高中数学 §空间角的计算(二)

合集下载

2023年高考数学----空间角问题规律方法与典型例题讲解

2023年高考数学----空间角问题规律方法与典型例题讲解

2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。

第8节 立体几何中的向量方法(二)——求空间角

第8节 立体几何中的向量方法(二)——求空间角

令 x=3,则 n=(3,- 3,3)为平面 DEF 的一个法向量.
设直线 AC 与平面 DEF 所成角为 θ,
→ |AC· n| |-6-6| 21 → 则 sin θ=|cos〈AC,n〉|= = = , → 7 4 21 |AC|· |n|
21 所以 AC 与平面 DEF 所成角的正弦值为 . 7
11
@《创新设计》
)
目录
考点二 用空间向量求线面角
[例 2] (2018· 洛阳二模)已知三棱锥 A - BCD,AD⊥平面 BCD,BD⊥CD,AD= BD=2,CD=2 3 ,E,F 分别是 AC,BC 的中点,P 为线段 BC 上一点,且 CP =2PB. (1)求证:AP⊥DE;(2)求直线 AC 与平面 DEF 所成角的正弦值.
15
@《创新设计》
目录
考点二 用空间向量求线面角
利用向量法求线面角的方法: (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向 量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐 角或钝角的补角,取其余角就是斜线和平面所成的角.
5
@《创新设计》
取 BC 的中点 Q,连接 PQ,MQ,
图(2)
目录
考点一 用空间向量求异面直线所成的角
[例 1] (1)(一题多解)(2017· 全国Ⅱ卷)已知直三棱柱 ABC - A1B1C1 中,∠ABC= 120° ,AB=2,BC=CC1=1,则异面直线 AB1 与 BC1 所成角的余弦值为( ) 3 15 10 3 A. B. C. D. 2 5 5 3
8
@《创新设计》
目录
考点一 用空间向量求异面直线所成的角

人教A版高中数学选修2-1课件【29】用向量方法求空间角(二)

人教A版高中数学选修2-1课件【29】用向量方法求空间角(二)

解析: 设 CB=1, 则 A(2,0,0) , B1(0,2,1), C1(0,2,0), B(0,0,1), → → BC1=(0,2,-1),AB1=(-2,2,1). → → BC AB1 3 5 1· → → cos〈BC1,AB1〉= = =5. → → 5×3 |BC1|· |AB1|
a· b 解析:cos〈a,b〉=|a|· |b|= |1,-2,1· 2,-2,0| |2+4| 3 = . 2 2 2 2 2= 6· 8 2 1 +2 +1 · 2 +-2
答案:D
2.如图,在空间直角坐标系中有直三棱柱 ABCA1B1C1,CA =CC1=2CB,BC1 与直线 AB1 夹角的余弦值为( 5 5 2 5 3 A. 5 B. 3 C. 5 D.5 )
解析:如图,以 DA、DC、DD1 分别为 x 轴、y 轴、z 轴建立 空间直角坐标系,设正方体的棱长为 1,则 A(1,0,0),B(1,1,0), → C1(0,1,1),易证AC1是平面 A1BD 的一个法向量.
→ → AC1=(-1,1,1),BC1=(-1,0,1). 1+1 6 → → cos〈AC1,BC1〉= = . 3× 2 3 6 ∴BC1 与平面 A1BD 所成角的正弦值为 3 .
答案:A
4. 正方体 ABCDA1B1C1D1 中, BB1 与平面 ACD1 所成角的余 弦值为( )
2 3 2 6 A. B. C. D. 3 3 3 3
解析:建系如图,设正方体棱长为 1,D(0,0,0),B1(1,1,1), → B(1,1,0),则BB1=(0,0,1).
∵B1D⊥平面 ACD1, → ∴DB1=(1,1,1)为面 ACD1 的法向量. 设 BB1 与面 ACD1 所成的角为 θ, → → |BB1· DB1| 1 3 则 sinθ= = =3, → → 3 |BB1||B1D| 6 ∴cosθ= 3 .

