电力有源滤波器的设计
电力系统中的有源滤波器设计与应用
![电力系统中的有源滤波器设计与应用](https://img.taocdn.com/s3/m/0038bb624a35eefdc8d376eeaeaad1f347931161.png)
电力系统中的有源滤波器设计与应用概述电力系统中的电能质量问题一直是一个重要的研究方向。
随着电子设备的普及和电力负载的不断增加,电力系统中的谐波、噪声以及电压波动等问题越来越严重。
为了保障电力系统的稳定运行和提高电能质量,有源滤波器被广泛应用于电力系统中。
一、有源滤波器的原理与工作机制有源滤波器是一种能够主动抵消或补偿电力系统中的谐波和干扰的设备。
它通过引入一个对相应谐波或干扰信号进行逆相抵消的电流或电压,达到滤除谐波或干扰的目的。
有源滤波器通常由功率电子器件、控制电路和滤波器构成。
有源滤波器的工作原理可以简单地概括为三个步骤:感知电网谐波和干扰信号、生成逆相信号、注入到电网中。
首先,有源滤波器通过传感器感知电网中的谐波和干扰信号。
然后,控制电路根据感知到的信号,生成相应的逆相信号。
最后,逆相信号通过功率电子器件注入到电网中,与谐波和干扰信号相抵消。
二、有源滤波器的设计方法设计一个有效的有源滤波器需要考虑多个因素,包括滤波频率范围、滤波效果、功率容量、稳定性等。
以下是一些常用的有源滤波器设计方法:1. 双脉冲模型方法这种方法将有源滤波器建模为一个用于跟踪电网电流的I控制器和一个用于计算波形畸变的谐波电流额定电流的方程。
2. 双闭环控制方法这种方法将有源滤波器的控制系统分为内环和外环控制系统。
内环控制器用于跟踪电网频率和相位,外环控制器用于计算所需的逆相信号。
3. 谐波电流电压陷波控制方法这种方法通过调节滤波器的控制参数,在一定范围内使谐波电流和谐波电压达到最小值,从而实现对谐波的有效衰减。
三、有源滤波器的应用有源滤波器在电力系统中的应用非常广泛,主要包括以下几个方面:1. 谐波抑制在电力系统中,电子设备产生的谐波会对电力系统产生负面影响,例如使电网电压失真、导致传输线过载等。
有源滤波器可以通过抵消谐波电流,改善电能质量并提高电力系统的稳定性。
2. 噪声滤除电力系统中会受到各种各样的干扰和噪声,例如瞬态过电压、开关操作、天气等。
有源电力滤波器的应用设计
![有源电力滤波器的应用设计](https://img.taocdn.com/s3/m/ad33fe2e482fb4daa58d4b73.png)
力 滤 波 器 的发 展 前 景 。
[ 关键词 ] 电力谐 波
De s i g n an d ap pl i c a t i o n o f a c t i v e po we r il f t e r
A b s t r a c t : I n t h i s p a p e r , t h e h a r m o f p o w e r h a mo r n i c w a v e w a s i n t r o d u c e d .T h r o u g h t h e a c t u a l p r o j e c t c a s e ,h o w t o c o n f i g u r e t h e a c t i v e
:=
-
堕
,
U c 。 s 、 厅 面 -
:2 4 0 12 A
.
部的并联谐振或串联谐振 , 放大谐波 , 造成危险 的过压或 过流
.
/ 3 3 8 0 0 . 6 √ 1+0 . 3
b .产生 了附加谐波损耗 , 降低了发 电, 输电及用 电设备 的效
谐 波电流 :
在电力系统中有非线性负载 时 , 电源以工频 5 0 H Z供 电 ,
无 功两 部分 构成 , 补偿谐 波能够 释放谐 波无功 占用 的系统 容
当工频 电压或 电流作用 于非 线性 负载时 , 就会产 生不 同于正
弦波 的畸 变 电压 或 电流 , 用傅 氏级 数 展 开 , 可 以分 解 出除 5 0 H Z的基波分量外 , 还 有许 多高 于 5 0 H Z的正 弦波分 量 , 后
方案一配置 9台 I O O A A P F , U P S容量为 4 X 5 0 0 k V A . C .配置方 案二 : 进行无功补偿后 配置有源电力滤波器 . 无功补偿量计算 : 功率 因数 c o s q  ̄ 从0 . 6补偿至 0 . 9,
有源滤波器的设计毕业设计论文
![有源滤波器的设计毕业设计论文](https://img.taocdn.com/s3/m/95188ef4c67da26925c52cc58bd63186bdeb927a.png)
有源滤波器的设计毕业设计论文标题:基于有源滤波器的设计与优化摘要:有源滤波器是一种常见的信号处理电路,具有自身的强大功能和重要应用。
本论文通过对有源滤波器的原理和设计方法的理论研究,结合现有的电路设计工具和电子器件技术,对有源滤波器的设计与优化进行了探讨。
首先介绍了有源滤波器的基本原理,然后通过实例分析了常见的几种有源滤波器的设计方法,并讨论了设计过程中所需要考虑到的各种因素。
最后,对有源滤波器进行了性能分析与优化,通过仿真和实验验证了设计结果的有效性和可行性。
关键词:有源滤波器、设计、优化、信号处理、基本原理导言:有源滤波器是一种能够对输入信号进行频率选择性处理的电路,它能够增益或衰减其中一频段的信号,从而实现对信号的滤波作用。
随着电子技术的不断进步和应用的广泛性,有源滤波器在通信、音频处理、图像处理等领域中得到了广泛的应用。
因此,研究有源滤波器的设计与优化具有重要的理论和实际意义。
一、有源滤波器的基本原理二、有源滤波器的设计方法1.RC有源滤波器设计方法2.LC有源滤波器设计方法3. Sallen-Key有源滤波器设计方法三、有源滤波器设计考虑的因素四、有源滤波器的性能分析与优化对有源滤波器进行性能分析和优化是保证设计结果有效性的关键。
通过理论计算和电路仿真,可以得到滤波器的频率特性和时域响应等指标,并进一步调整滤波电路的参数以达到所需的滤波效果。
五、实验验证与结论通过搭建实验系统,对设计的有源滤波器进行实验验证,通过对比实验结果与设计要求的一致性,验证了设计的可行性和有效性。
通过实验结果的分析,得出了有源滤波器的性能优化措施和改进方向。
六、结论与展望通过本论文的研究,我们深入了解了有源滤波器的基本原理和设计方法,并通过实例分析和实验验证,得出了滤波器设计中需要考虑的各种因素,为今后有源滤波器的设计提供了有力的指导和借鉴。
在未来的研究中,可以进一步优化有源滤波器的电路结构和参数选取,提高滤波器的性能和稳定性。
毕业设计—并联型有源电力滤波器的设计.
