变浆距双馈型风力发电机组的结构和原理-訾恒编著

变浆距双馈型风力发电机组的结构和原理-訾恒编著
变浆距双馈型风力发电机组的结构和原理-訾恒编著

第四章变浆距双馈型风力发电机组的结构和原理

概述:变浆距风力发电机是在定浆距风力发电机成功运用的基础上发展起来的机型,它的桨叶角度可以调节,以达到最佳的叶尖速比,使得风力机的风能利用率大大提高。变浆距风机相对于定浆距风机的优势是十分明显的,当风速过高时,通过调整桨叶节距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩,可以使功率输出保持稳定。在风力发电机启动时需要较大的气动扭矩,也需要通过变浆系统的动作以获得足够的气动转矩。其实风机设计人员最初设计的风力发电机都是倾向于变浆距的,但是由于技术条件有限,控制系统、变浆系统不成熟,在极端条件下往往不能满足风力发电机的安全运行条件。所以变浆距风机在很长一段时间里得不到发展。

经过定浆距风机的运行实践,设计人员对风力发电机组的运行工况和各种受力状态有了更深入的了解,变浆距风机的先天优势重新进入设计人员的视线,变浆距风机的设计重新被重视起来,当前的变浆距风力发电机已经成为市场的主流,目前投入商业运行的变浆距双馈型机组有很多,但其结构和原理大同小异,其中丹麦维斯塔斯的V90系列应用较为广泛,市场占有率较高,结构也很典型。这一章将以Vestas的V90-1.8/2.0MW风机为例来学习变浆距双馈型机组的结构和原理。

4.1维斯塔斯V90-1.8/2.0MW风机的特点

维斯塔斯是进入中国市场的第一家风机供应商,拥有20%的全球市场份额,是世界风能解决方案的领先供应商。已在全球六大洲66个国家和地区安装了43,000多台风机。维斯塔斯拥有中国最大的风力发电制造厂,生产发电机、叶片、机舱、轮毂和控制系统。已经在中国三个不同的省份拥有五家风机制造工厂。维斯塔斯V80/V90-1.8/2.0MW风机是维斯塔斯公司目前的主力机型,属于桨距调节的上风向风机,配有主动偏航和三叶片风轮。V90-1.8/2.0MW风机采用了先进的叶片设计和技术,其叶片的重量与V80-2.0MW风机叶片的重量相同,但叶片的扫掠面积增加了27%。其机舱采用的是V80的设计,但齿轮箱和传动系统都有所改进,能够承受来自转子的更大的负荷。因此,V80和V90风机的主要构

造区别不大,所以我们之后的介绍以V90系列为例。

V90-1.8/2.0MW风机风机风轮直径为90米,额定功率为1.8/2.0MW。独特的OptiSpeed(最佳转速)功能(控制系统中详细介绍)可使风轮变速运转。所有的V90风机都配有独特的维斯塔斯桨距调节系统。通过该系统,叶片桨距角可不断根据当前风况调到最佳角度,从而优化了风机出力和噪声水平。

主轴通过变速箱将动力传递到发电机。变速箱为行星齿轮和斜齿轮组合变速箱。动力从变速箱通过一个免维护复合联轴器传递到发电机。发电机为专用绕线转子四极异步发电机。

在高风速时,OptiSpeed和桨距调节使功率在不同的空气温度和密度下始终保持额定出力。在低风速时,OptiTip(最佳浆距)系统和OptiSpeed通过选择最佳转速和桨距角来优化出力。

风机通过全顺桨叶片实现制动。变速箱高速轴上装有机械刹车单元。由一台基于微处理器的控制器VMP控制器(维斯塔斯多处理器控制器)监控风机的所有功能。控制系统和变压器都装在机舱内。叶片位置由液压/机械变桨系统调节,该系统可使叶片旋转95°,同时也为盘式制动器系统提供压力。在急停操作模式下,风机通过全顺桨叶片(空气动力制动装置)实现制动。

四个电动偏航齿轮使偏航小齿轮旋转,它们与装在塔架顶部带齿的大偏航环啮合。偏航轴承系统为具有内置摩擦的滑动轴承系统。

玻璃纤维增强的机舱壳为机舱内所有部件提供防雨、防雪、防尘、防晒等保护。中心开口提供从塔架到机舱的通道。机舱内有一架800kg维护用起重机,其吊重能力可以被扩大到能提升7,500kg的主要部件。

维斯塔斯V90-1.8/2.0MW的技术参数

转子直径: 90米

扫风面积: 6,362平方米

额定转速: 14.9转/分

运行范围: 9.0-14.9转/分

叶片数量: 3

功率调节: 变桨/OptiSpeed

空气制动: 通过三个独立的桨距执行机构调节的全叶片桨距

轮毂高度: 80米,95米,105米

切入风速: 3.5米/秒 2.5米/秒

额定风速: 12米/秒13米/秒

切出风速: 25米/秒25米/秒/ 21米/秒

发电机类型: 异步发电机异步发电机

额定输出: 1,800 kW 2,000 kW

运行数据: 50 Hz 690 V 50 Hz 690 V

齿轮箱类型: 行星/斜齿轮

控制类型: 微处理器监控所有风机功能,备选远程监控。输出调节及优化通过OptiSpeed和OptiTip? 桨距调节实现。

机舱重量:68 t

叶轮重量:38 t

轮毂高度:

