空间中的平行关系练习题

合集下载

第七章 第三节 空间中的平行关系

第七章  第三节 空间中的平行关系

课时规范练A组基础对点练1.(2019·益阳市、湘谭市调研)下图中,G,N,M,H分别是正三棱柱(两0底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有()A.①③B.②③C.②④D.②③④解析:由题意,可知题图①中,GH∥MN,因此直线GH与MN共面;题图②中,连接GN,G,H,N三点共面,但M平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此直线GH与MN共面;题图④中,连接GN,G,M,N三点共面,但H平面GMN,所以直线GH 与MN异面.故选C.答案:C2.如图所示,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:对于选项A,设正方体的底面对角线的交点为O(图略),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,故选A.3.(2019·银川模拟)已知m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,n⊥β,且β⊥α,则下列结论一定正确的是()A.m⊥n B.m∥nC.m与n相交D.m与n异面解析:若β⊥α,m⊥α,则直线m与平面β的位置关系有两种:mβ或m ∥β.当mβ时,又n⊥β,所以m⊥n;当m∥β时,又n⊥β,所以m⊥n,故m ⊥n,故选A.答案:A4.(2019·济宁模拟)如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE⊥B1C1D.A1C1∥平面AB1E解析:对于A,CC1与B1E均在侧面BCC1B1内,又两直线不平行,故相交,A错误;对于B,AC与平面ABB1A1所成的角为60,所以AC不垂直于平面ABB1A1,故B错误;对于C,AE⊥BC,BC∥B1C1,所以AE⊥B1C1,故C正确;对于D,AC与平面AB1E有公共点A,AC∥A1C1,所以A1C1与平面AB1E相交,故D错误.答案:C5.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥nC.n⊥l D.m⊥n解析:因为α∩β=l,所以lβ,又n⊥β,所以n⊥l.故选C.答案:C6.(2019·重庆六校联考(一))设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,aα,a∥βC.存在两条平行直线a,b,aα,bβ,a∥β,b∥αD.存在两条异面直线a,b,aα,bβ,a∥β,b∥α解析:对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B,C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案:D7.(2019·宜昌调研)如图所示,在棱长均相等的四棱锥P-ABCD中,O为底面正方形的中心,M,N分别为侧棱P A,PB的中点,有下列结论:①PC∥平面OMN;②平面PCD∥平面OMN;③OM⊥P A;④直线PD与MN所成角的大小为90.其中正确结论的序号是________.(写出所有正确结论的序号)解析:如图所示,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确.同理PD∥ON,所以平面PCD∥平面OMN,结论②正确.由于四棱锥的棱长均相等,所以AB2+BC2=P A2+PC2=AC2,所以PC⊥P A,又PC∥OM,所以OM⊥P A,结论③正确.由于M,N分别为侧棱P A,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB ∥CD,又三角形PDC为等边三角形,所以∠PDC=60,所以直线PD与MN所成的角即∠PDC,故④错误.故正确的结论为①②③.答案:①②③8.如图所示,四棱锥P ABCD中,四边形ABCD为正方形,PD⊥平面ABCD,PD=DC=2,点E,F分别为AD,PC的中点.(1)证明:DF∥平面PBE;(2)求点F到平面PBE的距离.解析:(1)证明:取PB的中点G,连接EG,FG,则FG∥BC,且FG=12BC,∵DE∥BC且DE=12BC,∴DE∥FG且DE=FG,∴四边形DEGF为平行四边形,∴DF∥EG,又DF平面PBE,EG平面PBE,∴DF∥平面PBE.(2)由(1)知DF∥平面PBE,∴点D到平面PBE的距离与F到平面PBE的距离是相等的,故转化为求点D到平面PBE的距离,设为d.连接BD.∵V D PBE=V P BDE,∴13S△PBE·d=13S△BDE·PD,由题意可求得PE=BE=5,PB=23,∴S△PBE =12×23×(5)2-⎝⎛⎭⎪⎫2322=6,又S△BDE=12DE·AB=12×1×2=1,∴d=6 3.9.(2019·昆明七校模拟)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥平面BDH;(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.解析:(1)点F,G,H的位置如图所示.(2)证明:连接BD,设O为BD的中点,连接OM,OH,AC,BH,MN. ∵M,N分别是BC,GH的中点,∴OM∥CD,且OM=12CD,NH∥CD,且NH=12CD,∴OM∥NH,OM=NH,则四边形MNHO是平行四边形,∴MN∥OH,又MN平面BDH,OH平面BDH,∴MN∥平面BDH.(3)由(2)知OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是正方体的棱长,∴体积比等于底面积之比,即3∶1.B组能力提升练10.(2019·荆州模拟)如图所示,在三棱柱ABC-A′B′C′中,点E,F,H,K 分别为AC′,CB′,A′B′,B′C′的中点,G为△ABC的重心.从K,H,G,B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P 为()A.K B.HC.G D.B′解析:取A′C′的中点M,连接EM,MK,KF,EF,则EM,得四边形EFKM为平行四边形,若P=K,则AA′∥BB′∥CC′∥KF,故与平面PEF平行的棱超过2条;HB′∥MK⇒HB′∥EF,若P=H或P=B′,则平面PEF与平面EFB′A′为同一平面,与平面EFB′A′平行的棱只有AB,不满足条件;连接BC′,则EF∥A′B′∥AB,若P=G,则AB,A′B′与平面PEF平行.故选C.答案:C11.(2019·洛阳统考(一))正方形ABCD和等腰直角三角形DCE组成如图所示的梯形,M,N分别是AC,DE的中点,将△DCE沿CD折起(点E始终不在平面ABCD内),则下列说法一定正确的是()A.MN∥平面BCEB.在折起过程中,一定存在某个位置,使MN⊥ACC.MN⊥AED.在折起过程中,不存在某个位置,使DE⊥AD解析:折起后的图形如图所示,取CD的中点O,连接MO,NO,则在△ACD中,M,O分别是AC,CD的中点,∴MO∥AD∥BC,同理NO∥CE,又BC∩CE=C,∴平面MON∥平面BCE,∴MN∥平面BCE,故A正确;易知MO⊥CD,NO⊥CD,又MO∩NO=O,∴CD⊥平面MNO,∴MN⊥CD,若MN⊥AC,又AC∩CD=C,∴MN⊥平面ABCD,∴MN⊥MO,又MO=12AD=12EC=NO,∴MN不可能垂直于MO,故MN⊥AC不成立,故B错误;取CE 的中点Q,连接MQ,则在△ACE中,M,Q分别是AC,CE的中点,∴MQ∥AE,由图知MQ与MN不可能始终垂直,故C错误,当平面CDE⊥平面ABCD时,又平面CDE∩平面ABCD=CD,AD⊥CD,AD平面ABCD,∴AD⊥平面CDE,∴AD⊥DE,故D错误.答案:A12.下列命题正确的是()A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行解析:A选项中两条直线可能平行也可能异面或相交;对于B选项,如图所示,在正方体ABCD-A1B1C1D1中,平面ABB1A1和平面BCC1B1与B1D1所成的角相等,但这两个平面垂直;D选项中两平面也可能相交.C正确.答案:C13.(2019·杭州模拟)如图所示,在正方体ABCD-A1B1C1D1中,AB=2,E为AD 的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析:根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.答案: 214.(2019·唐山统一考试)在三棱锥P ABC中,PB=6,AC=3,G为△P AC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的周长为________.解析:过点G作EF∥AC,分别交P A、PC于点E、F,过E、F分别作EN ∥PB、FM∥PB,分别交AB、BC于点N、M,连接MN(图略),则四边形EFMN是平行四边形,所以EF3=23,即EF=MN=2,FMPB=FM6=13,即FM=EN=2,所以截面的周长为2×4=8.答案:815.如图所示,四棱锥P ABCD的底面是边长为8的正方形,四条侧棱长均为217 .点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH .(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.解析:(1)证明:因为BC∥平面GEFH,BC平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)如图所示,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为P A=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD.又平面GEFH⊥平面ABCD,且PO平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,且GK⊥底面ABCD,从而GK⊥EF,所以GK是梯形GEFH的高.由AB=8,EB=2,得EB∶AB=KB∶DB=1∶4,从而KB=14DB=12OB,即K为OB的中点.由PO∥GK得GK=12PO,即G是PB的中点,且GH=12BC=4.由已知可得OB=42,PO=PB2-OB2=68-32=6,所以GK=3.故四边形GEFH的面积S=GH+EF2·GK=4+82×3=18.。

新教材高一数学——空间直线、平面的平行练习题

新教材高一数学——空间直线、平面的平行练习题

8.5 空间直线、平面的平行练习题1.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则下列说法正确的是()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上2.下列说法正确的是()A.直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∩b=∅,直线b⊂α,则a∥αD.若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线3.如果直线l,m与平面α,β,γ满足:β∩γ=l,m∥l,m⊂α,则必有() A.l∥αB.α∥γC.m∥β且m∥γD.m∥β或m∥γ4.已知两条直线m,n,两个平面α,β,给出下面四个命题:①α∩β=a,b⊂α⇒a∥b或a,b相交;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∩β=a,a∥b⇒b∥β或b∥α.其中正确命题的序号是()A.①③B.②④C.①④D.②③5.已知a,b,c是空间中的三条相互不重合的直线,给出下列说法:①若a∥b,b∥c,则a∥c;②若a与b相交,b与c相交,则a与c相交;③若a⊂平面α,b⊂平面β,则a,b一定是异面直线;④若a,b与c成等角,则a∥b.其中正确的是________(填序号).6.如图是某正方体的平面展开图(表面朝下).关于这个正方体,有以下判断:①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE ∥平面NCF.其中判断正确的序号是________.7.下面四个命题:①分别在两个平面内的两直线平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行.其中正确的命题是________.8.给出下列说法:①若平面α∥平面β,平面β∥平面γ,则平面α∥平面γ;②若平面α∥平面β,直线a与α相交,则a与β相交;③若平面α∥平面β,P∈α,PQ∥β,则PQ⊂α;④若直线a∥平面β,直线b∥平面α,且α∥β,则a∥b.其中正确说法的序号是________.9.如图,在三棱台DEF-ABC中,AC=2DF,G,H分别为AC,BC的中点.求证:BD∥平面FGH.10.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB ∥CD,且AB=2CD,那么在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.详解:1.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则下列说法正确的是()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上答案D解析连接EH,FG.因为F,G分别是边BC,CD上的点,且CFCB=CGCD=23,所以GF∥BD,且GF=23BD.因为点E,H分别是边AB,AD的中点,所以EH∥BD,且EH=12BD,所以EH∥GF,且EH≠GF,所以EF与GH相交,设其交点为M,则M∈平面ABC,同理M∈平面ACD.又平面ABC∩平面ACD=AC,所以M在直线AC上.故选D.2.下列说法正确的是()A.直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∩b=∅,直线b⊂α,则a∥αD.若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线答案D解析由直线与平面的位置关系及直线与平面平行的判定定理,知D正确.3.如果直线l,m与平面α,β,γ满足:β∩γ=l,m∥l,m⊂α,则必有() A.l∥αB.α∥γC.m∥β且m∥γD.m∥β或m∥γ答案D解析 ⎭⎪⎬⎪⎫β∩γ=l ,l ⊂β,l ⊂γm ∥l ,m ⊂α⇒m ∥β或m ∥γ.若m 为α与β的交线或为α与γ的交线,则不能同时有m ∥β,m ∥γ.故选D.4.已知两条直线m ,n ,两个平面α,β,给出下面四个命题:①α∩β=a ,b ⊂α⇒a ∥b 或a ,b 相交;②α∥β,m ⊂α,n ⊂β⇒m ∥n ;③m ∥n ,m ∥α⇒n ∥α;④α∩β=a ,a ∥b ⇒b ∥β或b ∥α.其中正确命题的序号是( )A .①③B .②④C .①④D .②③答案 C解析 对于①,由α∩β=a ,b ⊂α,得a ,b 共面,则a ∥b 或a ,b 相交,正确;对于②,α∥β,m ⊂α,n ⊂β可能得到m ∥n ,还有可能是直线m ,n 异面,错误;对于③,m ∥n ,m ∥α,当直线n 不在平面α内时,可以得到n ∥α,但是当直线n 在平面α内时,n 不平行于平面α,错误;对于④,由α∩β=a ,a ∥b ,得b 至少与α,β中的一个平面平行,则b ∥β或b ∥α,正确.故选C.5.已知a ,b ,c 是空间中的三条相互不重合的直线,给出下列说法: ①若a ∥b ,b ∥c ,则a ∥c ;②若a 与b 相交,b 与c 相交,则a 与c 相交;③若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线;④若a ,b 与c 成等角,则a ∥b .其中正确的是________(填序号).答案 ①解析 由基本事实4知①正确;当a 与b 相交,b 与c 相交时,a 与c 可能相交、平行,也可能异面,故②不正确;当a ⊂平面α,b ⊂平面β时,a 与b 可能平行、相交或异面,故③不正确;当a ,b 与c 成等角时,a 与b 可能相交、平行,也可能异面,故④不正确.故正确说法的序号为①.6.如图是某正方体的平面展开图(表面朝下).关于这个正方体,有以下判断:①BM ∥平面DE ;②CN ∥平面AF ;③平面BDM ∥平面AFN ;④平面BDE∥平面NCF.其中判断正确的序号是________.答案①②③④解析以面ABCD为下底面还原正方体,如图,则易判定四个判断都是正确的.7.下面四个命题:①分别在两个平面内的两直线平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行.其中正确的命题是________.答案②④解析由面面平行的定义可知②④正确.8.给出下列说法:①若平面α∥平面β,平面β∥平面γ,则平面α∥平面γ;②若平面α∥平面β,直线a与α相交,则a与β相交;③若平面α∥平面β,P∈α,PQ∥β,则PQ⊂α;④若直线a∥平面β,直线b∥平面α,且α∥β,则a∥b.其中正确说法的序号是________.答案②③解析①中平面α与γ也可能重合,故①不正确.假设直线a与平面β平行或直线a⊂β,则由平面α∥平面β,知a⊂α或a∥α,这与直线a与α相交矛盾,所以a与β相交,②正确.如图,过直线PQ作平面γ,γ∩α=a,γ∩β=b,由α∥β,得a∥b.因为PQ∥β,PQ⊂γ,所以PQ∥b.因为过直线外一点有且只有一条直线与已知直线平行,所以直线a与直线PQ重合.因为a⊂α,所以PQ⊂α,③正确.若直线a∥平面β,直线b∥平面α,且α∥β,则a与b平行、相交和异面都有可能,④不正确.9.如图,在三棱台DEF-ABC中,AC=2DF,G,H分别为AC,BC的中点.求证:BD∥平面FGH.证明如图,连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AC=2DF,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.所以O为CD的中点.又H为BC的中点,所以OH∥BD.又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.10.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB ∥CD,且AB=2CD,那么在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.解存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点.证明如下:∵AB∥CD,AB=2CD,∴AF=CD且AF//CD,∴四边形AFCD是平行四边形,∴AD∥CF.又AD⊂平面ADD1A1,CF⊄平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1.又CF∥平面ADD1A1,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.。

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′­ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。

