51单片机的外围电路
单片机原理 第2章 MCS-51单片机体系结构
2.4.2 MCS-51单片机数据存储器
2.4.2 MCS-51单片机数据存储器
1. 工作寄存器区
字节地址为00H~1FH的32个单元是4组通用工作寄存器区,每组占用8个 字节,都标记为R0~R7。在某一时刻,CPU只能使用其中的一组工作寄存 器,工作寄存器的选择由程序状态字寄存器PSW中RS1、RS0两位来确定 ,如表2-3所示。
2. 数据总线DB 数据总线宽度为8位(D0~D7),由P0提供。
3. 控制总线CB 控制总线由P3口的第二功能状态和4根独立控制线RESET、 和ALE组成。
2.3 MCS-51单片机的中央处理器
• 8051系列单片机的中央处理器CPU是单片机 的指挥中心和执行机构,它的作用是产生合适的 时序,读入和分析每条指令代码,根据每条指令 代码的功能要求,指挥并控制单片机的有关部件 和器件,具体执行指定的操作。
2.2.3 并行I/O引脚
3. P2口
P2口,为准双向I/O口,具有内部上拉电阻。一共8位,有P2.0~P2.7共8 条引脚。当8051系列单片机扩展外部存储器及I/O接口芯片时,P2口作为 地址总线(高8位),和P0输出的低8位地址一起构成16位地址,可以寻址 64KB的地址空间。
P2口位结构图如图2-3 (c)所示,它比P1口多了 一个转换控制部分,当P2 与P0配合作为“地址/数据总 线”方式下的高8位数据线 (A8~A15)时,CPU将写 控制信号“1”使MUX切换到 右边,在“地址/数据总线” 方式下,无论P2口剩余多 少地址线,均不能被用于 普通I/O操作。
(2)控制引脚—— 、
51单片机学习第10章 开发板的设计PPT课件
实验板制作过程 九.拨动开关模块制作
18
实验板制作过程 十.按键模块制作
19
实验板制作过程 十一.按键及74系列电路插座模块
20
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
10
实验板制作过程 三.多孔板规划
11
实验板制作过程 四.稳压电源制作
12
实验板制作过程 五.最小系统的制作
13
实验板制作过程 六.led数码管显示模块制作
14
实验板制作过程 六.led数码管显示模块制作
15
实验板制作过程 七.led发光二极管显示模块制作
16
实验板制作过程 八.扬声器模块制作
21
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX
时 间:XX年XX月XX日
22
情境十 基于at89s51的开发板设计 子情境二 单片机的目的
1.满足学习实验的需要 2.熟悉单片机外围常用元器件 3.增强动手能力
2
制作前的准备工作 二、制作的准备工作
1.多孔板实验板和面包板
3
制作前的准备工作 二、制作的准备工作
2.插件及开关选定
4
制作前的准备工作 二、制作的准备工作
8
实验板制作过程
一.实验板功能简介 6.Lcd部分 7.Led数码管显示部分 8.74系列数字电路插座 9.拨动开关部分 10.Led发光二极管部分
简单51单片机课程设计
简单51单片机课程设计一、课程目标知识目标:1. 理解51单片机的基本结构、工作原理及功能特点;2. 学会使用51单片机的开发环境,掌握相关编程语言及语法;3. 掌握51单片机外围电路的连接方法,了解常见传感器的使用;4. 掌握51单片机在实际应用中的调试与优化方法。
技能目标:1. 能够运用51单片机编写简单的程序,实现基本的功能;2. 能够分析并解决51单片机在实际应用中出现的问题;3. 能够运用所学知识,设计并实现简单的51单片机控制系统;4. 培养学生的动手能力、创新能力和团队协作能力。
情感态度价值观目标:1. 培养学生对单片机及嵌入式系统的兴趣,激发学习热情;2. 培养学生严谨、求实的科学态度,养成良好的学习习惯;3. 培养学生具备积极向上的心态,面对困难和挑战时保持乐观;4. 培养学生具备团队协作精神,学会与他人共同解决问题。
本课程针对初中学段学生,结合课程性质、学生特点和教学要求,明确以上课程目标。
通过本课程的学习,学生将能够掌握51单片机的基本知识和技能,培养实际应用能力,同时培养良好的情感态度价值观。
后续教学设计和评估将围绕这些具体的学习成果展开。
本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。
具体教学内容如下:1. 51单片机基础知识:介绍51单片机的结构、原理及功能特点,包括内部资源、外部接口等,对应教材第一章。
2. 开发环境与编程语言:学习51单片机的开发环境搭建,掌握C语言编程基础,包括数据类型、运算符、控制语句等,对应教材第二章。
