大学物理06刚体力学

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

大学物理经典课件——刚体力学共40页文档

大学物理经典课件——刚体力学共40页文档
mg
T a T2 T2 2m
2mg
解:设整体 ,顺 即时 两针 滑运 轮 内动 转 。轴 右 2m 正 正 质 向 向 点 左质点m正向向上,受力分图 析。 如
右质 2 m 点 T g 2 2 ma
左质T 1 点 m m g a
右 滑 轮 T2rTrm 2r2
T1
左 滑 轮 TrT 1rm 2r2
本章教学要求: 了解转动惯量概念。理解刚体转动中的功和能的 概念。理解刚体绕定轴转动的转动定律和刚体在 绕定轴转动情况下的角动量守恒定律。了解进动 的概念。
本章重点: 刚体绕定轴转动的转动定律和刚体在绕定轴转动 情况下的角动量守恒定律。刚体质点系统的运动 问题 本章难点:
刚体绕定轴转动,刚体角动量守恒定律
其大小v为 iri
切 向 加 速 度 a t r i
vi
ri
)
P
m
i
o
参考方向
法向加速度 anri2
质点系角动量定理的一般形式
v M外
v dL dt
在转轴(z轴)上分量
M
z
dLz dt
Mz :合外力矩z轴 在方向分量; Lz :刚体绕 z轴的角动量。
上式略去下标,简写为
M dL dt
z
一、刚体受力矩
可以证明,内力矩作之 功和为零。
当刚体1由 2位置,外力矩作功:
A dA 2 Md 1
M zM i z r iF i F 1 r 1 F 2 r 2 ......
i
略去下标,
M M i r iF i F 1 r 1 F 2 r 2 ......
i
二、刚体定轴转动量 角, 动转动定律
z
vi
刚体上质m元i相对于转轴的角: 动

大学物理(刚体部分)

大学物理(刚体部分)
i
i
O
fi
法向无用,切向运动,牛二律
ri mi
F i i i
Fi sin i fi sin i mi ait mi ri i ait ri i 为Δmi的切向加速度 O
Fi sin i ri fi sin i ri mi ri2 i
1
§1 刚体定轴转动及其描述
一、刚体 物体受力作用时,组成它的各质量元之间的 相对位置保持不变.有大小,形状不变. 二、平动和转动 (刚体运动的基本形式) 平动:刚体内任意两点连线的空间指向始终 保持不变,各点的运动情况完全相同. 转动:刚体内各质点在运动中都绕同一直线 作圆周运动.该直线称转轴. 转轴固定不动---定轴转动. 更复杂的运动,刚体平动和转动合成的运动. 例:车轮,螺帽等. 2
mgL 1 2 mgL 3g I 0 2 2 I L
22
定轴转动中的功能原理和机械能守恒: 1 系统 1 1 E mv2 mgh kx 2 I 2 mghc 机械能: 2 2 2 功能原理: W外+W非保内=△E 机械能守恒:W外+W非保内=0→△E=0
W Md I
1
2
d d I 2 d 1 dt
W
1 2 1 2 I 2 I 1 2 2
转动动能定理:合外力矩对刚体作的功等于 刚体转动动能的增量. 动能定理解题:1.任意位置力矩;2.元功; 3.总功;4.转动动能增量.
21
例1:利用动能定理重作前例题6. 解:当杆转到任意角位置θ处, O 对O轴的重力矩 L M mg cos mg 2 则在整个过程中重力矩作功为 /2 L mgL W dW Md mg cos d 0 2 2 由转动动能定理得

大学物理_第06章 刚体力学

大学物理_第06章  刚体力学

接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律

大学物理课件-刚体力学基础

大学物理课件-刚体力学基础

2.刚体定轴转动的转动定律
➢刚体绕定轴Z转动.在刚体上任取 一质元Δmi,它绕Z轴作圆周运动的 半径为ri 。
➢在转动平面内,设它所受的合外力 为Fi,合内力为fi,与矢径ri的夹角 分别为i和θi.
根据牛顿第二定律
(Fi cosi fi cosi ) miani miri 2
Fi sin i fi sini ) miai miri
一、刚体定轴转动的转动定律
1.力矩: (1)对一固定点O的力矩
M rF
M
r
F
0
•大小: M=F·r·sin
•方向:右螺旋
M x yFz zFy
•单位: N·m
在直角坐标系中各 坐标轴的分量为
My
zFx xFz
力矩为零的情况:
M z xFy yFx
(1) (2)
力力----FF---等 的-----于 作----零 用----;线----与----矢-----径-----r---共----线-----即----(-s--i-n------=--0--)--。---------
刚体力学基础
§2.1 刚体定轴转动运动学 §2.2 刚体定轴转动动力学
-------------------------------------------------------------------------------
刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
i
i
i
合外力矩 M Firi sin i 合内力矩
firi sini 0
i
i
J miri2 ——转动惯量
i
则有

大学物理 刚体力学.

大学物理 刚体力学.

图3-14
解:隔离物体m,设线中的张力为T,物体m 的加速度为a,由牛顿第二定律可得
mg T ma
以待测刚体和转动架为整体,设待测刚体的转 动惯量为J,由绕定轴转动的转动定律可得
TR J J 0
由细线不可伸长以及m自静止下落,有
1 2 h at 2
上述各式联立求解得
2 得 Fr sin ( m r i i ) i i i
令 J mi ri2
转动惯量
用M表示合外力矩, 则有: M=J 矢量式:
M J
转动定律
M=J
刚体定轴转动的角加速度与它所受的合外力矩成正比 ,与刚 体的转动惯量成反比 。 说明: 1. M J 与 F=ma 地位相当,m反映质点的平动惯 性,J反映刚体的转动惯性。 2. 力矩是使刚体转动状态发生改变而产生角加速度的原因。 3. 力矩是矢量,方向沿转轴,对定轴转动只有两个方向, 所 以用正负号表示方向。
解 (1)t0 = 0 s时,0 t = 30 s 时, 0. 飞轮做匀减速运动
2 πn 2 π 150 = =5π rad s 1 60 60
0 0 5 π π rad s 2 t 30 6
飞轮 30 s 内转过的角度 2 2 0 0 (5 π)2 75 π rad 2 2 ( π 6)

PP

x
参考 方向
x x
转动平面 转轴
(2)角速度

d dt
角速度方向用右手螺旋法则确定。
定轴转动的角速度仅有沿转轴的两个方向。


用正负号表示方向


d
(3) 角加速度

大学物理刚体力学

大学物理刚体力学

大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。

而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。

本文将探讨大学物理中的刚体力学。

一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。

在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。

刚体具有以下特性:1、内部质点无相对位移。

2、刚体不发生形变,形状和体积保持不变。

3、刚体在运动过程中,内部任意两质点间的距离保持不变。

二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。

平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。

2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。

在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。

这些方程为我们提供了分析刚体运动状态变化的基本工具。

三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。

它与刚体的质量、形状和大小有关。

在物理学中,转动惯量是研究刚体转动规律的重要参数。

通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。

四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。

在刚体力学中,角动量是一个非常重要的概念。

它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。

同时,角动量守恒定律也是刚体力学中的一个重要定律。

在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。

动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。

对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。

六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。

大学物理刚体力学

大学物理刚体力学

一 刚体定轴转动的运动方程 如图,一刚体定轴转动,如何确
定该刚体的位置。在固定轴上固结 ox
轴。
设想在刚体上有一直线 op,在刚
o
体转动中,op与 ox的夹角 t 不断
变化,是时间 t 的函数, t 一定,
则刚体的位置确定(或曰刚体上的所
有质点的位置确定), t 变化,说明 刚体的位置变化。 因而,用 t
可确定刚体的位置。
t
为刚体定轴转动的运动方程。
如同质点一维运动时的 x x t
固定轴
t
p
x
刚 体
二 角速度
设t
t
t t t t
则 t t t
称为角位移,代数量。
o
平均角速度
t
瞬时角速度
lim
t 0
t
t