![毕业设计—并联型有源电力滤波器的设计.](https://img.taocdn.com/s3/m/afe6b46f852458fb770b5656.png)
本科毕业设计说明书(题目:并联型有源电力滤波器的设计学生姓名:xx学院:信息工程学院系别:自动化系专业:自动化班级:自动化03-3指导教师:xx摘要随着电力电子装置的广泛应用,电力系统的无功及谐波问题日趋严重。
传统的无功补偿及谐波抑制方法已难以满足现代电力系统的需要。
作为一种新型的补偿装置,有源电力滤波器以其对电网负载、系统参数变化的自适应能力和较高的反应速度被认为是目前最具发展潜力的无功和谐波补偿方法。
本文以并联电压型有源电力滤波器为研究对象,系统地分析了并联电压型有源电力滤波器的工作原理、补偿特性、谐波电流检测方法、补偿电流控制策略等问题,并对并联型有源电力滤波器进行了设计。
最后,利用MATLAB提供的电力系统仿真工具箱对并联型有源电力滤波器整个系统进行了建模和仿真分析。
仿真结果表明,并联型有源电力滤波器对带有阻感的三相二极管桥式整流负载产生的谐波具有较好的补偿效果。
关键词:谐波抑制;并联型有源电力滤波器;瞬时无功功率;仿真AbstractThe substantial increase in the use of power electronic equipment results in harmonic pollution and reactive burden above the tolerable limits. Many conventional solutions to the power quality issues can’t meet the conditions of modern power system. Active power filters are known as a dynamic,adjustable and potential solution to the power quality problems.The shunt voltage-type APF has been analyzed in this paper, in terms of the working principle, the compensation characteristics, the harmonic current detection approaches and the current compensation strategies,the shunt active power filter are designed.At last,the simulation models are built up by the Simpowersystems toolbox of Matlab.The results show that the designed shunt APF can well suppress the harmonic distortion generated by a three-phase diode rectifier.Key Words:Harmonic elimination; Shunt active power filter; Instantaneous reactive power; Simulation目录引言 (1)第一章绪论 (2)1.1谐波问题及研究现状 (2)1.1.1谐波的基本概念 (3)1.1.2 谐波分析 (3)1.1.3 谐波的产生和危害 (6)1.2谐波的抑制 (7)1.2.1 谐波抑制技术 (7)1.2.2 有源电力滤波器技术的发展 (7)1.3研究并联型有源电力滤波器的现实意义 (7)第二章有源电力滤波器的基本原理和结构 (9)2.1三相电路瞬时无功功率理论 (9)2.2有源电力滤波器的工作原理 (14)2.3有源电力滤波器的系统构成 (15)2.3.1 有源电力滤波器的分类 (15)2.3.2 有源电力滤波器主电路的结构 (16)2.3.3 单独使用的并联型有源电力滤波器 (17)2.4有源电力滤波器的特性 (18)2.4.1 双向补偿特性 (18)2.4.2 其他特性 (19)2.5有源电力滤波器的控制方法 (19)2.5.1 滞环比较方式 (19)2.5.2 三角波比较方式 (20)2.5.3 空间矢量控制 (21)2.5.4 本文采用的控制方法 (21)第三章并联型有源电力滤波器的设计 (22)3.1 概述 (22)3.2 系统电路的设计 (22)3.2.1主电路(变流器)设计 (22)3.2.2 主电路交流侧电感的计算 (25)3.2.3直流侧电压计算和电容选取 (26)3.3电流电压检测设计 (28)3.3.1 电流检测电路的设计 (28)3.3.2 电压检测电路的设计 (28)第四章并联型有源电力滤波器的仿真 (29)4.1仿真环境 (29)4.2仿真模型的建立 (29)4.2.1 并联型有源电力滤波器系统仿真模型 (29)4.2.2 主电路的仿真 (30)4.2.3 谐波电流检测电路的仿真 (31)4.3仿真结果 (32)4.3.1 补偿前电网电流仿真波形与分析 (32)4.3.2 补偿后电网电流仿真波形与分析 (33)4.3.3 数字低通滤波器截止频率对指令电流精度的影响 (35)4.3.4 仿真结果 (38)结论及展望 (39)参考文献 (41)致谢 (43)引言随着电力电子技术应用的日益广泛,电力电子产品广泛地应用于工业控制领域,用户对电能质量的要求也越来越高[1],而电力电子装置已经成为主要的谐波干扰源,它们造成的危害已经引起人们越来越多的关注。
有源电力滤波器设计
![有源电力滤波器设计](https://img.taocdn.com/s3/m/1667d8b7e43a580216fc700abb68a98271feace0.png)
有源电力滤波器设计有源电力滤波器是一种常用的电力滤波器,主要用于滤除电力系统中的谐波和噪声,并保证电力系统的正常工作。
本文将介绍有源电力滤波器的设计原理、电路组成及其在电力系统中的应用情况。
一、有源电力滤波器的设计原理有源电力滤波器的设计原理是通过对电源电流进行控制,将谐波电流补偿成正弦波电流。
其控制电路由电流检测、控制器、功率放大器等组成,主要原理是将电源电流分为两部分,一部分是有源滤波器生产的电流,另一部分是来自负载的电流,利用有源电力滤波器对负载电流进行控制,使得负载电流与有源滤波器生产的相位相反,相加后产生的电流就是正弦波电流。