空间角问题高三数学知识点

空间角问题高三数学知识点

空间角问题高三数学知识点空间角问题是高三数学中的重要知识点之一。

在解决空间角问题时,我们需要熟练掌握一系列概念、定理和计算方法。

本文将系统介绍空间角问题的相关内容,包括空间角的定义、分类和性质,以及求解空间角问题的具体方法和技巧。

一、空间角的定义和分类1.1 空间角的定义空间角是在三维空间中由两条射线形成的角。

它可以看作是平面角在立体空间中的推广。

通常用小写的希腊字母表示空间角,如α、β、γ等。

1.2 空间角的分类根据空间角的大小和位置关系,空间角可以分为以下几种类型:1) 零角:两条射线重合,形成的角为零角。

2) 锐角:两条射线夹角小于90度,形成的角为锐角。

3) 直角:两条射线夹角等于90度,形成的角为直角。

4) 钝角:两条射线夹角大于90度但小于180度,形成的角为钝角。

5) 平角:两条射线夹角等于180度,形成的角为平角。

二、空间角的性质空间角具有一系列重要的性质,掌握这些性质有助于我们解决空间角问题。

2.1 垂直性质若两个空间角互为互补角,则它们所对的两条射线垂直。

2.2 同位角性质若两个空间角由相同的两条射线所形成(其中一条射线相互重合),则这两个空间角互为同位角。

同位角具有以下性质:1) 同位角相等:若两个同位角中的一个角为α,则另一个角也为α。

2) 同位角的补角关系:若两个同位角中的一个角为α,则另一个角为180度减α的补角。

2.3 对顶角性质若两个空间角互为对顶角,则它们所对的两条射线互相重合。

三、求解空间角问题的方法和技巧3.1 判断空间角的类型在解决空间角问题时,首先要能够准确地判断空间角的类型。

可以通过观察两条射线的位置关系和夹角的大小来判断空间角是锐角、直角、钝角还是平角。

3.2 应用对顶角和同位角的性质对顶角和同位角的性质在求解空间角问题时经常被应用。

通过利用对顶角和同位角的性质,可以得到空间角的相关信息,进而解决问题。

3.3 运用向量方法在空间角问题的求解中,向量方法也是一种重要的技巧。

高中数学第二章空间向量与立体几何夹角的计算空间向量求二面角的方法素材

高中数学第二章空间向量与立体几何夹角的计算空间向量求二面角的方法素材

空间向量求二面角的方法方法一:先作出二面角的平面角,再利用向量的内积公式求解:设∠AOB 是二面角l αβ--的一个平面角,则向量OA 与OB 所成的角就是所求的二面角的大小.例1 正四面体ABCD 中,求相邻两个面所成的二面角.解析:如图1,取BC 边的中点E,连结AE 、DE ,则AE⊥BC,DE⊥BC,所以∠AED 就是正四面体的两个相邻面ABC 与DBC 所成二面角的平面角,且BC⊥平面ADE ,∴BC⊥AD,∴0EC DA =.设正四面体棱长为1.∵()()ED EA EC CD EC CD DA =+++ =222EC EC CD EC DA CD DA CD ++++ 11121cos120011cos1201424=+⨯⨯⨯++⨯⨯+=. 又在△ABC 与△BCD 中,可求得32ED EA ==, ∴cos ED EAED EA ED EA =,11433322==⨯. 故正四面体的两个相邻面所成的二面角大小为1arccos3.方法二:利用法向量求解:设1n 是平面α的法向量,2n 是平面β的法向量.①若两个平面的二面角如图2所示的示意图,则1n 与2n 之间的夹角θ就是欲求的二面角;②若两个平面的二面角如图3所示的示意图,设1n 与2n 之间的夹角为θ.则两个平面的二面角为πθ-. 例2 如图4,△ABC 是以∠B 为直角的直角三角形,SA⊥平面ABC ,SA=BC=2,AB=4,D 、N 分别是BC 、AB 的中点.求二面角S —ND-A 的余弦值.解析:平面ABC 的法向量是AS ,设平面SND 的法向量为BC AB AS λμ=++n .∵SA⊥平面ABC ,∴SA⊥BC,SA⊥AB,∴0AS BD =,0AS BN =,0AS BC =,0AS AB = 又AB⊥BC,∴0BC BN =,0AB BD =,0BC NA =. 由()()ND BC AB AS BD BN λμ=++-n 280BC BD AB BN λμλμ=-=+=。

高中数学例题:利用空间向量求空间角和距离 (2)

高中数学例题:利用空间向量求空间角和距离 (2)

高中数学例题:利用空间向量求空间角和距离1.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,F,G分别是棱A1B1,AB,A1D1的中点.(1)求证:GE⊥平面FCC1;(2)求点A1到平面BFC1的距离;(3)求直线CD到平面BFC1的距离.解:因为AB=4,BC=CD=2,F是棱AB的中点,ABCD为等腰梯形,所以易得BF=BC=CF,即△BCF为正三角形,所以∠BAD=∠ABC=60°,取AF的中点M,连接DM,则DM⊥AB,所以DM⊥CD.故以D为坐标原点,以DM,DC,DD1所在直线分别为x轴、y 轴、z轴建立如图所示的空间直角坐标系,则D(0,0,0),A(3,-1,0),F(3,1,0),C(0,2,0),C 1(0,2,2),E (3,1,2),G ⎝ ⎛⎭⎪⎫32,-12,2,B (3,3,0). 所以CF →=(3,-1,0),CC 1→=(0,0,2),FC 1→=(-3,1,2).(1)证明:设平面FCC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CF →=0,n ·CC 1→=0,即⎩⎪⎨⎪⎧3x -y =0,2z =0,取n =(1,3,0). 因为GE →=⎝ ⎛⎭⎪⎫32,32,0,则GE →=32n , 所以GE →∥n ,所以GE ⊥平面FCC 1.(2)解:FB →=(0,2,0),设平面BFC 1的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·FB →=0,m ·FC 1→=0,即⎩⎪⎨⎪⎧2y 1=0,-3x 1+y 1+2z 1=0,取m =(2,0,3). 因为A 1(3,-1,2),所以A 1F →=(0,2,-2),所以点A 1到平面BFC 1的距离d =|A 1F →·m ||m |=|2×0+0×2+3×(-2)|22+02+(3)2=2217. (3)解:因为CD ∥AB ,CD ⊄平面BFC 1,AB ⊂平面BFC 1, 所以CD ∥平面BFC 1.又D ∈CD ,所以点D 到平面BFC 1的距离等于直线CD 到平面BFC 1的距离.由(2)可知,平面BFC 1的一个法向量为m =(2,0,3). 又DF →=(3,1,0),所以点D 到平面BFC 1的距离d =|DF →·m ||m |=|2×3+0×1+3×0|22+02+(3)2=2217. 所以直线CD 到平面BFC 1的距离为2217.。

3.2.3空间的角的计算

3.2.3空间的角的计算
问题情境
我们知道,两个平面所成的角是用二面角的平面角来度 量.这就是说,空间的二面角最终可以通过转化,用两条相交 直线所成的角来度量.
如何用向量的方法来求空间二面角的大小呢?
1
建构数学
在定义了平面的法向量之后,我们就可以用平面的法向量来求两个 平面所成的角.
方法一:转化为分别是在二面角的两个半平面内且与棱都垂直的两 条直线上的两个向量的夹角(注意:要特别关注两个向量的方向).
如图:二面角 α-l-β 的大小为 θ,A,B∈l,AC α,BD β, AC⊥l,
BD⊥l ,则 θ=< AC , BD >=< CA , DB >.
l
A
ቤተ መጻሕፍቲ ባይዱ
C
B D
2
数学应用
例 3 在正方体 ABCD A1B1C1D1 中, 求二面角 A1 BD C1 的大小.
3
练一练
如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,PA=AB,∠ABC=60°, ∠BCA=90°,点 D,E 分别在棱 PB 和 PC 上,且 DE//BC.
①求证:BC⊥平面 PAC; ②当 D 为 PB 的中点时,求 AD 与平面 PAC 所成的角的大小; ③是否存在点 E,使得二面角 A-DE-P 为直二面角?并说明理由.
4
回顾小结
本节课学习了以下内容: 1.用向量方法解决二面角的计算问题. 2.注重数形结合,注重培养我们的空间想象能力.
5