d 对运动方程求一阶导数。
dt
固定轴
t
段如何求解此题?轮质量不计。仅研究 A和 B
二物体,绳仅为连接体。则有
o
T2
m2 a
m2 g
T 1 m1
m2
a B
m1 g
m1
A
T1 T2
然而,此处要考虑轮(因给出了质量与半径)-----刚体。此为一刚
体与二质点组成得物体系。如何求解:用隔离体法,分析各物体受力。
mN
o
o
T2
mg
T2
m2 a
若是变化的,同理得瞬时角加速度.
d
dt

d 2
dt 2
o
单位 弧度 或 rad
矢量式为
秒2
s2
d
dt
减速转动
同样,在定轴转动中,角加速度仅两个

大学物理刚体运动学

大学物理刚体运动学

M ,(同向)加速转动。
M ,(反向)减速 —阻力矩。
8
(2) 外力不在垂直于转轴的平面内
P63 结论:z轴转动平面内的分量 的运算就是对z轴的力矩。
转轴 z
F
F
F1
P
F2
0r
o
转动平面
r轴
r
F轴
o
M
zkˆ
r
F
将F分解成
F1和F2。
F1与转轴平行, F2在转动平面内。
MF1对转r动F无2 (贡有献效,力仅矩考)虑。F2,
g
R
t
由此求得:
t
3R
4g
0
19
例:均质矩形薄板绕竖直边转动,初始角速度为0,转动时受到空气的
阻力.阻力垂直于板面,每一小面积所受阻力的大小与其面积及速度的 平方的乘积成正比,比例常数为k.试计算经过多少时间,薄板角速度 减为原来的一半.设薄板竖直边长为b,宽为a,薄板质量为m.
a
解 在板上距离转轴为r处取一长度为b,宽度 为dr的面积元,其面积为dS = bdr
mi
任取Δmi,其动能
d
Eki
1 2
Δmivi2
1 2
miri ω2 2
(vi riω)
整个刚体的转动动能等于 各质点动能之和。
Ek
i
12mi
ri
2ω2
1 2
(
i
mi
ri
2
)ω2
刚体的转动动能
Ek
1 2
Iω2
(平动动能: Ek
1 mv 2 ) 2
22
3.2 定轴转动的动能定理
(1)力矩的功
P — 力F的作用点。