专题8.3 空间几何中的平行、垂直(练习)【必考点专练】2023届高考数学二轮复习专题

专题8.3 空间几何中的平行、垂直(练习)【必考点专练】2023届高考数学二轮复习专题

专专8.3空间几何中的平行、垂直一、单选题1. 设,l m 表示两条不同的直线,,αβ表示两个不同的平面,Q 表示一个点,给出下列四个命题,其中正确的命题是( )①,Q l Q l αα∈⊂⇒∈②,l m Q m l ββ⋂=⊂⇒⊂③//,,,l m l Q m Q m ααα⊂∈∈⇒⊂④,αβ⊥且,,,m Q Q l l l αββαβ⋂=∈∈⊥⇒⊂A. ①②B. ①③C. ②④D. ③④ 2. 如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A. 直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB. 直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC. 直线1A D 与直线1D B 相交,直线//MN 平面ABCDD. 直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B3. 如图A ,B ,C ,D 为空间四点,在ABC 中,2AB =,2AC BC ==,等边三角形ADB 以AB 为轴旋转,当平面ADB ⊥平面ABC 时,CD =( )A. 3B. 2C. 5D. 14. 如图,四边形ABCD 中,//AD BC ,AD AB =,45BCD ︒∠=,90BAD ︒∠=,将ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD -,则在三棱锥A BCD -中,下列命题正确的是( )A. 平面ABD ⊥平面ABCB. 平面ADC ⊥平面BDCC. 平面ABC ⊥平面BDCD. 平面ADC ⊥平面ABC二、多选题 5. 如图,在正方体1111ABCD A B C D -中,点P 为线段1B C 上一动点,则( )A. 直线1BD ⊥平面11AC DB. 异面直线1B C 与11A C 所成角为45︒C. 三棱锥11P A DC -的体积为定值D. 平面11AC D 与底面ABCD 的交线平行于11A C6. 如图所示,矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE ,若M 为线段1A C 的中点,则在ADE 翻转过程中,下列命题正确的是( )A. ||BM 是定值B. 点M 在球面上运动C. 一定存在某个位置,使1DE A C ⊥D. 一定存在某个位置,使//MB 平面1A DE7. 如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的有( )A. B 、E 、C 、F 四点不共面B. 存在点F ,使得//CF 平面BAEC. 三棱锥B ADC -的体积为定值D. 存在点E 使得直线BE 与直线CD 垂直三、填空题 8. 《九章算术》中将底面是长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.在如图所示的阳马P ABCD -中,PA ⊥底面ABCD ,且22BC DC PA ==,AM PD ⊥于M ,MN PD ⊥,MN 与PC 交于点.N 则(1)AM 与CD 的关系__________(填“垂直”或“平行”);(2)PN PC=__________. 9. 如图,在正方形ABCD 中,,E F 分别是,BC CD 的中点,G 是EF 的中点.现在沿,AE AF 及EF 把这个正方形折成一个空间图形,使,,B C D 三点重合,重合后的点记为.H 下列说法错误的是__________(将符合题意的选项序号填到横线上).①AG EFH ⊥所在平面;②AH EFH ⊥所在平面;③HF AEF ⊥所在平面;④HG AEF ⊥所在平面.10. 如图,在Rt ABC 中,1AC =,BC x =,D 为斜边AB 的中点.将BCD 沿直线CD 翻折.若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是__________.11. 如图所示,正方体1111ABCD A B C D -的棱长为1,BD AC O ⋂=,M 是线段1D O 上的动点,过点M 作平面1ACD 的垂线交平面1111A B C D 于点N ,则点N 到点A 距离的最小值为__________.四、解答题12. 在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E ,F 分别是AC ,1B C 的中点.(1)求证://EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1.ABB13. 在平行六面体1111ABCD A B C D -中,1AA AB =,111.AB B C ⊥求证:(1)//AB 平面11A B C ;(2)平面11ABB A ⊥平面1.A BC14. 如图所示,四棱锥P ABCD -的底面ABCD 为矩形,PA 是四棱锥P ABCD -的高,,,E F M 分别为,,AB CD PD 的中点.(1)求证:平面//AMF 平面PEC ;(2)若24PA AB BC ===,求多面体PECFMA 的体积.15. 如图,四边形ABCD 为菱形,60.ABC PA ︒∠=⊥平面ABCD ,E 为PC 中点. ()Ⅰ求证:平面BED ⊥平面ABCD ;()Ⅱ求平面PBA 与平面EBD 所成二面角(锐角)的余弦值.16. 如图,已知三棱柱111ABC A B C -,平面11AC A C ⊥平面ABC ,ABC=90︒∠,BAC=30︒∠,11==AC A A AC ,E ,F 分别是AC ,11A B 的中点.()Ⅰ证明:EF BC ⊥;()Ⅱ求直线EF 与平面1BC A 所成角的余弦值.17. 如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于.F(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C 的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.18. 如图,在直三棱柱111ABC A B C -中,2AB AC ==,12BC AA ==,O ,M 分别为BC ,1AA 的中点.(1)求证://OM 平面11CB A ;(2)求点M 到平面11CB A 的距离.19. 如图,在正三棱柱111ABC A B C -中,2AB =,13AA =,M 为BC 的中点,N 在线段1AA 上.(1)设1=AN NA λ,当λ为何值时,11//?MN ACB 平面 (2)若1AN =,求直线MN 与直线11A C 所成角的正弦值.20. 如图,在四棱锥P ABCD -,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(1)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.答案和解析1.【答案】D解:①Q α∈,l α⊂,点Q 可以不在直线l 上,故A 错误; ②直线l 可以只有一点在面内,故B 错误;③因为//l m ,l α⊂,若m 不在平面α内,//m α,由Q m ∈, 可得Q 在平面α外,这与可点Q α∈相矛盾,故C 正确; ④αβ⊥且m αβ⋂=,Q β∈,Q l ∈,l l αβ⊥⇒⊂, 由面面垂直的性质定理知D 正确.故选.D2.【答案】A解:连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊂/平面,ABCD AB ⊂平面ABCD ,所以//MN 平面.ABCD因为AB 不垂直BD ,所以MN 不垂直BD ,则MN 不垂直平面11BDD B ,所以选项B ,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥, 1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥, 且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确. 故选.A3.【答案】B解:由题意,取AB 的中点E ,连接DE ,CE ,因为三角形ADB 为等边三角形,所以DE AB ⊥,当平面ADB ⊥平面ABC 时,且平面ADB ⋂平面ABC AB =,又DE ⊂平面ADB ,所以DE ⊥平面ABC ,又CE ⊂平面ABC ,所以DE EC ⊥,又2AB =,2AC BC ==, 所以222AC BC AB +=,所以AC BC ⊥,又BE AE =,所以112CE AB ==, 又332322DE BD ==⨯=, 所以此时2231 2.CD DE CE =+=+=故选.B4.【答案】D解:在四边形ABCD 中,//AD BC ,AD AB =,45BCD ︒∠=,90BAD ︒∠=, BD CD ∴⊥,又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,CD ⊂平面BCD , 故CD ⊥平面ABD ,则CD AB ⊥,又AD AB ⊥,AD CD D ⋂=,AD ,CD ⊂平面ADC ,AB ∴⊥平面ADC ,又AB ⊂平面ABC ,∴平面ABC ⊥平面.ADC故选.D5.【答案】ACD解:在A 中,1111A C B D ⊥,111AC BB ⊥,1111B D BB B ⋂=,11B D ,1BB ⊂平面11BB D , 11A C ∴⊥平面11BB D ,1BD ⊂平面11BB D ,111AC BD ∴⊥,同理,11DC BD ⊥,1111A C DC C ⋂=,11A C ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,故A 正确;对于B ,易知11//A D B C ,在11A DC 中,1111A D DC AC ==,可得11A DC 为正三角形,异面直线1BC 与11A C 所成角为60︒,故B 错误;对于C ,11//A D B C ,1A D ⊂平面11AC D ,1B C ⊂/平面11AC D ,1//B C ∴平面11AC D , 点P 在线段1B C 上运动,P ∴到平面11AC D 的距离为定值,又11AC D 的面积是定值,∴三棱锥11P A C D -的体积为定值,故C 正确;对于D ,设平面11AC D 与底面ABCD 的交线为m ,11A C 是平面11AC D 和平面1111A B C D 的交线,平面//ABCD 平面1111A B C D ,所以11//A C m ,故D 选项正确.故选.ACD6.【答案】ABD解:A 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,1A DE MNB ∠=∠,112MN A D ==定值,NB DE ==定值,根据余弦定理得,2222cos MB MN NB MN NB MNB =+-⋅⋅∠,||BM ∴是定值,B 对,B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,C 错,当矩形ABCD 满足AC DE ⊥时存在,其他情况不存在,D 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,因为MN ⊂/平面1A DE ,1A D ⊂平面1A DE ,所以//MN 平面1A DE ,同理//BN 平面1A DE ,又MN NB N ⋂=,∴平面//MNB 平面1A DE ,MB ⊂平面MNB ,//MB ∴平面1.A DE故选.ABD7.【答案】AB解:对于A :假设直线BE 与直线CF 在同一平面上,所以:点E 在平面BCF 上,又点E 在线段BC 上,BC ⋂平面BCF C =,所以点E 与点C 重合,与点E 异于C 矛盾,所以直线BE 与CF 必不在同一平面上,即B 、E 、C 、F 四点不共面,故A 正确; 对于B :当点F 为线段BD 的中点时,12EC AD =,再取AB 的中点G , 则//FG AD 且12FG AD =, 则//EC FG ,且EC FG =,所以:四边形ECFG 为平行四边形,所以//FC EG ,又因为,EG ABE FC ABE ⊂⊄平面平面,则:直线//CF 平面BAE ,故B 正确;对于C :由题B ADC V -,底面ACD 的面积不变,但E 的移动会导致点B 到平面ACD 的距离在变化,所以B ADC V -的体积不是定值,故C 错误;对于D :过点B 作BO AE ⊥于O ,由于平面BAE ⊥平面AECD ,平面BAE ⋂平面AECD AE =,所以BO ⊥平面AECD ,过点D 作DH AE ⊥于H ,因为平面BAE ⊥平面AECD ,平面BAE ⋂平面AECD AE =,所以DH ⊥平面BAE ,又因为BE ABE ⊂平面,所以DH BE ⊥,若存在点E 使得直线BE 与直线CD 垂直,DH ⊂平面AECD ,DC ⊂平面AECD ,DH DC D ⋂=,所以BE ⊥平面AECD ,所以E 和O 重合,与ABE 是以点B 为直角的三角形矛盾,所以不存在点E ,使得直线BE 与直线CD 垂直,故D 错误.故选:.AB8.【答案】垂直23解:(1)由题意易得CD ⊥平面PAD ,所以CD AM ⊥,又AM PD ⊥于M ,CD PD D ⋂=,进而得AM ⊥平面PCD ,得.AM CD ⊥(2)设BC DC PA a ===,则PD ==,Rt PAD中,PM PA PA PD ==,则PM =, 易得CD ⊥平面PAD ,因为MN PD ⊥,所以//MN CD ,得2.3PN PM PC PD === 故答案为(1)垂直;2(2).39.【答案】①③④解:折之前AG EF ⊥,CG EF ⊥,折之后也垂直,所以EF ⊥平面AHG ,折之前B ∠,D ∠,C ∠均为直角,折之后三点重合, 所以折之后AH ,EH ,FH 三条直线两两垂直,所以AH EFH ⊥所在平面,②对;同时可知AH HG ⊥,又HF AEH ⊥所在平面,过AE 不可能做两个平面与直线HF 垂直,③错; 如果HG AEF ⊥所在平面,则有HG AG ⊥,与②中AH HG ⊥矛盾,④错;若AG EFH ⊥所在平面,则有AG HG ⊥,与②中AH HG ⊥矛盾,所以①也错.故答案为①③④.10.【答案】(0,3] 解:由题意得,212x AD CD BD +===,BC x =, 取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则12DE =,1AC =, 翻折后,在图2中,此时 .CB AD ⊥BC DE ⊥,BC AD ⊥,DE AD D ⋂=,,DE AD ADE ⊂平面,BC ∴⊥平面ADE ,AE ADE ⊂平面,BC AE ∴⊥,DE BC ⊥,又BC AE ⊥,E 为BC 中点,1AB AC ∴==,2114AE x ∴=-,212x AD +=, 在ADE 中:①221111224x x ++>-,②221111224x x +<+-,③0x >, 由①②③,得0 3.x <<如图3,翻折后,当1B CD 与ACD 在一个平面上,AD 与1B C 交于M ,且1AD B C ⊥,1AD B D CD BD ===,1CBD BCD B CD ∠=∠=∠, 又190CBD BCD B CD ︒∠+∠+∠=,130CBD BCD B CD ︒∴∠=∠=∠=,60A ︒∴∠=,tan 60BC AC ︒=,此时1x ==综上,x 的取值范围为故答案为:11.【答案】2解:由题易知,DO AC ⊥,1D O AC ⊥,1DO D O O ⋂=,DO ,1D O ⊂平面11BDD B , AC ∴⊥平面11BDD B ,又AC ⊂平面1ACD ,∴平面1ACD ⊥平面11BDD B , 又MN ⊥平面1ACD ,平面1ACD ⋂平面111BDD B D O =,MN ∴⊂平面11BDD B ,且N 在平面1111A B C D 内,11N B D ∴∈,过N 作11NG A B ⊥,交11A B 于G ,将平面1111A B C D 展开,如图:设NG x =,(01)x ,11NG A B ⊥,1111A D A B ⊥,11//NG A D ∴,又11A D ⊥平面11ABB A ,NG ∴⊥平面11ABB A ,且AG ⊂平面11ABB A ,NG AG ∴⊥, 22221(1)222AN x x x x ∴=+-+=-+21362()222x =-+, 当12x =时,AN 取最小值6.2 故答案为:6.212.【答案】证明:(1)E ,F 分别是AC ,1B C 的中点.所以1//EF AB ,因为EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C ;(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥,又因为AB AC ⊥,1AC B C C ⋂=,AC ⊂平面1AB C ,1B C ⊂平面1AB C , 所以AB ⊥平面1AB C ,因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1.ABB13.【答案】证明:(1)平行六面体1111ABCD A B C D -中,11//AB A B ,又AB ⊂平面1111,A B C A B ⊂/平面11A B C ;得//AB 平面11A B C ;(2)在平行六面体1111ABCD A B C D -中,1AA AB =,得四边形11ABB A 是菱形,11.AB A B ⊥在平行六面体1111ABCD A B C D -中,1AA AB =,1111.AB B C AB BC ⊥⇒⊥ 又1A B BC C ⋂=,1A B ⊂平面1A BC ,BC ⊂平面1A BC得1AB ⊥面1A BC ,且1AB ⊂平面11ABB A∴平面11ABB A ⊥平面1.A BC14.【答案】(1)证明:矩形ABCD ,且E ,F 是AB 、CD 中点,//AE CF ∴且AE CF =,∴四边形AECF 是平行四边形,//CE AF ∴,又CE ⊂/面AMF ,AF ⊂面AMF ,//CE ∴平面AMF ;又M 是PD 中点,则//MF PC ,同理可得//PC 平面AMF ,又CE ⊂平面PEC ,PC ⊂平面PEC ,CE PC C ⋂=,∴平面//AMF 平面PEC ;(2)解:棱锥M AFD -的高等于PA 的一半,则多面体PECFMA 的体积 111120(12)44142.32323P AECD M AFD V V V --=-=⨯+⨯⨯-⨯⨯⨯⨯=15.【答案】()Ⅰ证明:连接AC 交BD 于点O ,连接OE , 则O 是AC 的中点.又知E 是PC 中点,//EO PA ∴,PA ⊥平面ABCD ,OE ∴⊥平面.ABCD又知OE ⊂平面BED ,∴平面BED ⊥平面.ABCD()Ⅱ解:过B 作BM ⊥平面ABCD ,连接PM ,ME ,如图,由()Ⅰ可知,////PA EO MB ,则MB 是平面PBA 与平面EBD 的交线,由BM ⊥平面ABCD ,AB ,BO ⊂平面ABCD ,可得MB AB ⊥,MB BO ⊥,则ABO ∠即平面PBA 与平面EBD 所成二面角的平面角,四边形ABCD 为菱形,60.ABC ︒∠=可知30ABO ︒∠=,3cos cos30.2ABO ︒∠== 所以,平面PBA 与平面EBD 所成二面角(锐角)的余弦值为3.216.【答案】证明:()Ⅰ连结1A E ,11A A A C =,E 是AC 的中点,1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC ⋂平面ABC AC =,1A E ∴⊥平面ABC ,又BC ⊂平面ABC ,1A E BC ∴⊥,1//A F AB ,90ABC ︒∠=,1BC A F ∴⊥,111A E A F A ⋂=,1A E 、1A F ⊂平面1A EF ,BC ∴⊥平面1A EF ,又EF ⊂平面1A EF ,EF BC ∴⊥;解:()Ⅱ取BC 中点G ,连结EG 、GF ,则1EGFA 是平行四边形,由于1A E ⊥平面ABC ,故1A E EG ⊥,∴平行四边形1EGFA 是矩形,由()Ⅰ得BC ⊥平面1EGFA ,则平面1A BC ⊥平面1EGFA ,EF ∴在平面1A BC 上的射影在直线1A G 上,连结1A G ,交EF 于O ,则EOG ∠是直线EF 与平面1A BC 所成角(或其补角),不妨设4AC =,则在1Rt A EG 中,123A E =,3EG =,O 是1A G 的中点,故11522A G EO OG ===, 2223cos 25EO OG EG EOG EO OG +-∴∠==⨯⨯,∴直线EF 与平面1A BC 所成角的余弦值为3.517.【答案】(1)证明:由题意知111////AA BB CC ,又因为侧面11BB C C 是矩形且M ,N 分别是BC ,11B C 的中点,所以1//MN BB ,1BB BC ⊥,所以1//AA MN ,11MN B C ⊥,又底面为正三角形,所以AM BC ⊥,111A N B C ⊥,又因为1MN A N N ⋂=,1,MN A N ⊂平面1A AMN ,所以11B C ⊥平面1A AMN ,又11B C ⊂平面11EB C F ,所以平面11EB C F ⊥平面1.A AMN(2)解:因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA ⋂平面11EB C F NP =, 所以//AO NP ,又因为//NO AP ,所以6AO NP ==,3ON AP ==, 过M 作MH NP ⊥,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH ⊥平面11EB C F ,因为3MPN π∠=,所以sin33MH PM π=⋅=, 在ABC 中,EF AP BC AM = 可得2AP BC EF AM⋅== , 11111()242EB C F S B C EF NP =+⋅=四边形, 又//BC 平面11EB C F ,所以1111B EB C F M EB C F V V --=11124.3EB C F S MH =⋅⋅=18.【答案】(1)证明:如图,连接1BC ,交1CB 于点N ,连接1A N ,.ON 则N 为1CB 的中点,又O 为BC 的中点,1//ON BB ∴,且112ON BB =, 又M 为1AA 的中点,11//MA BB ∴,且1112MA BB =, 1//ON MA ∴且1ON MA =,∴四边形1ONA M 为平行四边形,1//OM NA ∴,又1NA ⊂平面11CB A ,OM ⊂/平面11CB A ,//OM ∴平面11.CB A(2)解:如图,连接AO ,1OB ,1.ABAB AC =,O 为BC 的中点,AO BC ∴⊥, 又直三棱柱111ABC A B C -中,平面11CBB C ⊥平面ABC ,平面11CBB C ⋂平面ABC BC =,AO ⊂平面.ABCAO ∴⊥平面11.CBB C由(1)可知//OM 平面11CB A ,∴点M 到平面11CB A 的距离等于点O 到平面11CB A 的距离,设其为d , 在直三棱柱111ABC A B C -中,由AB AC ==12BC AA ==可得,1AO =,11A B =1AC =1BC=,11CB A ∴是直角三角形,且1112CB A S = 由11111_{_}O CB A A A COB V V COB V --=-=得:111111213332COB d S AO =⨯⨯=⨯⨯⨯⨯,故d =即点M 到平面11CB A19.【答案】解:(1)连接1BC ,交1CB 于点O ,则O 为1CB 的中点,连接1A O ,MO因为M 为BC 的中点,所以1//MO BB ,所以1//MO NA ,从而M ,O ,1A ,N 四点共面.因为//MN 平面11A CB ,MN ⊂平面1MOA N ,平面1MOA N ⋂平面111=ACB AO , 所以1//.MN AO又1//MO NA ,所以四边形1MOA N 为平行四边形, 所以1111122NA MO BB AA ===, 所以1=1.AN NA (2)因为11//A C AC ,所以直线MN 与直线11A C 所成角即为直线MN 与直线AC 所成角或者其补角. 取AB 的中点G ,连接,MG NG ,M 为BC 的中点,易得//AC GM ,则所求角为GMN ∠或者其补角GMN 中,112GM AC ==, 222GN AG AN =+=,222MN AM AN =+=由余弦定理可得1423cos 2124GMN +-∠==⨯⨯, 则7sin 4GMN ∠=, 所以,直线MN 与直线11A C 所成角的正弦值为7.420.【答案】证明:(1)如图:证明:连接BD ,由题意得AC BD H ⋂=,BH DH =,又由BG PG =,得//GH PD ,GH ⊂/平面PAD ,PD ⊂平面PAD ,//GH ∴平面PAD ;(2)证明:取棱PC 中点N ,连接DN ,依题意得DN PC ⊥, 又平面PAC ⊥平面PCD ,平面PAC ⋂平面PCD PC =,DN ⊂平面PCD , DN ∴⊥平面PAC ,又PA ⊂平面PAC ,DN PA ∴⊥,又PA CD ⊥,CD DN D ⋂=,CD ⊂平面PCD ,DN ⊂平面PCD ,PA ∴⊥平面PCD ;(3)解:连接AN ,由(2)中DN ⊥平面PAC ,知DAN ∠是直线AD 与平面PAC 所成角, PCD 是等边三角形,2CD =,且N 为PC 中点, 3DN ∴=,又DN ⊥平面PAC ,AN PAC ⊂平面,DN AN ⊥,在Rt AND 中,3sin .3DN DAN DA ∠== ∴直线AD 与平面PAC 所成角的正弦值为3.3。