3. 基本I/O口操作:学习51单片机I/O口编程,实现LED灯、蜂鸣器等基本控制,对应教材第三章。
4. 中断与定时器:介绍中断系统、定时器原理及应用,学会编写中断服务程序,对应教材第四章。
5. 外围电路与传感器:学习51单片机与外围电路的连接方法,了解常见传感器的工作原理及使用,对应教材第五章。
6. 实际应用案例分析:分析51单片机在实际应用中的案例,如温度控制系统、智能家居等,对应教材第六章。
51单片机原理图
2.3 51单片机增强型学习系统各组成部份原理图及功能简介2.3.1 共阴极数码管动态扫描控制图2.2 51单片机增强型学习系统的四位共阴极数码管动态扫描硬件连接原理图AT89S51单片机P0口是一组8位漏极开路型双向I/O 口,也即地址/数据总线复用口。
作为输出口用时,每位能驱动8个TTL 逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。
在Flash 编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上接电阻。
AT89S51单片机P2口是一个带有内部上拉电阻的8位双向I/O 口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。
在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2口送出高8位地址数据。
在访问8位地址的外部数据存储器(如执行MOVX @Ri 指令)时,P2口线上的内容(也即特殊功能寄存器SFR 区中P2寄存器的内容),在整个访问期间不改变。
Flash 编程或校验时,P2亦接收高位地址和其它控制信号。
在上面的硬件连接原理图里,我们用到的是P0和P2口控制四位数码管显示的。
四位数码管显示的方式是动态扫描显示,动态扫描显示是单片机中应用最为广泛的一种显示方式之一。
其接口电路如上图是把所有显示器的8个笔划段a-h同名端连在一起由单51单片机增强型学习系统片机的P0.0~P0.7控制,而每一个数码管的公共极(阴极)是各自独立地受单片机P2.7~P2.4控制。
CPU向字段输出口P0口送出字形码时,所有数码管接收到相同的字形码,但究竟是那个数码管亮则取决于P2.7~P2.4的输入结果,所以我们就可以自行决定何时显示哪一位了。
51单片机最小系统原理图
接触过单片机的朋友们都时常会听到别人提"最小系统"这个词.那到底什么是最小系统,有怎样设计称上"最小"呢?下面让依依电子来告诉大家:单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,单片机+晶振电路+复位电路,便组成了一个最小系统.但是一般我们在设计中总是喜欢把按键输入、显示输出等加到上述电路中,成为小系统。
应用89C51(52)单片机设计并制作一个单片机最小系统,达到如下基本要求:1、具有上电复位和手动复位功能。
2、使用单片机片内程序存储器。
3、具有基本的人机交互接口。
按键输入、LED显示功能。
4、具有一定的可扩展性,单片机I/O口可方便地与其他电路板连接。
51单片机学习想学单片机,有一段时间了,自己基础不好,在网上提了许多弱智的问题,有一些问题网友回答了,还有一些为题许多人不屑一顾。
学来学去,一年多过去了,可是还是没有入门,现在我就把我学习中遇到的一些问题和大家分享一下,希望在大虾的帮助下能快速的入门:)在学习之前我在网上打听了一下atmel公司的单片机用的人比较多,avr 系列这几年在国内比较流行,但是考虑到avr还是没有51系列用的人多,51系列的许多技术在实践中都已经的到了前人的解决,遇到问题后,有许多高人可以帮助解决,所以这次学习,选用了atmel公司的at89s52,来进行学习。
学习单片机是需要花费时间实践的;学之前我们先准备好所需的东西一、所需硬件at89s52一片;8m晶振一个,30pf的瓷片电容两个;10uf电解电容一个,10k的电阻一个;万用板(多孔板)一块;其他的器件如电烙铁一把30w的,松香,焊锡若干,如果是第一次学习,不知道这些东西,没关系,以下是它们的照片:Atmel公司生产的at89s528m晶振22pf瓷片电容电解电容图1/4 w 10k 的电阻普通的电木万用板好了,有了这些东西,我们就可以把它们组合到一起做成我们的最小系统了:)有了这些东西我们怎么焊接丫?不用着急,过一会我们把原理图给大家画出来大家就会了。
第二章 MCS-51系列单片机结构与工作
2.3.1运算器 2.3.1运算器
• 4.程序状态字寄存器PSW • 程序状态字寄存器PSW是8位寄存器,用来存储当前指令执行后的状 态,便于程序查询和判别。程序状态字寄存器各位的定义如表2-2。
