工业自动化过程中常用的功能,PLC可以很好地实现这些控制。

一、步进电机的正反转控制步进电机的正反转控制是通过控制步进电机的相序来实现的。

步进电机有多种相序方式,常见的包括正向旋转、逆向旋转、双向旋转等。

PLC 可以通过控制步进电机的相序开关来实现步进电机的正反转。

在PLC中,可以使用PLC的输出口来控制步进电机的相序开关。

通过将输出口与步进电机的控制线路连接,可以控制相序开关的状态,从而控制步进电机的正反转。

例如,将PLC的一个输出口连接到步进电机的CW (Clockwise)输入线路,另一个输出口连接到步进电机的CCW(Counter Clockwise)输入线路,可以通过控制这两个输出口的状态来实现步进电机的正反转。

二、步进电机的调速控制步进电机的调速控制是通过控制步进电机的脉冲频率来实现的。

步进电机的转速与脉冲频率成正比,脉冲频率越高,步进电机的转速越快。

因此,通过控制PLC输出口给步进电机发送的脉冲频率,可以实现步进电机的调速控制。

在PLC中,可以使用定时器模块来控制步进电机的脉冲频率。

定时器模块可以通过设定计时器的定时时间和周期,来控制输出口的脉冲频率。

通过控制定时器的定时时间,可以控制步进电机每个步进角度的停留时间,从而控制步进电机的转速。

除了定时器模块,PLC还可以使用计数器模块来实现步进电机的调速控制。

计数器模块可以通过设定计数器的初始值和计数步长,来控制输出口的脉冲频率。

通过控制计数器的初始值和计数步长,可以控制步进电机每个步进角度的停留时间,从而实现步进电机的转速控制。

三、步进电机正反转和调速控制实例以下是一个使用PLC实现步进电机正反转和调速控制的实例。

微机原理步进电机控制

微机原理步进电机控制

微机原理步进电机控制微机原理步进电机控制实验报告实验步进电机控制⼀、实验内容l、⽤8255的PA0,PA3输出脉冲信号,驱动步进电机转动,通过键盘设定来控制步进电机正转、反转、停⽌。