80米150 t 150 t -

95米200 t - 200 t

105米- - 225 t

机舱配置如图1所示。

图1 机械结构

1. 基架1

2. 偏航齿轮

2. 主轴1

3. 偏航环

3. 风轮轮毂1

4. 偏航控制

4. 叶片1

5. VMP顶部控制器

5. 叶片轴承1

6. VMP轮毂控制器

6. 变速箱1

7. 变压器

7. 转矩臂18. 发电机冷却器

8. 盘式制动器19. 变速箱冷却器

9. 发电机20. 变桨液压缸

10. 复合联轴器21. 起重机

11. 液压单元

4.2维斯塔斯V90-1.8/2.0MW风机的结构

㈠风轮

概述:上一章我们已经学习了定浆距风力机的风轮构成,变浆距风机的风轮和定浆距风机的风轮主体机构是相似的,区别是变浆距风机的桨叶的迎角是可以调节的,因此轮毂上应该装有变浆轴承、变浆执行机构和变浆控制系统。

①桨叶

维斯塔斯在叶片设计方面具有优势,其叶片重量一直是最轻的。V90风机在这一方面实现了新的突破。其叶片是由玻璃纤维增强环氧树脂和碳纤维组成。每个叶片包含两个叶片外壳,粘合到一个支撑梁上。V90新型叶片采用了几种轻质材料,特别是承重翼梁采用了碳纤维材料。碳纤维不仅比以前叶片中的玻璃纤维轻,而且强度大、刚度好,可显著减少材料用量。虽然V90风机的扫风面积比V80多27%,但其叶片重量实际上与较短的V80叶片基本相同。V90叶片的外形就空气动力学而言比以往的风机更优越。通过优化总负荷对风机的影响与年发电量之间的关系,维斯塔斯研发出了具有全新的平面外形和曲线形后缘的翼型。V90叶片的翼面不仅提高了风机效率,同时降低了叶片前缘对尘土的敏感度,优化了连续翼面厚度之间的几何关系。桨叶上装有接闪器,防止雷电损坏桨叶。

②轮毂和变浆轴承

变浆距轮毂为铸造结构,叶片与轮毂的连接部分装有用来调节叶片桨距的轴承,在轮毂内还装有浆距调节的执行机构和控制系统,其它部分和金风系列相似不再累述。变浆轴承是一个四点球轴承,带有内外密封,用螺栓连接到风轮轮毂上。专用螺纹插件将叶片与变浆轴承连接起来。对于电机驱动的齿轮式变浆机组,轴承会带有内齿,和变浆减速器齿轮咬合,实现变浆。此外金风直驱式机组采用

了一种电机驱动齿形带的方式变浆,轴承部分需配合齿形带。

③变浆执行机构

概述:变浆距执行结构的作用是使叶片绕着轴承旋转,根据控制系统的指令改变叶片的浆距角,从而改变风力发电机组的气动性能,变浆距执行机构按驱动机构形式一般分为两种,一种是液压变浆式,一种是电动变浆式,即以伺服电机驱动减速机实现变浆调节。按叶片变浆又可分为单叶片独立变浆和多叶片共同变浆两种。电动变浆多用在单叶片独立变浆风机上,液压变浆适用较为广泛可单用也可多用。液压变浆具有转动力矩大,重量较轻,刚度较大,定位精确,执行机构动态响应速度快等优点,但液压变浆距机构控制环节多,机构较复杂,成本较高,油密封和润滑要求较高。电机变浆机构紧凑,控制灵活可靠,不存在密封要求,但电机重量偏重,转矩较小。

⑴液压变浆执行机构

液压单独变浆执行机构的3个液压缸布置在轮毂内,每一个叶片都有一个液压缸,以曲柄滑块的运动方式分别给3个叶

片提供变浆驱动力,独立变浆过程彼此独立,

当一组变浆机构出现故障时,其余两组变浆

机构仍然可以通过变浆完成气动制动,其控

制可靠灵活,安全冗余较大,但它需要三套

相同的控制执行机构,成本较高,此外3

叶片还需要保证精确的同步变距,以避免3

叶片的浆距角差异。

液压统一变浆机构通过1个液压缸驱动3个

叶片同步变浆,液压缸放置在机舱里,三个

桨叶上有三个带长槽的摇臂,摇杆卡在摇臂

中连接在万象盘上,活塞杆穿过主轴与轮毂

内部的同步盘连接,动作时液压油驱动活塞

缸活塞运动,从而推动推杆、同步盘运动,

同步盘通过转轴、连杆、长转轴推动偏心盘

转动,偏心盘带动叶片进行变距。维斯塔斯

早期采用的就是这种液压统一变浆系统。

变浆系统存在一个技术难点就是如何在机舱和轮毂之间传输控制通讯信号、电能和液压动力。维斯塔斯V90风机的旋转传输单元通过一种带流体轴承的双向低摩擦旋转液压接头从液压站向轮毂传输液压动力。通过非接触环单元传输网络通讯信号。通过旋转变压器把低压电传输给轮毂。通过滑环装置从机舱向轮毂传输高压电。三个系统都安装在齿轮箱后侧与风轮中心同心的突出的中空轴上,并随着叶轮转动。旋转变压器位于距离齿轮箱最近的位置,其定子固定在齿轮箱箱体上。转动的Arc-net 非接触通讯系统,用来传递轮毂与控制系统之间的来往信号,装在旋转变压器的外侧,并罩有筒形外壳。在中空轴末端,液压旋转耦合单元用螺栓固定在转接器上,而转接器则用螺钉紧固在中空轴末端。液压旋转耦合单元的定子则用液压软管固定。高压 Hyac -Heat 变浆系统储能器加热器电能传输和变浆系统控制信号传输装置的滑环装置装在液压旋转耦合单元转接头上,并固定在旋转Arc-net 传输装置的固定壁上。