• (1)进位标志位C:又名CY,在加法和减法运算时, 表示运算结果 最高位的进位或借位情况。
2.3.1运算器 2.3.1运算器
2.2.1 MCS-51系列单片机的引脚与功能 MCS-51系列单片机的引脚与功能
• (8)XTAL2(18脚):片内振荡电路反向放大器的输出端,采用外 部时钟时该引脚为振荡信号的输入端。 • (9)P0口:P0.0~P0.7依次为第39~32脚,P0口除了可以作普通 的双向I/O口使用外,也可以在访问外部存储器时用作低8位地址线和 数据总线。 • (10)P1口:P1.0~P1.7依次为第1~8脚,P1口是带内部上拉电 阻的双向I/O口,向P1口写入“1” 时,P1口被内部上拉为高电平, 可用作输入口。当作为输出脚时,被外部拉低的P1口会因为内部上拉 电阻的存在而输出电流。
AT89C51单片机的基本结构
单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。
(4)外围接口电路
AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。
当EA信号接地时,对ROM的读操作限定在外部程序存储器,地址为0000H-FFFFH;当EA接VCC时,对ROM的读操作从内部程序存储器开始,并可延续至外部程序存储器。在编程时,该引脚可接编程电压5V或12V。在编程校验时,该引脚可接VCC。
·PSEN 片外程序存储器读选通信号PSEN,低电平有效。在片外程序存储器取指期间,当PSEN有效时,程序存储器的内容被送至P0口;在访问外部RAM时,PSEN 无效。
(2)振荡电路的接法
AT89C51的工作原理:
1.引脚排列及功能
AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。
(1)I/O口线
·P0口 8位、漏极开路的双向I/O口。
当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。
ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。
暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。
51单片机共阴极数码管与三极管
51单片机共阴极数码管与三极管一、引言51单片机是一种广泛应用于嵌入式系统中的微处理器,其性能稳定、功能强大,在各种电子设备中得到了广泛的应用。
而共阴极数码管和三极管作为其外围元器件,在数字显示和电路控制中发挥着重要作用。
二、共阴极数码管的原理和应用1. 共阴极数码管的结构和工作原理共阴极数码管是一种常见的数字显示器件,其内部由多个发光二极管组成。
在工作时,需要通过外部电路控制不同的发光二极管,从而显示出不同的数字和字符。
共阴极数码管中的每个发光二极管都需要接地才能发光,因此在控制时需要将要显示的位置的共阴极接地,同时将对应的阳极高电平,从而实现数字显示的控制。
2. 共阴极数码管的应用共阴极数码管在各种电子仪器仪表中得到了广泛的应用,例如数字时钟、计数器、温度计、电压表等。
其优点是功耗低、寿命长、易控制,可以满足数字显示的需求,因此在数字显示方面有着重要的地位。
三、三极管的原理和应用1. 三极管的结构和工作原理三极管是一种半导体器件,由三个不同掺杂的半导体材料层组成,分别为发射区、基区和集电区。
在工作时,可以通过控制发射区和基区之间的电流来控制集电区的电流,从而实现放大和开关的功能。
三极管可以用作放大器、开关、振荡器等不同的电路元器件,具有广泛的应用。
2. 三极管的应用三极管在各种电子电路中都有着重要的应用,例如放大器电路、振荡电路、开关电路等。
其优点是具有放大效果,可以在不同的电路中实现信号放大和控制,因此被广泛地应用于各种电子设备和系统中。
四、51单片机与共阴极数码管、三极管的关系1. 51单片机的数字输出与共阴极数码管的控制51单片机具有多个通用输入输出引脚,可以通过控制这些引脚的电平来控制外部的各种元器件。
在控制共阴极数码管时,可以通过将对应的共阴极引脚接地,同时将对应的阳极引脚设置为高电平,从而实现对数码管的控制。
2. 51单片机与三极管的驱动和控制51单片机可以通过控制输出引脚的电平来控制三极管的工作。
第六章mcs-51单片机IO端口(1)
准双向口:从图中结构看,引脚上的外部信号既加在三态缓 冲器的输入端上,又加在输出级FET2的漏极上,若此FET2 是导通的(相当于曾输出锁存过数据0),则引脚上的电位始 终被钳位在0电平上(除非外部信号源有极大的负载能力), 输入数据不可能正确地读入。因此P0口是一个准双向口,即 在输入数据时,应先把口置1,也就是锁存器的~Q为0,这样 使输出级的2个FET都截止,引脚处于悬浮状态,可作高阻抗 输入。这就是所谓的准双向口。
