建筑结构抗震弹塑性分析

合集下载

动力弹塑性分析步骤

动力弹塑性分析步骤

文献一
结构弹塑性动力时程分析是将建筑物作为弹塑性振动系统,直接输入地面地震加速度记录[5],对运动方程直接积分,从而获得计算系统各质点的位移、速度、加速度和结构构件地震剪力的时程变化曲线。

通过计算还可以分析出结构的薄弱层和构件塑性铰位置。

所以这种分析方法能更准确而完整地反映结构在强烈地震作用下的变形特性,是改善结构抗震能力、提高抗震设计水平的一项重要措施。

弹塑性动力分析步骤:
1)建立整体结构模型;
2)定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构动力响应的各参数;
3)施加恒、活荷载等竖向荷载值以及风等横向荷载;
4)输入适合本场地的地震波;
5)定义模型的边界条件;
6)计算,并对结果进行评定。

文献二
弹塑性动力分析的基本方法
弹塑性动力分析包括以下几个步骤:
(1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。

建筑结构静力弹塑性分析方法及其减震控制

建筑结构静力弹塑性分析方法及其减震控制

二、静力弹塑性分析方法的实施 步骤
二、静力弹塑性分析方法的实施步骤
1、定义材料属性:静力弹塑性分析需要输入材料的弹性模量、泊松比、剪切 模量、密度等参数,以及材料的非线性应力-应变关系。
二、静力弹塑性分析方法的实施步骤
2、建立结构模型:使用有限元方法建立结构模型,包括几何形状、边界条件 和载荷条件。
建筑结构静力弹塑性分析方法
建筑结构静力弹塑性分析方法
建筑结构静力弹塑性分析方法的基本原理是在荷载作用下,结构产生变形, 并导致应力和应变的产生。通过考虑材料的弹性和塑性性能,可以得出结构的弹 塑性响应。具体的计算步骤包括以下几个步骤:
建筑结构静力弹塑性分析方法
1、建立结构的计算模型,并确定结构的材料参数和边界条件; 2、对结构进行静力荷载作用下的弹性分析,得出结构的弹性响应;
内容摘要
在进行静力弹塑性分析时,需要考虑多种荷载工况,例如自重、风载、地震 作用等。通过在MIDASGEN中设置相应的荷载工况,可以模拟高层建筑结构在不同 荷载作用下的响应。同时,还需要根据建筑结构的特点,选择合适的分析方法和 计算参数,例如静力弹塑性分析方法、屈服准则等。
内容摘要
在MIDASGEN中,可以通过输出位移、应力、应变等结果,对高层建筑结构的 静力弹塑性进行分析。通过与其他方法(如有限元方法、实验方法等)的比较, 可以发现MIDASGEN在分析高层建筑结构的静力弹塑性方面具有较高的对高层建筑结构进行静力弹塑性分析是可行的,并且能 够得出可靠的结果。在实际工程中,MIDASGEN可以为高层建筑结构的安全性和稳 定性评估提供有力的支持。在进行高层建筑结构的静力弹塑性分析时,需要注意 建模的准确性、参数设置的合理性、荷载工况的全面性以及结果分析的可靠性等 问题。通过不断改进和完善分析过程,可以进一步提高MIDASGEN在高层建筑结构 分析中的精度和效率。

某超高层建筑静力弹塑性推覆分析

某超高层建筑静力弹塑性推覆分析

某超高层建筑静力弹塑性推覆分析发布时间:2022-05-09T06:47:26.924Z 来源:《工程建设标准化》2022年37卷1月2期作者:朱伟锋[导读] 此项目位于广东省中山市,地下1层,地上共32层,总高度144.6m朱伟锋工程概况:此项目位于广东省中山市,地下1层,地上共32层,总高度144.6m,结构类型为部分框支剪力墙结构,其中第2层楼面为转换层楼面。

场地抗震设防烈度为7度,设计分组为第1组,设计基本地震加速度为0.10g,场地类别为Ⅲ类。

抗震等级:三层及三层以下为一级,三层以上为二级。

建筑物标准层结构布置如下图所示:分析模型与计算假定:分析软件采用中国建筑科学研究院的多高层建筑结构弹塑性静力、动力分析软件PUSH 。

PUSH程序是一个完全三维的有限元空间弹塑性静力分析程序,非线性梁(柱)构件单元采用标准的有限元方法(微观方法)构造,单元切线刚度直接基于混凝土材料微元和钢筋材料微元的本构关系,这种模型通常被称为纤维束模型。

非线性墙单元面内刚度采用平面应力膜,可考虑开洞,面外刚度相对次要,用简化的弹塑性板元考虑。

对于本构模型,混凝土受压考虑SAENZ曲线,忽略混凝土受拉能力;钢筋采用理想弹塑性曲线。

PUSH分析参数设置如下图所示:强度准则:采用构件承载力极限值进行计算,材料强度取平均值。

根据《混凝土结构设计规范》(GB50010-2010(2015版))附录C第C.1.1条,取钢筋,混凝土强度变异系数分别为0.06,0.10,则混凝土强度fm/fk=1.20,钢筋强度fm/fk=1.10。

参考广东省标准《建筑工程混凝土结构抗震性能设计规程》(DBJ/T 15-151-2019)附录D第D.3.1条的Kent-Scott-Park模型及常规Mander 模型,对于约束混凝土强度延性提高系数,取1.20。