1.旋转变压器 低压输出

2.Arc-net 传输系统 只传输通讯信号

3.旋转接头 有孔能穿过旋转接触电缆

4.Hyac-Heat 旋转接触 电压和信号直接传输

5.液压旋转耦合单元 调桨系统的液压动力

6.罩子

⑵电动变浆执行机构

电动变浆系统一般是三叶片独立变浆系统,单个叶片变浆机构一般包括控制器、伺服驱动器、伺服电机、减速机、传感器、角度限位开关、蓄电池、变压器

等组成。伺服驱动器驱动伺服电机实现变浆角度的控制,传感器用于测量电机的已安装转动传输单元的齿轮

Vestas 的转动传输单元

转速和当前的浆距角,蓄电池是保证停电时变浆系统动作的备用电源。

伺服电动机与减速机和传动小齿轮

连接在一起,固定在轮毂上,电动机带动

减速机旋转减少转速增加了扭矩,通过减

速机的输出轴小齿轮与变浆距轴承的内

齿圈啮合驱动变浆距轴承的内圈和叶片

一起旋转,实现变浆的目的。变浆减速机

的原理与上一章所讲的偏航减速机结构

和原理相似,都是通过行星齿轮或行星齿轮和其它齿轮配合进行减速。

此外金风的直驱系列风机采用了电机齿形带变浆的形式,也可归类为电机变浆的一种形式,在下一章中将详细叙述。

④变浆控制系统

变浆距风力发电机组与定浆距风力发电机组相比,具有在额定功率点以上输出功率平稳的特点。早期的变浆距风力发电机,当功率在额定功率以下时,控制器将叶片浆距角控制在0o附近不做变化,其气动性能等同于定浆距风力发电机组,当功率超过额定功率时,变浆机构方开始工作,调整叶片浆距角,将发电机的输出功率限制在额定值附近。但是,大型风力发电机组的叶片重量很大,要操纵如此巨大的部件响应风速的快速变化几乎是不可能的,但是变速型风力发电机可以通过改变风轮的转速,以吸收瞬时增大的风能,达到更高的风能利用率。

变浆距风力发电机的运行控制一般分为三种情况,即风力发电机的起动状态、欠功率状态和额定功率状态。

⑴起动状态

风机未并网时,控制系统根据当前风机状态和实际风速给定浆距角和变浆的速度。变距风轮的桨叶在静止时,浆距角为90o,这时气流对桨叶不产生转矩,整个桨叶实际上相当于一块阻尼板。

⒈低风速段起动

当机组无故障且满足起动风速为3-5m/s时,控制系统将浆距角定位至接近45o的啮合角,以提高起动扭矩。随着发电机转速的上升,系统控制叶片的浆距角由45o向0o逐渐减小,直到发电机转速增加到并网转速值。起动完成之后,桨

叶停止在浆距角为0o的最大开浆位置,以实现对风

能的最大捕获。但在风速过低时,系统不对浆距角

进行调节,以节约能量。

⒉中风速阶段

当风速高于5m/s但低于额定风速时,控制系统

无需对浆距角进行定位以获取最大气动转矩的控制,

浆距角将直接从90o逐渐减小到0o。控制系统根据风

速值大小选择浆距角减小的快慢,起动完成后,浆距

角停止在最大开浆位置,以实现最大风能捕获。

⒊高风速阶段

当风速高于额定值但是低于起动最大允许风速值,即风速足够使风力发电机满发时,控制系统调节浆距角从90o组建减小至给定的浆距角,并根据风速值大小选择叶片浆距角减小的快慢,以确保机组在起动过程中叶轮转速能够平稳增加,直至达到合适的条件使发电机并网。起动完成后,变浆系统将开始进行恒功率调节,系统根据当前的平均风速值将桨叶调整到对应的角度,然后根据反馈回来的发电机功率,对浆距角进行对应的微调,实现风力发电机组平稳的额定功率输出。

⑵欠功率状态

欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态运行。早期的风机变浆控制系统在欠功率状态对桨叶不进行调节,只是将浆距角保持在最大开浆状态,目前以Vestas为代表的风机厂商采用了优化滑差技术,Vestas称之为Optitip技术,即利用双馈机组的特点根据风速的大小改变发电机的转差率,改变发电机的转数,使风轮尽量运行在最佳叶尖速比上,以优化功率输出。但是Optitip技术优化了功率输出的同时,代价是对暂态变化的高速风能响应的削减,所以这种优化只是弥补了变浆距风机的不足之处,但是对风能的吸收与定浆距风力发电机组相比并没有明显的优势。

⑶额定功率状态

当风速达到或者超过额定风速后,风力发电机组进入额定功率状态。在传统的变浆距控制系统方式中,将转速控制切换到功率控制,即变浆系统开始根据发电机的功率反馈进行控制。功率反馈值超过额定功率时,浆距角就增大,反之则

减小。但是由于变浆系统的响应速度有限,对快速变化的风速,并不能通过迅速改变浆距角进行调节,因此,为了优化功率曲线最新设计的风力发电机组中在进行功率控制的过程中,其功率反馈信号不在作为直接控制浆距角的变量。变浆距系统不直接响应风速的高频分量,而是由风速的低频分量和发电机的转速控制。风速的高频分量产生的机械能由风轮吸收,通过迅速改变发电机的转速,然后通过转子电流控制器对转差率进行控制,达到恒频输出。这种控制方式当瞬时风速增大时,允许发电机转速暂时升高,将瞬变的风能以风轮动能的形式储存起来,当转速降低时,在将动能释放出来,使功率曲线达到理想状态。

变浆系统除进行上述控制之外还可以给定功率的输出值,控制系统把给定的功率作为最大负荷控制,以限制风机或风场的功率输出。此外为了补偿风轮上的不对称负载,如风轮顶部和底部的风速差异,Vestas 3MW风机的独立变浆系统还可以实现对风机桨叶的顺次逐个变浆,安装在每个桨叶根部的负载传感器测量风轮桨叶的负载,如果控制器监测到负载分布不对称,变浆系统设置其3个桨叶在定位点周围做正弦运动。即三个桨叶进行不断的变浆调整,在桨叶转到负载大的区域时就减小浆距角,反之则增大浆距角。变浆系统还具有推力限制和噪声限制功能当变浆系统监测到风轮所受的推力或噪声超出最大值时,变浆系统会调整浆距角以减小风轮受力或噪声。