高考数学(理科)-空间中的平行与垂直关系-专题练习(含答案与解析)

高考数学(理科)-空间中的平行与垂直关系-专题练习(含答案与解析)

高考数学(理科)专题练习 空间中的平行与垂直关系[建议A .B 组各用时:45分钟] [A 组 高考达标] 一、选择题1.(2016·南昌一模)设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( )A .,,a b a b αα若则B .,,a a b b αα⊥⊥若则C .,,a a b b αα⊥⊥若则D .,,a a b b αα⊥⊥若则2.(2016·济南一模)设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若,m n m β⊥,则n β⊥; ②,,m m αβαβ若则;③,,m n m n ββ若则; ④,,m m αβαβ⊥⊥⊥若则. 其中真命题的个数为( ) A .1 B .2 C .3D .43.如图11-5所示,直线P A 垂直于O 所在的平面,△ABC 内接于O ,且AB 为O 的直径,点M 为线段PB 的中点。

现有结论:①BC PC ⊥;②OM APC 平面;③点B 到平面P AC 的距离等于线段BC 的长。

其中正确的是( )图11-5 A .①② B .①②③ C .①D .②③4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面,,γγαγβ⊥;②存在一条直线,,a a a αβ⊂⊥; ③存在两条垂直的直线,,,a b a b βα⊥⊥.平面EF ABC⊥平面AEF平面E ABCDE ABC③三棱锥-④直线11B E BC ⊥直线. 三、解答题9.(2016·北京高考)如图11-8,在四棱锥-P ABCD 中,PC ABCD ⊥平面,AB DC ,DC AC ⊥.图11-8 (1)求证:DC PAC ⊥平面. (2)求证:PAB PAC ⊥平面平面.(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA CEF 平面?说明理由.10.(2016·青岛模拟)如图11-9,四棱锥-P ABCD ,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ABC ∠︒=的菱形,M 为PC 的中点.图11-9 (1)求证:PC AD ⊥; (2)求点D 到平面P AM 的距离.[B 组名校冲刺] 一、选择题1.(2016·乌鲁木齐三模)如图11-10,在多面体-ABC DEFG 中,ABC DEFG 平面平面,AC GF ,且ABC △是边长为2的正三角形,四边形DEFG 是边长为4的正方形,M ,N 分别为AD ,BE 的中点,则MN =( )AD BC,AD,构成三棱锥( )平面EF ABCD.异面直线AE,二、填空题AB CE;③V中,AB⊥AD BC,ADC∠平面PABAB CD,E,沿着EFCN=上一动点,且2平面MN EFDA-MNF的体积.高考数学(理科)专题练习 空间中的平行与垂直关系答 案[建议A .B 组各用时:45分钟] [A 组高考达标] 一、选择题 1~5:BABDB 二、填空题 6.3 7.①③⑤ 8.①②③ 三、解答题9.[解](1)证明:因为PC ABCD ⊥平面,所以PC DC ⊥. 又因为DC AC ⊥,且PC AC C =,所以DC PAC ⊥平面.(2)证明:因为AB DC DC AC ⊥,, 所以AB AC ⊥.因为PC ABCD ⊥平面,所以PC AB ⊥. 又因为PCAC C =,所以AB PAC ⊥平面.又AB PAB ⊂平面,所以PAB PAC ⊥平面平面. (3)棱PB 上存在点F ,使得PA CEF 平面. 理由如下:取PB 的中点F ,连接EF ,CE ,CF . 又因为E 为AB 的中点,所以EFPA .又因为PA CEF ⊄平面,且EF CEF ⊂平面, 所以PA CEF 平面.10.[解](1)证明:法一:取AD 中点O ,连接OP ,OC ,AC ,依题意可知PAD △,ACD △均为正三角形,所以OC AD OP AD ⊥⊥,,又O CO P O =,OC POC ⊂平面,OP POC ⊂平面,所以AD POC ⊥平面,又PC POC ⊂平面,所以PC AD ⊥.法二:连接AC ,AM ,DM ,依题意可知,PAD ACD △△均为正三角形,又M 为PC 的中点,所以,AM PC DM PC ⊥⊥,又AMDM M =,AM AMD ⊂平面,DM AMD ⊂平面,PAD ABCD平面ABCD平面,即6PC=,12PC AM=⨯面P AC的13PAC ACDh S PO=△,又15133h=⨯,AD BC BC=,BC AM BC AM=且.所以四边形AMCB是平行四边形,AB.,PAB平面PAB平面,AD BC BC=ABCD⊥平面,AD BC BC=,BC MD BC且所以四边形BCDM是平行四边形,1CD==AB AP A=,所以PBD⊂平面解](1)证明:过点EFCB⊥平面EFCB EFDA平面CF DF F=,∴CFD.NQ EF⊥.EF FD F=,∴NQ⊥MP NQ.,∴23 NQ CF=1MN PQ.MN EFDA⊄平面FEBCFEAD 平面交于一点H ,且1932HFD S CF ==△,29=, -29F CDHV 三棱锥(BEA BEA CDF S S S ++△△△高考数学(理科)专题练习空间中的平行与垂直关系解析[建议A、B组各用时:45分钟][A组高考达标]一、选择题1.B[A中,两直线可能平行、相交或异面,故A错;B中,由直线与平面垂直的判定定理可知B正确;C中,b可能平行α,也可能在α内,故C错;D中,b可能平行α,也可能在α内,还可能与α相交,故D错.综上所述,故选B.]2.A[对于①,由直线与平面垂直的判定定理易知其正确;对于②,平面α与β可能平行或相交,故②错误;对于③,直线n可能平行于平面β,也可能在平面β内,故③错误;对于④,由两平面平行的判定定理易得平面α与β平行,故④错误.综上所述,正确命题的个数为1,故选A.]3.B[对于①,∵P A⊥平面ABC,∴P A⊥BC.∵AB为⊙O的直径,∴BC⊥AC.又∵P A∩AC=A,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC.对于②,∵点M为线段PB的中点,∴OM∥P A.∵P A⊂平面P AC,OM⊄平面P AC,∴OM∥平面P AC.对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.]4.D[对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B,C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.]5.B[因为AP⊥平面ABC,所以AP⊥BC,又AB⊥BC,且P A和AB是平面P AB上两条相交直线,则BC⊥平面P AB,BC⊥AE.当AE⊥PB时,AE⊥平面PBC,则AE⊥EF,△AEF一定是直角三角形,A正确;当EF∥平面ABC 时,EF 在平面PBC 上,平面PBC 与平面ABC 相交于BC ,则EF ∥BC ,则EF ⊥AE ,△AEF 一定是直角三角形,C 正确;当PC ⊥平面AEF 时,AE ⊥PC ,又AE ⊥BC ,则AE ⊥平面PBC ,AE ⊥EF ,△AEF 一定是直角三角形,D 正确;B 中结论无法证明,故选B .]二、填空题6.3[如图所示,∵P A ⊥PC ,P A ⊥PB ,PC ∩PB =P ,∴P A ⊥平面PBC .又∵BC ⊂平面PBC ,∴P A ⊥BC .同理PB ⊥AC ,PC ⊥AB ,但AB 不一定垂直于BC .]7. ①③⑤[由题意知BD ⊥CO ,BD ⊥AO ,则BD ⊥平面AOC ,从而BD ⊥AC ,故①正确;根据二面角A -BD -C 的大小为60°,可得∠AOC =60°,又直线AD 在平面AOC 的射影为AO ,从而AD 与CO 不垂直,故②错误;根据∠AOC =60°,AO =CO 可得△AOC 为正三角形,故③正确;在△ADC 中 ,AD =CD =4,AC =CO =22,由余弦定理得cos ∠ADC =42+42-222×4×4=34,故④错误;由题意知,四面体ABCD 的外接球的球心为O ,半径为22,则外接球的表面积为S =4π×(22)2=32π,故⑤正确.]8.①②③[因为AC ⊥平面BDD 1B 1,故①,②正确;记正方体的体积为V ,则V E -ABC =16V 为定值,故③正确;B 1E 与BC 1不垂直,故④错误.]三、解答题9.[解](1)证明:因为PC ⊥平面ABCD ,所以PC ⊥DC .2分又因为DC ⊥AC ,且PC ∩AC =C ,所以DC ⊥平面P AC .4分(2)证明:因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB .又因为PC ∩AC =C ,所以AB ⊥平面P AC .8分又AB ⊂平面P AB ,所以平面P AB ⊥平面P AC .9分(3)棱PB 上存在点F ,使得P A ∥平面CEF .10分理由如下:取PB 的中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥P A .又因为P A ⊄平面CEF ,且EF ⊂平面CEF ,所以P A ∥平面CEF .14分10.[解](1)证明:法一:取AD 中点O ,连接OP ,OC ,AC ,依题意可知△P AD ,△ACD 均为正三角形,所以OC ⊥AD ,OP ⊥AD ,又OC ∩OP =O ,OC ⊂平面POC ,OP ⊂平面POC ,所以AD ⊥平面POC ,又PC ⊂平面POC ,所以PC ⊥AD .5分法二:连接AC ,AM ,DM ,依题意可知△P AD ,△ACD 均为正三角形,又M为PC 的中点,所以AM ⊥PC ,DM ⊥PC ,又AM ∩DM =M ,AM ⊂平面AMD ,DM ⊂平面AMD ,所以PC ⊥平面AMD ,又AD ⊂平面AMD ,所以PC ⊥AD .5分(2)由题可知,点D 到平面P AM 的距离即点D 到平面P AC 的距离,由(1)可知PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD ,即PO 为三棱锥P -ADC 的高.在Rt △POC 中,PO =OC =3,PC =6,在△P AC 中,P A =AC =2,PC =6,边PC 上的高AM =P A 2-PM 2=102, 所以S △P AC =12PC ·AM =12×6×102=152.8分 设点D 到平面P AC 的距离为h ,由V D -P AC =V P -ACD 得13S △P AC ·h =13S △ACD ·PO ,又S △ACD =34×22=3, 所以13×152·h =13×3×3,解得h =2155,所以点D 到平面P AM 的距离为2155.12分[B 组名校冲刺]一、选择题1.A[如图,取BD 的中点P ,连接MP ,NP ,则MP ∥AB ,NP ∥DE ,MP =12AB =1,NP =12DE =2.又∵AC ∥GF ,∴AC ∥NP .∵∠CAB =60°,∴∠MPN =120°,∴MN =MP 2+NP 2-2×MP ×NP ×cos 120°=1+4-2×1×2×⎝⎛⎭⎫-12=7,故选A .]2.D[∵在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,∴BD ⊥CD .又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,∴CD ⊥平面ABD ,则CD ⊥AB .又AD ⊥AB ,AD ∩CD =D ,∴AB ⊥平面ADC ,又AB ⊂平面ABC ,∴平面ABC ⊥平面ADC ,故选D .]3.A[由题意可知P A ,PE ,PF 两两垂直,∴P A ⊥平面PEF ,从而P A ⊥EF ,而PO ⊥平面AEF ,则PO ⊥EF .∵PO ∩P A =P ,∴EF ⊥平面P AO ,∴EF ⊥AO ,同理可知AE ⊥FO ,AF ⊥EO ,∴O 为△AEF 的垂心.故选A .]4.D[对于选项A ,连接BD ,易知AC ⊥平面BDD 1B 1.∵BF ⊂平面BDD 1B 1,∴AC ⊥BF ,故A 正确;对于选项B ,∵AC ⊥平面BDD 1B 1,∴A 到平面BEF 的距离不变.∵EF =22,B 到EF 的距离为1,∴△BEF 的面积不变,∴三棱锥A -BEF 的体积为定值,故B 正确;对于选项C ,∵EF ∥BD ,BD ⊂平面ABCD ,EF ⊄平面ABCD ,∴EF ∥平面ABCD ,故C 正确;对于选项D ,异面直线AE ,BF 所成的角不为定值,当F 与B 1重合时,令上底面中心为O ,则此时两异面直线所成的角是∠A 1AO ,当E 与D 1重合时,点F 与O 重合,则两异面直线所成的角是∠OBC 1,这两个角不相等,故异面直线AE ,BF 所成的角不为定值,故D 错误.]二、填空题5.①③④[作出折叠后的几何体直观图如图所示:∵AB =3BC =3a ,BE =a ,∴AE =2a .∴AD =AE 2-DE 2=a ,∴AC =CD 2+AD 2=2a .在△ABC 中,cos ∠ABC =AB 2+BC 2-AC 22AB ×BC =3a 2+a 2-2a 223a 2=33. ∴sin ∠ABC =1-cos 2 ∠ABC =63. ∴tan ∠ABC =sin ∠ABC cos ∠ABC=2. ∵BC ∥DE ,∴∠ABC 是异面直线AB ,DE 所成的角,故①正确.连接BD ,CE ,则CE ⊥BD ,又AD ⊥平面BCDE ,CE ⊂平面BCDE ,∴CE ⊥AD .又BD ∩AD =D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD .又AB ⊂平面ABD ,∴CE ⊥AB ,故②错误.V B -ACE =V A -BCE =13S △BCE ·AD =13×12×a 2×a =a 36,故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC ⊥AD .又BC ⊥CD ,CD ∩AD =D ,CD ,AD ⊂平面ACD ,∴BC ⊥平面ACD .∵BC ⊂平面ABC ,∴平面ABC ⊥平面ACD ,故④正确.故答案为①③④.]6.43π [当平面DAC ⊥平面ABC 时,三棱锥D -ABC 的体积取最大值.此时易知BC ⊥平面DAC ,∴BC ⊥AD .又AD ⊥DC ,∴AD ⊥平面BCD ,∴AD ⊥BD ,取AB 的中点O ,易得OA =OB =OC =OD =1,故O 为所求外接球的球心,故半径r =1,体积V =43πr 3=43π.] 三、解答题7.[解](1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.2分理由如下:因为AD ∥BC ,BC =12AD , 所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB .4分又AB ⊂平面P AB ,CM ⊄平面P AB ,所以CM ∥平面P AB .6分(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交, 所以P A ⊥平面ABCD ,所以P A ⊥BD .8分因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM , 所以BC ∥MD ,且BC =MD ,所以四边形BCDM 是平行四边形,10分所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB .又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD .12分8.[解](1)证明:过点M 作MP ⊥EF 于点P ,过点N 作NQ ⊥FD 于点Q ,连接PQ .由题知,平面EFCB ⊥平面EFDA ,又MP ⊥EF ,平面EFCB ∩平面EFDA =EF ,∴MP ⊥平面EFDA .又EF ⊥CF ,EF ⊥DF ,CF ∩DF =F ,∴EF ⊥平面CFD .又NQ ⊂平面CFD ,∴NQ ⊥EF .又NQ ⊥FD ,EF ∩FD =F ,∴NQ ⊥平面EFDA ,∴MP ∥NQ .2分又CN =12ND ,∴NQ =23CF =23×3=2, 且MP =12(BE +CF )=12×(1+3)=2,∴MP 綊NQ , ∴四边形MNQP 为平行四边形.4分∴MN ∥PQ .又∵MN ⊄平面EFDA ,PQ ⊂平面EFDA ,∴MN ∥平面EFDA .6分(2)法一:延长DA ,CB 相交于一点H ,则H ∈CB ,H ∈DA . 又∵CB ⊂平面FEBC ,DA ⊂平面FEAD .∴H ∈平面FEBC ,H ∈平面FEAD ,即H ∈平面FEBC ∩平面FEAD =EF ,∴DA ,FE ,CB 交于一点H ,且HE =12EF =1.8分 V 三棱锥F -CDH =V 三棱锥C -HFD =13·S △HFD ·CF =92, 又由平面几何知识得S △AMN S △CDH =29, 则V 三棱锥F -AMN V 三棱锥F -CDH=29, ∴V 三棱锥A -MNF =V 三棱锥F -AMN =29·V 三棱锥F -CDH =29×92=1. 法二:V 三棱台BEA -CDF =13×EF ×(S △BEA +S △BEA ·S △CDF +S △CDF )=13×2×⎝⎛⎭⎫12+12×92+92=133, V 四棱锥A -BEFM =13×AE ×S 四边形BEFM =56, V 三棱锥N -ADF =13×2×S △ADF =2, V 三棱锥N -CFM =13×1×S △CFM =12,10分 V 三棱锥A -MNF =V 三棱台BEA -CDF -V 三棱锥N -CFM -V 四棱锥A -BEFM -V 三棱锥N -ADF =133-12-56-2=1.12分。