参考美国应用技术委员会编制的《混凝土建筑抗震评估和修复》(ATC-40),构件塑性铰的位移限值如图1。

结构动力弹塑性分析方法

结构动力弹塑性分析方法

结构动力弹塑性分析方法结构动力弹塑性分析方法是一种基于结构动力学理论和力学原理的计算方法,用于评估和预测结构在复杂荷载条件下的弹性和塑性响应。

在结构设计和分析中,结构动力弹塑性分析方法被广泛应用于工程领域,例如建筑物、桥梁、船舶和飞机等。

结构动力弹塑性分析方法是建立在结构动力学理论基础上的,因此首先需要建立结构的动力学模型。

这个模型可以是离散模型,也可以是连续模型。

离散模型将结构划分为多个节点,每个节点代表结构中的一个质点或刚体。

连续模型则使用连续介质力学理论,将结构看作一个连续的弹性体。

在弹塑性分析中,结构的弹性和塑性响应是重点。

弹性响应发生在结构荷载作用下,结构在荷载移除后可以恢复到初始形状。

而塑性响应发生在结构荷载作用下,结构发生永久形变,无法完全恢复到初始形状。

弹塑性分析方法通常将结构的材料行为建模为弹性-塑性材料行为,即在荷载作用下,材料先发生弹性变形,然后发生塑性变形。

在弹塑性分析中,结构中材料的塑性变形是通过应力-应变关系来计算的。

1.建立初始状态:首先,需要建立结构的初始状态,即结构在没有受到荷载作用时的形状和应力状态。

这通常需要进行结构静力分析或弹性分析。

2.荷载分析:然后,需要进行荷载分析,确定结构所受到的各种荷载,包括静态荷载、动态荷载和地震荷载等。

4.动力分析:进行结构的动力分析,计算结构在不同时间步骤下的位移、速度和加速度等响应。

5.弹塑性分析:根据动力分析的结果,使用弹塑性分析方法计算结构在荷载作用下的变形和应力分布。

这一步通常使用有限元分析方法进行。

6.评估结果和优化:分析结果可用于评估结构的安全性和稳定性,并进行结构设计的优化。

需要注意的是,结构动力弹塑性分析方法是一种比较复杂和计算密集的方法,通常需要使用计算机辅助工具进行计算和分析。

此外,在进行弹塑性分析时,还需要进行一些合理的假设和简化,以提高计算效率。

总之,结构动力弹塑性分析方法提供了一种全面和准确评估结构在复杂荷载条件下的响应的手段,能够帮助工程师进行结构设计和优化,并提高结构的安全性和耐久性。

论动力弹塑性分析在建筑结构设计中应用的若干问题

论动力弹塑性分析在建筑结构设计中应用的若干问题

论动力弹塑性分析在建筑结构设计中应用的若干问题摘要:近些年来,我国经济得到了较为快速的发展,越来越多的超限高层建筑被应用到人们的生活中。

基于建筑结构设计的“三水准、两阶段”原则,在大震作用下需要对建筑结构的抗震可靠性做出评估。

动力弹塑性分析(时程分析法)能详细记录建筑结构在大震作用下的地震反应,是超限结构抗震分析的重要方法,本文通过对某物业1#楼大震弹塑性受力分析,证实该结构体系可实现大震不倒的总体设防目标;并给出了转换梁受力的薄弱部位及相应的加强措施,供同行参考。

关键词:框支框架;转换层;抗震性能;弹塑性分析;动力响应一、工程概述该工程由是由七栋11层的住宅组合的小区,住宅层高2.9米,建设用地面积为64580.59m2,总建筑面积为152405.28m2。

是典型的下部地铁车辆基地和上部住宅合为一体的综合建筑群。

该工程首层为停车库及设备用房,9米平台为停车库,15米平台为住宅首层,结构15米平台设缝将上部住宅分为多塔或单塔。

二、工程特点及研究内容本工程主要特点:1.竖向体型收进地铁上盖通过结构分缝划分了多个结构单位,导致一部分地铁上盖结构单元上放置了一个住宅结构单元,另一部分放置了2个住宅结构单元;由于地铁上盖结构单元的平面尺寸大于住宅单元的平面尺寸,形成了大底盘单塔或多塔结构。

1#楼地铁上盖结构单元平面尺寸为60m*99m,住宅仅为48m*11.7m,竖向体型收进较大。

2.扭转不规则通过小震作用下分析,结构在水平地震力作用下并考虑偶然偏心时的位移比大于1.2,为扭转不规则结构。

3.竖向不规则与传统的框支剪力墙结构不同,本工程上部住宅采用钢筋混凝土框架结构,在15米平台上对住宅部分的框架柱进行了转换,形成了竖向不连续的框支框架转换结构。

本工程研究的主要内容:目前规范条文尚未有对框支框架结构的相关要求,因此研究框支框架结构在大震作用下的受力性能将是本文的主要内容;主要体现在:1,大震作用下结构整体的非线性动力响应;2,结构构件损伤与塑性的发展过程;3,框支梁在大震作用下的受力性能。

sap2000弹塑性分析方法

sap2000弹塑性分析方法

SAP2000弹塑性分析方法运用总结结构的抗震设计一般可通过三个方面来实现,一种是增加结构的截面和刚度来“抗震”,此时如果要使结构在大震作用下保持弹性状态,结构需要具有如右图所示的承载能力,此时结构的设计截面会变得非常不经济;第二种方法是容许结构发生一定的塑性变形,并保证结构不发生倒塌的"耐"震设计(或叫延性设计);第三种方法是通过一些装置地震响应比较(如阻尼器、隔振装置等)来吸收能量的"减"震或"隔"震设计。