第六章刚体动力学_大学物理

第六章刚体动力学_大学物理

第七章机械振动刚体转动的角坐标、角位移、角速度和角加速度的概念以及它们和有关线量的关系刚体定轴转动的动力学方程,熟练使用刚体定轴转动定律刚体对固定轴的角动量的计算,正确应用角动量定理及角动量守恒定理掌握刚体的概念和刚体的基本运动理解转动惯量的意义及计算方法,会利用平行轴定理和垂直轴定理求刚体的转动惯量掌握力矩的功,刚体的转动动能,刚体的重力势能等的计算方法了解进动现象和基本描述§6.1 刚体和自由度的概念一. 力矩力是引起质点或平动物体运动状态(用动量描述)发生变化的原因.力矩则是引起转动物体运动状态(用动量聚描述)发生变化的原因.将分解为垂直于z 轴和平行于z 轴的两个力及,如右图.由于不能改变物体绕z 轴的转动状态,因此定义对转轴z 的力矩为零.这样,任意力对z 轴的力矩就等于力对z 轴的力矩,即力矩取决于力的大小、方向和作用点.在刚体的定轴转动中,力矩只有两个指向,因此一般可视为代数量.根据力对轴的力矩定义,显然,当力平行于轴或通过轴时,力对该轴的力矩皆为零.讨论:(1)力对点的力矩.(2) 力对定轴力矩的矢量形式力矩的方向由右螺旋法则确定.(3) 力对任意点的力矩,在通过该点的任一轴上的投影,等于该力对该轴的力矩.例: 已知棒长L,质量M,在摩擦系数为μ 的桌面转动(如图)求摩擦力对y 轴的力矩.解: 以杆的端点O 为坐标原点,取Oxy坐标系,如图在坐标为x 处取线元dx,根据题意,这一线元的质量和摩擦力分别为则该线元的摩擦力对y轴的力矩为积分得摩擦力对y轴的力矩为注: 在定轴转动中,力矩可用代数值进行计算,例如二. 刚体对定轴的转动定律实验证明: 当力矩M为零时,则刚体保持静止或匀速转动,当存在M时,角加速度β与M成正比,而与转动惯量J 成反比,即.也可写成国际单位中k=1.若设作用在刚体上的外力对z轴的力矩总和为合外力矩,刚体对z 轴的转动惯量为J, 则有上式表明,刚体绕定轴转动时,刚体对该轴的转动惯量与角加速度的乘积,等于作用在刚体上所有外力对该轴的力矩的代数和.该式称为刚体绕定轴转动微分方程,也称转动定律.讨论:(1) M 正比于β ,力矩越大,刚体的β越大(2) 力矩相同,若转动惯量不同,产生的角加速度不同(3) 与牛顿定律比较,转动定律的理论证明:如右图,在刚体上任取一质量元,作用在质量元上的力可以分为两类:表示来自刚体意外一切力的合力(称外力),表示来自刚体内各质点对该质量元作用力的合理(称内力).刚体绕定轴Z 转动过程中,质量元以为半径作圆周运动,按牛顿第二定律,有将此矢量方程两边都投影到质量元的圆轨迹切线方向上,则有再将此式两边乘以,则得对固定轴的力矩对所有质量元求和,则得等式右边第一项为合外力矩;第二项为所有内力对z 轴的力矩总和,由于内力总是成对出现,而且每对内力大小相等、方向相反,且在一条作用线上,因此内力对z 轴的力矩的和恒等于零.又.则有即证.三. 转动惯量刚体对某Z 轴的转动惯量,等于刚体上各质点的质量与该质点到转轴垂直距离平方的乘积之和,即事实上刚体的质量是连续分布的,故上式中的求和可写为定积分,即刚体对轴转动惯量的大小决定于三个因素,即刚体的质量、质量对轴的分布情况和转轴的位置.(1) J 与刚体的总质量有关例 1 两根等长的细木棒和细铁棒绕端点轴转动惯量解:在如图的棒上取一线元dx,则积分得其转动惯量为显然,本题中,则(2) J 与质量分布有关例2 圆环绕中心轴旋转的转动惯量解: 在如图的圆环上取一线元dl,则积分得其转动惯量为例3 圆盘绕中心轴旋转的转动惯量解: 在如图的圆盘上取一宽为dr的圆环带,令,则质量元则积分得圆盘的转动惯量为(3) J 与转轴的位置有关例 4 均匀细棒绕端点轴转动惯量解: 在如图棒上取一线元dx,积分得棒的转动惯量为例 5 均匀细棒对通过中心并与棒垂直得轴的转动惯量解: 如图,以杆的中心O为坐标原点,取Oxz坐标系.积分得棒对z轴的转动惯量为四. 平行轴定理及垂直轴定理1. 平行轴定理设刚体得质量为M,质心为C,刚体对通过质心某轴z(称为质心轴)得转动惯量为.如有另一与z 轴平行的任意轴,且z和两轴间的垂直距离L.刚体对轴的转动惯量设为,则可以证明:.即刚体对任意轴(轴)的转动惯量等于刚体对通过质心并与该轴平行的轴(z轴)的转动惯量加上刚体的质量与两轴间垂直距离L平方的乘积.这个结论称为平行轴定理.例1 : 求均匀细棒的转动惯量.解: 如图,已知均质杆对质心轴z 的转动惯量为,为通过杆的一端、且与z 轴平行的轴的转动惯量,按平行轴定理有2.垂直轴定理如右图所示, x、y轴在刚体内, z轴垂直于刚体.则刚体对z 轴的转动惯量等于其对x、y轴的转动惯量之和此即为垂直轴定理.例求对圆盘的一条直径的转动惯量解:以圆盘圆心C为坐标圆点,建立xyz 坐标系如右图.易求得圆盘对z 轴的转动惯量为根据垂直轴定理,有又则五. 转动定律的应用举例例1 一轻绳绕在半径r =20 cm 的飞轮边缘,在绳端施以F =98 N 的拉力,飞轮的转动惯量J =0.5 kg·m 2,飞轮与转轴间的摩擦不计,(如图)求: (1) 飞轮的角加速度(2) 如以重量P =98 N 的物体挂在绳端,试计算飞轮的角加速度解: (1) 根据转动定律,有(2) 分别对物体和飞轮进行受力分析,如图所示,根据牛顿运动定律和转动定律,有,因为,所以有例2一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 在直棒上取如图的质量元dm ,则积分得整个直棒重力对轴O的力矩为又故由上式可以看出,重力对整个棒的合力矩等于重力全部集中于质心所产生的力矩.则角加速度为:又, 则杆下摆至角速度为例3圆盘以在桌面上转动,受摩擦力而静止求到圆盘静止所需时间解:在圆盘内取一半径为r 的,厚度为dr 的环带, 其质量为该环带的摩擦力对质心轴的力矩为积分得圆盘的摩擦力力矩为由转动定律得所以,得则例4如图一个刚体系统,已知转动惯量,现有一水平作用力作用于距轴为处求轴对棒的作用力(也称轴反力)解: 设轴对棒的作用力为N,分解为.由转动定律得由质心运动定理得解得打击中心则思考题1. 刚体可有不止一个转动惯量吗? 除了刚体的形状和质量以外,要求它的转动惯量,还要已知什么信息?2.能否找到这样一个轴,刚体绕该轴的转动惯量比绕平行于该轴并通过质心的轴的转动惯量小?3.刚体在力矩作用下绕定轴转动,当力矩增大或减小时,其角速度和角加速度将如何变化?4.猫有一条长长的尾巴,它习惯于在阳台上睡觉,因而从阳台上掉下来的事情时有发生.长期的观察表明猫从高层的楼房的阳台掉到楼外的人行道上时,受伤的程度将随高度的增加而减少,据报道有只猫从32层楼掉下来,也仅仅只有胸腔和一颗牙齿有轻微的损伤.为什么会这样呢?(点击图片播放动画)§ 6.2 绕定轴转动刚体的动能动能定理一. 转动动能刚体I 绕定轴z 转动,转动惯量,某时刻t ,角速度ω ,角加速度为β,设想刚体是由大量质点组成,现研究质量为的质点i,如图.显然,质点i 的速度为,由质点动能的定义知,质量i 的动能为由于动能为标量且永为正,故整个刚体的动能E等于组成刚体所有质点动能的算数和,即即绕定轴转动刚体的动能,等于刚体对转动的转动惯量于其角速度平方乘积的一半. 将刚体绕定轴转动的动能与质点的动能加以比较,再一次看出转动惯量对应于质点的质量,即转动惯量是刚体绕轴转动惯性大小的量度.二.力矩的功力的累积过程——力矩的空间累积效应功的定义如图,设绕定轴z 转动刚体上P 点作用有一力,现研究刚体转动时力在其作用点P 的元路程ds 上的功.由图易得即作用在定轴转动刚体上的力的元功,等于该力对转轴的力矩于刚体的元角位移的乘积.这也称为力矩的元功.力矩作功的微分形式对一有限过程刚体从角坐标到的过程中,力矩对刚体所作的功为若力矩M为常数,则上式可以进一步写成既作用在定轴转动刚体上的常力矩在某一转动过程中对刚体所作的功,等于该力矩与刚体角位移的乘积.讨论:(1) 合力矩的功(2) 力矩的功就是力的功(3) 内力矩作功之和为零三. 转动动能定理——力矩功的效果力矩的元功此式表示绕定轴转动刚体动能的微分,等于作用在刚体上所有外力元功的代数和.这就是绕定轴转动刚体的动能定理的微分形式. 若定轴转动的刚体在外力作用下,角速度从变到,则由微分式,可得到式中A 表示刚体角速度从变到这一过程中,作用于刚体上的所有外力所作功的代数和. 上式表明,绕定轴转动刚体在任一过程中动能的增量,等于在该过程中作用在刚体上所有外力所作功的总和.这就是绕定轴转动刚体的动能定理的积分形式.刚体的机械能等于刚体的动能、重力势能之和.其中的重力势能为故刚体的机械能又可表示为刚体的机械能守恒,则有对于包括刚体的系统,功能原理和机械能守恒定律仍成立.例1一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 易得杆摆至角时对O 轴的力矩为由动能定理,重力矩作的功得又,由此得即例2图示装置可用来测量物体的转动惯量.待测物体A 装在转动架上,转轴Z 上装一半径为r的轻鼓轮,绳的一端缠绕在鼓轮上,另一端绕过定滑轮悬挂一质量为m 的重物.重物下落时,由绳带动被测物体A绕Z 轴转动.今测得重物由静止下落一段距离h .所用时间为t .求物体 A 对Z 轴的转动惯量.设绳子不可伸缩,绳子、各轮质量及轮轴处的摩擦力矩忽略不计.待测物 A 的机械能:重物m 的机械能:由机械能守恒得:又则可得故,物体 A 对Z 轴的转动惯量为思考题1.两个重量相同的球分别用密度为的金属制成,今分别以角速度绕通过球心的轴转动,试问这两个球的能量之比多大?§ 6.3 动量矩和动量矩守恒定律一. 质点动量矩( 角动量) 定理和动量矩守恒定律1.质点的动量矩设一质点在平面S ,如图所示.在时刻t,质点的动量为,对某固定点O质点的位矢为,则质点对O点的动量矩(或质点对O点的角动量)定义为: 位矢和动量的矢积,即根据矢积定义,质点对O点动量的大小为:指向由右螺旋法则确定.(可以证明,质点对某点的动量矩,在通过该点的任意轴上的投影就等于质点对该轴的动量矩)特例:质点作圆周运动时,说明: (1) 质点的动量矩与质点的动量及位矢(取决于固定点的选择)有关(2) 当质点作平面运动时,质点对运动平面内某参考点O 的动量矩也称为质点对过O 垂直于运动平面的轴的动量矩例一质点m ,速度为v ,如图所示A、B、C 分别为三个参考点,此时m 相对三个点的距离分别为.求此时刻质点对三个参考点的动量矩解: 质点对某点的动量矩, 在通过该点的任意轴上的投影就等于质点对该轴的动量矩2. 质点的动量矩定理质点为m 的质点,在力的作用下运动,某一时刻t ,质点相对固定点O 的位矢为,速度为,按上述质点动量矩的定义,有两边对时间求导,得由于,故上式右边第二项为零,而第一项中,因此,上式右边第二项是作用在质点上所有力的合力对O 点的力矩,即此式表明,在惯性系中,质点对任意固定点O的动量矩对时间的导数,等于作用在质点上所有力的合力对同一点O 的力矩.这就是质点动量矩定理.质点动量矩定理的微分形式:质点动量矩定理的积分形式:质点所受合力矩的冲量矩等于质点的动量矩的增量说明:(1) 冲量矩是质点动量矩变化的原因(2) 质点动量矩的变化是力矩对时间的积累结果质点动量矩定理也可直接用来求解质点动力学问题,特别是质点在运动过程中始终和一个点或一根轴相关联的问题,例如单摆运动,行星运动等问题.3. 质点动量矩守恒定律在质点动量矩定理可以看出,当作用在质点上的合力对固定点的力矩恒为零时,质点对该点的动量矩为常矢量,即若时,=常矢量这就是质点动量守恒定律.讨论:(1) 动量矩守恒定律是物理学的基本定律之一,它不仅适用于宏观体系,也适用于微观体系, 且在高速低速范围均适用(2) 通常对有心力:过O 点,M= 0, 动量矩守恒.例如由动量矩守恒定律可导出行星运动的开普勒第二定律行星对太阳的位矢在相等的时间内扫过相等的面积例发射一宇宙飞船去考察一质量为M 、半径为R 的行星, 当飞船静止于空间距行星中心4R 时,以速度发射一质量为m 的仪器.要使该仪器恰好掠过行星表面求θ 角及着陆滑行的初速度多大解:由引力场(有心力)系统的机械能守恒得由质点的动量矩守恒得则所以有二. 刚体定轴转动的动量矩定理和动量矩守恒定律1. 刚体定轴转动的动量矩刚体以角速度ω 绕定轴z转动时,刚体上任意一点均在各自所在的垂至于z轴的平面那作圆周运动,如图.由于刚体上任一质点对z轴的动量矩都具有相同的方向(或者说都具有相同的正负号),因此整个刚体对z轴的动量矩应为各质点对z轴的动量矩之和,即上式表明,绕定轴转动刚体对z 轴的动量矩,等于刚体对该轴的转动惯量与角速度的乘积.2. 刚体定轴转动的动量矩定理将动量矩表达式对时间求导,得由于刚体对给定轴的转动惯量是一常量,因此利用前面讲过的转动定律,可以将上式进一步写成上式表明,绕定轴转动刚体对z轴的动量矩对时间的导数,等于作用在刚体上所有外力对z轴的力矩的代数和.这就是刚体绕定轴转动情况下的动量矩定理.动量矩定理微分形式:将上式两边乘以dt并积分,得动量矩定理积分形式:,分别表示在时刻转动刚体对z轴得动量矩,成为在时间内对z 轴得冲量矩.冲量矩表示了力矩在一段时间间隔内的积累效应.上式表明,定轴转动刚体的动量矩在某一时间间隔内的增量,等于同一时间间隔内作用在刚体上的冲量矩.3. 刚体绕定轴转动的动量矩守恒定律当作用在定轴转动刚体上的所有外力对转轴的力矩代数和为零时,根据动量矩定理式,刚体在运动过程中动量矩保持不变(守恒),即=0时,=常量.以上的讨论是对绕定轴转动的刚体进行的.对绕定轴转动的可变形物体来说,如果物体上各点绕定轴转动的角速度相同,即可用同一角速度来描述整个物体的转动状态,则某一时刻t , 物体对转动轴的动量矩也可表示为该物体在时刻t 对同一轴的转动惯量与角速度的乘积.只是由于物体上各点相对于轴的位置是可变的,所以对轴的转动惯量不再是一个常量,可表示为可以证明,这是可变形物体对转轴的动量矩对时间的导数仍然等于作用于该可变形物体的所有外力对同一轴的力矩的代数和,即仍成立. 这时如果作用在可变形物体上所有外力对该轴的力矩的代数和恒为零,则在运动过程中,可变形物体对转轴的动量矩保持不变(守恒).更一般地说,如果作用在质点系上所有外力对某一固定轴的力矩之和为零,则质点系对该轴的动量矩保持不变,这是动量矩守恒定律的更为一般的表述形式.动量矩守恒定律在实际生活中及工程中有着广泛的应用.例如花样滑冰的表演者可以容过伸展或收回手脚(改变对轴的转动惯量)的动作来调节旋转的角速度.例一长为l 的匀质细杆,可绕通过中心的固定水平轴在铅垂面内自由转动,开始时杆静止于水平位置.一质量与杆相同的昆虫以速度垂直落到距O点l /4 处的杆上,昆虫落下后立即向杆的端点爬行,如图所示.若要使杆以匀角速度转动.求昆虫沿杆爬行的速度解:设杆和昆虫的质量均为m ,昆虫与杆碰后以共同的角速度转动.昆虫落到杆上的过程为完全非弹性碰撞,对于昆虫和杆构成的系统,和外力矩为零,动量矩守恒,故有化简此式可得杆的转动角速度,即由题可知,此后杆以此角速度作匀速转动.设碰后t 时刻,杆转过角,昆虫爬到距O 点为r的位置处, 此时,昆虫和杆系统所受合外力矩为根据动量定理,有由题设不变,所以其中的值为带入上式有因此,为了使保持不变,昆虫的爬行速率应为说明:此题使一个系统绕定轴转动问题.在解此题的过程中应用了动量矩定理,该定理与刚体绕定轴转动定律的区别.三. 进动如图为一玩具陀螺,我们发现如果陀螺不绕自身对称轴旋转,则它将在起重力对质点O的力矩作用下翻到.但是当陀螺以很高的转速绕自身对称轴(称作自转或自旋)时,尽管陀螺仍然受重力矩作用,陀螺却不会翻到.陀螺的重力对O点的力矩作用结果将使陀螺的自转轴沿虚线所示的路径画出一个圆锥面来.我们称陀螺高速旋转时,其轴绕铅直轴的转动为进动.陀螺绕其对称轴以角速度高速旋转,如下图.对固定点O,它的动量矩L 可近似(未计进动部分的动量矩)表示为作用在陀螺上的力对O 点的力矩只有重力的力矩.显然, 垂至于动量矩矢量,按动量矩定理→可见在极短的时间内,动量矩的增量与d与平行, 也垂直于.这表明,在dt 时间内,陀螺在重力矩作用下,其动量矩的大小未变,但方向却改变了(方向绕铅直轴z 转过了dθ角)事实上,由于,带入动量矩定理式中.得所以,若陀螺自转角速度保持不变,则进动角速度也应保持不变.实际上由于各种摩擦阻力矩的作用,将使不断减小,与此同时,进动角速度Ω 将逐渐增大,进动将变得不稳定.以上的分析是近似的,只适用于自转角速度比进动角速度Ω 大得多得情况.因为有进动的存在,陀螺的总动量矩除了上面考虑到的因自转运动产生的一部分外,尚有进动产生的部分.只有在时,才能不计及因进动而产生的动量矩.思考题1. 如果一个质点在作直线运动,那么质点相对于那些点动量矩守恒?2. 如果作用在质点上的总力矩垂直于质点的动量矩,那么质点动量矩的大小和方向会发生变化吗?3. 当刚体转动的角速度很大时,作用在上面的力及力矩是否一定很大?4. 一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸平,他和转台的转动角速度是否改变?5. 试说明: 两极冰山的融化是地球自转速度变化的原因之一.。