立体几何复习专题及答案-高中数学

立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

高三数学二轮复习空间中的平行与垂直练习含试题答案

高三数学二轮复习空间中的平行与垂直练习含试题答案

空间中的平行与垂直[明考情]高考中对直线和平面的平行、垂直关系交汇综合命题,多以棱柱、棱锥、棱台或简单组合体为载体进行考查,难度中档偏下.[知考向]1.空间中的平行关系.2.空间中的垂直关系.3.平行和垂直的综合应用.考点一空间中的平行关系方法技巧(1)平行关系的基础是线线平行,比较常见的是利用三角形中位线构造平行关系,利用平行四边形构造平行关系.(2)证明过程中要严格遵循定理中的条件,注意推证的严谨性.1.如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.证明如图所示,作ME∥BC交BB1于点E,作NF∥AD交AB于点F,连接EF,则EF⊂平面AA1B1B.∵ME∥BC,NF∥AD,∴MEBC=B1MB1C,NFAD=BNBD.在正方体ABCD-A1B1C1D1中,∵CM=DN,∴B1M=NB.又B1C=BD,∴ME BC =BN BD =NFAD,又BC =AD ,∴ME =NF .又ME ∥BC ∥AD ∥NF ,∴四边形MEFN 为平行四边形, ∴MN ∥EF .又EF ⊂平面AA 1B 1B ,MN ⊄平面AA 1B 1B , ∴MN ∥平面AA 1B 1B .2.(2017·全国Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥PA ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD .(2)解 如图,在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD , 故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得PA =PD =AB =DC =2,AD =BC =22,PB =PC =22,可得四棱锥P -ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.3.(2017·龙岩市新罗区校级模拟)如图,O 是圆锥底面圆的圆心,圆锥的轴截面PAB 为等腰直角三角形,C 为底面圆周上一点.(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积. (1)证明 方法一 设BC ∩OD =E , ∵D 是弧BC 的中点, ∴E 是BC 的中点.又∵O 是AB 的中点,∴AC ∥OE . 又∵AC ⊄平面POD ,OE ⊂平面POD , ∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径, ∴AC ⊥BC .∵弧BC 的中点为D , ∴OD ⊥BC .又AC ,OD 共面,∴AC ∥OD . 又AC ⊄平面POD ,OD ⊂平面POD , ∴AC ∥平面POD .(2)解 设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形, ∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.4.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在?请说明理由.解存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形,∴AD∥CF.又AD⊂平面ADD1A1,CF⊄平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1.又CC1,CF⊂平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.考点二空间中的垂直关系方法技巧判定直线与平面垂直的常用方法(1)利用线面垂直定义.(2)利用线面垂直的判定定理,一条直线与平面内两条相交直线都垂直,则这条直线与平面垂直.(3)利用线面垂直的性质,两平行线中的一条垂直于平面,则另一条也垂直于这个平面.(4)利用面面垂直的性质定理,两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.5.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明(1)如图,取CE的中点G,连接FG,BG.∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GFAB 为平行四边形, ∴AF ∥BG .∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE .6.(2017·全国Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1)证明 如图,取AC 的中点O ,连接DO ,BO .因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO .又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt△AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.7.(2017·南京一模)如图,在六面体ABCDE 中,平面DBC ⊥平面ABC ,AE ⊥平面ABC .(1)求证:AE ∥平面DBC ;(2)若AB ⊥BC ,BD ⊥CD ,求证:AD ⊥DC . 证明 (1)过点D 作DO ⊥BC ,O 为垂足.∵平面DBC ⊥平面ABC ,平面DBC ∩平面ABC =BC ,DO ⊂平面DBC , ∴DO ⊥平面ABC .又AE ⊥平面ABC ,则AE ∥DO .又AE ⊄平面DBC ,DO ⊂平面DBC ,故AE ∥平面DBC .(2)由(1)知,DO ⊥平面ABC ,AB ⊂平面ABC , ∴DO ⊥AB .又AB ⊥BC ,且DO ∩BC =O ,DO ,BC ⊂平面DBC , ∴AB ⊥平面DBC . ∵DC ⊂平面DBC ,∴AB⊥DC.又BD⊥CD,AB∩DB=B,AB,DB⊂平面ABD,则DC⊥平面ABD.又AD⊂平面ABD,故可得AD⊥DC.8.已知四棱锥S-ABCD的底面ABCD为正方形,顶点S在底面ABCD上的射影为其中心O,高为3,设E,F分别为AB,SC的中点,且SE=2,M为CD边上的点.(1)求证:EF∥平面SAD;(2)试确定点M的位置,使得平面EFM⊥底面ABCD.(1)证明取SB的中点P,连接PF,PE.∵F为SC的中点,∴PF∥BC,又底面ABCD为正方形,∴BC∥AD,即PF∥AD,又PE∥SA,∴平面PFE∥平面SAD.∵EF⊂平面PFE,∴EF∥平面SAD.(2)解连接AC,AC的中点即为点O,连接SO,由题意知SO⊥平面ABCD,取OC的中点H,连接FH,则FH∥SO,∴FH⊥平面ABCD,∴平面EFH⊥平面ABCD,连接EH并延长,则EH与DC的交点即为M点.连接OE,由题意知SO=3,SE=2.∴OE =1,AB =2,AE =1,∴MC AE =HC HA =13, ∴MC =13AE =16CD ,即点M 在CD 边上靠近C 点距离为16的位置.考点三 平行和垂直的综合应用方法技巧 空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.9.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .证明 (1)在△PAD 中,∵E ,F 分别为AP ,AD 的中点, ∴EF ∥PD .又∵EF ⊄平面PCD ,PD ⊂平面PCD , ∴直线EF ∥平面PCD . (2)如图,连接BD .∵AB =AD ,∠BAD =60°, ∴△ADB 为正三角形. ∵F 是AD 的中点, ∴BF ⊥AD .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BF ⊂平面ABCD , ∴BF ⊥平面PAD . 又∵BF ⊂平面BEF , ∴平面BEF ⊥平面PAD .10.(2017·山东)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.11.(2017·汉中二模)如图,在棱长均为4的三棱柱ABC-A1B1C1中,D,D1分别是BC和B1C1的中点.(1)求证:A1D1∥平面AB1D;(2)若平面ABC⊥平面BCC1B1,∠B1BC=60°,求三棱锥B1-ABC的体积.(1)证明 连接DD 1,在三棱柱ABC -A 1B 1C 1中,∵D ,D 1分别是BC 和B 1C 1的中点, ∴B 1D 1∥BD ,且B 1D 1=BD , ∴四边形B 1BDD 1为平行四边形, ∴BB 1∥DD 1,且BB 1=DD 1. 又∵AA 1∥BB 1,AA 1=BB 1, ∴AA 1∥DD 1,AA 1=DD 1, ∴四边形AA 1D 1D 为平行四边形, ∴A 1D 1∥AD .又∵A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D , ∴A 1D 1∥平面AB 1D .(2)解 在△ABC 中,边长均为4,则AB =AC ,D 为BC 的中点, ∴AD ⊥BC .∵平面ABC ⊥平面B 1C 1CB ,交线为BC ,AD ⊂平面ABC , ∴AD ⊥平面B 1C 1CB ,即AD 是三棱锥A -B 1BC 的高. 在△ABC 中,由AB =AC =BC =4,得AD =23, 在△B 1BC 中,B 1B =BC =4,∠B 1BC =60°, ∴△B 1BC 的面积为4 3.∴三棱锥B 1-ABC 的体积即为三棱锥 A -B 1BC 的体积V =13×43×23=8.12.如图,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点.(1)求证:CD ⊥平面SAD ; (2)求证:PQ ∥平面SCD ;(3)若SA =SD ,M 为BC 的中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?并证明你的结论.(1)证明 ∵四边形ABCD 为正方形, ∴CD ⊥AD .又∵平面SAD ⊥平面ABCD ,且平面SAD ∩平面ABCD =AD ,CD ⊂平面ABCD , ∴CD ⊥平面SAD .(2)证明 取SC 的中点R ,连接QR ,DR .由题意知,PD ∥BC 且PD =12BC .在△SBC 中,Q 为SB 的中点,R 为SC 的中点, ∴QR ∥BC 且QR =12BC .∴QR ∥PD 且QR =PD , 则四边形PDRQ 为平行四边形, ∴PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD , ∴PQ ∥平面SCD .(3)解 存在点N 为SC 的中点,使得平面DMN ⊥平面ABCD .连接PC ,DM 交于点O ,连接PM ,SP ,NM ,ND ,NO , ∵PD ∥CM ,且PD =CM , ∴四边形PMCD 为平行四边形, ∴PO =CO .又∵N 为SC 的中点, ∴NO ∥SP . 易知SP ⊥AD .∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,且SP ⊥AD , ∴SP ⊥平面ABCD , ∴NO ⊥平面ABCD . 又∵NO ⊂平面DMN , ∴平面DMN ⊥平面ABCD .例 (12分)如图,四棱锥P -ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,点E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF . 审题路线图(1)E ,F 是中点―――→取PD 的中点M 构造▱AEFM ―→线线平行EF ∥AM ―→线面平行EF ∥平面PAD (2)面面垂直PAD ⊥ABCD ―――→PA ⊥AD 线面垂直PA ⊥底面ABCD ―→线线垂直PA ⊥DE―――――――――→Rt△ABH ≌Rt△DAE 线线垂直DE ⊥AH ―→线面垂直DE ⊥平面PAH ―→ 面面垂直平面PAH ⊥平面DEF 规范解答·评分标准证明 (1)取PD 的中点M ,连接FM ,AM .∵在△PCD 中,F ,M 分别为PC ,PD 的中点, ∴FM ∥CD 且FM =12CD .∵在正方形ABCD 中,AE ∥CD 且AE =12CD ,∴AE ∥FM 且AE =FM , 则四边形AEFM 为平行四边形,∴AM ∥EF .…………………………………………………………………………………4分 又∵EF ⊄平面PAD ,AM ⊂平面PAD ,∴EF ∥平面PAD .…………………………………………………………………………6分 (2)∵侧面PAD ⊥底面ABCD ,PA ⊥AD , 侧面PAD ∩底面ABCD =AD ,∴PA ⊥底面ABCD .∵DE ⊂底面ABCD ,∴DE ⊥PA . ∵E ,H 分别为正方形ABCD 边AB ,BC 的中点, ∴Rt△ABH ≌Rt△DAE ,则∠BAH =∠ADE ,∴∠BAH +∠AED =90°,则DE ⊥AH .…………………………………………………………………………………8分 ∵PA ⊂平面PAH ,AH ⊂平面PAH ,PA ∩AH =A ,∴DE ⊥平面PAH .…………………………………………………………………………10分 ∵DE ⊂平面DEF ,∴平面PAH ⊥平面DEF .…………………………………………………………………12分 构建答题模板[第一步] 找线线:通过三角形或四边形的中位线,平行四边形、等腰三角形的中线或线面、面面关系的性质寻找线线平行或线线垂直.[第二步] 找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系的性质找线面垂直或平行.[第三步] 找面面:通过面面关系的判定定理,寻找面面垂直或平行. [第四步] 写步骤:严格按照定理中的条件规范书写解题步骤.1.如图,在空间四面体ABCD 中,若E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点.(1)求证:四边形EFGH 是平行四边形; (2)求证:BC ∥平面EFGH .证明 (1)∵在空间四面体ABCD 中,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点, ∴EF 綊12AD ,GH 綊12AD ,∴EF 綊GH ,∴四边形EFGH 是平行四边形. (2)∵E ,H 分别是AB ,AC 的中点,∴EH ∥BC .∵EH ⊂平面EFGH ,BC ⊄平面EFGH , ∴BC ∥平面EFGH .2.(2017·北京)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 因为PA ⊥AB ,PA ⊥BC , 所以PA ⊥平面ABC .又因为BD ⊂平面ABC ,所以PA ⊥BD . (2)证明 因为AB =BC ,D 是AC 的中点, 所以BD ⊥AC . 由(1)知,PA ⊥BD , 所以BD ⊥平面PAC . 所以平面BDE ⊥平面PAC .(3)解 因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE . 因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.3.(2017·北京海淀区模拟)如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =2,E 是侧棱PA 上的动点.(1)求四棱锥P -ABCD 的体积;(2)如果E 是PA 的中点,求证:PC ∥平面BDE ;(3)是否不论点E 在侧棱PA 的任何位置,都有BD ⊥CE ?证明你的结论. (1)解 ∵PA ⊥底面ABCD , ∴PA 为此四棱锥底面上的高.∴V 四棱锥P -ABCD =13S 正方形ABCD ×PA =13×12×2=23.(2)证明 连接AC 交BD 于点O ,连接OE .∵四边形ABCD 是正方形, ∴AO =OC . 又∵AE =EP , ∴OE ∥PC .又∵PC ⊄平面BDE ,OE ⊂平面BDE , ∴PC ∥平面BDE .(3)解 不论点E 在侧棱PA 的任何位置,都有BD ⊥CE . 证明:∵四边形ABCD 是正方形, ∴BD ⊥AC .∵PA ⊥底面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD . 又∵PA ∩AC =A , ∴BD ⊥平面PAC . ∵CE ⊂平面PAC , ∴BD ⊥CE .4.如图,已知正方形ABCD 的边长为2,AC 与BD 交于点O ,将正方形ABCD 沿对角线BD 折起,得到三棱锥A -BCD .(1)求证:平面AOC ⊥平面BCD ; (2)若三棱锥A -BCD 的体积为63,且∠AOC 是钝角,求AC 的长.(1)证明 ∵四边形ABCD 是正方形, ∴BD ⊥AO ,BD ⊥CO .折起后仍有BD ⊥AO ,BD ⊥CO ,AO ∩CO =O , ∴BD ⊥平面AOC . ∵BD ⊂平面BCD , ∴平面AOC ⊥平面BCD . (2)解 由(1)知BD ⊥平面AOC , ∴V A -BCD =13S △AOC ·BD ,∴13×12OA ·OC ·sin∠AOC ·BD =63, 即13×12×2×2×sin∠AOC ×22=63, ∴sin∠AOC =32. 又∵∠AOC 是钝角, ∴∠AOC =120°.在△AOC 中,由余弦定理,得AC 2=OA 2+OC 2-2·OA ·OC ·cos∠AOC=(2)2+(2)2-2×2×2×cos 120°=6, ∴AC = 6.5.(2016·四川)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)求证:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD .所以PA ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD , 所以平面PAB ⊥平面PBD .。