二、有源电力滤波器的电路组成有源电力滤波器的电路组成主要包括电源、电流传感器、控制器、功率放大器和输出滤波电阻等。
其中,电源提供电力滤波器的工作电压,电流传感器测量电源电流大小和相位,控制器计算出相应的控制信号,功率放大器对控制信号进行放大,输出滤波电阻则起到滤波的作用。
三、有源电力滤波器在电力系统中的应用情况有源电力滤波器在电力系统中的应用情况主要是用于滤除电力系统中的谐波和噪声,从而保证电力系统的正常工作。
在实际应用中,有源电力滤波器广泛应用于工业控制、UPS、电力仪器等领域,具有以下优点:1、高效率:有源电力滤波器可以通过对负载电流进行控制,实现谐波消除的效果,可以比被动滤波器更高效地滤波。
2、可靠性高:有源电力滤波器具有自动控制的功能,能够自动检测电流信号,调节电路输出,确保电力系统的稳定运行。
3、适应性强:有源电力滤波器可以根据负载变化自动调节电路输出,适应各种不同工作状态下的负载需求。
总之,有源电力滤波器是一种可以高效滤除电力系统中谐波和噪声的电力滤波器,具有高效率、可靠性高以及适应性强等优点。
其在电力系统中的应用已经非常广泛,并且随着技术的不断进步和完善,有望在未来电力系统的滤波应用中发挥越来越重要的作用。
(完整版)有源滤波器的设计
![(完整版)有源滤波器的设计](https://img.taocdn.com/s3/m/b19912552cc58bd63086bd85.png)
有源滤波器姓名:xxx 班级:XXX 学号: xxx目录一、基本介绍二、工作原理三、有源滤波器的功能作用四、有源滤波器分类五、有源低通滤波器的设计六、总结一、基本介绍滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。
在电子电路中常用来进行信号处理、数据传输和抑制噪声等。
在运算放大器广泛应用以前滤波电路主要采用无源电子元件一电阻、电容、电感连接而成,由于电感体积大而且笨重导致整个滤波器功能模块体积大而且笨重。
本文介绍由集成运算放大器、电阻和电容设计有源滤波器,着重讲解低通、高通、带通滤波电路。
二、工作原理有源滤波器工作原理是:用电流互感器采集直流线路上的电流,经A/D 采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为PWM的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制IGBT单相桥,根据PWM技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。
这是前馈控制部分。
再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差。
三、有源滤波器的具体功能及作用1、滤除电流谐波可以高效的滤除负荷电流中2~25次的各次谐波,从而使得配电网清洁高效,满足国标对配电网谐波的要求。
该产品真正做到自适应跟踪补偿,可以自动识别负荷整体变化及负荷谐波含量的变化而迅速跟踪补偿,80us响应负荷变化,20ms实现完全跟踪补偿。
2、改善系统不平衡状况可完全消除因谐波引起的系统不平衡,在设备容量许可的情况下,可根据用户设定补偿系统基波负序和零序不平衡分量并适度补偿无功功率。
在确保滤除谐波功能的基础上有效改善系统不平衡状况。
3、抑制电网谐振不会与电网发生谐振,而且在其容量许可范围内还可以有效抑制电网自身的谐振。
这是无源滤波装置无法做到的。
4、多种保护功能具备过流、过压、欠压、温度过高、测量电路故障、雷击等多种保护功能,以确保装置和电力系统安全运行,并可在负荷较轻时自动退出运行,充分考虑运行的经济性。
有源电力滤波器和低通滤波器的电路设计与应用分析-设计应用
![有源电力滤波器和低通滤波器的电路设计与应用分析-设计应用](https://img.taocdn.com/s3/m/98fa55b4710abb68a98271fe910ef12d2bf9a910.png)
有源电力滤波器和低通滤波器的电路设计与应用分析-设计应用有源电力滤波器(Active Power Filter,APF)作为一种用于动态抑制谐波的电力电子装置,其能够同时补偿多次谐波电流,能实时控制、自动跟踪非线性电流并加以控制,有较快的动态响应速度,且具有改善三相不平衡度的优点。
一、无差拍SVPWM 的有源滤波器设计有源电力滤波器(AcTIve Power Filter,APF)作为一种用于动态抑制谐波的电力电子装置,其能够同时补偿多次谐波电流,能实时控制、自动跟踪非线性电流并加以控制,有较快的动态响应速度,且具有改善三相不平衡度的优点。
对于有源滤波器谐波电流检测与补偿电流的发生是其极为关键的技术。
有源电力滤波器的电流控制一般采用PWM(PulseWidth ModulaTIon)模式,目前常用的PWM控制方式有滞环电流控制(Current Follow Pulse Width ModulaTIon,CFPWM)、三角波电流控制(ΔPulse Width ModulaTIon,ΔPWM)和电压空间矢量脉宽调制(Space Vector PulseWidthModulation,SVPWM)三种技术。
对于SVPWM 其控制方法的优点主要在于:提高逆变器直流侧电压的利用率,减小开关器件的开关频率以及减少谐波成分,而且此方法更易实现数字化。
因此,逆变电路控制常采用此种方法。
在APF 的应用中,SVPWM 常与滞环比较,PI调节器以及无差拍等结合应用。
本文采用无差拍SVP-WM 控制策略,对APF 的电流进行补偿控制,以获得较好的动态补偿效果。
1 电力有源滤波器谐波检测方法有源滤波器的谐波电流检测方法由时域和频域检测法构成。
时域检测法主要分为:有功电流分离法和基于瞬时无功功率原理的p-q 法,ip-iq 法以及d-q 法等。
频域检测法主要有FFT法和谐波滤波器法等。
对于本文研究主要是采用ip-iq 法来对电力有源滤波器进行分析研究,由图1可看出其原理。
有源电力滤波器的设计原理
![有源电力滤波器的设计原理](https://img.taocdn.com/s3/m/e175129bac51f01dc281e53a580216fc700a5304.png)
有源电力滤波器的设计原理有源电力滤波器是一种电力滤波器,它能够通过电源电压检测电路来实时调整输出电压,以消除电源中的谐波,降低电网污染,提高电力质量。
有源电力滤波器的设计原理主要包括三个方面:电源电压检测、控制算法和输出电压调整。
首先,电源电压检测是有源电力滤波器的核心。