2017-2018版高中数学第3章空间向量与立体几何3.2.3空间的角的计算学案版2-1

2017-2018版高中数学第3章空间向量与立体几何3.2.3空间的角的计算学案版2-1

3.2。

3 空间的角的计算[学习目标] 1。

理解直线与平面所成角的概念.2.能够利用向量方法解决线线、线面、面面的夹角问题。

3。

掌握用空间向量解决立体几何问题的基本步骤.知识点一 两条异面直线所成的角(1)定义:设a 、b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,则a ′与b ′所成的锐角(或直角)叫做a 与b 所成的角.(2)范围:两条异面直线所成角θ的取值范围是0<θ≤π2.(3)向量求法:设直线a ,b 的方向向量分别为a ,b ,其夹角为φ,则a ,b 所成角的余弦值为cos θ=|cos φ|=错误!.知识点二 直线与平面所成的角(1)定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角.(2)范围:直线和平面所成角θ的取值范围是0≤θ≤错误!.(3)向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|=错误!或cos θ=sin φ。

知识点三 二面角(1)二面角的取值范围:[0,π].(2)二面角的向量求法:①若AB,CD分别是二面角α—l-β的两个面内与棱l 垂直的异面直线(垂足分别为A,C),如图,则二面角的大小就是向量错误!与错误!的夹角.②设n1、n2是二面角α-l—β的两个面α,β的法向量,则向量n1与向量n2的夹角(或其补角)就是二面角的平面角的大小.题型一两条异面直线所成角的向量求法例1如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.求异面直线A1B与C1D所成角的余弦值.解以A为坐标原点,分别以AB,AC,AA1为x,y,z轴建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以错误!=(2,0,-4),错误!=(1,-1,-4).因为cos〈错误!,错误!>=错误!=错误!=错误!,所以异面直线A1B与C1D所成角的余弦值为错误!。

高中数学空间的角的计算

高中数学空间的角的计算

面-线-面
0,2
语言叙述
二面角 半平面-线-半平面
0,
语言叙述或符号表示
要点三:直线和平面的夹角 1. 有关概念 斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫作平面的斜.线.,斜 线和平面的交点叫作斜.足.. 射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫作斜线在这个平 面上的射影. 斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面 的夹角. 如图, l 是平面 的一条斜线,斜足为 O , OA 是 l 在平面 内的射影, POA 就是直 线 l 与平面 的夹角.
3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角 -a- 或 - AB - .
2
(2)区别: 构成 范围
表示法
平面间的夹角
2
5
举一反三:
【变式 1】 如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD , PD DC ,点 E 是 PC 的中点,作 EF ⊥ PB 交 PB 于点 F .
(1)求证: PB ⊥平面 EFD ;
(2)求平面 与平面 的夹角的大小.
【变式 2】在四棱锥 P ABCD 中,侧面 PCD ⊥底面 ABCD ,PD ⊥ CD ,E 为 PC 中点, 底面 ABCD 是直角梯形, AB ∥ CD , ADC=90 , AB AD PD 1, CD 2 . 设 Q 为侧
11
一、选择题
S
C
B
D
A

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析立体几何是高中数学中的重要内容之一,其中空间角是立体几何中的一个重要概念。

本文将以具体的题目为例,详细介绍空间角的定义、性质和解题技巧,帮助高中学生更好地理解和应用空间角。

一、空间角的定义和性质空间角是指由两条射线在同一平面内围成的角,也可以理解为由两条射线在三维空间中围成的角。

具体来说,设有两条射线OA和OB,它们在同一平面内,那么角AOB就是由这两条射线所围成的空间角。

空间角的度量单位与平面角相同,可以用度(°)或弧度(rad)来表示。

在解题中,我们通常使用度来度量空间角。

空间角具有以下性质:1. 两条射线的方向不同,所围成的空间角大小在0°到180°之间;2. 如果两条射线的方向相同,所围成的空间角大小为0°;3. 如果两条射线的反向延长线相交,所围成的空间角大小为180°。