高中数学第十一章立体几何初步11.3空间中的平行关系11.3.1平行直线与异面直线

高中数学第十一章立体几何初步11.3空间中的平行关系11.3.1平行直线与异面直线
∴DE 綉23MN,MN 綉12AC,
∴DE 綉13AC,∴DE=13a.
12/12/2021
第十八页,共二十七页。
三、解答题写出必要的计算步骤,只写最后结果不得分,12、 13、15 题各 12 分,14 题 6 分,共 42 分
12.在正方体 ABCD-A′B′C′D′中,E,F,E′,F′分 别是 AB,BC,A′B′,B′C′的中点,求证:EE′∥FF′.
(1)证明:AB∥A′B′,AC∥A′C′,BC∥B′C′; (2)求S△SA△′ABB′CC′的值.
12/12/2021
第二十页,共二十七页。
解:(1)证明:∵AA′与 BB′相交于 O 点,且OAAO′=OBBO′, ∴AB∥A′B′. 同理 AC∥A′C′,BC∥B′C′. (2)∵AB∥A′B′,AC∥A′C′且 AB 和 A′B′,AC 和 A′C′的方向相反,∴∠BAC=∠B′A′C′. 同理∠ABC=∠A′B′C′,因此△ABC∽△A′B′C′, 又A′ABB′=AA′OO=23.∴S△SA△′ABB′CC′=232=49.
解析:另一组对应边可能平行,也可能不平行,也可能垂直.注 意和等角定理的区别.
12/12/2021
第四页,共二十七页。
4.E,F,G,H 分别是空间四边形 ABCD 四条边的中点,则 EG 与 FH 的位置关系是( C )
A.异面 B.平行 C.相交 D.重合
12/12/2021
第五页,共二十七页。
12/12/2021
第十三页,共二十七页。
解析:由平行的传递性知①正确; 若 a 与 b 相交,b 与 c 相交,则 a 与 c 可能平行,也可能相 交或异面,②错误; 若平面 α∩β=l,a⊂α,b⊂β,a∥l,b∥l,则 a∥b,③错 误.

专题复习:空间中的平行关系

专题复习:空间中的平行关系
3、线线平行
中位线定理
平行四边形性质 平行公理 线面平行性质定理 (2)空间中的线线平行: 面面平行性质定理 线面垂直性质定理
(1)平面中的线线平行: 比例关系
P F P F
M
E B A C
D
B
E
A C
D
N
空间平行关系的常见判定方法:
1、线面平行 (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理; (3)利用面面平行的性质.
空间平行关系的常见判定方法:
2、面面平行
(1)利用面面平行的定结论:垂直于同一条直线的两个平面
A1 G
H
C1
B1
A E
F B
C
探究:如图,已知三棱柱ABC-A1B1C1中,底面为正三 角形,侧棱与底面垂直,点E,F分别是CC1,BB1上的 点,点M是棱AC上的动点,且EC=2FB,当M在何位置 时,BM//平面AEF?
当堂检测
1、如图,在直三棱柱ABC A1 B1C1中,AB AC, D为BC中点,四边形B1 BCC1是正方形,求证:A1 B //平面AC1 D.
a // a // b


(3) , b , a // , b // a
//

(4)
// , a , b a // b .
空间中的平行关系
判定定理
线线平行
线面平行
判定定理 定义
面面平行
性质定理 性质定理
例1、如图,已知点P是平行四边形ABCD所 在平面外一点,E,F分别是AB,PD的中 点,求证:AF//平面PCE
M
N
2、如图,在正方体ABCD A1 B1C1 D1中,E、F 分别 为棱AD、AB的中点.求证:EF //平面CB1 D1.

空间点、直线、平面之间的位置关系和平行判定习题

空间点、直线、平面之间的位置关系和平行判定习题

1.点A 在直线上,记作 ;点A 在平面α内,记作 ;直线α在平面α内,记作 .2.平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:3.公理的作用:(1)公理1作用:判断直线是否在平面内;(2)公理2作用:确定一个平面的依据;(3)公理3作用:判定两个平面是否相交的依据. 4. 空间两条直线的位置关系:5. 等角定理:6. 已知两条异面直线,经过空间任一点作直线,把所成的锐角(或直角)叫异面直线所成的角(或夹角). 所成的角的大小与点的选择无关,为了简便,点通常取在异面直线的一条上;异面直线所成的角的范围为,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.7. 公理4:8. 公理4作用:判断空间两条直线 的依据.9.直线与平面有三种位置关系:(1) —— 有无数个公共点(2)——有且只有一个公共点(3)——没有公共点10. 两个平面之间有两种位置关系:(1)——没有公共点(2)——有且只有一条公共直线2.2 直线、平面平行的判定及其性质11.判定定理的符号表示为:.12. 证明线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.13.面面平行判定定理:.用符号表示为:.14. 垂直于同一条直线的两个平面平行.15. 平面α上有不在同一直线上的三点到平面β的距离相等,则α与β的位置关系是.16.线面平行的性质定理:符号语言:18. 面面平行的性质:. 用符号语言表示为:.19. 其它性质:①;②;③夹在平行平面间的平行线段相等.1.四面体ABCD中,AB=CD=2,E、F分别是AC、BD的中点,且EF=3,则AB与CD所成的角为__________.3 / 72.在空间四边形ABCD 中,已知AD =1,BC =3,且AD ⊥BC ,对角线BD =213,AC =23,求AC 和BD 所成的角.3.已知E 、F 、G 、H 分别是空间四边形ABCD 各边AB 、AD 、CB 、CD 上的点,并且有GB CG EB AB =,HD CH FD AF =,试证EF 、GH 、BD 共点或两两平行.4 已知异面直线a 、b 所成的角为60°,在过空间一定点P 的直线中,与a ,b 所成的角均为60°的直线有多少条?过P 与a 、b 所成角均为50°,或均为70°的直线又各有多少呢?希望读者通过对上述三个具体问题的求解,总结解题方法,然后再探讨关于与异面直线成等角的直线的存在性问题的一般性情况:已知异面直线a ,b 所成的角为θ0且θ0<90°,过空间一点P 的直线中与a ,b 所成的角均为θ的直线有多少条?5.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。

§4 空间中的平行关系

§4 空间中的平行关系

6. 如果 ∥ ,AB 和 CD 是夹在平面 、 之间的两条线段,AB CD,且 AB=2,直线 AB 与平面成 30° 角,那么线段 CD 的取值范围是( D) A.(
2 3 4 3 ) , 3 3 二、填空题
B.[1,+ )
C.[1, 2 3 ] 3
D.[ 2 3 ,+ 3
A.一条直线和两个平面成等角,则此两平面平行 B.一个平面和两个平面成等角,则此两平面平行 C.平行于两条异面直线的两个平面必平行 D.两个平面夹有三条等长的线段,则此两平面平行
5. 已知平面 ∥平面 ,P 是 、 外一点,过点 P 的直线 m 与 、 分别交于 A、C,过 点 P 的直线 n 与 、 分别交于 B、D,且 PA=6,AC=9,PD=8,则 BD 的长为( B) A.16 B.24 或 24 5 C.14 D.20
4.两个平面平行的性质有五条: (1)两个平面平行,其中一个平面内的任一直线必平行于另一个平面, 这个定理可简记为:“面面平行,则线面平行”。用符号表示是:α∥β,a α, 则 a∥β。 (2)如果两个平行平面同时与第三个平面相交,那么它们的交线平行, 这个定理可简记为: “面面平行, 则线线平行”。 用符号表示是: α∥β, α∩γ=a, β∩γ=b,则 a∥b。 (3)一条直线垂直于两平行平面中的一个平面,它也垂直于另一个平面。 这个定理可用于证线面垂直。用符号表示是:α∥β,a⊥α,则 a⊥β。 (4)夹在两个平行平面间的平行线段相等。 (5)过平面外一点只有一个平面与已知平面平行。
【例 2】两个全等的正方形 ABCD 和 ABEF 所在平面相交于 AB,M∈AC,N∈FB, 且 AM=FN,求证:MN∥平面 BCE。 证法一:作 MP⊥BC,NQ⊥BE,P、Q 为垂足,则 MP∥AB,NQ∥AB。 ∴MP∥NQ,又 AM=NF,AC=BF, C D ∴MC=NB,∠MCP=∠NBQ=45° M ∴Rt△MCP≌Rt△NBQ P ∴MP=NQ,故四边形 MPQN 为平行四边形 ∴MN∥PQ A B N Q ∵PQ 平面 BCE,MN 在平面 BCE 外, F E ∴MN∥平面 BCE。 证法二:如图过 M 作 MH⊥AB 于 H,则 MH∥BC, ∴

1.2.2 空间中的平行关系

1.2.2 空间中的平行关系

张喜林制1.2.2 空间中的平行关系教材知识检索考点知识清单1.平行直线(1)在空间中两条不重合的直线有三种位置关系:、、 .(2)在同一平面内不相交的两条直线叫做.(3)过直线外一点一条直线与已知直线平行.(4)公理4. .(5)等角定理:如果一个角的两边与另一个角的两边分别,并且____相同,那么这两个角____.2.直线与平面平行(1)直线与平面的位置关系有:如果一条直线和一个平面有两个公共点,则这条直线,记作____;如果一条直线和一个平面有且只有一个公共点,则这条直线,记作____;如果一条直线与一个平面没有公共点,则这条直线____,记作.(2)直线与平面平行:a.判定定理:如果不在一个平面内的一条直线和平面内的一条直线____,那么这条直线和这个平面____. b.性质定理:如果一条直线和一个平面平行,经过这条直线的平面与这个平面____,那么这条直线就和两平面的, .3.平面与平面平行(1)平面与平面的位置关系有:如果两个平面没有公共点,那么这两个平面叫做____,记作;如果两个平面有公共点,那么这两个平面有____.(2)平面与平面平行:a.判定定理:如果一个平面内有两条____直线平行于另一个____,那么这两个平面b.性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线.要点核心解读1.空间中的平行直线(1)空间中两条不重合的直线有三种位置关系:相交直线:同一个平面内,有且只有一个公共点;平行直线:同一个平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.(2)平行线公理:平行于同一条直线的两条直线平行,平行线公理也叫空间平行线的传递性.(3)空间中两直线平行的证明方法.证明空间中的两条直线平行,方法很多,到本节为止,我们只能用两种方法证明空间中两条直线平行. ①定义法用定义证明两条直线平行,需要证明两个方面:a .两直线在同一平面内;b .两直线没有公共点. ②公理法用公理证明两条直线平行,只需做一件事,那就是找媒介.两条直线a 与b 可能受空间几何体的阻隔,很难看出它们是平行的,可是c//a ,c∥b 可能很容易被看出来,这样通过公理便得知a//b. (4)等角定理及其推论.定理:如果一个角的两边和另一个角的两边对应平行并且方向相同,那么这两个角相等,推论:如果两条相交直线和另两条相交直线对应平行,那么这两组直线所成的锐角(或直角)相等, 说明:事实上,如果一个角的两边和另一个角的两边对应平行,且方向都相反,这两个角也相等;方向一同一反时,这两个角互补. 2.直线与平面平行(1)直线和平面的位置关系.空间中的一条直线和一个平面的位置关系,以它们的公共点的个数的不同来分类,⎪⎩⎪⎨⎧------有无数个公共点直线在平面内有且只有一个公共点直线和平面相交无公共点直线和平面平行直线与平面相交或平行的情况统称为直线在平面外. (2)直线和平面平行的判定定理.如果平面外的一条直线与平面内的一条直线平行,那么这条直线就和这个平面平行, ①此定理常常表述为“若线线平行,则线面平行”,符号表示为:.//,,//αααa b a b a ⇒⊂⊂/②用该定理判断线面平行,必须满足三个条件:第一,直线口在已知平面外;第二,直线6在已知平面内;第三,两直线平行,这三个条件是缺一不可的.③该定理的作用:证明线面平行.应用时,只需在平面内找到一条直线与平面外的直线平行即可. (3)直线和平面平行的性质定理,如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行, ①此定理常常表述为“若线面平行,则线线平行”.符号表示为:.//,,//b a b a a ⇒=⊂βαβα②定理中有三个条件:直线a 和平面α平行,平面α、β相交,直线a 在平面β内, ③作用:证明线线平行.应用时,需要经过直线找平面或作平面,即以平面为媒介证明两线平行,初学者常常这样做:已知直线a 与平面α平行,在α内作一条直线a 与α平行.这种做法是不可取的,这是一个成立而需要证明的命题,是不可直接应用的,正确的做法是:经过已知直线作一个平面和已知平面相交,这时交线和已知直线平行.(4)直线和平面平行的判定定理和性质定理的关系,直线和平面平行的判定定理和性质定理经常交替使用,要防止判定定理和性质定理的错用,它们有如下关系:线线平行判定定理,线面平行性质定理,线线平行3.平面与平面平行(1)两个平面的位置关系.①两个平面平行——没有公共点;②两个平面相交——有一条公共直线.(2)两个平面平行的判定定理.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.①此定理用符号表示为:,,,A b a b a =⊂⊂αα且,//βa ⋅⇒βαβ////b②利用判定定理证明两个平面平行,必须具备两个条件:有两条直线平行于另一个平面;这两条直线必须相交,这两个条件缺一不可.③此定理常常表述为“线面平行,则面面平行”,必须注意这里的“线面”是指一个平面内的两条相交直线和另一个平面.(3)两个平面平行的性质定理.如果两个平行平面同时和第三个平面相交,那么它们的交线平行.①此定理用符号表示为:.//,,//b a b a ⇒==βγαγβα②此定理常常表述为“面面平行,则线线平行”,必须注意这里的“线线平行”是指同一平面与已知两平行平面的交线,③关于两个平面平行的性质还有如下结论:两个平面平行,其中—个平面内的直线必平行于另—个平面 (4)空间平行关系的转化,典例分类剖析考点1 公理4的应用命题规律证明图形中的两条直线平行或借助平行线的证明判定图形是平行四边形或梯形。

空间中的平行关系(复习带有详细答案)

空间中的平行关系(复习带有详细答案)

空间中的平行关系1.设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,则下列命题中正确的是A、若α⊥β,β⊥γ,则α⊥γB、若α//β,m⊄β,m//α,则m//βC、若α⊥β,m⊥α,则m//βD、若m//α,n//β,α⊥β,则m⊥n 【答案】B【解析】解:利用平面的线面的位置关系,可知,两个平行平面,如果不在平面内的一条直线平行于其中一个平面,必定平行与另一个平面。

选项A还可能平行。

选项C,线可能在面内。

选项D中,线线的位置关系不定。

2.若直线a与平面α相交与一点A,则下列结论正确的是()A.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交【答案】B【解析】略3.已知直线l、m 、n 与平面α、β给出下列四个命题:①若m∥l,n∥l,则m∥n;②若m⊥α,m∥β,则α⊥β;③若m∥α,n∥α,则m∥n;④若m⊥β,α⊥β,则m∥α其中,假命题的个数是()A、1B、2C、3D、4【答案】B【解析】略4.若直线l平行于平面α内的无数条直线,则下列结论正确的是A、//⊂lαB、lαC、lα⊄D、lα与不相交【答案】D【解析】略5.下列命题中lα①若直线l上有无数点不在平面α内,则//②若直线l 与平面α平行,则l 与平面α内任意一条直线平行③若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点 ④若直线l 平行于α内无数条直线,则//l α⑤如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行 其中正确的个数是 ( )A 、0B 、1C 、2D 、3 【答案】B 【解析】略6.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④ 【答案】D 【解析】略7.α、β是两个不重合的平面,a 、b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α、β都平行于直线a 、bB .α内有三个不共线点A 、B 、C 到β的距离相等 C .a 、b 是α内两条直线,且a ∥β,b ∥βD .a 、b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β 【答案】A 【解析】略8.已知直线平面,则“平面平面”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 【答案】B 【解析】略9.空间可以确定一个平面的是( )A.两条直线B.一点和一条直线C.一个三角形D.三个点m ⊂α//αβ//m β【解析】略10.已知直线a//平面α,则a 与平面α内的直线的位置关系( ) A .相交 B. 异面 C. 平行 D. 异面或平行 【答案】C 【解析】略11.已知a 、b 为直线,γβα、、为平面,有下列四个命题: ①b a b a //////,则,αα ②βαγβγα//,则,⊥⊥ ③βαβα//////,则,a a ④αα////a b b a ,则,⊂其中正确命题的个数有( )A.0个 B.1个 C.2个 D.3个 【答案】A 【解析】略12.已知,αβ为互不重合的平面,,m n 为互不重合的直线,给出下列四个命题:①,,m n n m αα⊂若则;②,,,,m n m n m n ααββ⊂⊂若则 ; ③,,,m n m n αβαβ⊂⊂若则;④,,,,m n m n n αβαβαβ⊥=⊂⊥⊥若则. 其中正确命题的序号是____ ▲ __ __. 【答案】④ 【解析】略13.设,m n 是两条不同的直线,βα,是两个不同的平面,有下列四个命题: ①若n m n m //,//,则αα⊂ ②βαβα⊥⊥⊥⊥则,,,n m n m ③若,//,n m n αβ=则m ∥,α且m ∥β④若βαβα//,,则⊥⊥m m其中正确的命题是 ▲ .(写出所有真命题的序号). 【答案】②④14.设,l m 为两条不同的直线,,αβ为两个不同的平面,下列命题中正确的是 .(填序号)①若,//,,l m αβαβ⊥⊥则l m ⊥;②若//,,,l m m l αβ⊥⊥则//αβ; ③若//,//,//,l m αβαβ则//l m ;④若,,,,m l l m αβαββ⊥=⊂⊥则l α⊥.【答案】②④ 【解析】略15..如图是正方体的表面展开图,在这个正方体中有如下命题:①;②与是异面直线;③与成角;④与成角。