它通常通过电流传感器和电压传感器来实时检测电源电压和电流波形。
电流传感器通常安装在电源输入端,用于检测电源谐波电流的大小和相位;而电压传感器通常安装在电源输出端,用于检测电源谐波电压的大小和相位。
通过电源电压检测,有源电力滤波器能够实时了解电网上的谐波特征。
其次,控制算法是有源电力滤波器的关键。
控制算法根据电源电压检测的结果,判断电网中的谐波特征,并通过控制器计算出相应的谐波电流。
控制算法中常用的方法有PI控制、谐波同步检测和谐波扫描等。
其中,PI控制是一种常用的控制算法,通过调节控制器的比例和积分参数,实现有源电力滤波器的稳定运行。
最后,输出电压调整是有源电力滤波器的最终目标。
通过输出电压调整,有源电力滤波器能够将谐波电流注入电网,与谐波电流相消,从而消除电网中的谐波。
输出电压调整一般通过功率放大器来实现,它将计算出的谐波电流转化为相应的电压信号,并通过功率放大器放大到合适的水平后注入电网,以实现滤波效果。
总的来说,有源电力滤波器的设计原理是通过电源电压检测,控制算法和输出电压调整来消除电网中的谐波。
由于有源电力滤波器具备自适应调整能力,可以根据电网谐波特征的变化实时调整输出电流,因此在电网谐波污染难以预测或变化较大的情况下,具有很好的滤波效果。
此外,有源电力滤波器还具备响应速度快、滤波精度高等优点,因此在电力系统的稳定运行和电力质量改善中得到了广泛应用。
电力系统中的有源电力滤波器设计与应用
![电力系统中的有源电力滤波器设计与应用](https://img.taocdn.com/s3/m/366cb832f56527d3240c844769eae009581ba299.png)
电力系统中的有源电力滤波器设计与应用在现代社会中,电力系统是不可或缺的基础设施。
随着电子设备的普及和电网负荷的不断增加,电力系统中的电力质量问题越来越突出。
其中,谐波和电力负荷的非线性特点是导致电力质量下降的主要原因之一。
为了解决这些问题,有源电力滤波器应运而生。
有源电力滤波器是一种能够主动感应和抵消电网中谐波成分的电力设备。
它通过对电网中的谐波成分进行测量和分析,然后根据测量结果产生相应的逆谐波电流,将谐波电流与电网中的谐波电流相互抵消,以实现电力质量的提高。
在有源电力滤波器的设计中,核心问题是选择合适的控制策略和滤波器参数。
目前,常用的控制策略包括电压型控制和电流型控制。
其中,电压型控制是指根据电网电压的波形来生成滤波器的控制信号,而电流型控制则是根据电网电流的波形来生成滤波器的控制信号。
这两种控制策略都有各自的优缺点,根据具体的应用场景选择合适的控制策略非常重要。
另外,滤波器的参数选择也是有源电力滤波器设计中的关键问题。
滤波器的参数包括滤波器的谐振频率、谐振频率附近的带宽、滤波器的增益等。
合理选择这些参数可以使得滤波器具有较高的谐波抑制能力和较好的动态响应特性。
除了设计和选择合适的控制策略和滤波器参数外,有源电力滤波器的应用也是需要注意的。
一般情况下,有源电力滤波器是与负载并联连接的,以实现对负载侧谐波的抑制。
然而,在实际应用中,有源电力滤波器也可能会对电力系统产生一定的影响。
因此,在选择有源电力滤波器时,需要考虑电力系统的稳定性、滤波器的可靠性和能耗等因素。
有源电力滤波器在电力系统中的应用非常广泛。
例如,在电力工厂中,有源电力滤波器可以用于电动机的启动和调速系统中,以改善电动机的电力质量和运行稳定性。
在工业生产中,有源电力滤波器可以用于电气设备的保护和维护,以减少谐波对设备的影响,提高设备的可靠性和寿命。
此外,有源电力滤波器还可以用于电网中的充电桩和新能源发电系统中,以满足电动车充电和新能源发电的需求。
电力系统中的电能有源滤波器设计与优化
![电力系统中的电能有源滤波器设计与优化](https://img.taocdn.com/s3/m/1d8234be0342a8956bec0975f46527d3240ca6a6.png)
电力系统中的电能有源滤波器设计与优化电力系统是现代社会不可或缺的基础设施,它承担着供电、传输和配电的重要任务。
然而,随着电子设备的广泛应用和非线性负载的增加,电力系统中出现的电能质量问题日益突出。
电能有源滤波器作为一种新型的电力电子器件,被广泛应用于电力系统中,以提供有效的电能质量改善和协调不同电源间的能量流动。
电能有源滤波器是一种能够主动消除电网中的谐波和间谐波的装置,它通过控制发生器的输出来实现对电网电流的滤波,从而保证电能质量的稳定和高效。
在电力系统中,电能有源滤波器的设计和优化至关重要,它直接关系到电能质量的改善和电源的稳定性。
在设计和优化电能有源滤波器时,需要考虑多个因素。
首先是滤波器的控制策略,包括直流侧电压控制和交流侧电流控制两种方式。
直流侧电压控制是指通过控制滤波器输出端的直流电压来调整电流,而交流侧电流控制是指通过控制滤波器输出端的交流电流来达到滤波的效果。
根据不同的应用需求和电网特性,可以选择适合的控制策略。
其次是滤波器的拓扑结构,包括并联和串联两种方式。
并联结构是指将滤波器与电网并联,使其直接连接到电网中,可以实现较大的容量和灵活的布置。
串联结构是指将滤波器与电网串联,使其处于电网和负载之间,可以有效阻断谐波的传播,提高滤波效果。
根据电网的特点和需求,可以选择适合的拓扑结构。
另外,还需要考虑滤波器的参数设计和优化。
滤波器的参数包括电感、电容和电阻等,它们直接关系到滤波器的性能和效果。
在设计和优化滤波器参数时,需要考虑电网的运行条件、负载特性和滤波器的容量等因素,以实现最佳的电能质量改善效果。
除了滤波器的设计和优化,还需要考虑滤波器的控制和保护。
滤波器的控制是指通过合理的控制策略和算法来实现对滤波器的输出进行调节和控制,以达到滤波效果。
滤波器的保护是指通过合理的保护措施和装置来保护滤波器免受电网异常和故障的影响,提高其可靠性和稳定性。
在电力系统中,电能有源滤波器的设计和优化具有重要的意义。
有源电力滤波器中LCL滤波器的设计
![有源电力滤波器中LCL滤波器的设计](https://img.taocdn.com/s3/m/8b1e0d6b8e9951e79b89278f.png)
p e i r me n t a l r e s u l t s i n d i c a t e t h e c o r r e c t n e s s a n d e f f e c t i v e n e s s o f t h e p r o p o s e d L C L i f l t e r d e s i g n me t h o d .