下图为P0口的某位P0.n(n=0~7)结电路和一个输出控 制电路组成。输出驱动电路由一对FET(场效应管)组成,其 工作状态受输出控制电路的控制,后者包括:1个与门、1个反 相器和1个模拟转换开关(MUX)。
读锁存器
内部总线 写锁存器
地址/数据 VCC 控制
第六章 MCS-51的I/0
第六章mcs-51单片机IO端口(1)
单片机I/O口的使用
对单片机的控制,其实就是对I/O口的控制,无论单片机 对外界进行何种控制,或接受外部的控制,都是通过I/O 口进行的。51单片机总共有P0、P1、P2、P3四个8位双 向输入输出端口,每个端口都有锁存器、输出驱动器和输 入缓冲器。4个I/O端口都能作输入输出口用,其中P0和 P2通常用于对外部存储器的访问。
读锁存器
地址/数据 VCC 控制
内部总线 写锁存器
DQ CLK Q
T1
P0.n P0口
T2
引脚
MUX
读引脚
第六章mcs-51单片机IO端口(1)
2、P0作为地址/数据总线
当P0口作为地址/数据总线使用时,可以分为两种情况。一种情况 是从P0输出地址或数据,这时CPU发出的控制信号应为高电平1, 转换开关把反相器输出端与下拉FET接通,同时与门开锁。输出的 地址或数据信号即通过与门去驱动上拉FET,又通过反相器去驱动 下拉FET。另一种情况是从P0输入数据,这时信号仍应从输入缓冲 器进入内部总线。
单片机原理及应用 第4章 MCS-51单片机系统的扩展技术
2.数据存储器典型扩展电路
6264的地址范围为:0000H~1FFFH。
[例题] 在上页图的数据存储器扩展电路中,将片内RAM 以50H单 元开始的16个数据,传送片外数据存储器0000H开始的单元中。
程序如下:
ORG 1000H MOV R0, #50H MOV R7, #16 MOV DPTR, #0000H AGAIN: MOV A, @R0 MOVX @DPTR, A INC R0 INC DPTR DJNZ R7, AGAIN RET END ; 数据指针指向片内50H单元 ; 待传送数据个数送计数寄存器 ; 数据指针指向数据存储器6264的0000H单元 ; 片内待输出的数据送累加器A ; 数据输出至数据存储器6264 ; 修改数据指针 ; 判断数据是否传送完成
4.2.1
程序存储器扩展
单片机内部没有ROM,或虽有ROM但容量太小时,必须扩 展外部程序存储器方能工作。最常用的ROM器件是EPROM 1. 常用EPROM程序存储器 EPROM主要是27系列芯片,如:2764(8K)/27128(16K) /27256(32K)/27040(512K)等,一般选择8KB以上的芯片作为 外部程序存储器。
4.2.3 MCS-51对外部存储器的扩展
下图所示的8031扩展系统中,外扩了16KB程序存储器(使用两片 2764芯片)和8KB数据存储器(使用一片6264芯片)。采用全地址译码方 式,P2.7用于控制2―4译码器的工作,P2.6, P2.5参加译码,且无悬空地 址线,无地址重叠现象。 1# 2764, 2# 2764, 3# 6264的地址范围分别为:0000H~1FFFH, 2000H~3FFFH, 4000~5FFFH。
MOV DPTR, #7FFFH ; 数据指针指向74LS377 MOV A, 60H ; 输出的60H单元数据送累加器A MOVX @DPTR, A ; P0口将数据通过74LS377输出
51单片机毕业论文
基于MCS-51单片机的步进电机系统摘要本文通过MCS-C51单片机对步进电机进行控制,主要介绍了步进电机控制系统,驱动电路和LED显示电路的设计,包括硬件系统设计和系统软件设计,来实现步进电机的控制,系统为一自动控制系统,通过按键向单片机输送控制信号,控制步进电机的转速和正反转,在步进电机控制系统的设计中,重点阐述了脉冲产生电路以及对速度的控制,该系统具有成本低,控制方便的特点。
采用MCS-C51单片机指令系统进行编程来实现软件部分测试,系统能实现上述功能。