当结构和结构构件具有一定的延性时,大震作用下部分构件会发生屈服,此时结构的周期会变长,结构周期的变长反过来减小了地震引起的惯性力,即塑性铰的出现吸收了部分地震能量,从而避免了结构的倒塌。

对结构抗震性能的评价以往多从强度入手,但结构在发生屈服后仍具有一定的耗能和变形能力,因此用能够反映结构延性和耗能能力的变形评价结构的抗震性能应更为合适。

通过动力弹塑性分析我们不仅要了解结构发生屈服和倒塌时的地震作用的大小,同时也要了解结构的变形能力(弹塑性层间位移角、延性系数等)、构件的变形能力、铰出现顺序等,从而实现“小震不坏、中震可修、大震不倒”的三水准设防目标。

目的:1) 评价建筑在罕遇地震下的抗震性,根据主要构件的塑性破坏情况和整体变形情况,确认结构是否满足性能目标的要求。

2) 研究超限对结构抗震性能的影响,包括罕遇地震下的最大层间位移;3)根据以上分析结果,针对结构薄弱部位和薄弱构件提高相应的加强措施。

弹塑性分析两种方法:1、静力弹塑性方法push-over2、动力弹塑性时程分析《建筑抗震设计规范》GB50011-2010(以下简称《抗规》)第1.0.1条中规定了三水准设防目标为“小震不坏、中震可修、大震不倒”。

《抗规》5.5.2条中分别规定了"应"进行弹塑性变形验算和"宜"进行弹塑性变形验算的结构。

高层建筑结构静力弹塑性分析的理论与应用研究

高层建筑结构静力弹塑性分析的理论与应用研究
高层建筑结构静力弹塑性分析 的理论与应用研究
基本内容
摘要:
随着社会的快速发展和城市化进程的加速,高层建筑结构的设计与安全性显 得尤为重要。静力弹塑性分析方法作为一种评估结构在静力荷载作用下的弹塑性 响应的重要工具,在高层建筑结构设计中具有重要意义。本次演示阐述了静力弹 塑性分析的基本原理和流程,并通过实际工程案例,探讨了静力弹塑性分析在高 层建筑结构中的应用及其优越性。
为了帮助读者更好地理解和应用MIDASGEN进行高层建筑结构的静力弹塑性分 析,建议参考MIDASGEN用户手册和其他相关文献资料。这些资料将提供更详细的 信息和指导,帮助读者掌握MIDASGEN的分析功能和操作方法。
在实际工程实践中,还需要结合实际情况和专业知识进行具体决策。静力弹 塑性分析只是评估高层建筑结构安全性的一种手段,还需要综合考虑其他因素 (如结构设计、施工工艺、维护保养等)来确保建筑结构的长期稳定性和安全性。
在进行静力弹塑性分析时,需要考虑多种荷载工况,例如自重、风载、地震 作用等。通过在MIDASGEN中设置相应的荷载工况,可以模拟高层建筑结构在不同 荷载作用下的响应。同时,还需要根据建筑结构的特点,选择合适的分析方法和 计算参数,例如静力弹塑性分析方法、屈服准则等。
在MIDASGEN中,可以通过输出位移、应力、应变等结果,对高层建筑结构的 静力弹塑性进行分析。通过与其他方法(如有限元方法、实验方法等)的比较, 可以发现MIDASGEN在分析高层建筑结构的静力弹塑性方面具有较高的精度和可靠 性。
研究目的
本次演示的研究目的是对比研究高层建筑结构的静力与动力弹塑性抗震分析 方法,分析各自的优势和不足,并提出改进建议。通过对比两种方法的计算结果, 希望能够为高层建筑结构的抗震设计提供更为准确可靠的分析手段。

水平地震作用下桩—土—上部结构弹塑性动力相互作用分析

水平地震作用下桩—土—上部结构弹塑性动力相互作用分析

水平地震作用下桩—土—上部结构弹塑性动力相互作用分析一、本文概述《水平地震作用下桩—土—上部结构弹塑性动力相互作用分析》这篇文章主要探讨了水平地震作用对桩—土—上部结构体系的影响,并详细分析了这一复杂系统在地震作用下的弹塑性动力相互作用。

本文旨在深入理解地震时桩—土—上部结构体系的动态行为,为工程实践提供理论依据和指导,以提高结构的抗震性能。

本文首先介绍了地震作用下桩—土—上部结构体系的研究背景和意义,阐述了国内外在该领域的研究现状和发展趋势。

接着,文章对桩—土—上部结构体系的弹塑性动力相互作用进行了理论分析,包括桩土相互作用、地震波的传播与散射、结构的动力响应等方面。

在理论分析的基础上,本文进行了数值模拟和实验研究。

通过建立合理的数值模型,模拟了不同地震波作用下的桩—土—上部结构体系的动态响应过程,得到了结构的地震反应特性和破坏模式。

同时,结合实验数据,验证了数值模拟的有效性,并对模拟结果进行了深入分析。

本文总结了地震作用下桩—土—上部结构弹塑性动力相互作用的研究成果,指出了现有研究的不足和未来研究方向。

文章强调了在实际工程中应考虑桩土相互作用的影响,合理设计抗震结构,以提高结构的整体抗震性能。

通过本文的研究,可以为工程师和科研人员提供有益的参考,推动桩—土—上部结构体系抗震设计方法的改进和完善,为保障人民生命财产安全和提高建筑行业的可持续发展水平做出贡献。