r a me t e r s wi l l b e mo r e c o mp l e x . T h e s wi t c h i n g r i p p l e c u r r e n t s u p p r e s s i o n c a p a b i l i t y o f L C L i f l t e r , t h e r e s o n a n c e p r o b —
b o d e d i a g r a m o f t h e i f l t e r o u t p u t f u n c t i o n a n d a e f f e c t i v e d e s i g n me t h o d f o r L C L i f l t e r i s o b t a i n e d . S i mu l a t i o n a n d e x -
l e ms c a u s e d b y h a mo r n i c c u r r e n t s a t r e s o n a n t f r e q u e n c y, a n d t h e i mp a c t o f L C L i f l t e r o n t r a c k i n g p e fo r ma r n c e f o r a c —
题, 还要考 虑 L C L滤波 器对 有源 电力滤波 器 ( A P F ) 跟踪 性 能的影 响。通过绘 制 L C L滤 波器波特 图 。 进 一步 简化 L C L滤 波器 的传递 函数 , 得 出一种 简便 的 L C L滤波器 设计 方法 。最 后通 过仿 真和 实验 验证 了所提 L C L滤 波器 设计方法 的正 确性和 有效 性。 关 键词 : 滤 波器 :跟踪 性能 ;纹波 电流
浅谈有源电力滤波器设计
![浅谈有源电力滤波器设计](https://img.taocdn.com/s3/m/8abc12e727fff705cc1755270722192e45365885.png)
浅谈有源电力滤波器设计有源电力滤波器是一种常见的电力滤波器,它采用了本质不同于传统被动电力滤波器的技术,使其在截获噪声和过滤电源中的干扰方面具有很强的能力。
与被动滤波器相比,它具有更高的可控性和可靠性,因此在现代电子设计中被广泛采用。
在这篇文章中,我们将会深入研究有源电力滤波器的设计、工作原理以及未来的发展趋势。
有源电力滤波器的原理和设计有源电力滤波器是一种滤波器电路,它能够提供更好的滤波性能,并在稳态和瞬态响应方面具有很高的速度和准确性。
这种滤波器以运算放大器为核心,并通过对输入信号进行加减运算、差分放大、积分放大等运算,来实现对输入信号的处理和过滤。
有源电力滤波器可以有效地截获不同频段的干扰和噪声,使信号输出更加稳定、可靠和高质量。
具体的设计方法如下:1. 确定系统参数:布图和数据表在进行有源电力滤波器设计之前,需要确定滤波器的参数,包括通带和阻带的频率范围、理论增益和阻带衰减等等。
一般来说,这些参数可以通过电路设计软件或者手算得出,以确定布图和数据表。
2. 选择操作放大器在确定系统参数之后,需要选择合适的操作放大器。
操作放大器的选择应该考虑以下几个因素:增益、带宽、输入偏置和噪声等。
增益决定了滤波器的增益范围,在计算时需要配置适当的电阻和电容。
带宽代表了操作放大器的有效频率范围,对于需要支持高频信号的有源电力滤波器来说,选择高带宽放大器则更加适用。
3. 设计滤波器桥路和电容参数在选择操作放大器之后,需要设计滤波器桥路和电容参数。
对于有源电力滤波器而言,经典的设计方法包括对差分放大器、积分放大器和生成器的选择、设计反馈电路和增益控制电路等等。
这些参数需要通过数学方程和仿真软件来计算,以获得更好的滤波效果。
4. 优化系统性能最后,需要对有源电力滤波器进行实验和优化,以找出系统的最佳运行点。
常用的优化方法包括对增益、Q因数、可调频率等等进行调整和测试,以直接比较系统的性能和效果。
有源电力滤波器的优势和改进有源电力滤波器在过去几十年中已经得到了技术界的广泛关注,它的实用性、可靠性和效率极高,极大地推动了现代电子设计的发展。
基于matlab的电力系统有源滤波器设计
![基于matlab的电力系统有源滤波器设计](https://img.taocdn.com/s3/m/e48e45bd85868762caaedd3383c4bb4cf6ecb77c.png)
基于matlab的电力系统有源滤波器设计有源滤波器常用于电力系统中的谐波补偿。
下面是一个简单的基于matlab的有源滤波器设计示例:1. 系统模型首先,我们需要建立电力系统的模型。
假设我们要设计一个谐波滤波器来补偿电网中的第5次谐波。
系统模型如下图所示:其中,U1是电网电压,U2是负载电压,L和C分别是电路中的电感和电容。
Vin是有源滤波器的输入电压,Vout是输出电压,R是有源滤波器中的电阻,G 是电容的导纳,s是Laplace算子。
2. 控制器设计有源滤波器的控制器通常使用PI控制器和H∞控制器。
这里我们选择使用PI控制器。
PI控制器的传递函数为:Kp + Ki/s其中,Kp是比例增益,Ki是积分增益。
3. 滤波器设计有源滤波器的设计通常是在仿真中进行的。
我们使用simulink工具箱来进行仿真。
以下是有源滤波器的设计步骤:- 设置系统参数为了方便起见,我们首先设置了一些系统参数。
以下是参数列表:- 电网电压:400V- 电阻:0.01Ω- 电容:200μF- 电感:10mH- 负载电阻:10Ω- 有源滤波器输入电压:20V- 积分时间常数:0.001s- 比例增益:0.5在simulink中,我们使用Signal Builder模块来产生模拟信号,如下图所示:- 建立系统模型我们使用simulink模块建立电力系统模型,如下图所示:通过调整控制器的比例增益和积分增益,我们可以使滤波器输出的电压与需补偿的谐波相位相同,如下图所示:最终输出的谐波滤波器电压与需补偿的谐波电压相消,进一步将系统中的谐波降到可接受的水平,如下图所示:通过这个例子,我们可以看到使用simulink进行有源滤波器设计的基本步骤。
在实际应用中,我们需要根据具体情况进行参数调整和系统优化。
有源电力滤波器设计说明
![有源电力滤波器设计说明](https://img.taocdn.com/s3/m/90111a4efc4ffe473368abc9.png)
综述随着大容量电力电子装置在高压交流电力系统中日益广泛的应用,谐波和无功等问题严重地威胁着系统自身的安全稳定运行。
针对10~35kV高压交流电力系统,国外目前主要采用无源电力滤波器来抑制谐波并补偿无功功率。
无源电力滤波器具有诸多的缺陷,难以达到理想的性能。
受功率半导体开关器件的约束,有源电力滤波器常规方案的应用限制在低压交流电力系统。