关键词:MCS-C51 步进电机控制系统AbstractIn this paper, MCS-51 microcontroller to control the stepper motor, stepper motor control are introduced system, drive circuit and LED display circuit design, including hardware, system design and system software design, to achieve the stepper motor control system an automatic control system, key to the microcontroller through the delivery control signal to control the stepper motor speed and reversing, the stepper motor control system design, focuses on the pulse generator circuit and the speed control, the system is low cost and convenient control features. With MCS-C51 microcontroller instruction to implement software programming some of the test, the system can achieve these functions.Keywords: MCS-51 Stepping Motor Control system目录摘要-----------------------------------------------------------1 Abstract-------------------------------------------------------1目录-----------------------------------------------------------2前言-----------------------------------------------------------41单片机发展概述1.1单片机的基本概念----------------------------------------41.2MS-51单片机内部结构-------------------------------------41.3MS-51单片机引脚及功能-----------------------------------52步进电机发展概述2.1步进电机简介-----------------------------------------62.2步进电机分类-----------------------------------------62.2反应式步进电机原理及结构2.2.1步进电机基本原理--------------------------------7 2.2.2步进电机转速控制原理----------------------------8 2.3步进电机驱动控制系统----------------------------------83硬件电路设计3.1单片机外围电路---------------------------------------------9 3.2步进电机及驱动电路-----------------------------------------9 3.3数码管及驱动电路-------------------------------------------10 3.4按键电路设计-----------------------------------------------104软件电路设计4.1数码管显示设计4.1.1数码管流程图------------------------------------------11 4.1.2数码管程序--------------------------------------------11 4.2步进电机流程图-----------------------------------------------12总结-------------------------------------------------------------13致谢-------------------------------------------------------------14参考文献---------------------------------------------------------15前言步进电机最早是在19世纪20年代由英国人开发的,50年代后期晶体管的发明也逐渐应用于步进电机上,对于数字化的控制变得更为容易。
51单片机STC
采用三总线结构,包括数据总线 、地址总线和控制总线,实现 CPU与外围设备之间的数据传输 和控制。
外围设备接口技术
并行接口
通过并行数据线同时传输多位数据, 适用于高速数据传输场合。
串行接口
中断接口
通过中断请求和处理机制,实现CPU 与外围设备之间的异步通信和数据交 换。
通过串行数据线逐位传输数据,适用 于远距离通信和低速数据传输场合。