二、桩—土—上部结构相互作用的基本理论桩—土—上部结构的相互作用是一个复杂且关键的动力学问题,涉及到地震波传播、土壤动力学、结构动力学等多个领域。

在水平地震作用下,土壤对桩的约束和桩对土壤的支撑形成了相互作用力,这些力通过桩传递到上部结构,进而影响整个系统的动力响应。

桩—土相互作用的理论基础主要是基于土的动力学特性和桩土之间的接触关系。

土壤在地震作用下的行为受到其本身的物理特性(如密度、弹性模量、泊松比等)和动力特性(如阻尼比、剪切波速等)的影响。

弹性、弹塑性时程分析

弹性、弹塑性时程分析

PKPM软件园地 建筑结构.技术通讯 2007年1月弹性、弹塑性时程分析法在结构设计中的应用杨志勇 黄吉锋(中国建筑科学研究院 北京 100013)0 前言地震作用是建筑结构可能遭遇的最主要灾害作用之一。

几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。

与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。

但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。

《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。

下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。

1 弹性时程分析的正确应用11正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。

以下几点是需要特别明确的:(1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。

在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。

图1 SATWE 地震作用放大系数前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。

13建筑结构大震下弹塑性分析

13建筑结构大震下弹塑性分析

荷载因子
1.3 1.25 1.2 1.15 1.1 1.05
1 0
试验数据 有限元解
1000
2000
3000
结构顶点位移(mm)
罕遇地震下结构性能的评估
• 弹塑性位移角控制 • 结构薄弱部位的判断 • 结构的抗倒塌验算 • 大震下结构抗震性能的整体评估 • 弹塑性分析结果的讨论
➢弹塑性分析目的、意义 ➢弹塑性分析方法 ➢弹塑性分析的具体实现
弹塑性分析目的、意义
➢ 三水准设防中的“大震不倒” ➢ 两阶段设计中的“第二阶段弹塑性变形验算” ➢ 强震下变形验算的基本问题:
计算薄弱层位移反应和变形能力;通过改善结 构均匀性和加强薄弱层使得层间位移角满足限 值要求。
弹塑性分析的规范规定
1。弹塑性层间位移、位移角的控制; 2。结构大震下的薄弱部位的判断; 3。结构抗倒塌验算; 4。结构大震下的整体变形能力,即最大变形; 5。结构大震下变形、反应力的突变分析; 6。局部变形分析; 7。静力推覆的最大承载力分析; 8。时程分析的各时刻结构变形、杆件塑性铰分析; 9。各时刻杆件塑性铰、剪力墙破坏点分布的分析; 10。结构关键部位、削弱部位的弹塑性反应分析。
4。弹塑性整体计算模型(如层模型、平面模型、三维 模型等)、迭代的求解方法,也是影响弹塑分析结果 的因素之一;
5。弹塑性分析参数的合理选择。
6。在弹塑性分析过程中不考虑构件剪切破坏;
7。弹塑性分析,应当考虑构件的塑性发展,即塑性铰 有可能还要延杆件方向延伸;
8。弹塑性动力分析的控制,按设防烈度的大震,取与 规范一致即可;
• 3。周期-最大层间位移曲线——基于等效单质点体系 综合统计出的结构周期顶点位移曲线。随着结构进入 弹塑性状态,结构的自振周期、顶点位移反应也发生 变化,竖向连接需求谱与能力谱曲线的交点,则该点 的层间位移值可以理解为抵抗设计烈度大震时的结构 弹塑性层间位移,也可以把该点的层间位移与规范限 值比较,比规范小则满足设计要求,反之则认为不满 足设计要求。

建筑结构大震下弹塑性分析讲义(PPT60张)

建筑结构大震下弹塑性分析讲义(PPT60张)
建筑结构大震下弹塑性分析
中国建筑科学研究院
PKPMCAD工程部
弹塑性分析目的、意义 弹塑性分析方法 弹塑性分析的具体实现
弹塑性分析目的、意义
三水准设防中的“大震不倒” 两阶段设计中的“第二阶段弹塑性变形验算” 强震下变形验算的基本问题: 计算薄弱层位移反应和变形能力;通过改 善结构均匀性和加强薄弱层使得层间位移角满 足限值要求。
影响系数 层间位移角 周期-最大位移角曲线
周期-影响系数曲线 需求谱曲线 周期-加速度曲线 能力曲线
1/105
等效单自由度体系验算曲线
T
• 4。抗倒塌验算的其它方法——弹塑性分析可以按设定 的方式考虑结构的倒塌机制。如下图所示,当结构由 于外部原因,在局部失去支撑,此时分析结构的现状。
应进行弹的单层钢筋混凝 土柱厂房的横向排架
2) 7 9 度时楼层屈服强度系数小于0.5 的钢 筋混凝土框架结构 3) 高度大于150m 的钢结构
4) 甲类建筑和9 度时乙类建筑中的钢筋混凝 土结构和钢结构 5) 采用隔震和消能减震设计的结构
宜进行弹塑性变形验算的结构
结构薄弱部位的判断
1。最大层间位移、最大有害层间位移所在的楼层; 2。层间位移、有害层间位移超过规范限值的楼层; 3。结构构件塑性铰、剪力墙破坏点比较集中的部位; 4。结构局部变形较大的部位; 5。结构弹塑性反应力突变的部位。
薄弱部位
薄弱层
结构抗倒塌验算
• 1。需求谱曲线(周期-影响系数曲线)——结构在静 力推覆分析过程中,随着结构的破坏、结构阻尼的增 加、结构自振周期的变化,反映出结构在设计烈度大 震下的弹塑性最大水平地震影响系数曲线。该曲线综 合反映了结构弹塑性变形过程中地震作用变化的情况。 2。能力曲线(周期-加速度曲线)——基于等效单质点体 系综合统计出的结构周期加速度曲线。随着结构进入 弹塑性状态,结构的自振周期、顶点加速度反应也发 生变化,当该曲线穿过需求普曲线时,说明结构能够 抵抗设计烈度的大震,否则就认为不能抵抗设计烈度 的大震情况。越早穿过需求普曲线,说明结构抵抗大 震的能力越强,当曲线趋于水平时,说明结构接近破 坏、倒塌;