提出一种基于基波磁通补偿的串联型有源电力滤波器新原理,通过电力电子变换器的控制,使串联变压器对基波呈现很小的一次侧漏阻抗,对谐波呈现很大的励磁阻抗。
通过电力电子变换器的控制,变压器一次侧呈现连续无极可调的电抗。
借鉴基波磁通补偿理论及磁通可控的可调电抗器原理,根据串并联的对偶特性,本文提出一种新型的基于阻抗可控的并联混合型有源电力滤波器。
在电力电子变换器的控制下,变压器对谐波电流呈现近似为零的低阻抗,从而输导电力系统中的谐波电流,同时对基波电流呈现连续无极可调的电抗,与无源电力滤波器相结合,实时补偿系统的无功功率。
通过变压器隔离降压,确保该滤波器安全、可靠、稳定地工作。
1 工作原理1.1 变压器的结构变压器的结构如图1所示。
其一次侧AX 与二次侧ax 的匝数分别为W 1、W 2,变比k=W 1/W 2,一次侧与二次侧的互感为M 。
一次侧绕组的电阻为r 1,自感为L 11。
变压器采用非晶态合金铁心,为了确保变压器工作在B-H 曲线的线性区,铁心开有气隙。
利用电压型逆变器向变压器二次侧绕组中注入补偿电流i 2且满足 i 2=-α*∑i 1(n)-β*i 1(1)式中:α为谐波补偿系数;∑i 1(n)为实时检测的变压器一次侧谐波电流;β为基波补偿系数;i 1(1)为实时检测的变压器一次侧基波电流。
1.2 谐波抑制原理从AX 端看,变压器n 次谐波电压方程为Ù1(n)=(r 1+jW n L 11)/Ì1(n)+jW n M Ì2(n)若α满足谐波补偿条件 α=L 11/M则从AX 端看,变压器对谐波电流的等效阻抗为 Z AX (n)=Ù1(n)/Ì1(n)=r 1通常r 1可忽略,因此,在满足谐波补偿条件时,变压器对谐波电流呈现近似为零的低阻抗。
有源电力滤波器设计
![有源电力滤波器设计](https://img.taocdn.com/s3/m/973d02d5b9f67c1cfad6195f312b3169a551ea42.png)
有源电力滤波器设计有源电力滤波器是一种能够去除电力系统中电压谐波和电流谐波的装置,可以保证电力系统正常运行和电力设备的稳定工作。
本文将介绍有源电力滤波器的设计原理、结构及其应用情况。
一、有源电力滤波器的设计原理有源电力滤波器的设计是基于功率电子器件的控制和调节,利用电力电子元器件的瞬态响应和调节灵活性,对电力信号进行处理和控制。
其主要原理是通过产生具有相反相位的电压信号,将原电路中的电压谐波和电流谐波直接抵消,从而达到滤除谐波的目的。
有源电力滤波器的控制需要引入控制电路,包括负载侧电流控制和滤波器控制两部分。
负载侧电流控制通过电流控制器对滤波器输出电流进行调节,以保证负载侧电路稳定。
滤波器控制是对滤波器电压进行控制,在保证滤波器输出的电流稳定的同时,可以有效地抑制电压谐波和电流谐波。
二、有源电力滤波器的结构有源电力滤波器主要由功率电子器件(如IGBT、MOSFET 等)和控制电路组成,其结构分为三个部分:模块化电源部分、滤波器部分和控制部分。
模块化电源部分主要用来提供滤波器所需的电源,可以选择不同的电源类型,如普通的交流电源或直流电源。
滤波器部分包括功率电子元件和滤波器电容,用于滤除电力系统中的谐波。
控制部分则包括微处理器、电路板和传感器等,用于控制电源模块的输出电压以及控制滤波器的输出状态。
三、有源电力滤波器的应用情况有源电力滤波器的应用非常广泛,可以被广泛应用于电力设备、电力系统和电网中。
在电力设备中,有源电力滤波器可以用于电机驱动、电动机启动和变频器等方面;在电力系统中,有源电力滤波器可以保证电力系统稳定并防止电力负荷过大;在电网中,有源电力滤波器可以有效地防止电组合系统中的谐波,并保持电力系统稳定、清洁和有序。
总的来说,有源电力滤波器是一种非常重要的电力滤波器,在现代电力系统和电力设备中应用越来越广泛,对保障电力设备和电力系统的正常运行至关重要,未来还会有更加广泛的应用。
有源滤波器的设计
![有源滤波器的设计](https://img.taocdn.com/s3/m/fc17bf436bec0975f565e229.png)
有源滤波器:xxx班级:XXX 学号:xxx目录一、基本介绍二、工作原理三、有源滤波器的功能作用四、有源滤波器分类五、有源低通滤波器的设计六、总结一、基本介绍滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。
在电子电路中常用来进行信号处理、数据传输和抑制噪声等。
在运算放大器广泛应用以前滤波电路主要采用无源电子元件一电阻、电容、电感连接而成,由于电感体积大而且笨重导致整个滤波器功能模块体积大而且笨重。
本文介绍由集成运算放大器、电阻和电容设计有源滤波器,着重讲解低通、高通、带通滤波电路。
二、工作原理有源滤波器工作原理是:用电流互感器采集直流线路上的电流,经A/D 采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为PWM的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制IGBT单相桥,根据PWM技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。
这是前馈控制部分。
再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差。
三、有源滤波器的具体功能及作用1、滤除电流谐波可以高效的滤除负荷电流中2~25次的各次谐波,从而使得配电网清洁高效,满足国标对配电网谐波的要求。
该产品真正做到自适应跟踪补偿,可以自动识别负荷整体变化及负荷谐波含量的变化而迅速跟踪补偿,80us响应负荷变化,20ms实现完全跟踪补偿。
2、改善系统不平衡状况可完全消除因谐波引起的系统不平衡,在设备容量许可的情况下,可根据用户设定补偿系统基波负序和零序不平衡分量并适度补偿无功功率。
在确保滤除谐波功能的基础上有效改善系统不平衡状况。
3、抑制电网谐振不会与电网发生谐振,而且在其容量许可围还可以有效抑制电网自身的谐振。
这是无源滤波装置无法做到的。
4、多种保护功能具备过流、过压、欠压、温度过高、测量电路故障、雷击等多种保护功能,以确保装置和电力系统安全运行,并可在负荷较轻时自动退出运行,充分考虑运行的经济性。
三相有源电力滤波器的设计
![三相有源电力滤波器的设计](https://img.taocdn.com/s3/m/53113a3b6ad97f192279168884868762caaebb68.png)
三相有源电力滤波器的设计三相有源电力滤波器的设计摘要:随着现代社会经济的不断发展,推动了电力行业的进一步发展,电子装置亦被广泛应用,至此大量谐波及无功电流被用于电网中,但随之而来的是极大的污染,电能质量问题亦显得十分严重。
有源电力滤波器可有效补偿电力系统谐波及其无功功率,此装置控制具备良好的实时性及准确性,这亦是实现有效补偿的重要内容。