二、空间角的解题技巧1. 利用空间角的定义和性质进行解题在解题过程中,我们可以根据空间角的定义和性质来推导出一些结论,从而解决问题。

例如,如果题目给出了两条射线的夹角,我们可以利用空间角的定义直接得出答案;如果题目给出了两条射线的方向,我们可以根据空间角的性质判断空间角的大小。

举例:已知射线OA与射线OB的夹角为60°,射线OC与射线OB的夹角为120°,求射线OA与射线OC的夹角。

解析:根据空间角的定义,射线OA与射线OC的夹角等于射线OA与射线OB的夹角加上射线OB与射线OC的夹角。

即所求角度为60°+120°=180°。

根据空间角的性质,当两条射线的反向延长线相交时,所围成的空间角大小为180°。

因此,射线OA与射线OC的夹角为180°。

2. 利用平面角的知识解决空间角问题在解决空间角问题时,我们还可以利用平面角的知识进行推导和计算。

由于空间角是由两条射线在同一平面内围成的角,所以可以将空间角转化为平面角进行计算。

高考数学一轮总复习 第八章 8.8立体几何中的向量方法(二)求空间角和距离

高考数学一轮总复习 第八章  8.8立体几何中的向量方法(二)求空间角和距离
(1)证明:PO⊥平面ABC;
(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平 正弦值.
师生共研
题型三 求二面角
例3 (2018·达州模拟)如图,在梯形ABCD中,AB∥CD,A ∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是菱形
(1)求证:BF⊥AE;
(2)求二面角B-EF-D的平面角的正切值.
a与n的夹角为β,则sin θ=|cos β|= |a||n| .
3.求二面角的大小 (1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂 二面角的大小θ=〈A→B,C→D〉 .
(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α, 二面角的大小θ满足|cos θ|= |cos〈n1,n2〉|,二面角的平面角
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与 二面角最大,并求此时二面角的余弦值.
谢谢
(1)证明:平面BEF⊥平面PEC;
(2)求二面角A-BF-C的余弦值.
技能提升练
13.如图,在四棱锥 S-ABCD 中,SA⊥平面 ABCD,底面 ABCD 为
∠BAD=90°,且 AB=4,SA=3.E,F 分别为线段 BC,SB 上的
满足BSFF=CBEE=λ,当实数
λ
9 的值为_1_6__时,∠AFE
解析 cos〈m,n〉=|mm|·|nn|=1·1 2= 22,即〈m,n〉=45
∴两平面所成二面角为45°或180°-45°=135°.
3.[P117A 组 T4(2)]如图,正三棱柱(底面是正三角形的直棱柱 底面边长为 2,侧棱长为 2 2,则 AC1 与侧面 ABB1A1 所成的角
题组三 易错自纠

立体角、空间角及发光角计算公式

立体角、空间角及发光角计算公式

立体角、空间角及发光角计算公式摘要:本文应用数学工具,推导出灯具在两个相互垂直方向上的发光角同立体角之间的关系。

关键词:立体角,发光角。

0引言光强度是照明工程中的一个重要术语,其定义是“光源在给定方向的单位立体角中发射的光通量”,一般以I 表示。

若在某微小立体角d Ω内的光通量为d Φ(ψ,θ),则该方向上的光强为:I (ψ,θ)=d Φ(ψ,θ)/d Ω。

式中,d Ω的单位为sr (球面度),光强的单位为cd (坎德拉,烛光)。

1 cd=1 lm/sr 。

但关于立体角的计算方法,照明教材及各类文献中却没有述及。

这给从事照明工程的专业技术人员带来很大的困惑。

1立体角的定义将弧度表示平面角度大小的定义(弧长除以半径)推广到三维空间中,定义“立体角”为:球面面积与半径平方的比值。

即:Ω=2rA图1平面角(单位:弧度rad ) 图2立体角(单位:球面度sr )2立体角的计算设灯具在两个相互垂直方向上的发光角为2α和2β,求其所对应的立体角的大小。

设0<2α<π,0<2β<π不失一般性,设球体半径为单位长度1,坐标原点在球心,坐标轴方向如图。

根据定义,只须求出两角所夹球面的面积,即是立体角的大小。

由于对称性,只需求出第一卦限内的面积再乘以4即可。

图3 计算示意图曲面面积计算公式为: A=⎰⎰∂∂+∂∂+Dyz x z 22)()(1dxdy (1) 上半球球面方程为:Z=221y x -- (2)由 x z ∂∂=221yx x --- (3)221yx y y z ---=∂∂ (4) 得 222211)()(1yx y z x z --=∂∂+∂∂+ (5)代入(1)式得: A=⎰⎰--Dyx dxdy 221 (6)利用极坐标,得: A=⎰⎰-Drrdrd 21θ (7)易知,积分区域在xy 平面上的投影是由两条椭圆曲线围成,方程分别为:α22sin x +y 2=1 (8) x 2+β22sin y =1 (9)交点坐标(βαβα22sin sin 1cos sin -,βααβ22sin sin 1cos sin -)φ1=arctg αβtg tg (10)φ2=arctg βαtg tg (11)将x=rcos Φ,y=rsin Φ带入(8)、(9)式,得极坐标表示的边界方程为: α222sin cos sin 11Φ+Φ=r (12)β222sin sin cos 12Φ+Φ=r (13)图4 xy 面投影XY12Dr1r2根据对称性,有:A=4(A1+A2) (14) A1=⎰⎰-ΦΦ102101r r rdr d A2=⎰⎰Φ-Φ2221r rrdrd于是, A1=10121(r r d ⎰Φ--Φ=⎰ΦΦ+Φ--1222sin cos sin 111(α)dΦ=Φ1-⎰ΦΦ+Φ-102222cos sin sin sin 1ααdΦ =Φ1-⎰ΦΦ+Φ-ΦΦ10222sin sin sin 1cos cos ααd设t=sinΦ,则cosΦdΦ=dt A1=Φ1-⎰Φ-1sin 022cos 1cos tdt αα =Φ1-⎰Φ-1sin 022cos /1tdtα =Φ1-arcsin(cos α·t)1sin 0Φ=Φ1-arcsin(cos αsinΦ1) (15) 同理,A2=Φ2-arcsin(cosβsinΦ2) (16)带入(14)式,得出最终结果:A=4(arctgαβtg tg -arcsin(cos αsin(arctg αβtg tg )) +arctg βαtg tg -arcsin(cosβsin(arctg βαtg tg ))) (17)特别地,当α=β时,Φ1=Φ2=π/4, A1=A2=π/4-arcsin(cos α/2)3数值结果参考文献⑴周太明等,电气照明设计,复旦大学出版社,2001,11⑵同济大学数学教研室,高等数学,高等教育出版社,1998,12⑶陈大华等译,光源与照明(第四版),复旦大学出版社,2000,1注:本文发表于《中国照明学会(2005)学术年会论文集》,2005.9·上海。