某建筑结构的弹塑性分析与设计研究

某建筑结构的弹塑性分析与设计研究

某建筑结构的弹塑性分析与设计研究弹塑性分析与设计是建筑结构工程中的重要研究方向之一、在该研究领域中,主要关注建筑结构在作用力下的弹性行为以及超过弹性极限后的塑性行为。

弹塑性分析与设计的研究内容涉及以下几个方面:1.弹性分析:弹性分析是建筑结构设计的基础,它研究建筑结构在作用力下的弹性变形。

通过弹性分析,可以计算出结构的应力、应变和变形等参数,为结构设计提供基础数据。

2.塑性分析:塑性分析是建筑结构设计中的一个重要环节,它研究超过结构弹性限度后的塑性变形行为。

塑性分析可以揭示结构在超过弹性限度后可能出现的破坏机理,并为结构的抗震性能提供参考依据。

3.塑性设计:塑性设计是建筑结构设计的重要组成部分,它以满足结构性能要求和安全性要求为目标,通过选择适当的材料和截面尺寸,合理布置构件等方式,来满足结构在强震等作用力下的安全稳定性。

4.弹塑性分析与设计方法:弹塑性分析与设计方法是弹塑性研究的核心内容之一、通过选用适当的数学模型、理论基础和计算方法,可以对不同结构在不同工况和作用力下的弹塑性行为进行合理可靠的分析和设计。

在实际应用中,弹塑性分析与设计方法主要用于以下几个方面:1.结构抗震设计:弹塑性分析与设计方法可以用于建筑结构的抗震设计。

通过对结构在强震作用下的弹塑性行为进行合理分析,可以评估结构的抗震性能,并根据需求调整结构的设计参数。

2.结构优化设计:弹塑性分析与设计方法可以用于建筑结构的优化设计。

通过对结构不同设计方案的弹塑性行为进行比较分析,可以找到最优设计方案,使结构在满足性能要求的前提下具有较高的经济性和施工性。

3.结构破坏模式与维修设计:弹塑性分析与设计方法可以用于建筑结构的破坏模式分析和维修设计。

通过对结构在超过弹性限度后的塑性行为进行分析,可以预测结构可能出现的破坏模式,并采取相应的维修措施,延长结构的使用寿命。

4.结构可靠性评估:弹塑性分析与设计方法可以用于建筑结构的可靠性评估。

通过对结构在不同工况和作用力下的弹塑性行为进行多次模拟分析,可以评估结构的可靠性水平,并进一步指导结构的设计和维护。

结构弹塑性分析及薄弱层弹塑性变形验算

结构弹塑性分析及薄弱层弹塑性变形验算

6 进行动力弹塑性计算时,地面运动加速度时程的选取、预估罕遇地震作用时的峰值加速度取值以及计算结果的选用应符合本规程第4.3.5条的规定;7 应对计算结果的合理性进行分析和判断。

5.5.2 在预估的罕遇地震作用下,高层建筑结构薄弱层(部位)弹塑性变形计算可采用下列方法:1 不超过12层且层侧向刚度无突变的框架结构可采用本规程第5.5.3条规定的简化计算法;2 除第1款以外的建筑结构可采用弹塑性静力或动力分析方法。

5.5.3 结构薄弱层(部位)的弹塑性层间位移的简化计算,宜符合下列规定:1 结构薄弱层(部位)的位置可按下列情况确定:1)楼层屈服强度系数沿高度分布均匀的结构,可取底层;2)楼层屈服强度系数沿高度分布不均匀的结构,可取该系数最小的楼层(部位)和相对较小的楼层,一般不超过2~3处。

2 弹塑性层间位移可按下列公式计算:条文说明5.5 结构弹塑性分析及薄弱层弹塑性变形验算5.5.1 本条为新增条文。

对重要的建筑结构、超高层建筑结构、复杂高层建筑结构进行弹塑性计算分析,可以分析结构的薄弱部位、验证结构的抗震性能,是目前应用越来越多的一种方法。

在进行结构弹塑性计算分析时,应根据工程的重要性、破坏后的危害性及修复的难易程度,设定结构的抗震性能目标,这部分内容可按本规程第3.11节的有关规定执行。

建立结构弹塑性计算模型时,可根据结构构件的性能和分析精度要求,采用恰当的分析模型。

如梁、柱、斜撑可采用一维单元;墙、板可采用二维或三维单元。

结构的几何尺寸、钢筋、型钢、钢构件等应按实际设计情况采用,不应简单采用弹性计算软件的分析结果。

结构材料(钢筋、型钢、混凝土等)的性能指标(如弹性模量、强度取值等)以及本构关系,与预定的结构或结构构件的抗震性能目标有密切关系,应根据实际情况合理选用。

如材料强度可分别取用设计值、标准值、抗拉极限值或实测值、实测平均值等,与结构抗震性能目标有关。

结构材料的本构关系直接影响弹塑性分析结果,选择时应特别注意;钢筋和混凝土的本构关系,在现行国家标准《混凝土结构设计规范》GB 50010的附录中有相应规定,可参考使用。

