中考数学专题复习 题型(九)折叠、旋转问题解析版
2023年九年级中考数学一轮专题练习 图形的平移、折叠和旋转(含解析)
2023年中考数学一轮专题练习 ——图形的平移、折叠和旋转5一、单选题(本大题共12小题)1. (重庆市2022年)下列北京冬奥会运动标识图案是轴对称图形的是( ) A . B .C .D .2. (浙江省台州市2022年)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a - 3. (浙江省嘉兴市2022年)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B ′之间的距离为( )A .1cmB .2cmC .-1)cmD .(2-1)cm4. (浙江省杭州市2022年)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在1M⎛⎫⎪⎪⎝⎭,()21M-,()31,4M,4112,2M⎛⎫⎪⎝⎭四个点中,直线PB经过的点是()A.1M B.2M C.3M D.4M5. (四川省德阳市2022年)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6. (四川省广安市2022年)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE + PF的最小值是()A.2 B.C.1.5 D7. (黑龙江省省龙东地区2022年)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A .B .C .D .8. (北京市2022年)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .59. (福建省2022年)如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''',点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A .96B .C .192D . 10. (广东省2022年)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A .()3,1B .()1,1-C .()1,3D .()1,1- 11. (广西百色市2022年)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3) 12. (浙江省金华市2022年)如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A .B .C .207D .83二、填空题(本大题共6小题)13. (浙江省丽水市2022年)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是 .14. (浙江省台州市2022年)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为2cm.15. (山东省潍坊市2022年)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75︒,再沿y轴方向向上平移1个单位长度,则点B''的坐标为.16. (浙江省台州市2022年)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B 重合时,EF的长为;当点M的位置变化时,DF长的最大值为.17. (浙江省丽水市2022年)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是 cm .18. (山东省潍坊市2022年)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为 .三、解答题(本大题共9小题)19. (浙江省丽水市2022年)如图,将矩形纸片折叠,使点B 与点D 重合,点A 落在点P 处,折痕为.(1)求证:PDE CDF △≌△;(2)若4cm,5cm CD EF ==,求BC 的长.20. (浙江省丽水市2022年)如图,在66⨯的方格纸中,点A ,B ,C 均在格点上,试按要求画出相应格点图形.ABCDEF(1)如图1,作一条线段,使它是AB 向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB 和AC 是它的两条边;(3)如图3,作一个与ABC 相似的三角形,相似比不等于1.21. (黑龙江省省龙东地区2022年)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π). 22. (四川省广安市2022年)数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)23. (黑龙江省2022年)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置;(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C124. (黑龙江省齐齐哈尔市2022年)综合与实践数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.如图①,在矩形ABCD中,点E、F、G分别为边BC、AB、AD的中点,连接EF、DF,H为DF的中点,连接GH.将△BEF绕点B旋转,线段DF、GH和CE的位置和长度也随之变化.当△BEF绕点B顺时针旋转90°时,请解决下列问题:(1)图②中,AB=BC,此时点E落在AB的延长线上,点F落在线段BC上,连接AF,猜想GH与CE之间的数量关系,并证明你的猜想;(2)图③中,AB=2,BC=3,则GHCE=;(3)当AB=m , BC=n时.GHCE=.(4)在(2)的条件下,连接图③中矩形的对角线AC,并沿对角线AC剪开,得△ABC (如图④).点M、N分别在AC、BC上,连接MN,将△CMN沿MN翻折,使点C的对应点P落在AB的延长线上,若PM平分∠APN,则CM长为.25. (黑龙江省省龙东地区2022年)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA PB PC+=(或PA PC PB+=)成立;请证明.(2)将ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.26. (北京市2022年)在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM = (2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)27. (河南省2022年)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平; 操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30°的角: .(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.参考答案1. 【答案】C【分析】根据轴对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,故A错误;B.不是轴对称图形,故B错误;C.是轴对称图形,故C正确;D.不是轴对称图形,故D错误.故选:C.2. 【答案】B【分析】直接利用关于y轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E与点D关于y轴对称,∵飞机E的坐标为(40,a),∴飞机D的坐标为(-40,a),故选:B.3. 