V90-2MW (VMP5000) 的变桨伺服系统框图

㈡传动系统

①主轴和主轴承

主轴的功能是将风轮负载传递给齿轮箱。

主轴开有中心孔用于将电、液压和控制信号

三种控制媒介传到轮毂。主轴前面焊接有一

个和轮毂连接的大法兰,风轮锁定圆盘也位于此,与金风系列的区别是主轴由两组球面滚子轴承支撑,称之为前轴承和后轴承。在前轴承座上装有一个液压驱动的风轮锁定系统。

②齿轮箱

Vestas的齿轮箱采用一级行星齿轮(齿圈、行星齿轮和太阳轮)两级平行轴齿轮的设计,行星轮的中心轴是空心的,用以布置旋转传输单元,齿轮箱的轴承和齿轮通过压入和喷入油进行润滑。机械油泵和高速轴直接连接,压力油流动进行润滑。泵出口侧和过滤器及冷却系统相连,从而使油得到过滤和冷却,过滤和冷却过的油被导入齿轮箱内不同润滑点。为了减小齿轮箱运行的震动,Vestas采用了一种其称之为扭矩臂的弹性支撑结构,齿轮箱两侧 2 个对称安装的铸造臂上有内置的橡胶盘,用作弹簧缓冲件。

③高速轴刹车和刹车盘

Vestas的高速轴刹车通过衬套装在齿轮箱上。刹车盘装

在高速轴上,具有三组液压刹车钳,由液压系统提供液压动

力,刹车盘分别位于刹车盘的顶部和左右侧。

④联轴器

Vestas的高速轴与发电机采用挠性膜片

式联轴器连接,其原理与金风750系列是一

样的,目的都是为了减小传动系统的中心偏

移,减小振动,阻断转子寄生电流的传递。

对齿轮箱起到超扭矩保护作用,降低齿轮箱

的造价。只是在设计构造上稍有不同,其结构如右图。

⑤双馈式异步发电机

Vestas V90风机上所使用的发电机为转子绕线式双馈异步发电机。额定电压690V,额定频率50Hz(中国),绝缘等级F,防护等级IP54,冷却方式空-空冷。双馈异步发电机的定子结构与异步电动机相同,转子为绕线式,带有集电环和电刷,转子侧可以加入频率可变的交流励磁,转子既可以输入电能也可以输出电能,还可以调整无功功率,既有异步发电机的特点又有同步发电机的特点。

同步发电机在稳态运行时,其输出电压的频率厂与发电机的极对数p及发电机转子的转速n有着严格固定的关系,即f=pn/60。在发电机转子恒速运行时,

定距桨变距桨与风力发电机组

桨距 螺旋桨的桨叶都与旋转平面有一个倾角。 假设螺旋桨在一种不能流动的介质中旋转,那么螺旋桨每转一圈,就会向前进一个距离,连续旋转就形成一段螺旋。 同一片桨叶旋转一圈所形成的螺旋的距离,就称为浆距。显然,桨叶的角度越大,浆距也越大,角度与旋转平面角度为0,浆距也为0。 这个“距”,就是桨叶旋转形成的螺旋的螺距。 桨距指的是直升机的旋翼或固定翼的螺旋桨旋转一周360 度,向上或向前行走的距离(理论上的)。就好比一个螺丝钉,您拧一圈后,能够拧入的长度。桨距越大前进的距离就越大,反之越小!然而要测量实际桨距的大小是比较困难的,所以一般固定翼飞机使用桨距不变的螺旋桨上都会标明其直径和桨距的大小(单位以英寸居多),以便于和合适的发动机配套使用。绝大多数的固定桨距的直升机桨一般是专为某一级别的飞机定制的,所以只标明直径。可变桨距直升机可以非常容易的通过测量桨叶的攻角(迎风角度)大小来体现桨距的大小,和变化幅度。 l 定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69 ,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/ 小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。 失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。 2 变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“, 直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。 随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用 OptitiP 技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态 从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。 变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。 为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。 2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。 3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

风力发电机组变桨系统毕业论文

风力发电机组变桨系统的维 护与检修 毕业顶岗实习报告书 专业:电力系统自动化技术(风电方向) 班级: 姓名: 顶岗实习单位:金风科技股份有限公司 校外指导师傅: 校内指导教师: 报告完成日期: 新疆农业大学 2015年6月

风力发电机组变桨系统的维护与检修 学生姓名: 专业班级: 学生诚信签名: 完成日期: 指导教师签收: 摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。传统的化石燃料虽能解决能源短缺的问题,却给环境造成了很大的破坏,而风能具有无污染、可再生、低成本等

优点,所以其受到世界各国的重视。 可靠、高效的风力发电系统的研发己经成为新能源技术领域的热点。然而,因为风能具有不稳定性、能量密度低和随机性等特点,同时风电厂通常位于偏远地区甚至海上,自然条件比较恶劣,因此要求其控制系统必须能够实现自动化运行,并且要求控制系统有高可靠性。所以对风力发电机组尤其是大型风电机组的控制技术及风力发电后期的维护和检修就具有相当重要的意义。 本文首先在对风力发电原理,风电机组研究的基础上从变桨距风力机空气动力学研究入手,分析了变桨距控制的基本规律,再结合目前国内主流的变桨距控制技术分别设计出了液压变桨距控制,电动变桨距控制的方案,变桨距风机的维护和检修,最后在此基础上提出了一种较为理想的控制策——半桨主动失速控制。 关键词:变桨距控制,维护,检修