2、实验预备知识,步进电机驱动原理是通过对它每相线圈中的电流的顺序切换来使电机作步进式旋转。

驱动电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速,⽤微电脑控制步进电机最适合。

⼆、实验步骤1、在系统处于命令提⽰符“P.”态下,按SCAL键。

2、按图6,9连好实验线路图,8255的PA0,PA3依次连到HA-HD插孔。

3、运⾏实验程序。

在系统处于命令提⽰符“P.”态下,输⼊1630,按EXEC键,显⽰BJ?,按“1”键正转;按“2”键反转;按“3”停⽌。

4、观察步进电机转动情况。

三、实验原理图, 实验接线图:四(实验程序清单CODE SEGMENT ;BJ.ASM ASSUME CS: CODE IOCONPT EQU 0FF2BH IOBPT EQU 0FF29H IOAPT EQU 0FF28HPA EQU 0FF20H ;字位⼝PB EQU 0FF21H ;字形⼝PC EQU 0FF22H ;键⼊⼝ORG 1630HSTART: JMP START0 BUF DB ?,?,?,?,?,? KZ DB ?ltime db ?lkey db ?data1:db0c0h,0f9h,0a4h,0b0h,99h,92h,82h,0f8h,80h,90h,88h,83h,0c6h,0a1h db86h,8eh,0ffh,0ch,89h,0deh,0c7h,8ch,0f3h,0bfh,8FH,0F1HSTART0: CALL BUF1 ;写显⽰缓冲区初值MOV AL,88H ;MOV DX,IOCONPTOUT DX,AL ;写命令字redikey: call dispkey ;调⽤显⽰键扫cmp KZ,01h ;是1键正转JZ ZZcmp KZ,02h ;是2键反转JZ STXJMP REDIKEY ;继续读键JMP ST ;转停⽌ STX:ZZ: CALL BUFZ ;显⽰正转值ZZ1: MOV DX,IOAPT ;PA⼝MOV AL,03H ;MOV DX,IOAPTOUT DX,AL ;驱动步进电机,A.B两相CALL DELPZ ;延时,读键MOV AL,06HMOV DX,IOAPTOUT DX,AL ;驱动步进电机,A.d两相CALL DELPZ MOV AL,0CHMOV DX,IOAPTOUT DX,AL ;驱动步进电机,C.D两相CALL DELPZ MOV AL,09H ;驱动步进电机,B.C两相MOV DX,IOAPT OUT DX,ALCALL DELPZMOV AL,03HMOV DX,IOAPTOUT DX,ALCALL DELPZMOV AL,06HMOV DX,IOAPTOUT DX,ALCALL DELPZMOV AL,0CHMOV DX,IOAPTOUT DX,ALCALL DELPZMOV AL,09HMOV DX,IOAPTOUT DX,AL;------------------------- FZ: CALL BUFF ;反转⼊⼝FZ1: MOV DX,IOAPTMOV AL,0CHOUT DX,ALCALL DELPFMOV AL,06HMOV DX,IOAPTOUT DX,ALCALL DELPFMOV DX,IOAPTMOV AL,03HOUT DX,ALCALL DELPFMOV AL,09HMOV DX,IOAPTOUT DX,ALCALL DELPFMOV AL,0CHMOV DX,IOAPTOUT DX,ALCALL DELPFMOV AL,06HMOV DX,IOAPTOUT DX,ALCALL DELPFMOV AL,03HMOV DX,IOAPTOUT DX,ALCALL DELPFMOV AL,09HMOV DX,IOAPTOUT DX,ALCALL DELPFMOV AL,00HOUT DX,ALST1: call dispkey cmp KZ,01hJZ ZZMONcmp KZ,02hJZ FZMONJMP ST1delpZ: mov cx,02h con1: push cx CALL dispkey pop cxcmp KZ,02hJZ FZMONcmp KZ,03hJZ STMONloop con1RETdelpF: mov cx,02h con2: push cx CALL dispkey pop cxcmp KZ,01hJZ ZZMONcmp KZ,03hJZ STMONloop con2RETZZMON: POP CXJMP ZZFZMON: POP CXJMP FZSTMON: POP CXJMP ST;-------------------------dispkey: call disp ;键盘显⽰⼦程序,见前注释call key mov ah,al ;newkeymov bl,ltime ;ltimemov dx,PA ;0ff21hout dx,alcmp ah,bhmov bh,ah ;bh=new keymov ah,bl ;al=timejz disk4mov bl,88hmov ah,88hdisk4: dec ahcmp ah,82hjz disk6cmp ah,0ehjz disk6cmp ah,00hjz disk5mov ah,20hdec bljmp disk7disk5: mov ah,0fhdisk6: mov bl,ahmov ah,bhdisk7: mov ltime,blmov lkey,bhmov KZ,bhmov al,ahretkey: mov al,0ffh ;键扫⼦程序mov dx,PB out dx,almov bl,00hmov ah,0fehmov cx,08hkey1: mov al,ahmov dx,PAmov ah,alnopnopnopnopnopnopmov dx,PCin al,dxnot alnopnopand al,0fhjnz key2inc blloop key1jmp nkeykey2: test al,01h je key3 mov al,00hjmp key6key3: test al,02h je key4 mov al,08hjmp key6key4: test al,04h je key5 mov al,10hjmp key6key5: test al,08hje nkeymov al,18hkey6: add al,blcmp al,10hjnc fkeymov bl,almov al,[bx+si]retnkey: mov al,20h fkey: retdata2: db 07h,04h,08h,05h,09h,06h,0ah,0bh DB 01h,00h,02h,0fh,03h,0eh,0ch,0dh DISP: MOV AL,0FFH ;显⽰⼦程序 ,5ms MOV DX,PAOUT DX,ALMOV CL,0DFH ;20HMOV BX,OFFSET BUF DIS1: MOV AL,[BX]MOV AH,00HPUSH BXMOV BX,OFFSET DATA1ADD BX,AXMOV AL,[BX]POP BXMOV DX,PBOUT DX,ALMOV AL,CLMOV DX,PAOUT DX,ALPUSH CXDIS2: MOV CX,0a0HLOOP $POP CXCMP CL,0FEHJZ LX1INC BXROR CL,1JMP DIS1LX1: MOV AL,0FFHMOV DX,PBOUT DX,ALRETBUF1: MOV BUF,0BH ;写”BJ----” MOV BUF+1,019HMOV BUF+4,17HMOV BUF+5,17HRETBUFZ: MOV BUF,0BH ;写”BJ---F” MOV BUF+1,19HMOV BUF+2,17HMOV BUF+3,17HMOV BUF+4,17HMOV BUF+5,0FHRETBUFF: MOV BUF,0BH ;写”BJ---r” MOV BUF+1,19HMOV BUF+2,17HMOV BUF+3,17HMOV BUF+4,17HMOV BUF+5,18HRETBUFS: MOV BUF,0BH ;写”BJ---S” MOV BUF+1,19HMOV BUF+2,17HMOV BUF+3,17HMOV BUF+4,17HMOV BUF+5,05HRETCODE ENDSEND START五、实验总结1、通过实验进⼀步了解8086的使⽤,学习汇编语⾔编程⽅法及调试技巧。