大学物理6刚体力学

大学物理6刚体力学

d lim t 0 t dt
对于定轴转动有:


d d d d d 2 dt dt d dt d
2
速度和角速度的关系: 以转轴上某点O 为参考点
,
O'
v r r sin ωR
加速度和角速度、角加速度的关系: O

o

z
d lim k k t 0 t dt
d
y
x
特征: (1) 角速度是矢量, 它反映了刚体转动瞬时 角位移随时间变化的规律. (2) 定轴转动时, 转轴的方向已经给定, 角 速度的方向可用正负表示, 即满足标量 运算法则.
角加速度: 在任意时刻 t 附近的单位时间间隔内, 刚体转动角速度的变化量, 其方向由矢量运算法 则确定.
3. 描述刚体转动的物理量 角位移: 在时间间隔 t 内, 刚体上任一点相对于 某一特定转轴转过的角度为. z

o
x
特征: (1)角位移 是相对于某一特定转轴而言的. (2)角位移 不是矢量, 它的合成与转动的 先后次序有关, 不符合矢量的加法交换律.
z
y
z y
z y
角 位 移 不 是 矢 量
2
mi xi 2 d m i Fix m 2 dt i mi yi 2 d m i Fiy m 2 dt i mi zi 2 d m i Fiz m 2 dt i
若令
x c yc z c
i
i
M i = Fi ri sinθi
I = mi ri
i 2
称为外力Fi 对转轴的力矩 称为刚体对该转轴的转动惯量