立体几何中空间角的求法

立体几何中空间角的求法

立体几何中空间角的求法立体几何是高中数学的核心内容之一,在高考中占有很大的比重。

考查的知识点、题型等相对稳定,但对学生的空间概念、逻辑思维能力、空间想象能力及运算能力要求较高,而且在2010年高考立体几何试题对转化与化归思想、数形结合思想、割补思想等数学思想的考查也体现的淋漓尽致,而高考对立体几何中空间角的考查一直是热点内容,更成为必考内容,空间角是立体几何中一个重要概念,它是空间图形的一个突出的量化指标,是空间图形位置关系的具体体现,故在历届高考试题中频繁出现,求解方法也多种多样,本文就是空间角常用的方法--传统法与空间向量法。

一、异面直线所成的角θ∈[ 0°,90°](1)传统方法:平移转化法或补形法,使之成为两相交直线所成的角,放入三角形中利用余弦定理计算,若求得的角为钝角,则这个角的补角才为所求。

(2)空间向量法:设异面直线ab与cd所成的角为θ,则cos θ = cos〈,〉参考例题:例1,如图在四棱锥o-abcd中,底面abcd是边长为1的菱形,∠abc= ,oa⊥面abcd,oa=2,m为oa的中点,则异面直线ab与md所成角的大小为()a. b. c. d. π解析:(法1)∵cd∥ab ∴∠mdc为异面直线ab与md所成的角(或其补角)在△abc中,ab=1,∠abc= ,bc=1 ,∴ac2=2-又oa⊥面abcd ∴rt△amc中,am2=1,∴mc2=3-又cd=1 md=∴在△mdc中,cos∠mdc= = ∴∠mdc=(法2)作ap⊥cd于p,分别以ab、ap、ao所在直线为x、y、z 轴建立空间直角坐标系。

则a(0,0,0), b(1,0,0), d(- ,,0),o(0,0,2), m(0,0,1)设ab与md所成的角为θ,又 =(1,0,0) =( - ,,-1)∴cosθ= = ∴θ=二、直线与平面所成的角θ∈[ 0°,90°](1)传统方法:先找到(或作出)过斜线上一点垂直于平面的直线,斜足与垂足的连线就是斜线在平面内的射影,该斜线与射影的夹角就是所求的角,然后放入直角三角形中求解。

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。

在立体几何中,空间角和空间距离是非常关键的概念。

本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。

一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。

空间角的大小是依据两个向量的夹角计算得来的。

2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。

设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。

接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。

2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。

设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。

比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。

在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。

在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。

03教学设计_1.4.2 用空间向量研究距离、夹角问题(2)

03教学设计_1.4.2 用空间向量研究距离、夹角问题(2)

1.4.2 用空间向量研究距离、夹角问题 第2课时 用空间向量研究夹角问题本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习运用空间向量解决计算空间角问题。

在向量坐标化的基础上,将空间中线线角、线面角及二面角问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间角问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。