指令系统概述
指令系统基本概念
指令是计算机执行某种操作的命令,指令系统是计算机硬件的语言系统,也称为机器语言。
51单片机STC指令系统特点
51单片机STC采用精简指令集(RISC)结构,具有高速、低功耗、强大中断处理能力等特点。其指令系统包括数 据传送、算术运算、逻辑运算、位操作等指令。
寻址方式与数据传送类指令
SPI接口电路设计及编程方法
01 02 03
SPI接口电路设计
SPI(Serial Peripheral Interface)接口电路是一种同步 串行通信协议,采用主从方式进行通信。在硬件设计上, 需要连接主设备和从设备的SPI接口引脚,同时还需要连 接片选信号线和时钟信号线。
SPI编程方法
在51单片机中,可以使用Keil C语言或汇编语言进行SPI编 程。编程时需要对SPI相关寄存器进行配置,包括工作模 式设置、数据传输格式设置、时钟速率设置等。同时还需 要编写主从设备之间的数据传输函数。
加法指令
ADD和ADDC指令用于执行加 法运算,可以将两个操作数相 加并将结果存储在目标寄存器
中。
减法指令
SUBB指令用于执行减法运算, 可以将一个操作数减去另一个 操作数并将结果存储在目标寄 存器中。
乘法指令
单片机原理及接口技术-C51编程(张毅刚第二版)-习题答案
单片机原理及接口技术(C51编程)(第2版)—习题答案汇总23单片机答案第1章单片机概述思考题及习题1 参考答案一、填空1。
除了单片机这一名称之外,单片机还可称为( )或().答:微控制器,嵌入式控制器。
2.单片机与普通微型计算机的不同之处在于其将()、()和( )三部分,通过内部( )连接在一起,集成于一块芯片上.答:CPU、存储器、I/O口、总线3. AT89S51单片机工作频率上限为()MHz。
答:24MHz。
4. 专用单片机已使系统结构最简化、软硬件资源利用最优化,从而大大降低( )和提高( ).答:成本,可靠性。
二、单选1。
单片机内部数据之所以用二进制形式表示,主要是A.为了编程方便 B.受器件的物理性能限制C.为了通用性 D。
为了提高运算数度答:B2。
在家用电器中使用单片机应属于微计算机的。
A.辅助设计应用 B。
测量、控制应用C.数值计算应用 D。
数据处理应用答: B3。
下面的哪一项应用,不属于单片机的应用范围.A.工业控制 B.家用电器的控制 C.数据库管理 D.汽车电子设备答:C三、判断对错1。
STC系列单片机是8051内核的单片机。
对2。
AT89S52与AT89S51相比,片内多出了4KB的Flash程序存储器、128B的RAM、1个中断源、1个定时器(且具有捕捉功能)。
对3。
单片机是一种CPU。
错4. AT89S52单片机是微处理器。
错5. AT89S51片内的Flash程序存储器可在线写入(ISP),而AT89C52则不能。
对6. 为AT89C51单片机设计的应用系统板,可将芯片AT89C51直接用芯片AT89S51替换.对7。
为AT89S51单片机设计的应用系统板,可将芯片AT89S51直接用芯片AT89S52替换.对8. 单片机的功能侧重于测量和控制,而复杂的数字信号处理运算及高速的测控功能则是DSP的长处。
对第2章 AT89S51单片机片内硬件结构思考题及习题2 参考答案一、填空1。
基于51单片机实验报告(计算器)
基于51单片机实验报告(计算器)一.计算器模块1.功能介绍利用8051 单片机硬件资源和常用外围电路如LCD1602,七段数码管,时钟(DS1302)温度传感器(18B20)等实现一个能做简单四则运算,并具有时钟显示,温度显示附加功能的计算器。
2.设计方案利用STC89C52为内核的单片机,PC机。
四则运算利用4*4矩阵键盘实现从0—9和运算符号的输入,并将操作过程和结果显示在LCD1602上。
时钟显示和温度显示,可以利用DS1302产生年份,月份,日期,星期,时,分,秒的数据,并将数据送往LCD1602显示,同样可以利用单片机开发板上面集成的DS18B20温度传感器来测试周围环境的温度,将获取的温度通过在LCD1602来显示。
系统设计框图3.具体实现代码计算器四则运算部分主要分为键盘扫描的键值读取,判断运算符号实现乘除优先级计算,LCD1602显示。
键盘扫描常用的有行扫描法,线反转法,此处我们用行扫描法,可以更明了读取键值。