目录 摘要 (2) 一顶岗实习简历 (1) 二顶岗实习目的 (1) 三顶岗实习单位简介 (2) 目前行业发展地位 (2) 四顶岗实习内容 (3) 第一章变桨距系统 (3) 变桨距与定桨距 (5) 定桨距 (5) 变桨距 (5) 定桨距与变桨距的比较 (6) 而变桨距风力发电机可以克服上述定桨距风力发电机的缺点,在很宽的风速范围内保持最佳叶尖速比,从而提高风力机的运行效率和系统稳定性。变桨距风力发电机在变桨距的同时通过配合使用双馈发电机或永磁风力发电机,可以减轻风速突变产生的转距波动,减轻传动机构承受的扭矩波动,提高齿轮箱寿命,减少传动系统故障率。此外,可结合对电机的励磁控制,实现无电流冲击的软并网,使机组运行更加平稳安全[2]变桨矩调节原理 (7) 变桨距控制过程 (7) 变桨距风力机组的运行状态分析 (8) 启动状态 (8) 欠功率状态 (9) 额定功率状态 (9) 变桨距控制的特点 (9) 输出功率特性 (9) 风能利用率 (10) 额定功率 (10) 启动与制动性能 (10) 对机械部件的影响 (10) 第二章变桨矩系统的原理与结构 (11) 变桨矩调节原理 (11) 变桨矩系统分类 (11) a) 液压变桨矩 b) 电动变桨矩 (12) 图变桨矩系统的轮毂照片 (12) 风力发电机组变桨矩驱动装置比较和选择 (15) 液压变桨与电动变桨技术比较 (15) 见表[6]。 (15) 表液压变桨系统与电动变桨系统的比较 (15) 项目 (15) 液压变桨矩系统 (15) 电动变桨矩系统 (15) 桨矩调节 (15) 响应速度慢 (15)

风力发电机变桨控制系统培训教材

变桨控制系统培训教材 1. 变桨控制系统概述 变桨轴承 限位开关装 图1 变桨系统 变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变 桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺

桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1.通过调整叶片角把风机的电力速度控制在规定风速之上的一 个恒定速度。 2.当安全链被打开时,使用转子作为空气动力制动装置把叶子转 回到羽状位置(安全运行)。 3.调整叶片角以规定的最低风速从风中获得适当的电力。 4.通过衰减风转交互作用引起的震动使风机上的机械载荷极小

化。 2.变桨轴承 变桨驱动装 变桨轴承 图2 变桨轴承和驱动装置 安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱 动装置啮合运动,并与叶片联接。 工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改

变速变桨距风力发电机组控制策略改进与仿真

变速变桨距风力发电机组控制策略改进与仿真 刘 军,何玉林,李 俊,黄 文 (重庆大学机械传动国家重点实验室,重庆市400030) 摘要:在分析变速变桨距风力发电机组基本控制策略的基础上,提出一种扩大过渡区的改进控制策略,用来消除额定功率运行点附近切换造成的功率波动及突变载荷等不利影响。依据改进的控制策略设计了3个控制器平滑过渡方案,实现对该策略的最佳跟踪。运用MAT LAB 仿真平台模拟了改进控制策略下的风力发电机组运行特性,结果表明了改进控制策略的正确性及控制器设计的有效性。 关键词:风力发电机组;变速变桨距;控制策略;扩大过渡区;平滑控制 收稿日期:2010 06 23;修回日期:2010 10 09。重庆市科技攻关重点项目(CST C2007A A3027)。 0 引言 风力发电机组的控制技术由原来单一的定桨距失速控制转向变桨距变速控制,目的是为了防止风能转换系统承受的载荷过重,从风场中最大限度地捕获能量以及为电网提供质量较好的电能。然而,风力发电机组作为一种复杂的、多变量、强耦合、非线性的系统,要想减小风力机载荷以延长其使用寿命,抑制功率波动以降低对电网的不利影响,控制策略的选取及控制器的设计至关重要[1 6]。 本文通过对变速变桨距风力发电机组基本控制策略的分析,针对过渡区运行过程中出现的功率波动大及突变载荷强等情况,提出一种改进的控制策略来减缓此种影响。为最佳跟踪改进的控制策略,设计了3个控制器以实现3个运行区间的平滑过渡。同时应用M ATLAB 仿真平台对变速变桨距风力发电机组运行特性进行了仿真,结果表明了所提出方案的合理性和可行性。 1 基本的变速变桨距控制策略 如图1所示,在转速 转矩平面图中,曲线A BC 描述了变速变桨距风力发电机组的基本控制策略。在低风速区,风电机组从切入风速为V in 的A 点到风速为V N 的B 点,沿着C pmax 曲线轨迹运行,此区间称为恒C p 运行区。由于在B 点发电机转速达到了其上限值 N ,当风速从V N 上升到V N 时,转速将恒定在 N ,提升发电机转矩使风电机组达到其额定功率,在图1中为BC 段,也称为恒转速区或过渡区。当风速超过额定风速V N 时,变桨距系统将开 始工作,通过改变桨距角保持功率的恒定,风电机组将持续运行在C 点,直到风速超过切出风速V out ,此区间称为恒功率区,而此区间内桨距角控制方式采用统一桨距控制,它是指风力机所有桨距角均同时 改变相同的角度[7 8] 。在此需要注意的是:若最大功率P N 曲线与C pmax 曲线的相交点在额定转速极限值左侧,就会造成风电机组在未达到额定转速时,已进入失速状态,相应的A B 区间将被缩小,这时就需 对整个风电机组额定点进行重新选取。 图1 变速变桨距风力发电机组控制策略Fig.1 C ontrol strategy of the variable speed pitch controlled wind turbine driven generator system 从图1可以看出,3个区间工作点的划分非常明显,而控制器的设计与工作点的选取有着必然的联系,因此,基本的变速变桨距风电机组通常会设计2个独立的控制器,一个用来跟踪参考速度,另一个用来跟踪额定功率。由于2个控制器都有各自的控制目标,在运行过程中相互独立,然而在工作点附近,2个控制器又相互制约,这种制约就会导致风电机组在C 点控制系统的调节能力下降,在突遇阵风 82 第35卷 第5期2011年3月10日Vo l.35 N o.5M ar.10,2011