三相有源电力滤波器是以模拟逻辑方式消除电网谐波,从而实时检测电网中的非线性负载电流波形,再将动态滤波、动态无功功率集于一体,其使用性能良好,影响速度极快,滤波涵盖范围亦是非常广泛,实际应用效率高,工作时并不受系统参数的影响。
本文探讨了三相有源电力滤波器的设计,并提出了实用性应用措施,为三相有源电力滤波器设计提供参考依据。
关键词:三相有源;电力滤波器;滤波器设计三相有源电力滤波器可实时滤除谐波,及时消除非线性负载中的谐波电流,亦或者是消除电网侧产生的谐波电流,从而有效降低系统电压畸变率;并可实现动态无功补偿,能够及时发出容性无功亦或感性无功,可有效改善系统的功率因数;可达到降耗节能的目的,有效降低线路损耗与变压器损耗,能够有效缓解设备发热的问题,同时延长设备应用时间,并确保电力系统运行稳定可靠。
三相有源电力滤波器对现代电力系统发展有着极大现实意义,但三相有源电力滤波器设计水平偏低,因此探讨三相有源电力滤波器设计,对电力系统有效运行有着极大现实意义。
一、三相有源电力滤波器简论1、有源电力滤波器电力电子设备及非线性负载现已被广泛应用,这时的谐波电流及无功电流被大量注进电网,从而威胁着电网及电气设备的运行及其正常使用。
有源电力滤波器为动态抑制谐波及补偿无功的设备装置,此类电力电子设备可对频率及大小变化谐波、无功等有效补偿,其为十分理想的补偿谐波设备,为十分理想的补偿谐波设备。
有源电力滤波器具备极高可可控度,其反映速度十分快速,可及时跟踪补偿各谐波与需要的无功功率,而此特性并不会受到系统的影响,无谐波可合理放大,其体积与重量小。
电力有源滤波器的设计
![电力有源滤波器的设计](https://img.taocdn.com/s3/m/51a2e40352ea551810a687cf.png)
题目:电力有源滤波器的设计专业:电气工程及其自动化班级: 10 电气姓名:曹炎学号: 00403042指导教师:国海日期: 2013年12月22日目录摘要: (1)1 绪论 (2)1.1概述 (2)1.2抑制谐波的方法 (2)1.3本文研究的内容 (3)2 APF的工作原理和结构 (4)2.1APF的基本原理和种类 (4)2.2APF的谐波检测方法 (5)2.3APF的补偿电流控制方法 (6)3 有源电力滤波器谐波检测及控制策略 (8)3.1瞬时无功功率理论简介及其应用 (8)3.2SVPWM调制策略 (10)4 控制系统的总体设计方案 (14)4.1系统初始化程序的设计 (14)4.2中断子程序设计 (14)4.3I P-I Q法补偿谐波和无功电流的原理框图 (15)5 电力有源滤波器的仿真实现 (17)5.1源电力滤波器仿真模型的建立 (17)5.2结果仿真 (21)总结与展望 (25)致谢 (26)参考文献 (27)ABSTRACT: (28)电力有源滤波器的设计摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。
虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。
目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。
本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。
介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工学院毕业设计(论文)题目:电力有源滤波器的设计专业:电气工程及其自动化班级:电气082姓名:邓大伟学号:1609080203指导教师:国海日期:2011年12月22日目录摘要: (1)1 绪论 (2)1.1概述 (2)1.2抑制谐波的方法 (2)1.3本文研究的内容 (3)2 APF的工作原理和结构 (4)2.1APF的基本原理和种类 (4)2.2APF的谐波检测方法 (5)2.3APF的补偿电流控制方法 (6)3 有源电力滤波器谐波检测及控制策略 (8)3.1瞬时无功功率理论简介及其应用 (8)3.2SVPWM调制策略 (10)4 控制系统的总体设计方案 (14)4.1系统初始化程序的设计 (14)4.2中断子程序设计 (15)4.3I P-I Q法补偿谐波和无功电流的原理框图 (16)5 电力有源滤波器的仿真实现 (17)5.1源电力滤波器仿真模型的建立 (17)5.2结果仿真 (21)总结与展望 (25)致谢 (26)参考文献 (27)ABSTRACT: (28)电力有源滤波器的设计摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。
虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。
目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。
本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。
介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。
关键词:电力有源滤波器;谐波检测;APF1 绪论1.1 概述电能是现代社会的主要能源之一,在各行各业中有着广泛的应用,电能质量的好坏直接关系到国民经济的总体效益。
理想的供电系统对负荷供电时,应该保持三相平衡对称,电压电流波形皆为单频恒定正弦波,电能质量不受负载变化的影响。
随着电力电子装置及非线性、冲击性设备的广泛运用,谐波和低功率因数等问题越来越严重。
目前的大型企业中,几乎每家企业都或多或少有着电网污染的现象。
在供电的过程中电压的波形会由于某些原因而偏离正弦波形,即产生谐波[1]。
并且在电力的生产、传输、转换和使用的各个环节中都会产生谐波。
供电系统中的谐波问题已经引起了社会各界的广泛关注,为了保证供电系统中所有的电气、电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。
谐波主要危害:增加电力设施的负荷,降低系统的功率因数,降低发电、输电及用电设备的有效容量和效率,造成了设备、线路的浪费和电能损失;引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行;产生脉冲转矩致使电动机振动,影响产品质量和电机寿命;由于涡流和集肤效应,使电机、变压器、输电线路等因产生附加功率损耗而过热,浪费电能并加速绝缘老化[2];1.2 抑制谐波的方法随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量(Power Quality)受到人们的日益重视。
于是各国纷纷出台措施,制定相关标准。
目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。