PLC实现步进电机的正反转以及调整控制

PLC实现步进电机的正反转以及调整控制

.实训课题三PLC实现步进电机正反转和调速控制一、实验目的1、掌握步进电机的工作原理2、掌握带驱动电源的步进电机的控制方法3、掌握DECO指令实现步进电机正反转和调速控制的程序二、实训仪器和设施1、FX2N-48MRPLC一台2、两相四拍带驱动电源的步进电机一套3、正反切换开关、起停开关、增减速开关各一个三、步进电机工作原理步进电机是纯粹的数字控制电动机,它将电脉冲信号变换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反响式步进电机结图。

从图中能够看出,它分红转子和定子两部分。

定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)构成一对。

共有3对。

每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。

能够得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。

反响式步进电动机的动力来自于电磁力。

在电磁力的作用下,转子被强行推动到最大磁导率(或许最小磁阻)的地点,如图3-1(a)所示,定子小齿与转子小齿对齐的地点,并处于均衡状态。

对三相异步电动机来说,当某一相的磁极处于最大导磁地点时,此外两相相必处于非最大导磁地点,如图3-1(b)所示,即定子小齿与转子小齿不对齐的地点。

把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。

错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的构造中一定保证有错齿的存在,也就是说,当某一相处于对齿状态时,其余绕组一定处于错齿状态。

本实验的电机采纳两相混淆式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电此后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。

因为...中间连结的电磁铁的两根线不是直接连结的,是采纳在转轴的地点用一根滑动的接触片。

这样假如电磁铁转过了头,原来连结电磁铁的两根线恰好就相反了,所以电磁铁的N极S极就和从前相反了。

可是电机上下的磁铁是不变的,所以又能够持续吸引中间的电磁铁。

PLC控制步进电机的正反转和速度

PLC控制步进电机的正反转和速度

PLC控制步进电机的正反转和速度
1.控制要求
对定时器进行不同的时间定时控制其速度。

通过定时器定时通、断电使步进电机实现正反转。

本文以五相十拍步进电机用西门子S7-200plc来进行举例。

2.五相十拍步进电机的控制要求
1)五相步进电动机有五个绕组:A、B、C、D、E,控制五相十拍电动机的时序图如下:
2)用五个开关控制步进电动机工作:
1 号开关控制其运行(启/停)
2 号开关控制其低速运行(转过一个步距角需0.5S)
3 号开关控制其中速运行(转过一个步距角需0.1S)
4 号开关控制其低速运行(转过一个步距角需0.03S)
5 号开关控制其转向(ON为正转,OFF为反转)
3.PLC外部接线图
PLC外部接线图的输入输出设备、负载电源的类型等设计就结合系统的控制要求来设定。

其控制接线图如下图所示:
4.I/O地址分配
根据PLC外部接线图可以写出各电气元件符号、功能说明表及I/O 地址分配表如下:
5.五相十拍步进电动机的拍数实现梯形图如下:。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制PLC(可编程逻辑控制器)可以广泛应用于工业自动化控制系统中,包括步进电机的正反转及调整控制。