海上风力发电及变桨距系统的心得体会

海上风力发电及变桨距系统的心得体会毕业设计(论文)开题报告 题目:海上风力发电变桨伺服系统设计学院:电气信息学院 专业:电气工程及其自动化学生姓名:学号:指导老师: xx年 3月 15日 开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效。 2.开题报告内容必须用黑墨水笔工整书写或按此电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的 __应不少于10篇(不包

括辞典、手册),其中至少应包括1篇外文资料;对于重要的 __应附原件复印件,作为附件装订在开题报告的最后。 4.统一用A4纸,并装订单独成册,随《毕业设计(论文)说明书》等资料装入文件袋中。 毕业设计(论文)开题报告 毕业论文 题目:海上风力发电变桨伺服系统 学院:电气信息学院专业:电气工程及其自动化班级:学号:学生姓名:导师姓名:完成日期: xx年6月 诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果;

2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月 湖南工程学院 毕业设计(论文)任务书设计(论文)题目:海上风力发电变桨伺服系统设计姓名系别电气信息学院专业电气工程及其自动化班级学号 指导老师教研室主任谢卫才 一.基本任务及要求: 本设计以海上风力发电变桨伺服电机为控制对象研究其控制系统的设计方法。主要设计内容为:①掌握变桨伺服电机的原理、结构; ②研究变桨伺服电机控制方法;③完成调速系统主电路结构和原理设

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

风力发电机组变桨距

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。 关键词:风力发电;现状;技术发展 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 1我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。 随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。 我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。 从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2风力发电的技术发展 风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。 2.1风力发电机组机型及容量的发展 现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即

风力发电变桨系统浅析

风力发电变桨系统浅析 摘要:变速变桨距风力发电机组目前已成为大型风力发电机组研发和应用的主流机型。变桨距机构就是在额定风速附近,依据风速的变化随时调节桨距角,控制吸收的机械能,一方面保证获取最大的能量(与额定功率对应),同时减少风力对风力机的冲击。在并网过程中,变桨距控制还可实现快速无冲击并网。 关键词:变桨、限位开关、羽状位置、变频 一、变桨系统概述 变桨控制系统实现风力发电机组的变桨控制,在额定功率以上通过控制叶片桨距角使输出功率保持在额定状态。变桨控制柜主电路采用交流--直流--交流回路,由逆变器为变桨电机供电,变桨电机采用交流异步电机,变桨速率由变桨电机转速调节。 二、机械和电气部分 1、变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 2、变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 3、变桨控制系统有四个主要任务: (1)通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。 (2)当安全链被打开时,使用转子作为空气动力制动装置把叶片转回到羽状位置(安全运行)。 (3)调整叶片角以规定的最低风速从风中获得适当的电力。 (4)通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。 4、变桨轴承

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电机变桨系统

风力发电机变桨系统 摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。 关键词:变桨系统;构成;作用;保护种类;故障分析 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电机变桨系统DOC

风力发电机变桨系统 1、综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2、变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 SSB变桨系统为寒冷环境设计。环境温度定义如下 工作温度为 -30 ~ +40 ℃ 静态温度为 -40 ~ +50 ℃ 在主电源失电后,单独的加热系统会开始工作来保持柜体温度,只有必要的设备被通电。在每个柜体的温度到达 5 ℃一段时间后,系统被启动,这个默认的时间是60分钟。 在这段可调整的时间过后,这个系统被释放和通电。 3、主要部件 电控柜(一个主控柜、三个轴柜)4套 变桨电机(配有变桨系统主编码器:A编码器)3套 备用电池3套 直流电机3个 机械式限位开关3套(6个) 冗余编码器(B编码器)3套