大学物理CH.-刚体力学(PDF)

大学物理CH.-刚体力学(PDF)

β
ri Fi
sinϕi
+
ri
fi
sinθi
=
∆mi
r2 i
β
质点∆mi的外力矩
质点∆mi的内力矩
对所有质点求和,可以得到:
∑ ∑ ∑ riFi sinϕi +
ri fi sinθi =
∆mi
r2 i
β
i=1
i=1
i=1
合内力矩∑ri fi sinθi 为零,则:
∑ ∑ riFi sinϕi =
∆mi
F = 0 p = 常量
Ek
=
1 2
mv2
A = ∫ F ⋅ dr =∆Ek
刚体定轴转动规律
M = r × F = dL = J β
dt
L = r × p = Jω
∫t2 Mdt = ∆L t1
M = 0 L = 常量
Ek
=
1 2
Jω2
A = ∫ M ⋅ dθ = ∆Ek
第五节 进 动 一、 进动(precession)现象:
= ∫ r 2λdl l
质量体分布,例如立方体、球体 质量面分布,例如薄片、薄球壳 质量线分布,例如细棒、细环
例2 计算质量为 m ,长为 L 的匀质细棒绕通过其 端点的垂直轴的转动惯量。
解:J = ∫ r 2dm
z
dm = λdl = m dl o
L
∫ J = L l2 ⋅ m dl 0L = 1 mL2 3
o ω
o’
ω
oG
二、杠杆回转仪的分析
设右图中的刚体回转仪处于平
o
衡状态,现将重物左移并将飞
ω 轮作如图方向旋转。则飞轮进
动的方向如何?

大学物理刚体运动

大学物理刚体运动
动量
力矩是描述力对物体转动效应的物理量,其大小等于力的大小与力臂的乘积,方向垂直于力和力臂所在的平面。
力矩
刚体的动量、动量和力矩
刚体的动能和势能
动能
动能是描述物体运动能量的物理量,其大小等于质量与速度平方的乘积的一半,方向与速度方向相同。
势能
势能是由于物体在一定位置或状态时所具有的能量,常见的有重力势能、弹性势能等。
大学物理刚体运动
CATALOGUE
目录
刚体运动的基本概念 刚体的转动运动 刚体的线性运动 刚体的振动 刚体的相对运动 刚体运动的实例分析
01
刚体运动的基本概念
刚体
在任何力的作用下,其形状和大小都不会发生变化的理想化物体。
刚体的特点
不发生形变,质点间的距离保持不变。
刚体的分类
可动刚体和固定刚体。
质点和刚体的位移
速度是描述物体运动快慢的物理量,其大小等于位移与时间的比值,方向与位移方向相同。
速度
加速度是描述物体速度变化快慢的物理量,其大小等于速度变化量与时间的比值,方向与速度变化量方向相同。
加速度
质点和刚体的位移、速度和加速度
动量是描述物体运动状态的物理量,其大小等于质量与速度的乘积,方向与速度方向相同。
通过测量刚体的质量、质心到旋转轴的距离和角速度,可以计算出转动动能和转动势能。
在国际单位制中,转动动能的单位是焦耳,转动势能的单位也是焦耳。
转动势能
转动动能和转动势能的计算
转动动能和转动势能的单位
转动动能和转动势能
平衡条件的推导
根据牛顿第二定律和力矩的定义,可以推导出刚体的平衡条件。
平衡条件的应用
详细描述
陀螺的运动可以看作是围绕其自转轴的旋转运动。在理想情况下,忽略空气阻力和摩擦力,陀螺的运动可以简化为一个旋转运动。其运动规律可以用角动量守恒定律进行描述,即L=Iω,其中L是角动量,I是转动惯量,ω是角速度。

《物理刚体力学》课件

《物理刚体力学》课件
体质量乘以角速 度乘以旋转半径。
角动量守恒的条 件:刚体在运动 过程中,不受外 力矩作用,或者 外力矩的矢量和 为零。
角动量守恒的应用: 在物理学、工程学 等领域,角动量守 恒定律被广泛应用 于分析刚体的运动 状态和设计机械设 备。
刚体的振动与波 动
体育器材:篮球架、足球 门、单杠等体育器材的结 构和支撑
医疗设备:手术床、轮椅、 担架等医疗设备的支撑和 连接
电子产品:手机、电脑、 电视等电子产品的外壳和 框架
刚体在体育运动中的应用
篮球:篮球架、篮球板等设备都是 刚体,它们需要承受运动员的撞击 和冲击。
田径:田径运动中的起跑器、跳高 杆等设备也是刚体,它们需要承受 运动员的撞击和冲击。
刚体在工程中的应用:设计、制造和维护各种机械设备,如汽车、飞机、桥梁等
刚体在生物力学中的应用:研究人体骨骼、肌肉等组织的力学性能,为医疗、康复等领域提 供科学依据
感谢您的观看
汇报人:PPT
添加标题
添加标题
添加标题
添加标题
转动惯量:刚体转动时,其转动惯 量与质量、形状、转动轴的位置有 关。
转动定律的局限性:转动定律只适 用于刚体,不适用于非刚体。
刚体的转动惯量
定义:刚体转动惯量是刚体转动时,其角动量与角速度的比值 公式:I=mr^2,其中m是刚体质量,r是刚体到转轴的距离 应用:刚体的转动惯量在物理学、工程学等领域有广泛应用 影响因素:刚体的形状、质量分布、转轴位置等因素都会影响其转动惯量
消失
基本假设:物体 在受到外力作用 时,其运动状态 保持不变,即物 体在受到外力作 用时,其速度、 加速度和位置保
持不变
局限性:刚体 力学只适用于 刚体,不适用 于流体、弹性 体等非刚体物

大学物理刚体力学课件

大学物理刚体力学课件

— 角动量定理的积分形式 三、刚体对转轴的角动量守恒定律
dLz d Mz ( J ) dt dt dLz , 0L M z 0 ,则 z dt

J 恒量
— 角动量守恒定律
小结:质点运动与刚体定轴转动的对照表(一) 质点运动
速度 加速度 力 质量 动量 牛顿第二定律
刚体定轴转动
小结:刚体定轴转动与质点运动的对照表(二)
质点运动
动量定理 动量守恒定律 动能 功 动能定理
刚体定轴转动
角动量定理
F dt m v m v 2 1
Mdt J
2
J1
F 0, mv 恒矢量
1 2 mv 2
角动量守恒定律
M 0, J 恒量
转轴沿着直
并与盘面垂直
1 2 J mr 2
1 2 J mr 4
球体
转轴沿着切
球体
转轴通过球

2r
线
2 2 J mr 5
7 2 J mr 5

一、平行轴定理



如果刚体对通过质心的轴的转动惯量为 J C ,那么对与此轴平行 的任意轴的转动惯量可以表示为
J J C md 2
m 是刚体的质量,d 是两平行轴之间的距离。 式中:
zi i i
O
ri
Δ mi
vi
整个刚体对Z轴的角动量为 Lz
l
dt
zi
( ri mi ) J
2
二、刚体对转轴的角动量定理 d d 根据转动定理 M z J J ( J )
dt
Lz J
dLz d M z ( J ) dt dt

