浅谈初中数学建模和应用性问题的教学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈初中数学建模和应用性问题的教学
永安市第三中学陈贤平
摘要:落实新课程的理念,全面实施素质教育,是提高全民族的素质重要途径与手段,数学作为学校的三大基础科目,应该担负起应尽的责任。数学建模就是中学数学的一条主线,应该把视野更开阔些,以这样的观念处理具体的数学内容,紧扣数学建模,努力让学生学会从实际问题中获取信息,建立数学模型,分析问题与解决问题。明确数学建模和应用性问题教学的意义,初中应用性问题与数学建模的教学的基本原则,常见的建模方法及类型。
关键词:应用性问题、数学建模数学教学
由于社会的发展,必须培养学生具有从实际问题中获取信息,建立数学模型,分析问题与解决问题的基本能力。而中学数学中的数、代数式、方程、函数等都是反映现实世界的数学模型,因而在一定程度上,可以说数学建模就是中学数学的一条主线,应该把视野更开阔些,以这样的观念处理具体的数学内容。如对于方程,按新课程标准编写的教材没有按照原有的习惯分类,一个个讨论工程问题、行程问题、浓度问题等,而是紧扣数学建模,努力让学生学会从实际问题中获取信息,建立数学模型,分析问题与解决问题,实际上,一种数学模型也不可能是某一种问题所特有的。对于函数内容的处理同样如此,从实际问题出发,引入函数模型,研究函数性质,又回到实际中去。因此必须努力缩短数学课程与现代社会的距离,与学生的距离,与学生生活实际的距离,与学生终身需求的距离。作为初级中学数学教师应如何正确认识数学建模与应用性问题教学和进行数学建模与应用性问题教学,全面落实数学课程标准?面向所有的学生,让所有的学生获得更多可以广泛应用、与现实世界及其他学科密切相关的数学!让所有的学生学到有价值的、富有挑战性的数学!让所有的学生学会数学地思考,并积极地参与数学活动,进行自主探索!
一、数学建模和应用性问题教学的意义
1、数学建模就是建立数学模型的过程,数学模型是近似表达现象特征的一种数学结构,实际上数学建模就是用数学作工具来解决现实生活中的实际问题的过程。开展数学建模活动是促进数学教育改革,实现从应试教育向的素质转变的切实可行的改革之路,是培养学生应用意识和创新精神的有效途径;是人类探索自然和社会的运行机理中所运用的有效方法;是数学应用于数学和社会的最基本的途径。新的课程标准中对各年段数学课程的教学要求都专门列出了问题解决能力的标准,并特别强调了数学建模作为问题解决的一
个侧面的重要性。
2、各行各业的各种问题都可能数学建模,归结为数学问题的求解,因此进行数学建模和应用性问题的教学的意义是十分重大:①因为是从实际提炼出来,而后又用之解决问题,故可激发学生极大的兴趣;②学会了主动学习,学会了读书、学会了去索取自己所要学的知识,对数学有了新的认识,学习数学的兴趣更高了,更自觉了;③运用的意识和应用的能力得到锻炼,激发了他们的创新意识和创新能力;④促进数学教学改革,有利于更新观念,更新知识。
3、数学的发展很大程度上是由数学的应用所推动的,实际生产与生活中所涌现的各种数学问题,要求从数学理论上寻找合理的解决方法,如果旧有的理论已经无法解决,预示着一个新的研究领域的产生,必须预示着一种新的数学理论的诞生。
4、学以致用本来就是教育的最重要原则之一,不管是为以后有用或有一部分在学的时候马上就能用上都是学习的目的。一个具有强烈应用意识的学生,他(她)无论走到哪里无论碰到什么问题,他(她)都会看一看、问一问、想一想,这里有没有与数学有关的问题,如果有,这是一个什么样的数学问题,能否用已学过的数学知识、方法来解决它,若不能用已有的知识和方法去解决它,能否自己去找参考书寻求恰当的解决方法,或者向老师与专家请教,不断总结。经过总结的优秀品质不断得到培养,强烈的求知欲就油然而生,而且由于是实际问题的驱动,必须有一种实事求是的学风,夸夸其谈是不行的,这样的学生具有强烈的应变能力,从而也一定具有很强的应试能力。更重要的是,这样的学生对数学的作用有正确的认识和理解,决不会无端地排斥数学理论甚至纯数学理论研究的重要性,深切知道应用中提出的许多关键问题往往取决于数学理论研究的成果。
5、素质教育的主要目的是全面提高学生的综合素质,就数学来说,一个很突出的方面是应用意识的培养,数学教学的根本目的是发展思维能力。
二、初中应用性问题与数学建模的教学的基本原则。
1、着重发展学生能力,特别是应用能力,包括:计算、推理、空间想象以及辨明关系、形式转化、驾驭计算工具、查阅文献、口头和书面的分析与交流。
2、强调计算工具的使用:不仅在计算过程中,而且在猜想、探索、争辨、发现、模拟、证明、作图、检验中使用。
3、强调学生的积极性与主动性:教师不应只是讲演或者总是正确的指导者,还可以扮演不同的角色:模特——不仅演示正确的开始,也表现失误和拨乱反正的思维技能。参谋——提出建议和可参考的信息,但不能替学生作决策。询问者——故作不知,问原因,
找漏洞,督促学生弄清楚,说明白,完成进度。仲裁者和鉴赏者——评判学生工作及成果的价值、意义、优劣,鼓励学生有创造新的想法和做法。
4、结合学生实际水平,分层次逐步推进,结合正常教学的教材内容,结合正常的课堂教学在部分环节切入应用和建模内容。
三、初中应用性问题中常见的建模
随着教育改革的深入,新的课程标准的出台,强调了知识的应用,初中数学源于实际问题的应用题骤增,因而探讨这类问题的解法具有重要的现实意义,数学建模就是将具有实际意义的应用问题,通过数学抽象转化为数学模型,以求得问题的解决,其基本思路是:
实际问题是复杂多变的,数学建模较多的是探索性和创造性,但是初中数学应用性问题常见的建模方法还是有规律可以归纳总结的。
1、建立几何模型:
诸如台风、航海、三角测量、边角余料加工、工程定位、拱桥计算、皮带传动、坡比计算,作物栽培等传统的应用问题,涉及一定圆形的性质,常需要建立相应的几何模型,转化为几何或三角函数问题求解。
例1:(台风)某次台风中心在O地,台风中心以25千米/时的速度向西北方向移动,离台风中心240千米的范围内都会受台风影响,某A市在O
地的正面方向320千米处,问A市是否会受此次台风的影响?
若会,将持续几个小时?
分析:这是综合解直角三角形的问题,画出示意图:如
图1,先计算出AB的长,比较得:AB<240,确定会受此次台
风影响,而后计算出CD的长,进而就可求出持续的时间。
例2:足球赛中,一球员带球沿直线L逼近球门AB,在什
么地方起脚射门最为有利。
分析:这是几何定位问题,画出示意图,如图2:根据常识,起脚射门的最佳位置P应该是直线L上对AB张角最大的点,此时进球的可能性最大,问题转化为在直线l上求点P,A
L
B
图2
P
图1