1.教学重点:理解运用向量方法求空间角的原理2.教学难点:掌握运用空间向量求空间角的方法多媒体一、情境导学地球绕太阳公转的轨道平面称为“黄道面”,黄道面与地球赤道面交角(二面角的平面角)为23°26'.黄道面与天球相交的大圆为“黄道”.黄道及其附近的南北宽9°以内的区域称为黄道带,太阳及大多数行星在天球上的位置常在黄道带内.黄道带内有十二个星座,称为“黄道十二宫”.从春分(节气)点起,每30°便是一宫,并冠以星座名,如白羊座、狮子座、双子座等等,这便是星座的由来.问题:空间角包括哪些角?求解空间角常用的方法有哪些?答案:线线角、线面角、二面角; 传统方法和向量法.二、探究新知1.利用向量方法求两异面直线所成角若两异面直线l1,l2所成角为θ,它们的方向向量分别为a,b,则有cos θ=|cos<a,b>|=|a·b||a||b|.特别提醒:不要将两异面直线所成的角与其方向向量的夹角等同起来,因为两异面直线所成角的范围是(0,π2],而两个向量夹角的范围是[0,π],事实上,两异面直线所成的角与其方向向量的夹角是相等或互补的关系.3.二面角α-l-β中,平面α的一个法向量为n1=(√32,−12,−√2),平面β的一个法向量是n2=(0,12,√2),那么二面角α-l-β的大小等于() A.120° B.150° C.30°或150° D.60°或120°解析:设所求二面角的大小为θ,则|cos θ|=|n1·n2||n1||n2|=√32,所以θ=30°或150°.答案:C例1.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,试求直线EF和BC1所成的角.思路分析:建立空间直角坐标系,求出直线EF和BC1的方向向量的坐标,求它们的夹角即得直线EF和BC1所成的角.解:分别以直线BA,BC,BB1为x,y,z轴,建立空间直角坐标系(如右图).设AB=1,则B(0,0,0),E(12,0,0),F(0,0,12),C1(0,1,1),所以EF⃗⃗⃗⃗⃗ =(−12,0,12),BC1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1).于是cos<BC1⃗⃗⃗⃗⃗⃗⃗ ,EF⃗⃗⃗⃗⃗ >=BC1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗|BC1⃗⃗⃗⃗⃗⃗⃗⃗ ||EF⃗⃗⃗⃗⃗ |=12√22×√2=12,所以直线EF和BC1所成角的大小为60°.1.利用空间向量求两异面直线所成角的步骤.(1)建立适当的空间直角坐标系.(2)求出两条异面直线的方向向量的坐标.(3)利用向量的夹角公式求出两直线方向向量的夹角.(4)结合异面直线所成角的范围得到两异面直线所成角.2.求两条异面直线所成的角的两个关注点.(1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.(2)范围:异面直线所成角的范围是(0,π2],故两直线方向向量夹角的余弦值为负时,应取其绝对值.跟踪训练1 如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为 .解析:以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz ,设AB=1.则B (1,1,0),A 1(1,0,2),A (1,0,0),D 1(0,0,2),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-2), AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2), cos <A 1B ⃗⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=−4√5×√5=-45,故异面直线A 1B 与AD 1所成角的余弦值为45. 答案:45例2.如图所示,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.思路分析:(1)线面平行的判定定理⇒MN ∥平面PAB.(2)利用空间向量计算平面PMN 与AN 方向向量的夹角⇒直线AN 与平面PMN 所成角的正弦值.(1)证明:由已知得AM=23AD=2.如图,取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC ,TN=12BC=2. 又AD ∥BC ,故TN ∥AM 且TN =AM , 所以四边形AMNT 为平行四边形, 于是MN ∥AT.因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB.(2)解:如图,取BC 的中点E ,连接AE.由AB=AC 得AE ⊥BC ,从而AE ⊥AD ,且AE=√AB 2−BE 2=√AB 2−(BC 2) 2=√5.以A 为坐标原点,AE ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系A-xyz. 由题意知P (0,0,4),M (0,2,0),C (√5,2,0),N √52,1,2,PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN⃗⃗⃗⃗⃗⃗ =√52,1,-2,AN⃗⃗⃗⃗⃗⃗ =√52,1,2.设n =(x ,y ,z )为平面PMN 的法向量,则{n ·PM⃗⃗⃗⃗⃗⃗ =0,n ·PN⃗⃗⃗⃗⃗⃗ =0,即{2y −4z =0,√52x +y −2z =0,可取n =(0,2,1).于是|cos <n ,AN ⃗⃗⃗⃗⃗⃗ >|=|n·AN ⃗⃗⃗⃗⃗⃗||n||AN ⃗⃗⃗⃗⃗⃗ |=8√525. 所以直线AN 与平面PMN 所成角的正弦值为8√525.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:跟踪训练2 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π解析:以D 为原点建立空间直角坐标系,可求得平面BDE 的法向量n =(1,-1,2),而BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,1),所以cos θ=1+22√3=√32,则θ=30°,故直线A 1B 与平面BDE 成60°角. 答案:B例3. 如图,在正方体ABEF-DCE'F'中,M ,N 分别为AC ,BF 的中点,求平面MNA 与平面MNB 所成锐二面角的余弦值.思路分析:有两种思路,一是先根据二面角平面角的定义,在图形中作出二面角的平面角,然后利用向量方法求出夹角从而得到所成二面角的大小;另一种是直接求出两个面的法向量,通过法向量的夹角求得二面角的大小.解:设正方体棱长为1.以B 为坐标原点,BA ,BE ,BC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系B-xyz ,则M (12,0,12),N (12,12,0),A (1,0,0),B (0,0,0). (方法1)取MN 的中点G ,连接BG ,AG ,则G (12,14,14). 因为△AMN ,△BMN 为等腰三角形,所以AG ⊥MN ,BG ⊥MN , 故∠AGB 为二面角的平面角或其补角.又因为GA⃗⃗⃗⃗⃗ =(12,−14,−14) ,GB ⃗⃗⃗⃗⃗ =(−12,−14,−14) ,所以cos <GA ⃗⃗⃗⃗⃗ ,GB ⃗⃗⃗⃗⃗ >=GA ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ |GA ⃗⃗⃗⃗⃗ ||GB ⃗⃗⃗⃗⃗ |=−18√38×√38=-13 , 故所求两平面所成锐二面角的余弦值为13.(方法2)设平面AMN 的法向量n 1=(x ,y ,z ).由于AM ⃗⃗⃗⃗⃗⃗ =(−12,0,12),AN ⃗⃗⃗⃗⃗⃗ =(−12,12,0), 则{n 1·AM⃗⃗⃗⃗⃗⃗ =0,n 1·AN ⃗⃗⃗⃗⃗⃗ =0,即{−12x +12z =0,−12x +12y =0,令x=1,解得y=1,z=1,于是n 1=(1,1,1).同理可求得平面BMN 的一个法向量n 2=(1,-1,-1), 所以cos <n 1,n 2>=n 1·n 2|n 1||n 2|=−1√3×√3=-13, 故所求两平面所成锐二面角的余弦值为13.利用平面的法向量求二面角利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来. 跟踪训练3 如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.解:如图,建立空间直角坐标系.