刚体力学课件

刚体力学课件

l
rR
其质量为
显然:转动惯量与l 无关。所以,实心圆柱对其
轴的转动惯量也是mR2/2。
14
例3.如图所示,一个均匀半圆薄板的质量为m, 半径 为R.以其直径边为转轴, 它的转动惯量多大?
解: 设面密度为 .
取窄条状面元dS. dh
dq 对应的弧长为Rdq
dS h
?
15
例4.求长为L、质量为m的均匀细棒
转轴
刚体
p x
参考 方向
(4)
角加速度
b
=
dw
dt
=
d 2q
dt 2
6
定轴转动中角量与线量的基本关系
矢量式
类似一维运动,各角量的方向 由“+”,“–”号表示。 注意: 这里的角量单位都用弧度(rad)
7
第2节 刚体定轴转动定律
Principle of Rotation of a Rigid
1. 力矩
19
例:一细绳跨过一轴承光滑的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2), 如图所示.设滑轮和绳的质量可忽略不计,绳不能伸长,试求物体的加速度以及悬挂滑轮
的绳中张力.
解:选取对象m1、m2及滑轮 分析运动
m1,以加速度a1向上运动 m2,以加速度a2向下运动 分析受力
T1 a
1
m1g
解: 以棒和小球为系统. 在碰撞过程中, 对轴O的
外力矩只有小球的重力矩mgL .因碰撞时间
极短, 此重力矩对时间的累积可忽略不计.
碰前
o
u
m
碰后
o
于是,系统对转轴o
v
m
的角动量守恒:
40