隔震结构弹塑性分析方法

隔震结构弹塑性分析方法

隔震结构地震反应弹塑性分析方法隔震结构是在建筑物的基础和上部结构之间设置一种可以产生相对滑移的滑板,也就是层可靠性很高的隔离层。

隔震结构的隔震原理:由于隔震层水平刚度较小,能延长了结构自振周期,避免了地震动的卓越周期,使结构的加速度反应减低而结构的位移反应增大。

对滑板之间的滑移摩擦力进行控制控制阻尼,由于隔震层具有较大的阻尼从而使结构的加速度反应和位移反应也有所减小。

结构地震反应是现代减震和隔震设计理论的核心内容,是验证结构减震和隔震性能的关键步骤。

根据计算分析理论的不同,地震反应弹塑性分析方法可分为FNA法、反应谱分析法、pushover分析法和动力反应法。

快速非线性分析(FNA)方法是一种非线性分析的有效方法,在这个方法中,非线性被作为外部荷载来处理,形成考虑非线性荷载并修正的模态方程。

该模态方程与结构线性模态方程相似,因此可以对模态方程进行类似于线性振型的分解求解,然后基于泰勒级数对解的近似表示,使用精确分段多项式积分对模态方程迭代求解。

最后基于前面分析所得到的非线性单元的变形和速度历史计算非线性力向量,并形成模态力向量,形成下一步迭代新的模态方程求解。

FNA方法适用于非线性结构动力分析求解,同时也可以对静力荷载分析工况进行求解。

反应谱法是一种拟动力方法,也是一种统计方法。

反应谱法考虑地面运动的强弱、场地土的性质以及结构的动力特性对地震的影响,因此可近似反应地震对结构的作用。

另外由于反应谱法与传统设计方法比较接近,因此得到了广泛的应用。

各国规范都给出了设计反应谱曲线。

反应谱法首先用动力方法计算质点体系地震反应去建立反应谱,再用加速度反应谱计算结构的最大惯性力作为结构的等效地震荷载,然后按照静力方法进行结构的计算和设计。

加速度反应谱是通过对一系列具有不同自振特性的单自由度体系输入地震动数据,记录每个单自由度体系的加速度最大反应,以结构的自振周期为横坐标对应的加速度反应为纵坐标绘出。

非线性静力分析法又称pushover分析法又称倾覆分析,指的是结构分析模型在一个结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构控制点达到目标位移的过程。

某建筑结构罕遇地震弹塑性分析

某建筑结构罕遇地震弹塑性分析

弹性 弹性
抗剪承载力弹性袁正截面承载力不屈服 抗剪不屈服袁破坏程度保证生命安全 抗剪承载力弹性袁正截面承载力不屈服 抗剪尧正截面不屈服袁破坏程度保证生命安全
普通竖向构件
核心筒墙一般部位其他外框
弹性
抗剪尧正截面不屈服
满足受剪界面控制条件袁破坏程度生命安全
环带桁架
弹性
抗剪尧正截面不屈服
出现塑性铰袁控制塑性变形
其他部位构件
伸臂桁架
弹性
允许进入屈服袁控制塑性变形
出现塑பைடு நூலகம்铰袁控制塑性变形
框架梁尧连梁
弹性
允许进入塑性
出现塑性铰袁控制塑性变形
表 2 Perform-3D 模型各节阶阵型振动方向与 YJK 计算对比
计算软件
YJK
Perform-3D
差别
第一周期渊s冤
5.56渊0毅冤
5.663渊0毅冤
1.85%
周期 第二周期渊s冤
153
建筑·节能
LOW CA RBON WORLD 2019/5
表 1 建筑结构抗震设计规范的性能目标
地震水准
多遇地震
设防地震
罕遇地震
性能水准宏观描述
完好无损坏
轻度损坏
中度损坏
层间位移角限值
1/500
1/300
1/100
关键部位构件 核心筒渊底部加强部位尧加强层及相邻上下层冤 与伸臂桁架相连的外框柱尧底部穿层柱
在大多数建筑材料中袁 如果结构或构件承受的荷载从受 拉变为受压时袁结构或构件中材料将会出现的裂缝闭合现象袁 这样一来材料的抗压刚度就能够恢复至原有的抗压刚度曰如 果结构或构件材料受力从受压变成受拉时袁 混凝土结构或构 件材料中的抗拉刚度不恢复遥 而本软件所采用的本构关系袁是 基于受压损伤因子 dc 和受拉损伤因子 dt 对混凝土材料拉压 刚度的降低来进行表达遥 我们在抗震设计时袁需要严格按照混 凝土结构或构件中材料受到轴心抗压和轴心抗拉强度标准值 参考叶混凝土结构设计规范曳进行取值遥

高层建筑结构的地震响应分析

高层建筑结构的地震响应分析

高层建筑结构的地震响应分析高层建筑是当代城市化发展的重要组成部分,由于其特殊的结构特点,地震对其影响是不可忽视的。

本文将对高层建筑结构的地震响应进行分析。

一、引言地震是地壳运动引起的自然灾害,其对高层建筑的影响往往是最为显著的。

鉴于高层建筑在地震中所受到的巨大力学作用,对其地震响应进行准确分析具有重要意义。

二、高层建筑结构的地震响应机理高层建筑结构的地震响应主要通过以下几个方面体现:1. 震感传递路径:地震波在地壳传播过程中,会通过地基、框架结构、楼板等路径传递到高层建筑的结构系统中。