则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2),即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面A 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n=(x ,y ,z ),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2), A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0), 所以n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0, 令z=1,解得x=0,y=1,故n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ, 二面角B 1-A 1C-C 1的大小为θ,显然θ为锐角. 因为cos θ=|cos φ|=|n·BM⃗⃗⃗⃗⃗⃗⃗ ||n||BM⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3,所以二面角B 1-A 1C-C 1的大小为π3.金题典例 如图,四棱柱ABCD-A 1B 1C 1D 1的所有棱长都相等,AC ∩BD=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD.(2)若∠CBA=60°,求二面角C 1-OB 1-D 的余弦值.(1)证明因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD ,因为AC ∩BD=O ,所以O 1O ⊥底面ABCD.(2)解:因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形, AC ⊥BD.又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA=60°,所以OB=√3,OC=1, 所以O (0,0,0),B 1(√3,0,2),C 1(0,1,2),平面BDD 1B 1的一个法向量为n =(0,1,0),设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,m ⊥OC 1⃗⃗⃗⃗⃗⃗⃗ ,所以{√3x +2z =0,y +2z =0,取z=-√3,则x=2,y=2√3,所以m =(2,2√3,-√3),所以|cos <m ,n >|=|m·n|m||n||=2√3√19=2√5719. 由图形可知二面角C 1-OB 1-D 的大小为锐角, 所以二面角C 1-OB 1-D 的余弦值为2√5719. 延伸探究1 本例条件不变,求二面角B-A 1C-D 的余弦值.解:建立如图所示的空间直角坐标系.设棱长为2, 则A 1(0,-1,2),B (√3,0,0),C (0,1,0),D (-√3,0,0). 所以BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-√3,-1,0).设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1),则{n 1·A 1C ⃗⃗⃗⃗⃗⃗⃗ =0,n 1·BC ⃗⃗⃗⃗⃗ =0,即{2y 1−2z 1=0,−√3x 1+y 1=0,取x 1=√3 ,则y 1=z 1=3,故n 1=(√3,3,3).设平面A 1CD 的法向量为n 2=(x 2,y 2,z 2), 则{n 2·A 1C ⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CD⃗⃗⃗⃗⃗ =0,即{2y 2−2z 2=0,−√3x 2−y 2=0,取x 2=√3,则y 2=z 2=-3,故n 2=(√3,-3,-3).所以|cos <n 1,n 2>|=|n 1·n 2|n 1||n 2||=57.由图形可知二面角B-A 1C-D 的大小为钝角,所以二面角B-A 1C-D 的余弦值为-57.延伸探究2 本例四棱柱中,∠CBA=60°改为∠CBA=90°,设E ,F 分别是棱BC ,CD 的中点,求平面AB 1E 与平面AD 1F 所成锐二面角的余弦值.解:以A 为坐标原点建立空间直角坐标系,如图所示,设此棱柱的棱长为1,则A (0,0,0),B 1(1,0,1),E 1,12 ,0 ,D 1(0,1,1),F12 ,1,0 ,AE ⃗⃗⃗⃗⃗ = 1,12,0,AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,1),AF ⃗⃗⃗⃗⃗ =12,1,0,AD 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1).设平面AB 1E 的法向量为n 1=(x 1,y 1,z 1),则{n 1·AB 1⃗⃗⃗⃗⃗⃗⃗ =0,n 1·AE ⃗⃗⃗⃗⃗ =0,即{x 1+z 1=0,x 1+12y 1=0,令y 1=2,则x 1=-1,z 1=1, 所以n 1=(-1,2,1).设平面AD 1F 的法向量为n 2=(x 2,y 2,z 2). 则{n 2·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·AF ⃗⃗⃗⃗⃗ =0,即{y 2+z 2=0,12x 2+y 2=0. 令x 2=2,则y 2=-1,z 2=1.所以n 2=(2,-1,1).所以平面AB 1E 与平面AD 1F 所成锐二面角的余弦值为cos <n 1,n 2>=|n 1·n 2||n 1||n 2|=3√6×√6=12. 向量法求二面角(或其某个三角函数值)的四个步骤 (1)建立适当的坐标系,写出相应点的坐标;三、达标检测1.平面α的斜线l 与它在这个平面上射影l'的方向向量分别为a =(1,0,1),b =(0,1,1),则斜线l 与平面α所成的角为( ) A.30°B.45°C.60°D.90° 解析: l 与α所成的角即为a 与b 所成的角(或其补角),因为cos <a ,b >=a·b |a||b|=12,所以<a ,b >=60°. 答案:C2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos <m ,n >=- 12,则l 与α所成的角为( )A.30°B.60°C.120°D.150°解析:由已知得直线l 和平面α法向量所夹锐角为60°,因此l 与α所成的角为30°. 答案:A3.在正方体ABCD-A 1B 1C 1D 1中,M 、N 分别为棱BC 和棱CC 1的中点,则异面直线AC 和MN 所成的角为( ) A.30°B.45°C.90°D.60°解析以D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体ABCD-A 1B 1C 1D 1中棱长为2,∵M 、N 分别为棱BC 和棱CC 1的中点,∴M (1,2,0),N (0,2,1),A (2,0,0),C (0,2,0),MN⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AC ⃗⃗⃗⃗⃗ =(-2,2,0), 设异面直线AC 和MN 所成的角为θ,.cos θ=|MN⃗⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ ||MN ⃗⃗⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=2√2×2√2=12,则又θ是锐角,∴θ=60°∴异面直线AC 和MN 所成的角为60°,故选D.答案D4.在三棱锥P-ABC 中,AB ⊥BC ,AB=BC=12PA ,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为 .解析:以O 为原点,射线OA ,OB ,OP 为x ,y ,z 轴建立空间直角坐标系,如图,设AB=a ,则OP=√72a,OD⃗⃗⃗⃗⃗⃗ =(−√24a,0,√144a),可求得平面PBC 的法向量为n =(−1,−1,√17),所以cos <OD ⃗⃗⃗⃗⃗⃗ ,n >=OD ⃗⃗⃗⃗⃗⃗ ·n |OD ⃗⃗⃗⃗⃗⃗ ||n|=√21030,设OD ⃗⃗⃗⃗⃗⃗ 与面PBC 的角为θ,则sin θ=√21030. 答案:√210305.如图,四棱锥P-ABCD 中,PB ⊥底面ABCD ,CD ⊥PD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB=AD=PB=3.点E 在棱PA 上,且PE=2EA.求二面角A-BE-D 的余弦值.解:以B 为原点,以直线BC ,BA ,BP 分别为x ,y ,z 轴建立如图所示的空间直角坐标系.设平面EBD 的一个法向量为n 1=(x ,y ,1),因为BE⃗⃗⃗⃗⃗ =(0,2,1),BD ⃗⃗⃗⃗⃗⃗ =(3,3,0), 由{n 1·BE ⃗⃗⃗⃗⃗ =0,n 1·BD ⃗⃗⃗⃗⃗⃗ =0,得{2y +1=0,3x +3y =0.所以{x =12,y =−12.教学中主要突出了几个方面:一是进一步突出运用向量法解决立体几何问题的基本程序,发展学生的数学建模思想和逻辑推理能力。