本文将详细介绍如何使用PLC实现步进电机的正反转及调整控制。

一、步进电机的原理步进电机是一种用电脉冲驱动的电动机,它是按固定顺序将电流导通到电动机的相绕组中,从而使电动机按步进的方式转动。

步进电机有两种基本的工作模式:全步进和半步进。

在全步进模式下,电机每接收到一个脉冲就向前转动一个固定的步距角度。

在半步进模式下,电机接收到一个脉冲时向前转动半个步距角度。

二、PLC实现步进电机的正反转1.硬件连接将PLC的输出端口与步进电机的驱动器相连,将驱动器的控制信号输出口与步进电机相连。

确保电源连接正确,驱动器的供电电压要符合步进电机的额定电压。

2.编写PLC程序使用PLC编程软件编写PLC程序来控制步进电机的正反转。

以下是一个简单的PLC程序示例:```BEGINMOTOR_CONTROL_TRIG:=FALSE;//步进电机控制信号MOTOR_DIRECTION:=FORWARD;//步进电机转动方向,FORWARD表示正转,REVERSE表示反转//步进电机正转控制MOTOR_FORWARD:IF(START_BUTTON=TRUE)THENMOTOR_CONTROL_TRIG:=TRUE;MOTOR_DIRECTION:=FORWARD;END_IF;//步进电机反转控制MOTOR_REVERSE:IF(STOP_BUTTON=TRUE)THENMOTOR_CONTROL_TRIG:=TRUE;MOTOR_DIRECTION:=REVERSE;END_IF;//步进电机停止控制MOTOR_STOP:IF(STOP_BUTTON=TRUE)THENMOTOR_CONTROL_TRIG:=FALSE;END_IF;END```Begitalogic Flowcode是PLC编程软件之一,提供了简单易懂的图形界面来编写PLC程序。

自动门控制的步进电机正反转和加速减速C程序

自动门控制的步进电机正反转和加速减速C程序

自动门控制的步进电机正反转和加速减速C程序步进电机的正反转和加速减速是实现自动门控制的关键功能。

通过编写C程序,我们可以实现对步进电机的控制,使其按照设定的方向旋转,并可以进行加速和减速操作。

步进电机正反转步进电机的正反转是通过控制电机的相序来实现的。

下面是一个简单的C程序示例,用于控制步进电机的正反转:include <stdio.h>int main() {// 定义电机的相序int sequence[] = {1, 2, 4, 8};int direction = 1; // 1表示正转,-1表示反转// 正转if (direction == 1) {for (int i = 0; i < 4; i++) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出}}// 反转else if (direction == -1) {for (int i = 3; i >= 0; i--) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出}}return 0;}在以上示例代码中,我们通过设置`sequence`数组来表示电机的相序,其中`sequence[0]`表示第一相,`sequence[1]`表示第二相,以此类推。

通过循环遍历数组中的元素,并控制步进电机相序的输出,从而实现步进电机的正反转。

步进电机加速减速步进电机的加速减速是通过逐渐改变电机的驱动信号频率来实现的。

下面是一个简单的C程序示例,用于控制步进电机的加速减速:include <stdio.h>include <unistd.h>int main() {// 定义电机的相序int sequence[] = {1, 2, 4, 8};int delay = 1000; // 初始延时时间,单位为毫秒int minDelay = 100; // 最小延时时间,单位为毫秒// 加速for (int i = 0; i < 4; i++) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出usleep(delay); // 延时if (delay > minDelay) {delay -= 100; // 减小延时时间,实现加速}}// 延时一段时间// 减速for (int i = 3; i >= 0; i--) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出usleep(delay); // 延时if (delay < 1000) {delay += 100; // 增加延时时间,实现减速}}return 0;}在以上示例代码中,我们通过循环遍历数组中的元素,并控制步进电机相序的输出,并通过调用`usleep`函数来实现延时,从而控制步进电机的转速。

微机原理课程设计说明书---步进电机控制

微机原理课程设计说明书---步进电机控制

微机接口技术课程设计说明书课题名称:步进电机控制目录1.课程设计任务书…………………………………………………2.说明书正文…………………………………………………………2.1 前言………………………………………2.2 现状…………………………………………………2.3 任务分析与方案设计…………………………………………2.4 系统电路原理图……………………………………………2.5元器件参数选择及清单……………………………………2.6 电路的调试………………………………………………3. 心得体会……………………………………………4. 参考文献………………5. 附录…………………………………1.课程设计任务书一、任务要求在Dais实验台基础上设计并调试一个外接口电路,能够显示所对应的电机状态。