大学物理06刚体力学

大学物理06刚体力学

刚体力学1、 (0981A15 )一刚体以每分钟60转绕z 轴做匀速转动(沿z 轴正方向).设某时刻刚体上一点 P 的位置矢量为r 3i 4 j 5k ,其单位为“ 10-2 m ”若以“ 10-2 ms -1 ”为速度单 位,则该时刻P 点的速度为: (A) v 94.2 i 125.6 j 157.0 k (B) v25.1 i 18.8 j(C) v 25.1 i 18.8 j(D) v 31.4k几个力同时作用在一个具有光滑固定转轴的刚体上, 则此刚体 (A) 必然不会转动. (B)转速必然不变.(C)转速必然改变.(D)转速可能不变,4、 (0153A15 )一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度 按图 示方向转动•若如图所示的情况那样,将两个大小相等方向相反但不 在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A)必然增大. (B)必然减少.(C)不会改变. (D)如何变化,不能确定.5、 (0165A15 )均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转 动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到 竖直位置的过程中,下述说法哪一种是正确的?2、 (5028B30 )如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮 B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则有(A)A =B . (B)A >B . (C) A V B .(D) 开始时 A =B ,以后A V3、(0148B25 )B CD|F如果这几个力的矢量和为零, 也可能改变.挂一质量为M 的物体,B 滑轮受拉力F ,而且F = Mg •设A 、 B • [O(A)角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. []6、 (0289A10 )关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关. (C) 取决于刚体的质量、质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.7、(0291B25 )一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为m i 和m 2的物体(m i v m 2),如图所示.绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A)处处相等. (B)左边大于右边.(C)右边大于左边. (D)哪边大无法判断.[]8、(0292A15 )10、(0646A15 )两个匀质圆盘A 和B 的密度分别为 A 和B ,若 A > B ,但两圆盘的质量与厚 度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(B) J B > J A .轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 J ,绳下端挂一物体.物体所.若将物体去掉而以与 P 相等的力直接向下拉绳子,滑轮的角加速度将(A)不变. (B)变小. (C)变大. (D)如何变化无法判断. 9、 (0499A15 )如图所示,一质量为 m 的匀质细杆AB ,A 端靠在光滑的竖直墙 壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成 角,则A 端对墙壁的压力大小1i(A)为 mg cos . (B)为—mg tg 42(C)为 mg sin(D)不能唯一确定.(A) J A >J B .(C) J =1_1命m2受重力为P ,滑轮的角加速度为 B(D) J A、J B哪个大,不能确定.11、 (5265B25 )有两个半径相同,质量相等的细圆环 A 和B . A 环的质量分布均匀,B 环的质量 分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A > J B . (B) J A V J B .(C) J A = J B . (D)不能确定J A 、J B 哪个大.[]12、 (5401B25 )有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的.(B) (1)、⑵正确,(3)、(4)错误. (C) ⑴、(2)、(3)都正确,⑷错误. (D) (1)、(2)、(3)、⑷都正确. []13、(0500C50 )如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁 上, B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小 14、 (5641B30 )将细绳绕在一个具有水平光滑轴的飞轮边缘上, 现在在绳端挂一质量为m 的重物, 飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于 .(B)大于,小于2 .(C) 大于 2.(D) 等于 2. [ 115、 (0126A20 )花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 J 0,角一 1速度为 0 .然后她将两臂收回,使转动惯量减少为 -J 0 .这时她转动的角速度变为3(A)为14 mg cos1(B)为 mg tg (C)为 mg sin (D)不能唯一确定.(A) - o. (B) 1/、3 o.3v16、(0132A20 )光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆, 可绕过其中点且垂直于杆的竖直光滑固定轴 O 自由转动,其转动 1 惯量为-mL 2,起初杆静止.桌面上有两个质量均为 m 的小球, 3 :!v 0 俯视图 各自在垂直于杆的方向上,正对着杆的一端,以相同速率 V 相向运动,如图所示.当 两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系 统碰撞后的转动角速度应为 (A) 3L . (B)(C) 6v (D) 7L 12v(E)4v 5L 8v 9L 17、 (0133A20 ) 如图所示,一静止的均匀细棒,长为 L 、质量为M ,可绕 通过棒的端点且垂直于棒长的光滑固定轴 0在水平面内转动, 1 转动惯量为- ML 2 .—质量为m 、速率为v 的子弹在水平面内 3 沿与棒垂直的方向射出并穿出棒的自由端, 设穿过棒后子弹的速率为 则此时棒的角速度应为 (A)四.ML(C)沁.3ML18、 (0137A30 ) (B)沁. 2ML7mv4ML(D)21、质量为m 的匀质细杆,可绕通过其中点 转动惯量为 -ml 2,起初杆静止.有一质量为 m 的小 3 球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率 v 运动,如图所示.当 小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度 是 光滑的水平桌面上有长为 于桌面的竖直固定轴自由转动, (A) (C)lv 12 丸4l(B) (D)2v3l 鱼lO 且垂直一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人 .把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒. (E) 动量、机械能和角动量都不守恒. [ ]20、 (0228A20 )21、 (0230B30 )一圆盘正绕垂直于盘面的水平光滑固定轴 大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射 入后的瞬间,圆盘的角速度(A)增大. (B)不变. (C)减小. (D)不能确定.22、(0247A15 )如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 只有机械能守恒.只有动量守恒.只有对转轴0的角动量守恒. 机械能、动量和角动量均守恒. 23、(0294A15 )刚体角动量守恒的充分而必要的条件是 (A)刚体不受外力矩的作用.质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直 光滑固定轴自由转动,转动惯量为 丄平台和小孩开始时均静止.当小孩突然以相对于 地面为v 的速率在台边缘沿逆时针转向走动时, 转方向分别为 2mR v J R mR 2J mR 2则此平台相对地面旋转的角速度和旋(A) (C),顺时针.R ,顺时针.(B) (D)2迟v ,逆时针.J R mR 2 v 2 ,逆时针.J mR 2 RO 转动,如图射来两个质量相同,速度(A) (B) (C) (D) [(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 24、 (0677A15 )一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气 阻力,在碰撞中守恒的量是(A)动能. (B)绕木板转轴的角动量. (C)机械能. (D)动量.25、 (0772A20 )如图所示,一水平刚性轻杆,质量不计,杆长 I 二20 cm ,其上 穿有两个小球.初始时,两小球相对杆中心 O 对称放置,与O 的距 离d = 5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为 0,再烧断细线让两球向杆的两 端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2 0.(B)0.1 2(D) 1426、 (5030B30 )关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下, 度一定相等.在上述说法中, (A) 只有(2)是正确的. (B) ⑴、⑵ (C) ⑵、⑶ (D) (1)、⑵ 27、 (5640B25 )一个物体正在绕固定光滑轴自由转动,[]1ioL ______-d :d •—j(C)o .它们的角加速 是正确的. 是正确的.、(3)都是正确(A)它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大. [ ]28、(5643A20 )有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度0转动,此时有一质量为m的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) J2J mR2(C)二(D)mR2二、填空题:1、(0110A15 )一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为仁20 rad/s,再转60转后角速度为2 = 30 rad /s,则角加速度= ___________________ 转过上述60转所需的时间△ t = _____________ 」2、(0111A10 )利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为0.1m的轮子,真空泵上装一半径为0.29m的轮子,如图所示.如果电动机的转速为1450 rev/min,则真空泵上的轮子的边缘上一点的线速度为__________________ 空泵的转速为3、(0290A10 )半径为r = 1.5 m的飞轮,初角速度0= 10 rad ・s-1,角加速度二一5 rad ・s-2,则在t = ___________ 时角位移为零,而此时边缘上点的线速度v= ___________ .4、(0302A10 )可绕水平轴转动的飞轮,直径为 1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4s内绳被展开10 m,则飞轮的角加速度为_______________ 」5、(0645A10 )绕定轴转动的飞轮均匀地减速,t = 0时角速度为0 = 5 rad / s ,t = 20 s时角速度为=0.8 0,则飞轮的角加速度= ______________ ,t = 0至U t = 100 s时间内飞轮所转过的角度= ___________________ 」6、(0977A15 )一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动•在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s •则由静止达到10 rev/s所需时间t = _________ ;由静止到10 rev/s时圆盘所转的圈数N = __________ .7、(0980B25 )一飞轮作匀减速转动,在 5 s内角速度由40 rad s 1减到10 rad s-1,则飞轮在这5 s内总共转过了________________ 飞轮再经________________ 时间才能停止转动.8、(0982A10 )半径为30 cm的飞轮,从静止开始以0.50 rad s-2的匀角加速度转动,贝U飞轮边缘上一点在飞轮转过240。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体力学1、(0981A15)一刚体以每分钟60转绕z 轴做匀速转动(ωϖ沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ϖϖϖϖ 157.0 125.6 94.2++=v (B) j i ϖϖϖ 8.18 1.25+-=v (C) j i ϖϖϖ 8.18 1.25--=v (D) k ϖϖ 4.31=v [ ]2、(5028B30)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则有(A)A =B . (B) A >B . (C) A <B . (D) 开始时A =B ,以后A <B . [ ] 3、(0148B25)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]4、(0153A15)一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]5、(0165A15)均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、(0289A10)关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]7、(0291B25)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]8、(0292A15) 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ]9、(0499A15)如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小 (A) 为41mg cos . (B) 为21mg tg (C) 为mg sin . (D) 不能唯一确定. [ ] 10、(0646A15)两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A >B ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ] m 2m 1 OAθB11、(5265B25)有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]12、(5401B25)有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]13、(0500C50)如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小 (A) 为 41mg cos . (B)为21mg tg . (C) 为 mg sin . (D) 不能唯一确定. [ ]14、(5641B30)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. [ ]15、(0126A20)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 310. (B) ()3/10. A θB(C) 30. (D) 3 0. [ ]16、(0132A20)光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 17、(0133A20) 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) MLm 23v . (C) MLm 35v . (D) ML m 47v . [ ] 18、(0137A30)光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l 32v . (C) l 43v . (D) lv 3. [ ] 19、(0197A15)O v v 俯视图 ϖ21 v ϖ 俯视图一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]20、(0228A20)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]21、(0230B30)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度(A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]22、(0247A15)如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]23、(0294A15)刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. O(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]24、(0677A15)一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]25、(0772A20)如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为 (A) 20. (B) 0. (C) 21 0. (D)041 . [ ] 26、(5030B30)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]27、(5640B25)一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变. O d d l(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大. [ ]28、(5643A20)有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ ]二、填空题:1、(0110A15)一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s , 再转60转后角速度为ω2=30πrad /s ,则角加速度β =_____________,转过上述 60转所需的时间Δt =________________. 