风电场风机变桨系统故障分析及具体措施

风电场风机变桨系统故障分析及具体措施 摘要:风力发电作为现阶段电力能源供应系统的重要构成,发电机组通常需要 在复杂的环境下运行,风向、风速、风力与温度环境等容易受不确定因素影响, 具有随机性、多变性与间歇性等方面的特点,风机系统在交变负载的影响下,容 易出现故障问题。变桨系统是风力发电的重要技术,分为液压变桨与电动变桨等 形式,液压变桨系统的常见问题包括超限故障、不同步故障等;电动变桨运行系 统主要的故障问题为电气回路、变桨电滑环以及后备电源等出现损坏,技术与管 理人员应结合具体故障原因,采取针对性的处理手段。 关键词:超限故障;运行不同步;电气回路 现阶段,我国能源消耗量逐步提高,风电场的电力生产与供应需求不断提升,风机系统的运行压力大幅度增加,为保证电力运行系统的安全、稳定运行,风电 场应在加强变桨系统状态监测的基础上,做好故障排查与处理工作。由于变桨系 统处于封闭的环境中,因此在运行监测时,故障表现不明显,需要通过总控制系 统对系统运行异常数据进行报错,检测与维修技术难度相对较大。基于此,本文 从现阶段液压与电动变桨系统的常见故障表现与原因方面出发,对不同故障问题 处理对策进行系统分析。 一、液压电机变桨系统中的主要故障及处理对策 1、变桨系统超限故障情况的分析与处理 液压变桨在运行过程中容易出现超限故障,最常见故障点为桨叶位置传感器损坏,造成测量电压超出允许值范围,从而造成叶片位置检测错误。一旦桨叶位置 的传感器出现损坏情况,传感器会发出超过正常标准的电压信号,信号传输到伺 服系统中,反馈到主控制平台,平台根据故障信息报出超限情况。桨叶的位置传 感装置是控制变桨系统的重要装置,如果装置出现故障,不仅会增加实际变桨角 度与理论角度的误差值,还会在一定程度上降低风机运行质效,降低系统发电的 稳定性。在进行故障检测与处理的过程中,应先利用程序控制功能对位置传感器 进行状态检测,将桨叶的角度数据转换为可测量的电压信号。若不在正常范围内,通过桨叶位置传感器配套调整工具,将桨叶角度正负极限值调至规定电压范围。 如果故障位置无法处理,或经由技术处理后,电压值仍旧存在跳变问题,可以通 过更换传感器,对桨叶位置情况进行检测,确保故障的有效消除。 2变桨不同步故障分析 变桨系统通过位置传感装置的布设,对桨距角电压信号进行监测,当变桨叶 片的角度最大差值超过4°时,传感装置会将异常信息反馈到PLC系统中。控制平 台接受异常信号,经由分析后,报出具体的故障信息。变桨发生不同步系统运行 故障,常见原因为变桨比例阀运行系统出现损坏现象,从而导致液压回路流量控 制失效,使三叶片中最大变桨角度与最小变桨角度差值大于程序设定值,三桨叶 运转位置、速度出现误差,导致运行不同步。比例阀运行系统对电机进行控制的 过程中,需要通过逻辑运算,同时对比例阀电位移转情况与伺服电情况进行反馈,通过控制装置放大传输信号,对转换器进行控制,转换器根据输入信号产生等比 的系统驱动力,对液压阀进行有效驱动,对液压阀的压力与液压油流量进行动态 控制。比例阀通过控制液压油的流量来进行桨叶位置和变桨速度控制的,根据变 桨液压回路。因此,系统中所有电磁阀带电,电磁阀得电选择导通或关闭油路, 比例阀的底部线圈也处于带电状态,阀位出现变化,液压油将会从P端出发,流

风力发电机组的变桨距系统

摘要 本文主要介绍了风力发电机组的变桨距系统,其中,主要是液压系统由电器控制用来推动机械机构对桨叶进行变距。 能源问题是目前人类所面临的重大课题之一。当今我们正处在新旧能源交替发阶段,以前的旧式能源,如煤炭、石油等不可再生资源已经越来越少,已经不能满足目前人类的生产生活需要,这就需要我们找到可以替代他们的新资源。风能作为绿色资源,早在几千年前就为人类所利用。时至今日,风能在多种可再生资源中是技术上最成熟,最具竞争力的可开发资源。 国外600KW以下的机组已经大量生产,故障率从80年代初的50%下降到当前的2%以下。目前MW级机组的份额明显增大,2003年的机组平均单机容量达到1.2MW。 以前的风力机主要是通过偏航来调整转速,可是这种方法对风能的充分利用十分不利,而且响应速度很慢,所以风力机的变距机构具有很高的开发价值。液压系统的响应速度快,力——质量比大,控制精度高,可控性能好。故本设计采用液压系统,用比例阀控制液压缸可以对液压缸进行时时控制。液压缸推动同步盘经由连杆把运动传递给偏心盘进而实现变桨距。 本设计融合了机-电-液一体化的设计理念,寻求更为有效的设计理论和方法来实现桨叶的快速变距。该系统实现了设计目标,具有较高的自动化程度,运行稳定可靠,性能价格比较高,非常适合于现代化生产实际的需要。因此,该产品的推广具有十分广阔的前景。 关键词:风力发电机液压系统能源新资源

Abstract his paper mainly introduced the wind power machine set changes the oar to be apart from the system, among them, mainly is hydraulic system to be use by the electric appliances control to push the machine organization to the oar the leaf carries on change to be apart from. The energy problem is one of the important topics that mankind face currently. Nowadays we are being placed in the new old energy alternation hair stage, the old type energy of the past, if coal, petroleum...etc. can't the reborn resources is less and less already, have already can't satisfy the mankind's production life needs currently, this needs us to find out new resources that can act for them. The wind energy is the green resources, as early as and several thousand year ages are as the behavior type make use of. Up to now, the wind energy is the technique in variety can reborn resources up the most mature, have most the competition ability and can develop the resources. The machine set of the foreign 600 KW the following has already mass-produced, the breakdown rate descends current 2% from 50% of the beginning of 80's the following. Currently the quota of the MW class machine set is obvious to enlarge; an equally single machine capacity of machine of 2003 attains the 1.2 Maws.

风力发电机组变桨控制

2.风力发电机组控制原理—变桨距控制对象特点 a)气动非线性 变桨距控制实质是通过改变攻角来控制风力机的驱动转矩,风能利用系数曲线对桨距角和叶尖速比的变化规律具有很强的非线性。 b)工况频繁切换 由于自然风速大小随机变化,各风速段机组控制目标不同,导致变速风力发电机组随风速在各个运行工况之间频繁切换。 c)多扰动因素 影响风力发电机组性能变化的不确定干扰因素很多,风速的变化(尤其是阵风)对风力发电机组的功率影响最大。 d)变桨距执行系统的大惯性与非线性 常用的液压执行机构和电机执行机构,驱动时呈现出非线性的性质。随着风力机容量的不断增大,变桨距执行机构自身的原因引入的惯量也越来越大,使动态性能变差,表现出了大惯性对象的特点。

2.风力发电机组控制原理—变桨距控制系统 目前并网型风力发电机组的变桨距控制系统根据机组并网前、后的工况主要包含两种工作方式:并网前转速控制和并网后功率控制。 变桨距风力发电机组变桨控制系统图

2.