且具有一定的控制功能,编程并调试完成整个开发系统。

二、主要技术要求实现步进电机转速和正反转控制。

控制四相步进电机是采用编程方法实现四相八拍环形分配运行方式,改变激励脉冲频率的大小来实现调制。

变换步进电机的其中两相相序,就能实现步进电机的正反转。

扩展一:用三个发光二极管亮灭表示三个速度开关的状态。

再用一个发光二极管亮灭表示正反转状态。

扩展二:用数码管显示速度状态。

三、主要完成任务1、查找相关资料,确定课程设计方案;2、微机接口电路硬件的焊接、装配、逐步排除故障及调试:3、用Protel2004绘制微机最小系统配置原理图;4、用Protel2004绘制相关项目的接口原理图;5、编写相关项目的程序,并进行调试;6、按照相关项目内容要求,上级进行调试;7、编写课程设计报告。

四、提交成果1)课程设计说明书一本(电子文档和打印稿各一份)要求:内容完整,图表完备,条理清晰,分析有据。

所附电路图布局合理,清晰完备,图形和符号要规范。

2)所用元器件清单3)电路实体一套。

要求:该电路实体必须是经过自己安装调试通过并达到性能指标要求的电路实体。

步进电机的正反转及加减速设计 报告.

步进电机的正反转及加减速设计 报告.

课程设计设计题目:单片机控制步进电机学生姓名:蔡月秋指导教师:高峰二级学院:龙蟠专业:电气工程及其自动化班级:M11电气工程及其自动化学号: 1121109032目录摘要 (2)1.设计任务和要求 (2)2.设计思路 (3)3.系统硬件设计 (4)3.1硬件电路的工作原理 (4)3.2步进电机模块 (4)3.3控制模块 (5)3.4主要元件介绍 (5)4.软件编程 (10)4.1主流程图 (19)4.2主要程序 (11)4.3程序分块介绍 (15)5.调试过程与结果 (19)5.1正转结果显示 (19)5.2反转结果显示 (21)5.3停止结果显示 (22)6.总结与体会 (23)7.参考资料 (24)8.附录 (25)单片机控制步进电机摘要本文章重点介绍如何利用89C51单片机软件编程控制输出脉冲的相序、频率、数量,从而达到控制步进电机的旋转方向、速度以及位置。

主要设计思想通过控制台控制程序的开关来控制电机的转动。

电源驱动89C51单片机,在89C51中装载程序,通过开关按键来输入信号,89C51向驱动电路提供信号使步进电机动作。

关键词:89C51 单片机控制步进电机1设计任务和要求单片机课程设计是考察学生利用所学过的专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。

最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。

本次设计考核的能力主要有:1)专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。

2)项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT汇报与口头表达能力。

微机原理课程设计---步进电机设计

微机原理课程设计---步进电机设计

目录摘要 (1)Abstract (2)1 课程设计任务及要求 (3)1.1 设计任务 (3)1.2 设计要求 (3)2 方案设计 (3)2.1 方案一 (3)2.2 方案二 (6)2.3 方案比较 (12)3 硬件分析 (13)3.1 电路设计图 (13)3.2 各部件分析 (14)4 软件分析 (21)5调试运行 (22)5.1 方案一程序调试运行及仿真 (22)5.2方案二调试运行及仿真 (23)6心得体会 (25)参考文献 (26)附录一方案一源程序 (27)附录二方案二源程序 (30)课程设计任务书学生姓名:专业班级:自动化0902指导教师:徐小强工作单位:自动化题目:步进电机设计初始条件:用汇编语言设计一个步进电机的控制,在Proteus仿真环境下完成,功能上实现步进电机的基本功能。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1. 通过键盘控制步进电机的启动和停止,正转和反转;2. 编制完整的程序并调试;3.撰写符合学校要求的课程设计说明书,内容包括:摘要、目录、正文、参考文献、附录(程序清单)。