2020年高考数学一轮复习专题9.4空间几何体中平行练习(含解析)

2020年高考数学一轮复习专题9.4空间几何体中平行练习(含解析)

9.4 空间几何中平行问题一.线面平行的判定定理和性质定理则该则过这条直线的任一平简a βαβ⎫⎪⎬⊂⎪⎭考向一 线面平行【例1】(1)如图1,在四棱锥P ABCD -中,底面ABCD 是菱形,E 是线段PC 上的中点,证明: //PA 平面EBD(2)如图2, 是菱形, , . 求证: 平面 .(3)如图3,在直角梯形中ABCD , 90ADC BAD ︒∠=∠=,截面CDE 交SB 于点F ,求证: //EF CD ; (4)如图4,三棱锥P ABC -中, D 是PA 的中点, E 是CD 的中点,点F 在PB 上且14BF PB =,证明: //EF 平面ABC ;(5)如图5,菱形ABCD 与正三角形BCE 的边长均为2,且平面ABCD ⊥平面BCE ,FD ⊥平面ABCD ,FD =.求证://EF 平面ABCD ;(6)如图6,已知P 是正方形ABCD 所在平面外一点,M ,N 分别是PA ,BD 上的点,且PM ∶MA =BN ∶ND =5∶8. 求证:直线MN ∥平面PBC .图5图6【答案】见解析【解析】(1)连接AC 交BD 于O ,连接EO ,如图A∵底面ABCD 是菱形,∴O 是AC 中点,又∵E 是PC 的中点,∴//PA EO ,且PA ⊄平面EBD , EO ∈平面EBD ,∴//PA 平面EBD . (2)证明:设 ,取 中点 ,连结 ,如图B 所以,且.因为 , ,所以 且 ,从而四边形 是平行四边形, . 因为 ⊂平面 , 平面 ,所以 平面 ,即 平面 . (3)//CD AB //CD ∴平面SAB 又平面CDEF ⋂平面SAB EF =//CD EF ∴(4)证明:如图,取AD 中点G ,连接GE ,GF ,如图C 则GE//AC ,GF//AB , 因为GE ∩GF=G ,AC ∩AB=A ,所以平面GEF//平面ABC ,所以EF//平面ABC .(5)证明:如图,过点E 作EH BC ⊥于H ,连接HD ,∴EH = D ∵平面ABCD ⊥平面BCE ,EH ⊂平面BCE , 平面ABCD ⋂平面BCE BC =, ∴EH ⊥平面ABCD ,又∵FD ⊥平面ABCD ,FD =,∴//FD EH ,FD EH =. ∴四边形EHDF 为平行四边形. ∴//EF HD .∵EF ⊄平面ABCD ,HD ⊂平面ABCD , ∴//EF 平面ABCD . (6)∵=∴与,共面.∴∥平面PBC.∵MN平面PBC,∴MN∥平面PBC.【举一反三】1.如图,在直三棱柱ABC—A1B1C1中,,点M,N分别为A1C1,AB1的中点,证明:MN∥平面BB1C1C【答案】见解析【解析】证明:连接A1B,BC1,点M,N分别为A1C1,AB1的中点,所以MN为△A1BC1的一条中位线,MN∥BC1,又因为MN⊄平面BB1C1C,BC1⊂平面BB1C1C,所以MN∥平面BB1C1C.2.如图四边形是平行四边形为直角梯形,.求证:平面;【答案】见解析【解析】取的中点,连接.∵四边形为直角梯形,是的中点,,且.∵四边形是平行四边形,,且A , ,且 ,四边形 是平行四边形, .⊂平面 平面 , 平面 .3.如图所示, //,24BE CD BE CD ==,F 为棱AE 的中点,求证: //DF 平面ABC【答案】见解析【解析】证明:如图,取AB 中点G ,连接CG FG 、,因为F 为AE 中点,所以//FG BE 且12FG CD =, 2BE CD =,所以//FG CD 且FG CD =,所以四边形CDFG 为平行四边形,所以//DF CG .CG ⊂平面ABC , DF ⊄平面ABC ,∴//DF 平面ABC .4.如下图,在几何体ABCDE 中,四边形ABCD 为正方形, G 是线段BE 的中点, 2AB =, F 是线段CD 上的中点,求证: //GF ADE 平面【答案】见解析【解析】解法一:取AE 的中点H ,连接HG , DHG 是线段BE 的中点,∴HG AB 且12HG AB =, 四边形ABCD 为正方形, F 是线段CD 上的中点∴DFAB 且12DF AB =, ∴HG DF 且HG DF =,∴四边形DFGH 是平行四边形,//GF DH ∴,DH GF ADE ADE ⊄⊂平面,平面,//GF ADE ∴平面。

空间中平行于垂直的判定与性质练习题

空间中平行于垂直的判定与性质练习题

1.如图,在正方体1111ABCD A B C D -中,异面直线1A D 与1BC 所成的角为A .30°B .45°C .60°D .90°2.在下列命题中,不是公理的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线3.已知,a b 为两条不同的直线,,αβ为两个不同的平面,且,a b αβ⊂⊂,给出下列结论:①若a ∥b ,则α∥β;②若α∥β,则a ∥b ;③若a ⊥b ,则α⊥β;④若α⊥β,则a ⊥b其中正确结论的个数是( )A .0B .1C .2D .34.如图,ABCD -A1B1C1D1为正方体,下面结论错误的是( ).A .BD ∥平面CB1D1B .AC1⊥BDC .AC1⊥平面CB1D1D .异面直线AD 与CB1角为60°5.若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是 ( )A .相交B .异面C .平行D .异面或相交6.设,l m 是两条不同的直线,,αβ是两个不同的平面,则下列命题为真命题的是( ) A .若//,//,//m l m l αα则B .若,,//m l m l αα⊥⊥则C .若//,,//,l m l m αβαβ⊥⊥则D .若,//,,//,//m m l l αββααβ⊂⊂则7.在正方体''''D C B A ABCD -中,下列几种说法正确的是( )A 、11AC AD ⊥B 、11DC AB ⊥C 、1AC 与DC 成45o 角D 、11A C 与1B C 成60o 角请点击8.(本小题满分14分)如图,在三棱柱111C B A ABC -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点.(Ⅰ)求证:BD ⊥平面11A ACC ; (Ⅱ)求证:直线1AB ∥平面D BC 1;(Ⅲ)设M 为线段1BC 上任意一点,在D D BC 1内的平面区域(包括边界)是否存在点E ,使CE ⊥DM ,并说明理由.9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱C 1D 1,C 1C 的中点.给出以下四个结论:①直线AM 与直线C 1C 相交;②直线AM 与直线DD 1异面;③直线AM 与直线BN 平行;④直线BN 与直线MB 1异面.其中正确结论的序号为 (填入所有正确结论的序号).A B CD A 1 B 1C 1A BCD 1A 1B 1C 1D M N10.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,E 是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.11.(本题满分14分)如图,四边形ABCD为正方形,PD⊥平面ABCD,ADPD=,AF ⊥PC于点F,FE∥CD交PD于点E.(1)证明:CF⊥平面ADF;(2)若OBDAC=⋂,证明//FO平面AED12.(本题满分14分)如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(1)PA//平面BDE;(2)平面PAC⊥平面BDE.PEDABCO参考答案1.D【解析】 试题分析:如图所示,连接B 1C ,则B 1C ∥A 1D ,B 1C ⊥BC 1,∴A 1D ⊥BC 1,∴A 1D 与BC 1所成的角为90°.故选:D .考点:异面直线及其所成的角2.A【解析】试题分析:选项A 是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的. B,C,D 四个命题是平面性质的三个公理,所以选A .考点:点,线,面的位置关系.3.A【解析】试题分析:若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题?错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题?错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题?错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;考点:直线与直线、平面与平面的平行与垂直的命题判断.4.D【解析】试题分析:由BD ∥B1D1,因此BD ∥平面CB1D1成立;AC1在底面的射影为AC ,由三垂线定理可得AC1⊥BD ,由三垂线定理可知AC1⊥B1D1,AC1⊥CB1,因此有AC1⊥平面CB1D1;异面直线AD 与CB1角为45°考点:1.空间线面的垂直平行关系;2.异面直线所成角5.D【解析】试题分析:因为a ,b 是异面直线,直线c ∥a ,可知c 与b 的位置关系是异面或相交,故选择D考点:异面直线6.C【解析】试题分析:若//m l ,//m α,则//l α或l α⊂,所以A 选项是假命题;若m α⊥,l m ⊥,则//l α或l α⊂,所以B 选项是假命题;若//αβ,l α⊥,//m β,则l m ⊥,所以C 选项是真命题;若m α⊂,//m β,l β⊂,//l α,则//αβ或α与β相交,所以D 选项是假命题.故选C .考点:空间点、线、面的位置关系.7.【解析】试题分析:由题意画出正方体的图形,结合选项进行分析即可.由题画出如下图形:11111AD A D C A D ∴∠Q P ,即为异面直线11A C 与AD 所成的角,而111C A D 45∠=︒,所以A 错; 因为11D C CD P ,利平行公理4可以知道:11AB CD C D P P ,所以B 错;1DC AB,C AB ∴∠Q P ,即为这两异面直线所成的角,而在1t R C AB V 中,1tan 2C AB ∠=, 所以C 错;111A C AC B CA ∴∠Q P ,即为异面直线11A C 与1B C 所成的角,在正三角形1B CA V 中,1B CA 60∠=︒所以D 正确.考点:异面直线及其所成的角;棱柱的结构特征.8.(1)证明如下;(2)证明如下;(3)证明如下;【解析】试题分析:(1)由题可知,若证明线面垂直,则从线线垂直入手,若一条直线垂直于平面内两条相交直线,则线面垂直;(2)证明线面平行由3种方法,平行四边形法,中位线法,构造辅助平面法,本题采用三角形中位线法,DO 是三角形AB 1C 的中位线,因此直线//1AB 平面D BC 1.(3)若证明线线垂直,应该从线面垂直入手,由(1),我们可知CE ⊥平面BC 1D .所以CE ⊥DM .试题解析:(Ⅰ)证明:因为三棱柱的侧面是正方形,所以AC CC BC CC ⊥⊥11,,C AC BC =I .所以⊥1CC 底面ABC .因为⊥BD 底面ABC ,所以BD CC ⊥1.由已知可得,底面ABC 为正三角形. 因为D 是AC 中点,所以AC BD ⊥,所以⊥BD 平面11ACC A . 5分(Ⅱ)证明:如图,连接1B C 交1BC 于点O ,连接OD .显然点O 为1B C 的中点.因为D 是AC 中点, 所以1//AB OD .又因为∈OD 平面D BC 1,//1AB 平面D BC 1,所以直线//1AB 平面D BC 1. 10分(Ⅲ)在DD BC 1内的平面区域(包括边界)存在一点E ,使CE ⊥DM 此时点E 是在线段1C D 上.证明如下:过C 作1CE C D ⊥交线段1C D 于E ,由(Ⅰ)可知⊥BD 平面11ACC A ,而CE ⊂平面11ACC A ,所以CE BD ⊥. 又1CE C D ⊥,所以CE ⊥平面D BC 1.又DM ⊂平面D BC 1,所以CE ⊥DM . 14分考点:?线面垂直的判定定理?线面平行的判定定理9.②④【解析】试题分析:由异面直线判定定理知:①直线AM 与直线C 1C 异面;②直线AM 与直线DD 1异面;④直线BN 与直线MB 1异面,因为直线BN 与直线AE 平行,(E 为DD 1中点),所以③直线AM A B CD ABCO C 1A B C D A 1B 1 ME与直线BN异面.考点:异面直线判定定理10.(1)详见解析;(2)详见解析.【解析】试题分析:(1)连接AC,交BD于点O,连接EO,由底面ABCD为矩形可知,对角线交点O 为AC中点,又因为E为PC中点,所以EO∥PA,强调直线PA?平面EDB,而EO?平面EDB,根据直线与平面平行的判定定理可知,PA∥平面EDB,本问主要考查直线与平面平行的知识,根据线面平行判定定理,只需在平面EDB内找到与PA平行的直线即可,证明时注意符号的表示要全,不要遗漏定理的条件;(2)由已知PD⊥底面ABCD,得PD⊥BC,又根据底面为矩形得:CD⊥BC,且PD∩CD=D,则BC⊥平面PCD,而DE?平面PCD,所以BC⊥DE,由已知条件PA=AD,且E为PC中点,所以DE⊥PC,而BC∩PC=C,所以DE⊥平面PBC.所以DE⊥PB,又根据已知EF⊥PB,且DE∩EF=E,所以PB⊥平面EFD.本问多次使用线面垂直判定定理,要求学生熟练掌握线面垂直判定定理的使用.试题解析:证明:(1)连接AC交BD与O,连接EO.∵底面ABCD是矩形,∴点O是AC的中点.又∵E是PC的中点∴在△PAC中,EO为中位线∴PA∥EO.而EO?平面EDB,PA?平面EDB,∴PA∥平面EDB.(2)由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是矩形,∴DC⊥BC,且PD∩CD=D,∴BC⊥平面PDC,而DE?平面PDC,∴BC⊥DE.①∵PD=DC,E是PC的中点,∴△PDC是等腰三角形,DE⊥PC.②由①和②及BC∩PC=C,∴DE⊥平面PBC.而PB?平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.考点:(1)线面平行判定定理;(2)线面垂直判定定理.11.(1)详见解析,(2)详见解析【解析】试题分析:(1)证明线面垂直,一般利用其判定定理,即证线线垂直:由PD ⊥平面ABCD ,得AD PD ⊥由,,AD PD AD DC PD DC C ⊥⊥=I ,PD DC PDC ⊂面⊥⇒AD 平面PDC ,CF PDC ⊂面CF AD ⊥⇒由C CF AF CF AF CF AD =⊥⊥I ,,,AF CF ADF ⊂面⊥⇒CF 平面ADF (2)证明线面平行一般利用其判定定理,即证线线平行:因为AD=PD ,由(1)知,F 为PC 中点,从而//AP FO ,因此由,AP ADE ⊂面FO ADE ⊄面得//FO 平面AED试题解析:(1)由PD ⊥平面ABCD ,得AD PD ⊥(1分)由C DC AD DC AD PD AD =⊥⊥I ,,⊥⇒AD 平面PDC(3分,少一个条件扣一分)CF AD ⊥⇒(1分)由C CF AF CF AF CF AD =⊥⊥I ,,⊥⇒CF 平面ADF (2分)(2)因为AD=PD ,由(1)知,F 为PC 中点 从而//AP FO ,因此由,AP ADE ⊂面FO ADE ⊄面得//FO 平面AED ,本小题方法较多,关键采分点是证明线面平行的相关要素 考点:线面垂直判定定理,线面平行判定定理12.见解析【解析】 试题分析:(1)连接OE ,OE||PA ,由直线与平面平行的判定定理,可证得PA||平面BDE ;(2)由PO ⊥底面ABCD ,可得PO ⊥BD ;底面为正方形,可得BD ⊥AC ,由直线和平面垂直的判定定理,可得BD ⊥平面PAC ,由面面垂直的判定定理,可证得平面PAC ⊥平面BDE . 试题解析:(1)连结OE Q O 是正方形的中心O AC \是的中点又Q E 是PC 的中点 \OE 是PCA V 的中位线 \ OE||PA又Q OE Ì 平面BDE,PA Ë 平面BDE \PA||平面BDE;(2)Q PO ⊥底面ABCD ,BD Ì平面ABCD \PO ⊥BD?\BD⊥平面PAC又Q BD⊥AC AC PO O又Q BDÌ平面BDE\平面PAC⊥平面BDE.考点:平面与平面垂直的判定;直线与平面平行的判定.。