unsigned char temp;key = null;//第一行按键P3 = 0xfe;temp = P3;temp = temp & 0xf0;if (temp != 0xf0){delay(10); //延时软件去抖动temp = P3;temp = temp & 0xf0;if (temp != 0xf0) //确认有键按下{temp = P3;switch (temp){case 0xee:key = 'D'; //读键值break;case 0xde:key = 0;break;case 0xbe:key = '=';break;case 0x7e:key = '/';break;}flag++;}}读完按键值之后我们需要读取运算的数字与运算符号,通过判断键值为数字则通过nun=nun*10+key,计算出数字,判断键值为运算符号则读出数字和键值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数码管(二)
共阴与共阳的内部电路如下图所示:
数码管(三)
由图可以看出,共阳和共阴结构的LED 显 示器各笔划段名的安排位置是相同的,当 二极管导通时,相应的笔划段就发亮,由 发亮的笔划段组合而显示出各种字符(a~g 是7个笔段电极,DP为小数点) 需要注意的是:对于同一个字符的编码, 共阴和共阳接法对应的编码是不一样的, 两者互为反码。
MCS-51单片机的系统扩展及应用
通过地址总线、数据总线和控制总线实现系统 的扩展 介绍外围电路的扩展
3.1:程序存储器的扩展 3.2:数据存储器的扩展 3.3:指示小灯 3.4:按键扩展 3.5:数码管应用 3.6:A/D转换器接口 3.7:温度传感器接口 3.8:IIC电路扩展 3.9:液晶电路
静态LED数码显示电路(共阳极)
Vcc
七段译码器 七段译码器 七段译码器 七段译码器 七段译码器
BCD码 0000
0001
0010
0011
0100
返回
数码管(五)
由于静态显示占用的I/O 口线较多,CPU 的开销很大,所以为了节省单片机的I/O 口线,常采用动态扫描方式来作为LED 数 码管的接口电路。 动态显示的接口电路是把所有LED的8 个笔 划段a~g,dp 同名端连在一起,而每一个 显示器的公共极COM 端与各自独立的I/O 口连接。当CPU 向字段输出口送出字形码 时,所有显示器接收到相同的字形码,但 究竟是那个显示器亮,则取决于COM 端, 而这一端是由I/O 口控制的,所以我们就 可以自行决定何时显示哪一位了。
最小系统板
外扩
AD转换
数码管显示
程序存储器 温度传感器 51单片机 IIC总线
键盘
电源模块
数据存储器
指示灯
LCD液晶
3.1:程序存储器ROM的扩展
1,在使用8031(无片内ROM)或大于4K程序存储器时, 必须通过外接ROM来构成、扩充系统的程序存储区。 2,当使用外部存储器来扩展系统时,必须占用单片机的 P0、P2口作为外部电路的数据、地址总线。此时,P0、 P2口就不能作为通用的I/O端口。 3,在系统扩展时,外部电路与单片机连接的依据是单片 机访问外部存储器的时序,所以正确的理解时序是硬件电 路设计的关键。
A
转电路图 返回前一次
B
(参考讲义70页)
片外存储器访问时序说明
P0、P2口作地址和数据总线。其中P0口作为地址和数据复 用总线,前半部(A段)作地址总线,后半部(B段)作为 数据总线。 外部程序存储器ROM的操作步骤如下: 1,单片机必须为其提供完整的(15位)地址信息; 2,ROM芯片的/CE 端=0,选中该芯片; 3,在满足上述条件的基础上,当ROM的/OE=0时(B时 间段),存储器输出数据的三态门打开,并将与输入地址 相对应的存储单元中的指令(数据)向外输出,单片机通 过P0口将指令送至CPU 内部。 74LS373锁存器:将A时间段P0口输出的低位地址进行保存, 使ROM在B时间段仍然可以得到完整的地址信号。
按键接口设计(一)
按键是人机会话的一个重要的输入工具。 常用按键举例 复位按键 功能转换按键 数据输入键盘 复位按键:对于MCS—51系列单片机的 复位引脚RST上只要出现10ms以上的高电 平,单片机就会实现复位。
按键接口设计(二)
以下是一个典型的复位电路设计图:
按键接口设计(三)
返回
AD转换 数码管显示 程序存储器 温度传感器 键盘 51单片机
IIC总线
电源模块
数据存储器
指示灯 LCD液晶
最小系统板
指示灯电路(一)
一、电源指示灯 通常的指示灯电路是使用发光二极管,接 法如下:
当电源正常工作时发光二极管就正常显示
1.6.5 并行端口在使用时应注意的几个问题
“拉电流”还是“灌电流”----与大电流负载的 连接 (我们以美国ATMEL公司生产的AT8951为例) 1, 使用灌电流的方式与电流较大的负载 直接连接时, 端口可以吸收约20mA的电流而保 证端口电平不高于0.45V(见右上图)。 2,采用拉电流方式连接负载时, AT89C51所能提供“拉电流”仅仅为80μA, 否则输出的高电平会急剧下降.如果我们采用右 下图的方式,向端口输出一个高电平去点亮 LED,会发现,端口输出的电平不是“1”而是 “0”!