正文部分包括:设计任务及要求、方案比较及论证、软件设计说明(软件思想,流程,源程序设计及说明等)、程序调试说明和结果分析、课程设计收获及心得体会。

时间安排:1. 1月4日----1月5日查阅资料及方案设计2.1月6日----1月8日编程3.1月9日----1月10日调试程序4.1月11日 ----1月12日撰写课程设计报告5.1月13日上午准备答辩,下午正式答辩指导教师签名:年月日系主任(或责任教师)签名:年月日摘要步进电机是工业生产过程控制及仪表中的主要控制元件之一。

例如,在机械结构中,可以用丝杠把角度变成直线位移,也可以用它带动螺旋电位器,调节电压和电流,从而实现对执行机构的控制。

在数字控制系统中,由于它可以直接接受计算机输出的数字信号,而不需要进行数/模/转换,可以用起来非常方便。

微机原理及接口技术课程设计(步进电机)

微机原理及接口技术课程设计(步进电机)

微机原理及接口技术课程设报告题目步进电机转速实时控制学院电子信息工程学院专业学生姓名学号年级级指导教师职称二O一四年六月目录一、课程设计目的 (3)二、方案设计 (3)三、硬件系统的基本原理 (3)1、系统硬件子系统构成 (3)2、步进电机控制原理接线图 (4)3、工作原理 (5)四、软件框图及设计思想 (6)1、设计思想 (6)2、程序框图 (7)五、软件清单 (8)六、心得体会 (11)七、主要参考资料 (13)题目:步进电机转速实时控制一、课程设计目的:1、掌握四相步进电机接口电路的原理;2、理解步进电机正、反转工作原理和转速控制原理。

二、方案设计:本设计采用的步进电机为35BYJ46型四相八拍电机,电压为DC12V,电机的励磁线圈顺序已经在实验指导书中给定。

以8255A 作为并行输出接口,通过查询步进电机的励磁线圈顺序表以及计算出步进电机的相序表,编写出适当的程序来调节步进电机的正反转以及转速问题。

同时利用程序对步进电机事实与数码管同步的相应运转状态,从而使得整个步进电机控制系统得以准确实现。

三、硬件系统的基本原理:1、系统硬件子系统的构成:本设计采用的步进电机为35BYJ46型四相八拍电机,电压为DC12V,其励磁线圈及其励磁顺序如下图及下表所示:2、步进电机控制原理:4 - -3 - - -2 - - -1 - - -3、工作原理:4相步进电机示意图见下左图,转子由一个永久磁铁构成,定子分别由4组绕组构成电气连接示意图电机定子和转子示意图当S1连通电源后,定子磁场将产生一个靠近转子为N极,远离转子为S极才磁场,这样的定子磁场和转子的固有磁场发生作用,转子就会转动,正确地S1、S4的送电次序,就能控制转子旋转的方向。

例如:若送电的顺序为S1闭合断开S2闭合断开S3闭合断开S4闭合断开,周而复始的循环,在定子和转子共同作用下,电机就瞬时针旋转:若送电的顺序为S4闭合断开S3闭合断开S2闭合断开S1闭合断开,周而复始的循环,则电机就逆时针旋转,原理同理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告题目步进电机正反转及调速控制系统的设计课程名称微机原理及应用院部名称机电工程学院专业电气工程及其自动化班级10电气1班学生姓名管志成学号1004103027课程设计地点C304课程设计学时20指导教师李国利金陵科技学院教务处制步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,具有快速启动能力,定位精度高,能够直接接受数字量,因此被广泛地应用于数字控制系统中,如数模转换装置、精确定位、计算机外围设备等,在现代控制领域起着非常重要的作用。

本设计基于Proteus 7.8设计环境,运用了8086 CPU芯片以及74273芯片、74244芯片和步进电机以及7位小功率驱动芯片ULN2003A、按钮、指示灯等辅助硬件电路,设计了步进电机正反转及调速系统。

绘制软件流程图,进行了软件设计并编写了源程序,最后对软硬件系统进行联合调试。

该步进电机的正反转及调速系统具有控制步进电机正反转的功能,还可以对步进电机进行调速,不同的按钮对应不同的速度,并且在没有速度按钮按下的时候,步进电机自动切换到停止状态。