2. 动力特性影响:高层建筑的固有周期、阻尼比等动力特性对地震响应起着重要作用,这些参数会直接影响结构的振动情况。

3. 弹塑性行为:高层建筑结构在地震作用下会出现弹性和塑性变形,其中塑性变形会对结构产生更大的影响。

4. 结构非线性:高层建筑的结构系统存在着非线性行为,例如钢结构的屈曲等,这些非线性现象会对地震响应产生重要影响。

三、高层建筑结构的地震响应分析方法对于高层建筑结构的地震响应分析,常用的方法主要包括以下几种:1. 静力分析法:即利用静力平衡原理,假定地震作用与结构受力时间相比较长,结构处于静力平衡状态的方法。

这种方法适用于刚性结构或者对地震反应较不敏感的情况。

2. 动力弹性响应分析法:该方法假设结构是线性弹性的,通过求解结构的频率和振型,利用输入地震波的振幅谱与结构的响应谱进行对比,得到结构的地震响应。

3. 时程分析法:通过数值方法对结构进行时程分析,考虑结构的非线性行为和地震波的时程特性,得到结构在地震过程中的时变响应。

四、高层建筑结构抗震设计原则为了提高高层建筑结构的地震抗力,应该遵循以下原则:1. 刚度控制:通过增加结构的刚度,减小结构的位移,在地震中减小结构的变形和应力。

2. 强度控制:通过增加结构的强度,提高其承载能力,使结构能够在地震中承受较大的力学作用。

3. 韧性设计:提高结构的韧性能力,使结构在地震中具有一定的塑性变形能力,能够吸收地震能量并减缓地震波的作用。

浅谈超限高层建筑大震弹塑性分析方法及步骤

浅谈超限高层建筑大震弹塑性分析方法及步骤

浅谈超限高层建筑大震弹塑性分析方法及步骤摘要:随着城市超高层建筑越来越多,超高层建筑结构的超限审查也越来越严格,因此结构超限计算和分析也显得尤为重要,超限计算包括弹性计算、弹性时程分析、等效弹性分析、静力弹塑性和动力弹塑性分析,本文仅针对过程和方法较为复杂的动力弹塑性分析方法和步骤作简单介绍。

关键词:超限性能目标罕遇地震地震波动力弹塑性分析结构损伤1概述本文以武汉某超高层住宅楼为例,简要介绍超限高层结构的动力弹塑性方法和步骤。

2工程概况武汉某超高层住宅楼,结构高度为166.6m,为B级高度,地上55层,地下3层。

结构标准层长约48m,等效宽度约18.7m,高宽比约9.1;采用混凝土剪力墙结构型式。

按《高层建筑混凝土结构技术规程》(以下简称《高规》)及武城建[2016]5号、[2016]154号文规定,本楼栋抗震设防类别为标准设防类。

剪力墙、框架梁及连梁抗震等级均为二级。

本楼栋建筑结构安全等级为二级,结构设计使用年限为50年。

根据《建筑抗震设计规范》(以下简称《抗规》),本地区设计抗震设防烈度为6度,场地类别为Ⅱ类,基本地震加速度为0.05g,设计地震分组为一组;按《中国地震动参数区划图》相关规定,多遇地震、设防地震、罕遇地震作用下的地震加速度的最大值分别为17cm/s2、50cm/s2、115cm/s2,水平地震影响系数最大值αmax分别为0.0417、0.125、0.2875,特征周期分别为0.35、0.35、0.4.3结构超限情况及解决方案3.1结构超限情况根据国家《超限高层建筑工程抗震设防管理规定》和《超限高层建筑工程抗震设防专项审查技术要点》中的相关规定,本项目为钢筋混凝土剪力墙,超限高度限值为140m,因此高度超限,无其他超限项;需要进行抗震超限审查。

3.2抗震性能目标根据《高规》第3.11节及条文说明,本项目可选用结构抗震性能目标为D级,具体如下:规范抗震概念:小震不坏、中震可修、大震不倒;性能水准为1、4、5;性能目标:关键构件(底部加强区、楼梯间及端山墙通高剪力墙):在小震作用下无损坏、弹性;中震作用下轻度损坏、抗震承载力满足不屈服;大震作用下中度损坏、抗震承载力宜满足不屈服。

建筑弹塑性分析PUSHOVER

建筑弹塑性分析PUSHOVER

2.需求谱法
结构抗震性能需求谱是在给定地震作用下, 不同周期结构的承载力和位移响应的需求 值。
先将能力曲线转化为A-D格式,能力谱曲线
将不同的周期结构的加速度响应需求Sa和位
移响应需求Sd也在A-D坐标系下给出,由此得
到的Sa-Sd关系曲线即为需求谱。对于弹性结
构,弹性谱加速度需求Sa可以采用地震弹性
其中 Dntqnt/,n D表n 示t 一个对应原结构
第n阶振型的单自由度体系在地震作用 下u g ( t ) 的位移响应,圆频率和阻尼比分别为 和 n 。
从而可n 求得结构第n阶振型的位移,内力,层
间位移等。
对前N阶振型都采用上述方法求算其最大响应 量,并采用某种方法进行组合(SASS法或 CQC法)—振型分解反应谱法。
Fass
T
ass
fs(D,signD)
aTssm ;对于地震响应由结构振型
向 量量成正控a s 比s制a s的s的荷弹载塑进性行结推构覆,,仍即采:用振型sa向ss mass
得到
Fass
Vb Mass
uroof
,DБайду номын сангаасass
roof ass
u u V
V
b
基底剪力, r o o顶f 点位移。 — r o 的o f 关系曲线称为
b
“结构的能力曲线”。或“推覆曲线”
为便于评价结构抗震性能是否达到要求,还
可以按照单阶振型反应谱法将推覆曲线上
各店的承载力和位移转化为谱加速度与谱 位移的关系曲线,得到结构的能力谱曲线,
即 S a S格d 式能力谱曲线。
Sa
Vb M
,
Sd
uroof
roof
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 多自由度体系与单自由度体系之间存在一定的关系,这意味着结构 的反应主要由单一振型控制;
• 结构沿高度的变形形状可由某一形状向量控制,并且在整个结构反
应过程中,该形状向量保持不变。
– 这两个假定都是不严格正确的,但很多学者研究表明:对于反应主要由第一振 型控制的结构,Pushover 分析方法可以准确、简便地评估结构的抗震性能。
① 你知道自己设计的结构到底能抵抗多大的地震吗? ② 你知道自己设计的结构在大震时什么地方先破坏吗? ③ 你知道自己设计的结构是先发生剪切破坏还是弯曲破坏 ?
④ 结构屈服后还能抵抗多大的地震力和变形· ?
⑤ 你用实配钢筋验算过“强剪弱弯”、“强柱弱梁”吗?
⑥ 大震下要结构要保持弹性需要多大截面和配筋?
Pushover方法的基本原理