2.

3 风电场接入电网的有关规定内容 1.技术要求规范性引用文件 GB/T 12325-2008 电能质量供电电压偏差 GB 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 15543-2008 电能质量三相电压不平衡 DL 755-2001 电力系统安全稳定导则 SD 325-1989 电力系统电压和无功技术导则 GB/T 20320-2006 风力发电机组电能质量测量和评估方法DL/T 1040-2007 电网运行准则

海上风力发电及变桨距系统的心得体会

【一】:海上风力发电变桨伺服系统设计开题报告 毕业设计(论文)开题报告 题目海上风力发电变桨伺服系统设计学院电气信息学院 专业电气工程及其自动化学生姓名学号指导老师 2015年 3月 15日 开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效。 2.开题报告内容必须用黑墨水笔工整书写或按此电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于10篇(不包括辞典、手册),其中至少应包括1篇外文资料;对于重要的参考文献应附原件复印件,作为附件装订在开题报告的最后。 4.统一用A4纸,并装订单独成册,随《毕业设计(论文)说明书》等资料装入文件袋中。 毕业设计(论文)开题报告 【二】:海上风力发电变桨伺服系统设计 毕业论文 题目海上风力发电变桨伺服系统 学院电气信息学院专业电气工程及其自动化班级学号学生姓名导师姓名完成日期2015年6月 诚信声明

本人声明 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名日期年月 湖南工程学院 毕业设计(论文)任务书设计(论文)题目海上风力发电变桨伺服系统设计姓名系别电气信息学院专业电气工程及其自动化班级学号 指导老师教研室主任谢卫才 一.基本任务及要求 本设计以海上风力发电变桨伺服电机为控制对象研究其控制系统的设计方法。主要设计内容为①掌握变桨伺服电机的原理、结构;②研究变桨伺服电机控制方法;③完成调速系统主电路结构和原理设计,进行参数计算与元器件选择;④设计控制电路;⑤系统的电磁相容性(EMC)设计;⑥编写设计说明书等。 二.进度安排及完成时间 3月1日——3月20日查阅资料、撰写文献综述、撰写开题报告 3月21日查文献综述、开题报告撰写情况 3月23日——4月5日毕业实习、撰写实习报告 4月6日——5月29日毕业设计 4月底毕业设计中期抽查 5月30日——6月10日撰写毕业设计说明书 6月10日——6月15日毕业设计答辩 目录

风电机组变桨距系统

作者:中国科学院电工研究所李建林张雷鄂春良来源:赛尔电力自动化总第78期 摘要:在风力发电系统中,变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命,通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡,不但优化了输出功率,而且有效的降低的噪音,稳定发电机的输出功率,改善桨叶和整机的受力状况。变桨距风力发电机比定桨距风力发电机具有更好的风能捕捉特性,现代的大型风力发电机大多采用变桨距控制。本文针对国外某知名风电公司液压变桨距风力机,采用可编程控制器(PLC)作为风力发电机的变桨距控制器。这种变桨控制器具有控制方式灵活,编程简单,抗干扰能力强等特点。本文介绍了液压变桨距系统的工作原理,设计了变桨控制器的软件系统。最后在国外某知名风电公司风力发电机组上做了实验,验证了将该变桨距控制器可以在变桨距风力机上安全、稳定运行的。 关键词:变桨距;风力发电机;可编程控制器 1引言 随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出:既能提高风力机运行的可靠性,又能保证高的风能利用系数和不断优化的输出功率曲线。采用变桨距机构的风力机可使叶轮重量减轻,使整机的受力状况大为改善,使风电机组有可能在不同风速下始终保持最佳转换效率,使输出功率最大,从而提高系统性能。随着风电机组功率等级的增加,采用变桨距技术已是大势所趋。目前变桨执行机构主要有两种:液压变桨距和电动变桨距,按其控制方式可分为统一变桨和独立变桨两种。在统一变桨基础上发展起来的独立变桨距技术,每支叶片根据自己的控制规律独立地变化桨距角,可以有效解决桨叶和塔架等部件的载荷不均匀问题,具有结构紧凑简单、易于施加各种控制、可靠性高等优势,越来越受到国际风电市场的欢迎。 兆瓦级变速恒频变桨距风电机组是目前国际上技术比较先进的风力机型,从今后的发展趋势看,必然取代定桨距风力机而成为风力发电机组的主力机型。其中变桨距技术在变速恒频风力机研究中占有重要地位,是变速恒频技术实现的前提条件。研究这种技术,提高风电机组的柔性,延长机组的寿命,是目前国外研究的热点,但是国内对此研究甚少,对这一前瞻性课题进行立项资助,掌握具备自主知识产权的独立变桨控制技术,对于打破发达国家对先进的风力发电技术的垄断,促进我国风力发电事业的进一步发展具有重要意义。 为了获得足够的起在变桨距系统中需要具有高可靠性的控制器,本文中采用了OMRON 公司的CJ1M系列可编程控制器作为变桨距系统的控制器,并设计了PLC软件程序,在国外某知名风电公司风力发电机组上作了实验。 2变桨距风力机及其控制方式 变桨距调速是现代风力发电机主要的调速方式之一,如图1所示为变桨距风力发电机的简图。调速装置通过增大桨距角的方式减小由于风速增大使叶轮转速加快的趋势。当风速增大时,变桨距液压缸动作,推动叶片向桨距角增大的方向转动使叶片吸收的风能减少,维持风轮运转在额定转速范围内。当风速减小时,实行相反操作,实现风轮吸收的功率能基本保持恒定。液压控制系统具有传动力矩大、重量轻、刚度大、定位精确、液压执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距[4][5]。目前国内生产和运行的大型风力发电机的变距装置大多采用液压系统作为动力系统。

相关文档
最新文档