它分为“无源滤波”(PF: passive filter)和“有源滤波”(APF: active power filter)。
(1)无源滤波无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。
无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点。
基本的无源滤波器的拓扑结构如下图所示:图1-1 无源滤波器结构(2)有源滤波目前,谐波抑制的一个重要趋势是采用电力有源滤波器(Active Power Filter-APF)[3]。
有源电力滤波器也是一种电力电子装置。
其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生与该谐波电流大小相等而极性相反的补偿电流,从而消除电网中的谐波。
这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且在日本等国得到广泛的应用。
有源电力滤波器的基本思想在六七十年代就己经形成。
80年代以来,由于大中功率全控型半导体器件的成熟,脉冲宽度调制(Pulse Width Modulation-PWM)控制技术的进步,以及基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,有源电力滤波器才得以迅速发展。
1.3 本文研究的内容本课题是根据自己的兴趣自选的,本文的研究内容主要包括以下几个方面:第 1 章为绪论,概述了谐波的危害、谐波抑制的各种方法以及有源电力滤波器发展现状,阐述了当前 APF 的研究热点。
第 2 章分析了有源电力滤波器的拓扑结构、工作原理和工作特性。
从多个方面出发对有源电力滤波器进行了分类和介绍,并分析了各自的优缺点。
第 3 章分析了有源电力滤波器谐波检测方法,并分析了各种谐波检测方法的工作原理和特性,通过对比选择 ip-iq 算法作为本文谐波检测方法。
第 4 章介绍了本次论文的总体设计方案,并给出了相关的原理框图。
第 5 章在MATLAB/Simulink中建立三相三相制有源电力滤波器的仿真模型,并对各个模块进行仿真和详细的阐述。
选择不同的整流负载,对负载电流波形和补偿后的电流波形进行对比,验证了 APF 的补偿性能。
第 6 章对全文做出总结,对有源电力滤波器系统存在的一系列问题进行探讨,并提出下一步的展望。
2 APF 的工作原理和结构2.1 APF 的基本原理和种类2.1.1 APF 的基本原理APF 的基本原理是检测电网中的谐波电流。
通过可控功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流, 使电源的总谐波电流为0, 从而达到实时补偿谐波电流的目的。
其原理框图如图2.1所示。
图2.1 有源电力滤波器系统原理图2.1.2 按联接方式确定APF 的种类APF 的结构形式很多,但其基本原理都是类似的,按电路拓朴结构可分为并联型APF 、串联型APF 和串--并联型APF 。
(1)并联型APF图2.2为并联型APF 基本结构。
由于与系统并联, 可等效为一受控电流源。
并联型APF 可产生与负荷电流大小相等、方向相反的谐波电流, 从而将电源侧电流补偿为正弦基波电流。
主要适用于抵消非线性负载的谐波电流、无功补偿及平衡三相系统中的不平衡电流等。
并联型APF 在技术上比较成熟[4]。
PWM i ci ci l 非线性负载 指令电流运算电路PWM 控制电路驱 动电 路 逆变主电路 e s i s图2.2 并联型有源滤波器结构图(2)串联型APF图2.3为串联型APF基本结构。
通过1个匹配变压器将APF串联在电源和负载之间, 以消除电压谐波, 平衡或调整负载的端电压。
与并联型APF相比, 串联型APF损耗较大, 且各种保护电路也较复杂。
因此, 很少单位使用串联型APF, 大多将其作为混合型APF 的一部分。
图2.3 串联型有源滤波器结构图(3)串—并联APF图2.4为串--并联型APF 基本结构。
具有串联APF 和并联APF 的优点, 能解决电气系统发生的电能质量问题, 又称为万能APF或统一电能质量调节器。
串联型APF将电源和负载隔离,阻止电源谐波电压串入负载和负载电流流入电网。
并联型APF提供一个零阻抗的谐波支路,把负载中的谐波电流吸收掉[5]。
这种方案兼有串、并联APF的功能,可以抑制闪变、补偿谐波、消除共同耦合点处的三相电压不平衡,具有较高的性价比。
该类APF的主要问题是控制复杂、造价较高。
2.4 串联—并联型有源滤波器结构图2.2 APF的谐波检测方法2.2.1 基于频域的检测方法这是最早应用于指令电流运算的一类方法。
其基本思想是利用模拟带(或陷波)滤波器进行谐波检测时他的缺点是:当电网频率波动时,所设计的滤波器中心频率会发生偏移,加上该中心频率易受器件参数及温度影响,会使检测出的谐波信号中含有大量基波分量,增加了APF的设计容量和有功损耗,因此,已基本不用。
2.2.2 瞬时空间矢量法基于瞬时无功功率理论的瞬时空间矢量法是目前三相电力有源滤波器中应用最广的一种指令电流运算方法。
最早是由日本学者 H·Akagi 于1984 年提出,仅适用于对称三相电路,后经过不断地改进,现已包括 p-q 法、Ip-Iq法以及 d-p 法等。
p-q 法最早应用,仅适用于对称三相且无畸变的电网;Ip-Iq 法不仅对电源电压畸变有效,而且也适用于不对称三相电网;基于同步旋转 park 变换的 d-q法不仅简化了对称无畸变下的指令电流运算,而且也适用于不对称、有畸变的电网[6]。
2.2.3 有功分离法该方法将被检测量分解为理想传输量(即从公共供电点上看去,负荷是三相对称且纯阻性的,该负荷只消耗有功能量)和另一分量之和,简单明了、易于实现。
但该方法以平均有功功率理论为基础,至少存在一个工频周期的延时,实时性较差;并且当电源电压存在畸变时,与电压谐波同次的谐波电流(有功部分)将被淹没一部分。
另外,该方法不能单独分离出基波有功分量。
2.2.4 自适应检测法该方法基于自适应滤波中的自适应干扰抵消原理,从负载电流中消去基波有功分量,从而得到所需的补偿电流指令值。
该方法的突出优点是对电网电压畸变、频率偏移及电网参数变化有较好的自适应调整能力,但目前其动态响应速度还较慢。
后来又提出了用神经网络实现的自适应检测法。
2.2.5 同步测定法针对三相不平衡系统提出了同步测定法,可分为等功率法、等电流法和等电阻法3类,即把补偿分量分配到三相中去,分别使补偿后的每相功率、每相电流或每相电阻相等。
该方法的缺点是计算量大、时间延迟大。
2.3 APF的补偿电流控制方法目前电力有源滤波器的闭环控制策略中最常用的是PI控制,另外国内外的学者还对变结构控制,模糊控制和人工神经网控制等现代新型控制方法进行了研究。
APF控制策略还包括开关器件的PWM脉冲信号的形成[7]。