Pushover方法的发展
– 静力弹塑性分析 (Pushover)方法最早是 1975年由 Freeman 等提出的,以 后虽有一定发展,但未引起更多的重视; – 九十年代初美国科学家和工程师提出了基于性态的设计方法,引起了日 本和欧洲同行的极大兴趣,Pushover方法随之重新激发了广大学者和设 计人员的兴趣,纷纷展开各方面的研究。 – 一些国家抗震规范也逐渐接受了这一分析方法并纳入其中,如ATC-40
Pushover方法的基本原理

Pushover方法的基本原理
– 其优点突出体现在:较底部剪力法和振型分解反应谱法,它考虑了结构 的弹塑性特性;较时程分析法,其输入数据简单,工作量较小。 – pushover分析还只是一种近似而且是基于静力荷载进行的,因此它不能
精确的代替动力时程分析方法,它不能检测到结构在强烈地震中可能发
位移时停止荷载递增,最后在合作终止状态对结构进行抗震性能评估(
建筑结构抗震弹塑性分析
The seismic elastic-plastic analysis of building structures
主要内容
Pushover方法的基本原理
Pushover方法的实施步骤
能力谱法 Pushover小例子 结语
Pushover方法的基本原理
1. 为什么要做静力或动力弹塑性分析?
Capacity Spectrum
Dmax
Sd
Pushover方法的基本原理

Pushover方法的基本假定
– 用一个单自由度体系(SDOF)来等效实际结构,代替多自由度体系(MDOF),通 过研究等效单自由度体系的地震弹塑性反应,来预测实际结构的地震弹塑性反 应。就其自身而言,没有特别严密的理论基础,主要基于以下两个假定:
Sa
Sa
transform
Tn
Tn,1
Tn2 Sd 2 Sa 4
Tn,2
Response Spectrum
Demand Spectrum
Sd
Sa
Amax
5% Elastic Spectrum
Performance Point Demand Spectrum
通过比较两个谱曲线,评价结构在弹塑性状态下 的最大需求内力和变形能力,通过与目标性能的 比较,决定结构的性能水平(performance level)。
Capacity Curve
Capacity Spectrum
Vbase
PushoHale Waihona Puke er AnalysisSa
transform
Vbase
roof
MDOF System
Sd SDOF System
Pushover方法的基本原理
多自由度的荷载-位移关系转换为使用单自由度体系的加速度-位移方式表现的能力谱 (capacity spectrum),地震作用的响应谱转换为用ADRS(Acceleration-Displacement Response Spectrum)方式表现的需求谱(demand spectrum)。
T
左 乘
Q M M x C x xg
* * r * *
Q kx T m x* T xt m
V iT Q T M X xt , y T Mi
y Qy T Qy
T T m * T * T T m x c x Q m xg T m T M * T mC * T c m Q* T Q T m
、 FEMA-273&274 、日本、韩国等国规范。我国在《建筑抗震设计规
范》(GB50011-2001)中规定“弹塑性变形分析,可根据结构特点采用静 力非线性分析或动力非线性分析”,国外一些软件 (如Sap2000,IDARC
、SCM-3D、DRAIN-2DX,Opensees等)业已开发和增加这种功能。
Pushover方法的基本原理

Pushover方法的基本原理
下的弹塑性分析。具体地说即是,在结构分析模型上按某种方式施加模拟 地震水平惯性力的侧向力,并逐级单调加大,构件如有开裂或屈服,修改 其刚度,直到结构达到预定的状态(成为机构、位移超限或达到目标位移 )。
roof
F
– Pushover方法从本质上说是一种静力分析方法,即对结构进行静力单调加载
Pushover方法的基本原理

等效单自由度体系的建立
Pushover方法的实施步骤

Pushover方法的实施步骤
– 准备结构数据:包括建立结构模型、构件的物理参数和恢复力模型等; – 计算结构在竖向荷载作用下的内力(将与水平力作用下的内力叠加,作 为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服); – 施加一定的水平荷载,逐渐加大水平荷载,将结构推到一个结构在可能 遭遇的地震作用下所对应的目标位移(性态点),然后在结构达到目标
生的某些重要变形模式,特别是对那些高振型显著的结构更是如此。但 如果具有很好的判断力并充分考虑其限制性,则Pushover分析将是一种
结构抗震评估的有利工具。
Pushover方法的基本原理

等效单自由度体系的建立
x xt
*
cx kx m mx xg
t kxt m m xt cx xg
相关文档
最新文档