高三数学空间角2

高三数学空间角2

O a b 600专题16 空间角★★★高考在考什么【考题回放】1.如图,直线a 、b 相交与点O 且a 、b 成600,过点O 与a 、 b 都成600角的直线有( C ) A .1 条 B .2条 C .3条 D .4条2.在一个450的二面角的一个平面内有一条直线与二面角棱成450角,则此直线与二面角的另一个面所成的角为 ( A )A .300B .450C .600D .9003.直三棱住A 1B 1C 1—ABC ,∠BCA=090,点D 1、F 1 分别是A 1B 1、A 1C 1的中点,BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( A )A .1030B .21C .1530D .15 4.已知正四棱锥的体积为12,底面对角线的长为则侧面与底面所成的二面角等于3π. 5.PA,PB,PC 是从P 点引出的三条射线,他们之间每两条的夹角都是60°,则直线PC与平面PAB 所成的角的余弦值为 33. 6.在棱长为a 的正方体ABCD —A 1B 1C 1D 1, E 、F 分别为BC 与A 1D 1的中点,(1) 求直线A 1C 与DE 所成的角;(2) 求直线AD 与平面B 1EDF 所成的角;(3) 求面B 1EDF 与 面ABCD 所成的角。

【专家解答】(1)如图,在平面ABCD 内,过C 作CP//DE 交直线AD 于P ,则CP A 1∠(或补角)为异面直线A 1C 与 DE 所成的角。

在ΔCP A 1中,易得a P A a DE CP a C A 213,25,311====,由余弦定理得1515cos 1=∠CP A 。

故异面直线A 1C 与DE 所成的角为1515arccos 。

(2)ADF ADE ∠=∠ ,∴AD 在面B 1EDF 内的射影在∠EDF 的平分线上。

而B 1EDF 是菱形,∴DB 1为∠EDF 的平分线。

故直线AD 与面B 1EDF 所成的角为∠ADB 1.在RtΔB 1AD 中,,3,2,11a D B a AB a AD ===则33cos 1=∠ADB 。

高中数学6-3-3空间角的计算苏教版选择性必修第二册

高中数学6-3-3空间角的计算苏教版选择性必修第二册

E1F
=(
1 2

3 4
,-1),
cos DB1,E1F

87 87

所以直线 E1F 与平面 D1AC 所成角的正弦值为 87 . 87
数学应用
例 3 在正方体 ABCD-A1B1C1D1 中,求二面角 A1-BD-C1 的大小.
数学应用
解:不妨设正方体棱长为 1,以{ DA , DC , DD1 }为单位正交基底,建
6.3.3 空间角的计算
情境问题
复习: (1)空间两条异面直线所成的角可转化为两条相交直线所成的锐角或直角; (2)斜线与平面所成的角是指斜线与它在平面内的射影所成的锐角; (3)两个平面所成的角是用二面角的平面角的大小.
问题: 如何用向量的方法来求空间的角的大小呢?
数学建构
1.两条异面直线所成的角转化为它们的方向向量所成角的问题; 2.直线的方向向量与平面的法向量的夹角为锐角时,直线与平面所成 的角与这个夹角互余; 3.一个二面角的平面角α1与这个二面角的两个半平面的法向量所成的 角α2相等或互补.
17

2:(向量法)设
DD1=4a

D1F1=b
,则
|
a
|=|
b
|

a
b

| DF1 |2 =| BE1 |2 =(4a)2+b2=17a2 ,
DF1 BE1=(4a+b)(4a-b)=15a2,
cos
BE1,DF1
= |
BE1 DF1 BE1 || DF1
=15 | 17

数学应用
所以 cos
n1,n2
= |
n1 n2 n1 || n2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§空间角的计算(二)
编写:周洋
审核:黄爱华
一、知识要点
1.用向量方法解决两平面所成角;
2.用向量方法处理空间角的综合问题。

二、典型例题
例1.在正方体__1111ABCD A B C D 中,求二面角____
11A BD C 的大小。

例2.已知E F 、分别是正方体__
1111ABCD A B C D 的棱BC 和CD 的中点,求:
⑴1A D 与EF 所成角的大小;
⑵1A F 与平面1B EB 所成角正弦值大小;
⑶二面角____
11C D B B 的余弦值。

三、巩固练习
1.在一个二面角的一个平面内有一点,它到棱的距离等于到另一面的距离的2倍,则这个二面角大小为 ;
2.在正方体1AC 中O 是底面ABCD 的中心,M 是1CC 的中点。

⑴求证OM 是平面1A BD 的法向量;
⑵求二面角____
1A A B D 的余弦值大小。

四、小结
C
B
D A
D 1
C 1
A 1
B 1
五、作业
1.二面角的平面角θ与这两个平面的法向量的夹角关系是 ;
2.平面,,a b αβαβ⊂⊂∥平面,且a b 、为异面直线。

若α和β的距离为1,则a b 、之间的距离为 ;
3.在棱长为a 的正方体__
1111ABCD A B C D 中,点A 到平面1A BD 的距离为 ;
4.已知正方形ABCD 和矩形ACEF
所在的平面互相垂直,1AB AF ==。

⑴求二面角____A DF B 的大小;
⑵试在线段AC 上确定一点P ,使得PF 与CD 所成角为60°。

5.如图,矩形ABCD 的对角线,AC BD 相交于点O ,4,3AB AD ==,沿AC 把ACD ∆折起,使
二面角____1D AC B 为直二面角,求二面角____
1D BC A 的余弦值。

6.如图已知ABC ∆和DBC ∆所在的平面互相垂直,,120,AB BC BD CBA DBC ==∠=∠=︒求 ⑴AD 与BC 所成角;
⑵AD 与平面BCD 所成角; ⑶二面角____A BD C 的余弦值。

订正栏:
F
E
D C
B
A
O
D 1
D
A
B
C
O
B
A
C
D
A
B C
D。

相关文档
最新文档