2、(0111A10) 利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为 0.1m 的轮子,真空泵上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450rev/min ,则真空泵上的轮子的边缘上一点的线速度为__________________,真空泵的转速为____________________.3、(0290A10)半径为r =1.5 m 的飞轮,初角速度0=10 rad · s -1,角加速度 =-5 rad · s -2, 则在t =___________时角位移为零,而此时边缘上点的线速度v =___________. 4、(0302A10)可绕水平轴转动的飞轮,直径为1.0 m ,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s 内绳被展开10 m ,则飞轮的角加速度 为________________.5、(0645A10)绕定轴转动的飞轮均匀地减速,t =0时角速度为0=5 rad / s ,t =20 s 时角速度为 = 0.80,则飞轮的角加速度=______________,t =0到 t =100 s0.1m 0.29m时间内飞轮所转过的角度=___________________.6、(0977A15)一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止达到10 rev/s所需时间t=________;由静止到10 rev/s时圆盘所转的圈数N=________.7、(0980B25)一飞轮作匀减速转动,在5 s内角速度由40rad·s1减到10rad·s-1,则飞轮在这5 s内总共转过了________________圈,飞轮再经______________的时间才能停止转动.8、(0982A10)半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t=________,法向加速度a n=_______________.9、(0983A15)半径为20 cm的主动轮,通过皮带拖动半径为50 cm的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s内被动轮的角速度达到8 rad·s-1,则主动轮在这段时间内转过了________圈.10、(0146A15)一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒是否作匀角加速转动?________________.理由是__________________________________________________________________________________________________________________________________.11、(0147A15)决定刚体转动惯量的因素是________________________________________________________________________________________________.12、(0149A20)一长为l,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m的小球,如图所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度0=____________,杆与水平方向夹角为60°时的角加速度=________________.13、(0150B25)质量为20 kg、边长为1.0 m的均匀立方物体,放在水lm F平地面上.有一拉力F 作用在该物体一顶边的中点,且与包含该顶边的物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若要使该立方体翻转90°,则拉力F 不能小于___________________.14、(0152A20)一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =________________, 此时该系统角加速度的大小=________________. 15、(0240A15)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的 制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.16、(0243A15)如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 / 4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的垂直距离为R 的B 点的切向加速度a t =_____________,法向加速度a n =_____________.17、(0244A15)一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N · m ,轮子对固定轴的转动惯量为J =15 kg · m 2.在 t =10 s 内,轮子的角速度由=0增大到=10 rad/s ,则M r =_____________. 18、(0543A10) 如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS=l ,则系统对O O '轴的转动惯量为____________.19、(0546B30) 一长为l 、重W 的均匀梯子,靠墙放置,如图.梯子下端连一劲度系数为k 的弹簧.当梯子靠墙竖直放置时,弹簧处于自然长度.墙和地面都是光滑的.当梯子依墙而与地面成角且处于平衡状态时, m 2m O θ A R B R A ' R P S R Q R O ′ A B θ(1) 地面对梯子的作用力的大小为__________________.(2) 墙对梯子的作用力的大小为________________________.(3) W 、k 、l 、应满足的关系式为______________________. 20、(0551A15)一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到 =2.0 rad/s 时,物体已转过了角度=_________________. 21、(0552A15)一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg ·m 2,正以角速度0ω作匀速转动.现对轮子加一恒定的力矩M = -12N ·m ,经过时间t=8.0s 时轮子的 角速度ω=-0ω,则0ω=________________.22、(0553A15)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后, 物体停止了转动.物体的转动惯量J =__________.23、(0559A20)一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转动.系统绕O轴的转动惯量J =____________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =______________;角加速度________________. 24、(0647A10)如图所示,一轻绳绕于半径r = 0.2 m 的飞轮边缘,并施以F =98 N 的拉力,若不计轴的摩擦,飞轮的角加速度等于39.2 rad/s 2,此飞轮的转动惯量为___________________________.25、(0675A10)一可绕定轴转动的飞轮,在20 N ·m 的总力矩作用下,在10s 内转速由零 均匀地增加到8 rad/s ,飞轮的转动惯量J =______________.26、(0676A10)一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J =21MR 2.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承 O 60° m 2m F间无摩擦.物体下落的加速度为a ,则绳中的张力T =_________________. 27、(0683A20)如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J.若不计摩擦,飞轮的角加速度=_______________.28、(0684A20)半径为R 具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m 的物体.绳的质量可以忽略,绳与定滑轮之间无相对滑动.若物体下落的加速度为a , 则定滑轮对轴的转动惯量J =______________________. 29、(0685A20)如图所示,滑块A 、重物B 和滑轮C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =21m CR 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A 的加速度a =________________________. 30、(5031C45)转动着的飞轮的转动惯量为J ,在t =0时角速度为0.此后飞轮经历制动过程.阻力矩M 的大小与角速度的平方成正比,比例系数为k (k 为大于0的常量).当031ωω=时,飞轮的角加速度= ___________.从开始制动到031ωω=所经过的时间t =__________________. 31、(5402A20)一根均匀棒,长为l ,质量为m ,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动.开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于__________,初角加速度等于__________.已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml .32、(5642B25) 一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为,则杆转动时受的摩擦力矩的大小为________________. 33、(0125B30)mCAB一飞轮以角速度绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为 前者的二倍.啮合后整个系统的角速度=__________________. 34、(0139A15)定轴转动刚体的角动量(动量矩)定理的内容是__________________________ _____________________________________________________________________, 其数学表达式可写成_________________________________________________. 动量矩守恒的条件是________________________________________________. 35、(0144B25)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )36、(0229A20) 有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度2=__________________________. 37、(0235B35)长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为231Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v ϖ射入杆上A 点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间杆的角速度=__________________________.38、(0236B30)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入 后棒的角速度=_____________________.39、(0248A10)0v ϖAO2l /3 mmml 0v ϖ俯视图力矩的定义式为______________________________________________.在力 矩作用下,一个绕轴转动的物体作__________________________运动.若系统所 受的合外力矩为零,则系统的________________________守恒. 40、(0296A20)一转台绕竖直固定光滑轴转动,每10 s 转一周,转台对轴的转动惯量为1200 kg ·m 2.质量为80kg 的人,开始时站在台的中心,随后沿半径向外跑去,问当 人离转台中心2m 时,转台的角速度为__________________. 41、(0305A10)长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直 下垂,一子弹水平地射入杆中.则在此过程中,_____________系 统对转轴O的_______________守恒. 42、(0542B25)质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为31l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统 对转轴的角动量(动量矩)大小为___________________. 43、(0556A20)一个质量为m 的小虫,在有光滑竖直固定中心轴的水平圆盘边缘上,沿逆时针方向爬行,它相对于地面的速率为v ,此时圆盘正沿顺时针方向转动,相对于地面的角速度为.设圆盘对中心轴的转动惯量为J .若小虫停止爬行,则圆盘的角速度为______________________________________. 44、(0649A20)如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度A 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮连结在一起后,共同的角速度为.若A 轮的转动惯量为J A ,则B 轮的转动惯J B =_______________.45、(0650A20)一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =21MR 2.当圆盘以角速度0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度 =______________.O Mm2mO lR l /3 v 俯视图46、(0651A10)地球的自转角速度可以认为是恒定的.地球对于自转轴的转动惯量J =9.8× 1037 kg ·m 2.地球对自转轴的角动量L =__________________. 47、(0678B25)一个圆柱体质量为M ,半径为R ,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m 、速度为v 的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度=____________________________.(已知圆柱体绕固定轴的转动惯量J =221MR )48、(0679B25) 一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度 为=__________________. 49、(0680B25)一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度=__________________________.50、(0681B25)两个质量都为100 kg 的人,站在一质量为200 kg 、半径为3 m 的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5 s 转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度=__________________.(已知转台对转轴的转动惯量J =21MR 2,计算时忽略转台在转轴处的摩擦). 51、(0682B25)质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l 2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5 rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度 =______________________. 52、(0773A20)如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的 __________守恒. 53、(0774A20)判断图示的各种情况中,哪种情况角动量是守恒的.请把序号填在横线上的空白处 ___________________________.(1) 圆锥摆中作水平匀速圆周运动的小球m ,对竖直轴OO '的角动量.(2) 光滑水平桌面上,匀质杆被运动的小球撞击其一端,杆与小球系统,对于通过杆另一端的竖直固定光滑轴O 的角动量.(3) 绕光滑水平固定轴O 自由摆动的米尺,对轴O 的角动量.(4) 一细绳绕过有光滑轴的定滑轮,滑轮一侧为一重物m ,另一侧为一质量等于m 的人,在人向上爬的过程中,人与重物系统对转轴O 的角动量. 54、(0776B25)如图所示,有一长度为l ,质量为m 1的均匀细棒,静止平放在光滑水平桌面上,它可绕通过其端点O ,且与桌面垂直的固定光滑轴转动,转动惯量J =31m 1l 2.另有一质量为m 2、水平运动的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,碰撞时间极短.已知小滑块与细棒碰撞前后的速率分别为v和u ,则碰撞后棒绕O 轴转动的角速度=________________.三、计算题:1、(0114A20)一半径为r 的圆盘,可绕一垂直于圆盘面的转轴作定轴转动.现在由于某种原因转轴偏离了盘心O ,而在C 处,如图所示.若A 、B 是通过CO 的圆盘直径上的两个端点,则A、B两点的速率将有所不同.现在假定圆盘转动的角速度ω 是已知的,而v A 、v B 可以通过仪器测出,试通过这些量求出偏心距l .OOO Om O '(3)(2)(4)Ol m 1m 2 A u vlOC BA2、(0116A20)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间? 3、(0119B35)已知一定轴转动体系,在各个时间间隔内的角速度如下: ω=ω0 0≤t ≤5 (SI) ω=ω0+3t -15 5≤t ≤8 (SI) ω=ω1-3t +24 t ≥8 (SI) 式中ω0=18 rad /s (1) 求上述方程中的ω1. (2) 根据上述规律,求该体系在什么时刻角速度为零. 4、(0120A15)一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少? 5、(0122A20)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 6、(0112C50)质量为M 的匀质圆盘,可绕通过盘中心垂直于盘的固定光滑轴转动,转动惯量为21M r 2.绕过盘的边缘挂有质量为m ,长为l 的匀质柔软绳索(如图).设绳与圆盘无相对滑动,试求当圆盘两侧绳长之差为S 时,绳的加速度的大小. 7、(0115B40)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量).8、(0123B30) 如图所示,一圆盘形工件K 套装在一根可转动的固定轴A 上,它们的中心线互相重合,圆盘的内外直径分别为D 和D 1.该工件在外力矩作用下获得角速度,这BCAωrSMa。

相关文档
最新文档