数码管(一)
在单片机系统中,通常用LED 数码显示器 来显示各种数字或符号。 八段LED 显示器由8 个发光二极管组成。 LED 显示器有两种不同的连接形式:一种 是8 个发光二极管的正极连在一起,称之 为共阳极LED 显示器;另一种是8 个发光 二极管的负极连在一起,称之为共阴极 LED 显示器。
IIC总线
电源模块
数据存储器
指示灯 LCD液晶
最小系统板
串行传输口设计(一)
串口是计算机上一种非常通用设备通信协 议。串口通信的概念简单,串口按位发送 和接收字节。尽管比按字节传送的并行通 信慢,但是串口可以在使用一根线发送数 据的同时用另一根线接收数据。串口的通 信要遵循固定的协议,比如通信两设备间 要有相同的波特率,要设定所传输的数据 位个数,还有是否要用奇偶位、校验位及 停止位。
选中
未选中
1 1
0000000 0 8000H ~ 1111111 FFFFH 1
未选中
选中
外部ROM的容量扩展原理(二)
若需要对2片以上的芯片扩展,可以通过译码电路实现。
MCS–51 P2.7 P2.6 P2.5 P2.4 P2.0 74LS138 C B A
y7
/CE0
0y
/CE1
/CE7
A12 A8 A7
000
001 010
Y0=0
Y1=0 Y2=0
第1片
第2片 第3片
0000H~1FFFH 0000H~1FFFH
0000H~1FFFH 2000H~3FFFH 0000H~1FFFH 4000H~5FFFH
011
100 101 110 111
Y3=0
Y4=0 Y5=0 Y6=0 Y7=0
第4片
第5片 第6片 第7片 第8片
MCS-51与32K ROM的连接
MCS-51
P2.7 : : : P2.0 P0.7 : : : P0.0 ALE /EA Psen 完整的地址 信号
27256 32K ROM
CE A14 : : A8 A7 : : : A0Biblioteka /CE = P2.7(A15)
D7 Q7
D0 Q0 CP
O7 : : : O0
0000H~1FFFH 6000H~7FFFH
0000H~1FFFH 8000H~9FFFH 0000H~1FFFH A000H~BFFFH 0000H~1FFFH C000H~ DFFFH
0000H~1FFFH E000H~FFFFH
小结:
1,单片机的P0、P2口作为地址数据总线; 2,P0口为数据、地址复用总线,所以必须加入八位锁 存器74LS373来锁存P0口的低八位地址。 3,外接ROM是靠MOVC指令产生的Psen信号来打开数 据三态门,使ROM中的指令通过P0口送入单片机内部。 4,存储器的容量M与其地址线条数n的关系:M=2↑n 5,当使用两片ROM扩展时,可以使用一个反向器实现容 量的扩展,通过ROM芯片的/CE端实现。 6,当使用2片以上的ROM芯片扩展时,就要使用译码器 实现存储容量的扩展,译码器的输入与高位地址相连接, 输出端分别与各ROM芯片的/CE连接(如图所示)。 7,当外接ROM的高八位地址线与P2口高八位线没有完全 用足时,要注意外存储的地址重叠问题。
由两片32K的ROM构成64K存储阵列与A15的 关系表
A15 /CE A14~A8 P2口 0000000 0 1111111 1 0000000 0 1111111 1 A7~A0 P0口 0000000 0 1111111 1 地址范围 ROM1工作 ROM2工作 状态 状态
0 0
0000H~ 07FFH
按键接口设计(五)
数据输入键盘
按键接口设计(六)
数据输入键是最常用的一种键盘: 上图所示的按键主要是实现了按键按下之 后,对应S0,S1,S2,S3分别由按下之前的 高电平变为低电平,从而实现了输入由1到 0的变化。此类按键一般需要对其进行编码 和确定键值。 当然还有其他种类的键盘,这里就不再一 一列举,希望我们用的时候自己总结。
串行传输口设计(三)
由于51单片机接口输出的是TTL电平,而 串口通信需要RS232电平,所以要用 MAX232来实现TTL电平与RS232电平的 转换。如下图所示:
串行传输口设计(二)
串口用于ASCII码字符的传输,通信使用3 根线完成:(1)地线,(2)发送, (3)接收。 对于51单片机,它本身就有一个串口通 信的接口,RXD与TXD,分别对应P3.0与 P3.1引脚。 要实现串口的通信,并不是直接将P3.0与 P3.1的线接出来,而是需要有一个器件 MAX232。
OE
返回前一次
外部ROM的状态与地址线A15的关系表
ROM引脚
/CE
A14~A8
A7~A0
单片机引脚 A15 P2口 P0口 0 00000000 00000000 0000H~ 0 11111111 11111111 07FFH
1 1 00000000 00000000 11111111 11111111 8000H FFFFH
A12 A8 A7
A12 A8 A7
8K×8