关键词:步进电机;正反转;调速控制;ULN2003A芯片;8086微机系统一、概述1.1 课程设计的目的 (4)1.2课程设计的要求 (4)二、总体设计方案及说明2.1 系统总体设计方案 (5)2.2系统工作框图 (5)三、系统硬件电路设计3.1 Intel 8086 微处理器的简介 (6)3.2 步进电机的原理 (7)3.3 ULN2003A的简介 (8)3.4 74154芯片简介 (9)3.5 74LS273芯片简介 (10)3.6 8086最小系统的设计 (11)3.7 步进电机及其驱动电路的设计 (12)3.8 电机状态显示电路的设计 (12)3.9 输入采样电路的设计 (13)3.10系统总电路图 (14)四、系统软件部分设计4.1 系统流程图 (15)4.2 系统软件源程序 (16)4.2.1电机绕组通电顺序设定 (16)4.2.2 延时子程序设计 (16)4.2.3 汇编源程序及说明 (16)五、总结5.1 系统软硬件的联合调试 (21)5.2 问题分析和解决方案 (23)5.3 心得与体会 (23)六、参考文献 (23)附录:总电路图 (25)一、概述1.1 课程设计的目的通过本课程设计,使学生掌握控制系统设计的一般步骤,掌握系统总体控制方案的设计方法。

使学生进一步掌握微型计算机应用系统的硬、软件开发方法,输入/输出(I/O)接口技术,应用程序设计技术,并能结合专业设计简单实用的微型计算机应用系统。

针对课堂重点讲授内容使学生加深对微型计算机硬件原理的理解及提高汇编语言程序设计的能力,为以后的毕业设计搭建了微机系统应用平台,提高学生的开发创新能力。

1.2课程设计的要求步进电动机正反转控制系统的设计设计一个步进电动机正反转控制系统,要求:1)系统功能:点动SW1按键控制步进电动机正转,点动SW2按键控制步进电动机反转,点动SW3按键控制步进电动机停止,在进行相应操作时,对应LED 将被点亮。

按下SW4按键使步进电机在所设定的一级速度下运转,按下SW5使步进电机在所设定的二级速度下运转,按下SW6使步进电机在设定的三级速度下运转,按下SW7使步进电机在满转速下运转;2)给出系统设计方案,画出硬件连线图,并说明工作原理;3)画出程序框图并编写程序;4)软硬件联调,完成系统工作调试;在以上工作基础上完成课程设计报告,包括设计任务与要求,总体方案说明,电路原理图与说明,软件流程图和源程序清单,问题分析与解决方案,结论与体会,参考资料等。

二、总体设计方案与说明2.1 系统总体设计方案本设计是基于Windows环境下的Proteus7.8软件,在其中进行硬件电路的的设计,汇编语言源程序的编写以及以上两部分工作完成后的软硬件系统的联合调试。

本设计的处理控制系统由Intel 8086微处理器在最小模式下组成的单处理器系统构成,用来进行对外围硬件电路进行信息采集、数据处理和控制。

由8086芯片来检测外围电路中正反转按键是否按下,若按下,则相应地改变对步进电机的施加的脉冲顺序,实现正转和反转的控制,没有键按下则电机处于停止状态;同样由8086处理器来检测外围电路中的调速按钮是否按下,若有键按下,则调用相应的时间的延时子程序,以对脉冲频率进行控制以实现对步进电机速度的调节。

显示电路采用LED指示灯来指示电机的运行状态驱动电路采用ULN2003A芯片,该芯片的电流增益高,带负载能力强。

步进电机采用35BY48S03四相步进电机,电压为DC12V,额定转速为360RPM。

2.2系统工作框图图1 系统工作框图三、系统硬件部分设计3.1 Intel 8086 微处理器的简介Intel 8086是Intel公司于1978年推出的16位微处理器。

它采用HMOS工艺制造,片内有2.9万个晶体管,单一电源+5V供电,时钟频率4.77-10MHz,片内数据总线、寄存器和外部数据总线都为16位,最大可寻址的物理地址为1M。