25空间的平行与垂直关系

25空间的平行与垂直关系

江苏省2014届一轮复习数学试题选编20:空间的平行与垂直关系(教师版)填空题1 .已知,m 是两条不同的直线,α,β是两个不同的平面,有以下四个命题:①若l β⊂,且αβ⊥,则l α⊥;②若l β⊥,且//αβ,则l α⊥; ③若l β⊥,且αβ⊥,则//l α;④若m αβ=,且//l m ,则//l α.则所有准确命题的序号是_________. 【答案】② 2 .给出以下命题:(1)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; (3)若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,所有真命题的序号为______.【答案】()1、()3、()43 .已知m ,n 是两条不同的直线,α,β是两个不同的平面.①若m ⊂α,m ⊥β,则α⊥β; ②若m ⊂α,α∩β=n ,α⊥β,则m ⊥n ; ③若m ⊂α,n ⊂β,α∥β,则m ∥n ; ④若m ∥α,m ⊂β,α∩β=n ,则m ∥n . 上述命题中为真命题的是________(填写所有真命题的序号).【答案】①④4 .设,m n 是两条不同的直线,α是一个平面,有以下四个命题:①若,m n m α⊥⊂,则n α⊥; ②若,m n α⊥∥m ,则n α⊥; ③若n ∥,m αα⊂,则n ∥m ;④若m ∥α,n ∥α,则m ∥n . 其中真命题是________(写出所有真命题的序号). 【答案】②5 .现有如下命题:①过平面外一点有且只有一条直线与该平面垂直;②过平面外一点有且只有一条直线与该平面平行;③假如两个平行平面和第三个平面相交, 那么所得的两条交线平行;④假如两个平面相互垂直, 那么经过第一个平面内一点且垂直于第二个平面的直线必在第一个平面内. 则所有真命题的序号是 .【答案】①③④6 .在空间中,用a,b,c 表示三条不同的直线,γ表示平面,给出以下四个命题:(1)若,a b b c ,则a c (2)若,a b b c ⊥⊥,则a c ⊥ (3) 若a γ,b γ,则a b (4)若a γ⊥,b γ⊥,则a b【答案】①④7 .已知α,β为平面,m ,n 为直线,以下命题:①若m ∥n ,n ∥α,则m ∥α; ②若m ⊥α,m ⊥β,则α∥β; ③若α∩β=n ,m ∥α, m ∥β,则m ∥n ; ④若α⊥β,m ⊥α,n ⊥β,则m ⊥n . 其中是真命题的有_______.(填写所有准确命题的序号) 【答案】②③④8 .已知两个平面,,直线l ,直线m,有下面四个命题:①//l m αβ⇒⊥; ② //l m αβ⊥⇒; ③ //l m αβ⊥⇒;④//l m αβ⇒⊥. 其中准确的命题是____. 【答案】①、④9 .设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出以下命题:①若m β⊂,αβ⊥,则m α⊥; ②若m//α,m β⊥,则αβ⊥; ③若αβ⊥,αγ⊥,则βγ⊥; ④若m αγ=,n βγ=,m//n ,则//αβ.上面命题中,真命题...的序号是_______(写出所有真命题的序号).【答案】②10.以下5个命题:(1)设a ,b ,c 是空间的三条直线,若c a ⊥,c b ⊥,则b a //; (2)设a ,b 是两条直线,α是平面,若α⊥a ,α⊥b ,则b a //; (3)设a 是直线,α,β是两个平面,若β⊥a ,βα⊥,则α//a ; (4)设α,β是两个平面,c 是直线,若α⊥c ,β⊥c ,则βα//; (5)设α,β,γ是三个平面,若γα⊥,γβ⊥,则βα//. 其中准确命题的序号是______________. 【答案】②④11.设m ,n 是两条不同的直线,α,β是两个不同的平面,则以下准确命题的序号是____.①.若 n m //,β⊥m , 则 β⊥n ; ②.若n m //,β//m , 则β//n ; ③. 若 α//m ,β//m ,则 βα//; ④.若 α⊥n ,β⊥n ,则βα⊥. 【答案】 ①12.设a b 、是两条不同的直线,α、β是两个不同的平面,则以下四个命题①若,a b a α⊥⊥,则//b α, ②若,a βαβ⊥⊥,则//a α, ③若βαβα⊥⊥则,,//a a④若,,a b a b αβ⊥⊥⊥,则αβ⊥,其中准确的命题序号是____.【答案】③④;解答题13.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD , ACBD ⊥于O .(Ⅰ)证明:平面PBD ⊥平面PAC ;(Ⅱ)设E 为线段PC 上一点,若AC BE ⊥,求证://PA 平面BED【答案】(Ⅰ)证:因为PA ⊥平面ABCD , BD ⊂平面ABCD ,PA BD ∴⊥又AC BD ⊥,,PA AC 是平面PAC 内的两条相交直线,BD ∴⊥平面PAC ,而BD ⊂平面PBD ,所以平面PBD ⊥平面PAC(Ⅱ)证:AC BE ⊥,AC BD ⊥,BE 和BD 为平面BED 内 两相交直线,AC ∴⊥平面BED ,连接EO ,EO ⊂平面BED ,AC EO ∴⊥,PA ⊥平面ABCD ,AC ⊂平面ABCD ,AC PA ∴⊥, 又,,AC PA EO 共面,//EO PA ∴, 又PA ⊄平面BED ,EO ⊂平面BED ,//PA ∴平面BED14.在三棱锥S-ABC 中,SA ⊥平面ABC,SA=AB=AC=33BC ,点D 是BC 边的中点,点E 是线段AD 上一点,且AE=4DE,点M 是线段SD 上一点, (1)求证:BC ⊥AM(2)若AM ⊥平面SBC,求证:EM 平面ABS【答案】(1)∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,AM BC SAD AM SAD BC A SA AD BCSA ABC BC ABC SA ⊥⇒⎭⎬⎫⊂⊥⇒⎭⎬⎫=⋂⊥⇒⎭⎬⎫⊂⊥面平面面面 (证到SA⊥平面SAD 得5分)(2)∵AM ⊥面SAB , ⇒AM ⊥SD ,⇒⎭⎬⎫==DE AE MD SM 44⎪⎭⎪⎬⎫⊆⊄平面平面SA ABS //ME SAME ⇒EM ∥面ABS(证到SM =4MD 得10分,得到ME ‖SA 得12分.)15.如图,四棱锥P-A BCD 中,底面ABCD 为菱形,BD⊥面PAC,A C=10,PA=6,cos∠PCA=45,M 是PC 的中点. (Ⅰ)证明PC⊥平面BMD;(Ⅱ)若三棱锥M-BCD 的体积为14,求菱形ABCD 的边长.【答案】16.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,AD ⊥AB ,CD ∥AB , 22AB ==,3CD =,直线PA 与底面ABCD 所成角为60°,点M 、N 分别是PA ,PB 的中点.(1)求证:MN ∥平面PCD ;(2)求证:四边形MNCD 是直角梯形; (3)求证:DN ⊥平面PCB .【答案】证明:(1)因为点M ,N 分别是P A ,PB 的中点,所以MN ∥AB 因为CD ∥AB ,所以MN ∥CD .又CD ⊂平面PCD , MN ⊄平面PCD ,所以MN ∥平面PCD (2)因为AD ⊥AB ,CD ∥AB ,所以CD ⊥AD ,又因为PD ⊥底面ABCD ,CD ⊂平面ABCD ,所以CD ⊥PD ,又AD PD D =,所以CD ⊥平面PAD 因为MD ⊂平面PAD ,所以CD ⊥MD , 所以四边形MNCD 是直角梯形(3)因为PD ⊥底面ABCD ,所以∠PAD 就是直线PA 与底面ABCD 所成的角,从而∠PAD =60 在Rt △PDA 中,AD =,PD =,PA =,MD =在直角梯形MNCD 中,1MN =,ND =3CD =,CN ==,从而222DN CN CD +=,所以DN ⊥CN在Rt △PDB 中,PD = DB, N 是PB 的中点,则DN ⊥PB 又因为PB CN N =,所以DN ⊥平面PCB17.如图,已知斜三棱柱ABC -A 1B 1C 1中,AB =AC ,D 为BC 的中点.(1)若平面ABC ⊥平面BCC 1B 1,求证:AD ⊥DC 1; (2)求证:A 1B//平面ADC 1.【答案】证明:(1)因为AB =AC ,D 为BC 的中点,所以AD ⊥BC .因为平面ABC ⊥平面BCC 1B 1,平面ABC ∩平面BCC 1B 1=BC ,AD ⊂平面ABC , 所以AD ⊥平面BCC 1B 1因为DC 1⊂平面BCC 1B 1,所以AD ⊥DC 1 (2)(证法一)连结A 1C ,交AC 1于点O ,连结OD , 则O 为A 1C 的中点. 因为D 为BC 的中点,所以OD//A 1B因为OD ⊂平面ADC 1,A 1B /⊂平面ADC 1, 所以A 1B//平面ADC 1(证法二)取B 1C 1的中点D 1,连结A 1D 1,D 1D ,D 1B .则D 1C 1=∥BD . 所以四边形BDC 1D 1是平行四边形.所以D 1B// C 1D .因为C 1D ⊂平面ADC 1,D 1B /⊂平面ADC 1, 所以D 1B//平面ADC 1.同理可证A 1D 1//平面ADC 1.ABC DA 1B 1C 1(第16题)因为A 1D 1⊂平面A 1BD 1,D 1B ⊂平面A 1BD 1,A 1D 1∩D 1B =D 1, 所以平面A 1BD 1//平面ADC 1因为A 1B ⊂平面A 1BD 1,所以A 1B//平面ADC 118.如图的几何体中,AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AB DE AD 2==,F为CD 的中点.(1)求证://AF 平面BCE ; (2)求证:平面BCE ⊥平面CDE .【答案】(1)证明:取CE 的中点G ,连结FG BG 、.∵F 为CD 的中点,∴//GF DE 且12GF DE =.∵AB ⊥平面ACD ,DE ⊥平面ACD ,∴//AB DE ,∴//GF AB . 又12AB DE=,∴GF AB =.∴四边形GFAB 为平行四边形,则//AF BG .BAED CFABC DA 1B 1C 1(第16题图)OABC DA 1B 1C 1(第16题图) D 1∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴//AF 平面BCE (2)证明:∵ACD ∆为等边三角形,F 为CD 的中点,∴AF CD ⊥ ∵DE ⊥平面ACD ,AF ACD ⊂平面,∴DE AF ⊥. ∵//BG AF ,∴,BG DE BG CD ⊥⊥又CD DE D ⋂=, ∴BG ⊥平面CDE .∵BG ⊂平面BCE , ∴平面BCE ⊥平面CDE19.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC ,点D 为BC 中点,点E 为BD 中点,点F 在AC 1上,且AC 1=4AF .(1)求证:平面ADF ⊥平面BCC 1B 1; (2)求证:EF //平面ABB 1A 1.【答案】证明:(1) 因为直三棱柱ABC -A 1B 1C 1,所以CC 1⊥平面ABC ,而AD ⊂平面ABC , 所以CC 1⊥ADABCC 1A 1B 1FE D(第16题图)BAED CFG又AB =AC ,D 为BC 中点,所以AD ⊥BC ,因为BC ⋂CC 1=C ,BC ⊂平面BCC 1B 1,CC 1⊂平面BCC 1B 1, 所以AD ⊥平面BCC 1B 1, 因为AD ⊂平面ADF ,所以平面ADF ⊥平面BCC 1B 1(2) 连结CF 延长交AA 1于点G ,连结GB . 因为AC 1=4AF ,AA 1//CC 1,所以CF =3FG ,又因为D 为BC 中点,点E 为BD 中点,所以CE =3EB , 所以EF //GB ,而EF ⊄平面ABBA 1,GB ⊂平面ABBA 1, 所以EF //平面ABBA 120.如图,四棱锥ABCD P -的底面是直角梯形,CD AB //,AD AB ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4=DC ,O 为BD 的中点,E 为PA 的中点.(1)求证://OE 平面PDC ;(2)求证:平面⊥PBD 平面ABCD .D PCBAOE ABCC 1A 1B 1F E DG【答案】21.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,BC //平面PAD ,PBC ∠90=,90PBA ∠≠.求证:(1)//AD 平面PBC ; (2)平面PBC ⊥平面PAB .【答案】【证】(1)因为BC //平面PAD ,而BC ⊂平面ABCD ,平面ABCD 平面PAD = AD ,所以BC //AD因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC(2)自P 作PH ⊥AB 于H ,因为平面PAB ⊥平面ABCD ,且平面PAB平面ABCD =AB ,所以PH ⊥平面ABCD因为BC ⊂平面ABCD ,所以BC ⊥PH .因为PBC ∠90=,所以BC ⊥PB ,而90PBA ∠≠,于是点H 与B 不重合,即PB PH = H .因为PB ,PH ⊂平面PAB ,所以BC ⊥平面PAB因为BC ⊂平面PBC ,故平面PBC ⊥平面A B22.如图,在四棱柱1111D C B A ABCD -中,已知平面⊥C C AA 11平面,ABCD 且3===CA BC AB ,1==CD AD .(1) 求证:;1AA BD ⊥(2) 若E 为棱BC 的中点,求证://AE 平面11D DCC . AB C PDH A B CP(第16题)D【答案】⑴在四边形ABCD 中,因为BA BC =,DA DC =,所以BD AC ⊥,又平面11AAC C ⊥平面ABCD ,且平面11AAC C 平面ABCD AC =,BD ⊂平面ABCD ,所以BD ⊥平面11AA C C ,又因为1AA ⊂平面11AA C C ,所以1BD AA ⊥⑵在三角形ABC 中,因为AB AC =,且E 为BC 中点,所以BC AE ⊥,又因为在四边形ABCD 中,AB BC CA ===,1DA DC ==,所以60ACB ∠=︒,30ACD ∠=︒,所以BC DC ⊥,所以AEDC , 因为DC ⊂平面11D DCC ,AE ⊄平面11D DCC ,所以AE平面11D DCC 23.如图,AB ,CD 均为圆O 的直径,CE ⊥圆O 所在的平面,BF CE .求证:⑴平面BCEF ⊥平面ACE ;⑵直线DF 平面ACE .1A E C DBA1D1B1C第16题【答案】⑴因为CE ⊥圆O 所在的平面,BC ⊂圆O 所在的平面,所以CE BC ⊥,因为AB 为圆O 的直径,点C 在圆O 上,所以AC BC ⊥,因为AC CE C =,,AC CE ⊂平面ACE ,所以BC ⊥平面ACE ,因为BC ⊂平面BCEF ,所以平面BCEF ⊥平面ACE⑵由⑴AC BC ⊥,又因为CD 为圆O 的直径,所以BD BC ⊥,因为,,AC BC BD 在同一平面内,所以AC BD ,因为BD ⊄平面ACE ,AC ⊂平面ACE ,所以BD 平面ACE因为BF CE ,同理可证BF 平面ACE ,因为BD BF B =,,BD BF ⊂平面BDF ,所以平面BDF 平面ACE ,因为DF ⊂平面BDF ,所以DF 平面ACE24.如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(1)求证:∥PD面AEC ; (2)求证:平面AEC ⊥平面PDB .A B CDOEF(第15题图)【答案】(1)证明:设AC BD O =,连接EO,因为O,E 分别是BD,PB 的中点,所以∥PD EO而,PD AEC EO AEC ⊄⊂面面,所以∥PD面AEC (2)连接PO,因为PA PC =,所以AC PO ⊥,又四边形ABCD 是菱形,所以AC BD ⊥ 而PO ⊂面PBD ,BD ⊂面PBD ,PO BD O =,所以AC ⊥面PBD又AC ⊂面AEC ,所以面AEC ⊥面PBD25.在正方体ABCD —A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E=λEO(1)若λ=1,求异面直线DE 与CD 1所成的角的余弦值;(2)若平面CDE⊥平面CD 1O,求λ的值.【答案】(1)不妨设正方体的棱长为1,以1,,DA DC DD为单位正交基底建立如下图的空间直角坐标系D xyz -.则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1),E ()111442,,, 于是()111442DE =,,,()1011CD =-,,. 由cos 1DE CD 〈〉,=11||||DE CD DE CD ⋅⋅=36. 所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0得 1111110220x y y z ⎧-=⎪⎨⎪-+=⎩,,取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E 12(1)2(1)1λλλλλ⎛⎫ ⎪+++⎝⎭,,,DE =12(1)2(1)1λλλλλ⎛⎫ ⎪+++⎝⎭,,. 又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0.得 2222002(1)2(1)1y x y z λλλλλ=⎧⎪⎨++=⎪+++⎩,, 取x 2=2,得z 2=-λ,即n =(-2,0,λ) . 因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.26.如图,在四棱锥P ‐ABCD 中,四边形ABCD 为正方形,PA ⊥平面ABCD ,E 为PD的中点.求证:(1)PB ∥平面AEC ;(2)平面PCD ⊥平面PAD .