【答案】D【分析】-′求解即可.先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.4. 【答案】B【分析】根据含30°角的直角三角形的性质可得B(2,PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,2+2设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y =x +2,当y =0+2=0,x∴点M 1(-0)不在直线PB 上,当x y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y =+2,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5. 【答案】A【分析】根据轴对称和中心对称的定义逐项判断即可.轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合.【详解】A 、既是中心对称图形,又是轴对称图形,符合题意;B 、是轴对称图形,但不是中心对称图形,不符合题意;C 、是轴对称图形,但不是中心对称图形,不符合题意;D 、是中心对称图形,但不是轴对称图形,不符合题意;故选:A .6. 【答案】A【分析】取AB 中点G 点,根据菱形的性质可知E 点、G 点关于对角线AC 对称,即有PE =PG ,则当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,再证明四边形AGFD 是平行四边形,即可求得FG =AD .【详解】解:取AB 中点G 点,连接PG ,如图,∵四边形ABCD 是菱形,且边长为2,∴AD =DC =AB =BC =2,∵E 点、G 点分别为AD 、AB 的中点,∴根据菱形的性质可知点E 、点G 关于对角线AC 轴对称,∴PE =PG ,∴PE +PF =PG +PF ,即可知当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,且为线段FG ,如下图,G 、P 、F 三点共线,连接FG ,∵F 点是DC 中点,G 点为AB 中点,∴, 1122DF DC AB AG ===∵在菱形ABCD 中,,∴,∴四边形AGFD 是平行四边形,∴FG =AD =2,故PE +PF 的最小值为2,故选:A .7. 【答案】C【分析】根据中心对称图形的定义判断即可.【详解】解:∵是轴对称图形,也是中心对称图形, ∴不符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;∵不是轴对称图形,是中心对称图形∴符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;故选C .8. 【答案】D【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,DC AB ∥DF AG ∥一共有5条对称轴.故选:D9. 【答案】B【分析】根据直尺与三角尺的夹角为60°,根据四边形ACC A ''的面积为sin602sin60AA AC AB AA ⋅'︒︒⋅'=,即可求解.【详解】解:依题意ACC A ''为平行四边形,∵90ABC ∠=︒,60CAB ∠=︒,AB =8,12AA '=.2AC AB ∴=∴平行四边形ACC A ''的面积=sin602sin60AA AC AB AA ''⋅︒=︒⋅2812=⨯⨯=故选B10. 【答案】A【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .11. 【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B ′(1-2,2+1),即B ′(-1,3);故选:D .12. 【答案】A【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH =,最后求出AD AB的值. 【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =, ∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,, 由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CG A GCF B F '=', 则53232x yx x y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=, EH=-(舍),∴AB=,∴ADAB ==.故选:A .13.【答案】3A【分析】 52x y A G -'=如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA 11209030,18012030,2MOE BMO MOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON,,A O B ∴三点共线,,A B ∴关于O 对称,3,3.A故答案为:3.A14. 【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.15.【答案】(1)【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO 是正方形,OA =2∴∠COB =45°,OB=∵绕原点O 逆时针旋转75︒∴∠BOB '=75°∴∠COB '=30°∵=OB =∴,∴∵沿y 轴方向向上平移1个单位长度∴故答案为:16. 【答案】6-【分析】当点M 与点B 重合时,EF垂直平分AB ,利用三角函数即可求得EF的长;【详解】解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3, OB 'MB 'MO =B '(B ''(1)(1)在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB, ∴EF =3当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC sin60°∴DF 长的最大值为AD -AF =AD -FM =AD -DG =6-3故答案为:36-317. 【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.18. 1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB ′=AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ′=,又由操作二可知:AB ′=AB ,∴=AB ,∴AB AD=, ∴A 4纸的长AB 与宽AD:1.故答案为::1.19. 【答案】(1)证明见解析 (2)163cm 【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =x ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.(1)∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF =∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,P C PD CDPDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴PDE CDF △≌△(ASA );(2)如图,过点E 作EG ⊥BC 交于点G ,∵四边形ABCD 是矩形,∴AB =CD =EG =4cm ,又∵EF =5cm ,∴3GF =,设AE =x ,∴EP =x ,由PDE CDF △≌△知,EP =CF =x ,∴DE =GC =GF +FC =3+x ,在Rt △PED 中,222PE PD DE +=,即()22243x x +=+, 解得,76x =, ∴BC =BG +GC = 77163663++=cm . 