要掌握一个CPU的工作性能及使用方法,首先应该了解它的编程结构。

在8086CPU的编程结构上,从功能上,分为两部分,即总线接口部件(BIU)和执行部件(EU)。

8086的逻辑地址为20位,物理地址为16位,,对于编程员来说,只需要考虑逻辑地址即可。

8086为40只引脚双列直插式封装。

Intel 8086 可以工作在最大和最小两种模式下,最小模式和最大模式的确定是通过一条MN/MN所接的逻辑电平是“1”还是“0”来完成。

在最小方式下,微处理器被用来构成一个小规模的单处理机系统,微处理器本身必须提供全部的的控制信号给外围电路。

在最大方式下,微处理器被用来构成一个较大规模的多机系统。

在最小模式下的信号如下:(1)AD15~AD0(address data bus)地址/数据复用引脚(双向工作)分时复用的地址/数据线。

(2)A19/S6~A16/S3(Address/Status)输出,是分时复用的地址/状态线。

用作地址线时,A19~A16与A15~A0一起构成访问存储器的20位物理地址。

(3)BHE/ S7 (Bus High Enabale/Status)总线高字节有效信号。

三态输出,低电平有效,用来表示当前高8 位数据线上的数据有效。

(4)NMI(Non Maskable Interrupt Request)不可屏蔽中断请求信号。

由外部输入,上升沿触发,不受中断允许标志的限制。

(5)INTR(Interrupt Request)可屏蔽中断请求信号。

由外部输入,电平触发,高电平有效。

(6)RD(Read)读信号。

三态输出,低电平有效,表示当前CPU正在读存储器或IO端口。

(7) CLK(Clock)主时钟引脚(输入)。

由8284时钟发生器输入。

8286CPU可使用的最高时钟频率随芯片型号不同而异,8086为5MHz,8086-1为10MHz,8086-2 为8MHz。

(8) RESET(reset)复位信号。

由外部输入,高电平有效。

(9) READY(ready)准备就绪信号。

由外部输入,高电平有效,表示CPU 访问的存储器或IO端口已准备好传送数据。

(10) TEST 测试信号。

由外部输入,低电平有效。

CPU 执行WAIT 指令时,每隔5 个时钟周期对TEST 进行一次测试,若测试TEST 无效,则CPU 处于踏步等待状态,直到TEST有效,CPU才继续执行下一条指令。

(11) MN/MX 工作模式选择信号。

由外部输入,MN/MX 为高电平时,CPU 工作在最小模式;MN/MX为低电平时,CPU工作在最大模式。

(12) GND/VCC电源地和电源。

8086CPU只需要单一的+5V电源,由VCC引脚输入。

(13) INTA 中断响应信号。

向外部输出,低电平有效。

在中断响应周期,该信号表示CPU响应外部发来的INTR信号,用作读中断类型码的选通信号。

(14) ALE 地址锁存允许信号。

向外部输出,高电平有效。

在最小模式系统中用作地址锁存器的片选信号。

(15) DEN数据允许信号,三态输出,低电平有效。

(16) DT/R 数据发送/接收控制信号(17) M/IO 存储器/IO 端口访问信号。

(18) WR写信号。

三态输出,低电平有效,表示当前CPU正在写存储器或IO 端口。

(19) HOLD总线请求信号。

由外部输入、高电平有效。

表示有其他共享总线的处理器/控制器向CPU请求使用总线。

(20) HLDA 总线请求响应信号。

向外部输出,高电平有效。

CPU 一旦测试到有HOLD 请求,就在当前总线周期结束后,使HLDA有效,表示响应这一总线请求,并立即让出总线使用权。

在不要求使用总线的情况下,CPU中指令执行部件可继续工作。

HOLD变为无效后,CPU也将HLDA置成无效,并收回对总线的使用权,继续操作。

3.2 步进电机的原理步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

本设计采用35BY48S03四相八拍型步进电机,电压为DC12V,额定转速为360RPM。

步进电机的工作原理示意图如下:图2 四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。

而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。

依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D 方向转动。

在本设计中,我们使用四相八拍的运行方式,即控制正转时,电机绕组的通电顺序为:AD-D-DC-C-CB-B-BA-A;反转时,电机绕组的通电顺序为A-AB-B-BC-C-CD-D-DA。

3.3 ULN2003A的简介ULN2003A是一个7路反向器电路,即当输入端为高电平时ULN2003A输出端为低电平,当输入端为低电平时ULN2003A输出端为高电平。

图3 ULN2003A由于集成电路集驱动和保护于一体,作为小功率步进电机的专用驱动芯片,ULN2003A 是该高耐压、大电流达林顿陈列,由7个硅NPN 达林顿管组成。

相关文档
最新文档