【答案】(1)证明: 连BD,AC 交于O. ∵ABCD 是正方形∴AO=OC, OC=12AC 连EO,则EO 是三角形PBD 的中位线. EO ∥PBEO ⊂平面AEC∴PB ∥平面AEC(2):∵PA ⊥平面ABCD∴CD ⊥PA∵ABCD 是正方形 ∴AD⊥CD∴CD ⊥平面PAD∴平面PAD ⊥平面PCD27.如图,在三棱柱111A B C ABC -中,已知E ,F ,G 分别为棱AB ,AC ,11A C 的中点,090ACB ∠=,1A F ⊥平面ABC ,CH BG ⊥,H 为垂足.求证:(1)1//A E 平面GBC ; (2)BG ⊥平面ACH .PABCD E(第16题图)C 1B 1B H EFGCAA 1 【答案】28.如图,在四棱锥P-ABCD 中,PA=PB=PD=AB=BC=CD=DA=DB=2,E 为的PC 中点.⑴求证:PA∥平面BDE; ⑵求证:平面PBC⊥平面PDC.【答案】证明(1)连接AC 交BD 于O ,连接PO EO ,∵四边形ABCD 是菱形, ∴O 是AC 中点,又E 为PC 中点.∴PA ∥EO又BDE EO 面⊂,BDE PA 面⊄∴PA ∥平面BDE(2)在△PAC 中,易得3===PO CO AO ∴ 90=∠APC ,∴22=PC ∴在△PDC 中可求得2=DE ,同理在△PBC 中可求得2=BE∴在△BDE 中可得 90=∠BED ,即BE ⊥DE又BC PB =,E 为PC 中点, ∴BE ⊥PCBE ⊥面PDC ,又⊂BE 面PBC ∴平面⊥PBC 平面PDC29.如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)求三棱锥D -AEC 的体积;(3)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .【答案】解 (1)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又∵BF ⊥平面ACE ,∴AE ⊥BF ,∴AE ⊥平面BCE .又∵BE ⊂平面BCE ,∴AE ⊥BE .(2)1142223D A E C E A D C E A B C D V V V ---===⨯=.(3)在三角形ABE 中,过M 点作MG ∥AE 交BE 于G 点,在三角形BEC 中,过G 点作GN ∥BC交EC 于N 点,连MN ,则由比例关系易得CN =CE31.MG ∥AE ,MG ⊄平面ADE, AE ⊂平面ADE ,∴MG ∥平面ADE ,同理,GN ∥平面ADE ,∴平面MGN ∥平面ADE .又∵MN ⊂平面MGN ,∴MN ∥平面ADE ,∴N 点为线段CE 上靠近C 点的一个三等分点.30.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是平行四边形,且AC CD ⊥,PA AD =,M ,Q 分别是PD ,BC 的中点.(1)求证:MQ 平面PAB ;(2)若AN PC ⊥,垂足为N ,求证:MN PD ⊥.【答案】(1)取PA 的中点E ,连结ME ,BE ,因为M 是PD 的中点,所以ME AD ,12ME AD =, 又因为Q 是BC 中点,所以12BQ BC =, PA B DCM NQE (第16题图) PA BDC M NQ (第16题图)因为四边形ABCD 是平行四边形; 所以BC AD∥,所以BQ ME ∥, 所以四边形MQBE 是平行四边形,所以MQ BE .因为BE ⊂平面PAB ,MQ ⊄平面PAB ,所以MQ 平面PAB(2)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,又因为AC CD ⊥,PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以CD ⊥平面PAC ,又AN ⊂平面PAC ,所以AN CD ⊥又AN PC ⊥,PC CD C =,PC ⊂平面PCD ,CD ⊂平面PCD ,所以AN ⊥平面PCD ,又PD ⊂平面PCD ,所以AN PD ⊥,又PA AD =,M 是PD 中点,所以AM PD ⊥,又AM AN A =,AM ⊂平面AMN ,AN ⊂平面AMN ,所以PD ⊥平面AMN , 又MN ⊂平面AMN ,所以MN PD ⊥31.如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC .又∵AD ⊂平面ABC ,∴1CC AD ⊥.又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =,,∴AD ⊥平面11BCC B .(lb ylfx)又∵AD ⊂平面ADE ,∴平面ADE ⊥平面11BCC B .(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥.又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥.又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =,∴1A F ⊥平面111A B C . 由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD .又∵AD ⊂平面1, ADE A F ∉平面ADE ,∴直线1//A F 平面ADE32.如图,在正三棱柱ABC -A 1B 1C 1中,A 1A =2AC ,D ,E ,F 分别为线段AC ,A 1A ,C 1B 的中点. (1)证明:EF ∥平面ABC ;(2)证明:C 1E ⊥平面BDE .【答案】证明(1)如图,取BC 的中点G ,连结AG ,FG .因为F 为C 1B 的中点,所以FG =∥12C 1C . 在三棱柱ABC -A 1B 1C 1中,A 1A =∥C 1C ,且E 为A 1A 的中点, 所以FG =∥EA . (第16题) AB C DEC 1A 1B 1 F G A BC DEC 1A 1B 1 F(第16题)所以四边形AEFG 是平行四边形. 所以EF ∥AG因为EF ⊄平面ABC ,AG ⊂平面ABC , 所以EF ∥平面ABC(2)因为在正三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,BD ⊂平面ABC , 所以A 1A ⊥BD .因为D 为AC 的中点,BA =BC ,所以BD ⊥AC .因为A 1A ∩AC =A ,A 1A ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,所以BD ⊥平面A 1ACC 1. 因为C 1E ⊂平面A 1ACC 1,所以BD ⊥C 1E根据题意,可得EB =C 1E =62AB ,C 1B =3AB , 所以EB 2+C 1E 2=C 1B 2.从而∠C 1EB =90°,即C 1E ⊥EB因为BD ∩EB =B ,BD ⊂平面BDE , EB ⊂平面BDE , 所以C 1E ⊥平面BDE33.如图,在三棱锥P ABC -中,BC⊥平面PAB .已知PA AB =,点D ,E 分别为PB ,BC 的中点.(1)求证:AD ⊥平面PBC ;(2)若F 在线段AC 上,满足//AD 平面PEF ,求AFFC的值. APBCD EF【答案】34.在直三棱柱111C B A ABC -中, AB BC ⊥, D 为棱1CC 上任一点. (1)求证:直线11A B ∥平面ABD ;(2)求证:平面ABD ⊥平面11BCC B .【答案】(1)证明:由直三棱柱111C B A ABC -,得11//A B AB而,EF ABD AB ABD ⊄⊂面面,所以直线EF ∥平面ABD(2)因为三棱柱111C B A ABC -为直三棱柱,所以1AB BB ⊥,又AB BC ⊥,而1BB ⊂面11BCC B ,BC ⊂面11BCC B ,且1BB BC B =,所以AB ⊥面11BCC B又AB ABD ⊂面,所以平面ABD ⊥平面11BCC B35.如图,在直三棱柱111ABC A B C -中, 1,,AC BC BC BB ⊥=D 为AB 的中点.(1)求证:1BC ⊥平面1AB C ; (2)求证:1BC ∥平面1A CD .【答案】(1)因为在直三棱柱111C B A ABC -中,所以⊥1CC 平面ABC ,因为AC ⊂平面ABC ,所以AC CC ⊥1,B ACDA 1B 1C 1G又BC AC ⊥,C BC CC = 1,所以⊥AC 平面CB C B 11, 因为111BC B C CB ⊂平面,所以AC BC ⊥1又因为1BC BB =,所以C C BB 11是正方形,所以C B BC 11⊥, 又C AC C B = 1,所以⊥1BC 平面C AB 1,(2)在正方形CA C A 11中,设G C A AC =11 ,则G 为1AC 中点,D 为AB 的中点,结DG ,在1ABC ∆中,1BC ∥DG ,因为DG ⊂平面CD A 1,1BC ⊄平面CD A 1,所以1BC ∥平面CD A 1,36.如图,在四面体ABCD 中,⊥BC 面ACD ,DC DA =,E 、F 分别为AB 、AC 的中点.(1)求证:直线EF ∥面BCD ; (2)求证:面DEF ⊥面ABC .【答案】证明:(1)E 、F 分别为AB 、AC 的中点,∴EF ∥BC又BC ⊂面BCD ,EF ⊄面BCD ,∴直线EF ∥面BCD (2) DC DA =,点F 为AC 的中点,∴DF AC ⊥又⊥BC 面ACD ,DF ⊂面ACD ,∴DF BC ⊥,∴DF ⊥面ABC又DF ⊂面DEF ∴面DEF ⊥面ABC37.如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点.求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC .(3)若G 为ADC ∆的重心,试在线段AE 上确定一点F, 使得GF//平面CDE.【答案】38.如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC的中点.求证:(1)//EF 平面ABC ;(2)平面AEF ⊥平面A 1AD .AEG【答案】解:(1)连结11A B A C 和.因为E F 、分别是侧面11AA B B 和侧面11AA C C 的对角线的交点, 所以E F 、分别是11A B A C 和的中点. 所以//EF BC又BC ⊂平面ABC 中,EF 平面ABC 中,故//EF 平面ABC(2)因为三棱柱111ABC A B C -为正三棱柱, 所以1A A ⊥平面ABC ,所以1BC A A ⊥. 故由//EF BC ,得1EF A A ⊥又因为D 是棱BC 的中点,且ABC ∆为正三角形,所以BC AD ⊥. 故由//EF BC ,得EF AD ⊥ 而1A AAD A =,1,A A AD ⊂平面1A AD ,所以EF ⊥平面1A AD又EF ⊂平面AEF ,故平面AEF ⊥平面1A AD \39.如图,四边形ABCD 为正方形,在四边形ADPQ 中,//PD QA .又QA ⊥平面ABCD ,12QA AB PD ==. (1)证明:PQ ⊥平面DCQ ;(2)CP 上是否存有一点R ,使//QR 平面ABCD ,若存有,请求出R 的位置,若不存有,请说明理由.ABCDEF A 1B 1C 1(第15题)ABC DEF A 1B 1C 1(第15题)【答案】解:(1)法一: QA ⊥平面ABCD ,∴QA ⊥CD , 由四边形ABCD 为正方形知DC⊥AD,又QA 、AD 为平面PDAQ 内两条相交直线, ∴CD ⊥平面PDAQ,∴CD ⊥PQ, 在直角梯形PDAQ 中可得DQ=PQ=22PD, 则P Q⊥QD,又CD 、QD 为平面ADCB 内两条相交直线, ∴PQ⊥平面DCQ法二: Q A⊥平面ABCD,QA ⊂平面PDAQ, ∴平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD 为正方形,DC⊥AD,∴DC⊥平面PDAQ,可得PQ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=22PD,则PQ⊥QD, 又CD 、QD 为平面ADCB 内两条相交直线, ∴PQ⊥平面DCQ. (2)存有CP 中点R,使QR∥平面ABCD证:取CD 中点T,连接QR,RT,AT,则RT∥DP,且RT=21DP, 又AQ∥DP,且AQ=21DP,从而AQ∥RT,且AQ=RT, ∴四边形A QRT 为平行四边形,所以AT∥QR, QR ⊄平面ABCD,AT ⊂平面ABCD, ∴QR∥平面ABCD40.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,60BAD ∠=︒,E F 、分别是AP AD 、的中点.求证: (1)直线//EF 平面PCD ; (2)平面BEF ⊥平面.PAD【解析】(1)在PAD ∆中,因为E,F 分别为AP,AD 的中点,所以EF ∥PD ,又因为⊄EF 平面PCD,所以直线//EF 平面PCD.(2)连结BD .因为060,=∠=BAD AD AB ,所以ABD ∆为正三角形.因为F 是AD 的中点,所以BF⊥AD . 因为平面PAD⊥平面ABCD,平面PAD 平面ABCD=AD,所以BF⊥平面PAD.又因为BF ⊂平面BEF,所以平面BEF ⊥平面PAD41.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,四条侧棱长均相等.(1)求证:AB //平面PCD ; (2)求证:平面PAC ⊥平面ABCD .【答案】证明:(1)在矩形ABCD 中,//AB CD ,又AB ⊄平面PCD , CD ⊂平面PCD , 所以AB //平面PCD(2)如图,连结BD ,交AC 于点O ,连结PO , 在矩形ABCD 中,点O 为 AC BD ,的中点, 又PA PB PC PD ===, 故PO AC ⊥,PO BD ⊥, 又AC BD O =, AC BD ,⊂平面ABCD , 所以PO ⊥平面ABCD , 又PO ⊂平面PAC ,所以平面PAC ⊥平面ABCD42.如图,在直三棱柱111ABC A B C -中,E,F分别是11A B,AC 的中点,点D 在11B C 上,11A D B C ⊥,ABC(第15题)PDO求证:(1)EF ∥ABC 平面; (2)111A FDBB C C ⊥平面平面.【答案】【解析】证明:(1)因为E,F 分别是11A B,AC 的中点,所以EF //BC ,又EF ⊄面ABC ,BC ⊂面ABC ,所以EF ∥ABC 平面;(2)因为直三棱柱111ABCA B C -,所以1111BB ABC ⊥面,11BB AD ⊥,又11A D B C ⊥,所以111AD BC C ⊥面B ,又11AD AFD ⊂面,所以111A FD BB C C ⊥平面平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2空间中的平行关系
【目标要求】
1.理解并掌握公理4,能应用其证明简单的几何问题.
2.理解并掌握直线与平面平行的判定定理和性质定理,明确线线平行与面面平行的关系.
3.能够熟练的应用线面平行的性质定理和判定定理.
1.以下说法中正确的个数是(其中a,b表示直线,表示平面α) ( )
①若a∥b,b∥α,则a∥α②若a∥α,b∥α,则a∥b
③若a∥b,b∥α,则a∥α④若a∥α,b∥α,则a∥b
A. 0个
B. 1个
C. 2个
D. 3个
2.a∥α,b∥β,a∥b,则α与β的位置关系是()
A.平行
B.相交
C.平行或相交
D.一定垂直
3.如果平面α外有两点A、B,它们到平面α的距离都是d,则直线AB和平面α的位置关系一定是()
A.平行
B.相交
C.平行或相交
D. AB⊂α
4.当α∥β时,必须满足的条件()
A.平面α内有无数条直线平行于平面β
B.平面α与平面β同平行于一条直线
C.平面α内有两条直线平行于平面β
D.平面α内有两条相交直线与β平面平行
5.已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且
不相交.;其中可能成立的有()
A.2个
B.3个
C.4个
D.5个
6.直线a∥平面α,点A∈α,则过点A且平行于直线a的直线()
A.只有一条,但不一定在平面α内
B.只有一条,且在平面α内
C.有无数条,但都不在平面α内
D.有无数条,且都在平面α内
7.已知直线a∥平面α,且它们的距离为d,则到直线a与到平面α的距离都等于d的点的集合是
()
A.空集
B.两条平行直线
C.一条直线
D.一个平面
8. A、B是直线l外的两点,过A、B且和l平行的平面的个数是()
A.0个
B.1个
C.无数个
D.以上都有可能
9.设α,β是不重合的两个平面,l和m是不重合的两条直线,则能得出α∥β的是()
A.l⊂α,m⊂α,且l∥β,m∥β
B.l⊂α,m⊂β,且l∥m
C.l⊥α,m⊥β,且l∥m
D.l∥α,m∥β,且l∥m
10.已知直线a、b,平面α、β,以下条件中能推出α∥β的是()
①a⊂α,b⊂β,a∥b;②a⊂α,b⊂α,a∥β,b∥β;③a∥b,a⊥α,b⊥β.
A.①
B.②
C.③
D.均不能
11.若平面α∥平面β,直线a⊂α,直线b⊂β,那么直线a,b的位置关系是()
A.垂直
B.平行
C.相交
D.不相交
12.梯形ABCD中AB∥CD,AB⊂平面α,则直线CD与平面α的位置关系是()
A.平行
B.平行或相交
C.相交
D. CD平行平面α或CD⊂α
13.正方体AC1中,E、F、G分别为B1C1、A1D1、A1B1的中点
求证:平面EBD//平面FGA.
14.求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.
15.设P 、Q 是单位正方体AC1的面AA 1D 1D 、面A 1B 1C 1D 1的中心.
如图:(1)证明:PQ ∥平面AA1B1B.
(2)求线段PQ 的长.
B 1 P 图1.2.2-1 D 1 A 1
C 1
D A B C Q。

相关文档
最新文档