20. 【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A ,B 平移后的对应点C ,D ,从而可得答案;(2)确定线段AB ,AC 关于直线BC 对称的线段即可;(3)分别计算ABC 的三边长度,再利用相似三角形的对应边成比例确定DEF 的三边长度,再画出DEF 即可.(1)解:如图,线段CD 即为所求作的线段,(2)如图,四边形ABDC 是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,ABAC 而2,BC = 同理:2226210,22,DF DE 而4,EF 1,2AB AC BC DF DE EF .ABC DFE ∽21. 【答案】(1)见解析;()15,3A -(2)见解析;()22,4A(3)点1A 旋转到点2A 所经过的路径长为5π2【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点1A 旋转到点2A 为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.(1)解:如图所示△A 1B 1C 1即为所求,()15,3A -;(2)如图所示△A 2B 2C 2即为所求,;(3)∵ ∴点旋转到点所经过的路径长为. 22. 【答案】见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可 ()22,4A 115AC 1A 2A 90π55π1802⨯=【详解】解:如下图所示:23. 【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)连接对应点B 、F ,对应点C 、E ,其交点即为旋转中心的位置;(2)利用网格结构找出平移后的点的位置,然后顺次连接即可;(3)根据网格结构的特点作出即可.【详解】解:(1)如图所示,连接BF ,CE 交于点O ,点O 即为所求.(2)如图所示,△A 1B 1C 1为所求;(3)如图所示,点M 即为所求.理由:连接11,B M C M ,根据题意得:111111A B AC B M C M ====∴四边形111A B MC 菱形,∴A 1M 平分∠B 1A 1C 1.24. 【答案】(1)12GH CE =,证明见解析 (2)13GH CE = (3)2GH m CE n =(4)【分析】(1)先证明△ABF ≌△CBE ,得AF =CE ,再根据中位线性质得GH =12AF ,等量代换即可; (2)连接AF ,先证明△ABF ∽△CBE ,得到AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (3)连接AF ,先证明△ABF ∽△CBE ,用含m 、n 的代数式表达出AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (4)过M 作MH ⊥AB 于H ,根据折叠性质得∠C =∠MPN ,根据角平分线证明出∠C =∠PMH ,设CM =PM =x ,HM =y ,根据三角函数定义找到x 、y 之间的关系,再利用△AHM ∽△ABC ,得到CM BC H AM A =,代入解方程即可. (1) 解:12GH CE =,理由如下: ∵AB =BC ,四边形ABCD 为矩形,∴四边形ABCD 为正方形,∴∠ABC =∠CBE =90°,∵E 、F 为BC ,AB 中点,∴BE =BF ,∴△ABF ≌△CBE ,∴AF =CE ,∵H 为DF 中点,G 为AD 中点,∴GH =12AF , ∴12GH CE =. (2) 解:13GH CE =, 连接AF ,如图所示,由题意知,BF =12AB =1,BE =12BC =32, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =2:3,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (3)解:, 连接AF ,如图所示,23AB BF BC BE ==12AF 13GH CE =132GH m CE n=由题意知,BF ==,BE ==, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =m :n ,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (4)解:过M 作MH ⊥AB 于H ,如图所示,由折叠知,CM =PM ,∠C =∠MPN ,12AB 2m 12BC 2n AB BF m BC BE n==12AF 2GH m CE n =2mn∵PM 平分∠APN ,∴∠APM =∠MPN ,∴∠C =∠APM ,∵AB =2,BC =3,∴AC设CM =PM =x ,HM =y ,由知,, 即,∵HM ∥BC ,∴△AHM ∽△ABC ,∴, 即,, ∴,解得:x, 故答案为:. 25. 【答案】(1)证明见解析(2)图②结论:PB PA PC =+,证明见解析(3)图③结论:PA PB PC +=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明CAP BAF ≌△△(SAS ),得CAP BAF ∠=∠,AF AP =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明BAP CAF ≌△△(SAS ),得出CAF BAP ∠=∠,AP AF =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,sin sin C APM ∠=∠AB HM AC PM =y x =y =C M BC H AM A =3y =3y =3=∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC =+证明:在BP 上截取BF CP =,连接AF ,∵ABC 和ADE 都是等边三角形, ∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒ ∴BAC CAD DAE CAD ∠+∠=∠+∠, ∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AC =AB ,CP =BF ,∴CAP BAF ≌△△(SAS ),∴CAP BAF ∠=∠,AF AP =, ∴CAP CAF BAF CAF ∠+∠=∠+∠, ∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒∴BAC BAE DAE BAE ∠+∠=∠+∠,∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP ∠=∠,AP AF =,∴BAF BAP BAF CAF ∠+∠=∠+∠,∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.26. 【答案】(1)见解析(2)42t -【分析】(1)①先根据定义和(1,1)M 求出点P'的坐标,再根据点P'关于点N 的对称点为Q 求出点Q 的坐标;②延长ON 至点()3,3A ,连接AQ ,利用AAS 证明ΔΔAQT OPT ≅,得到12TA TO OA ==,再计算出OA ,OM ,ON ,即可求出12NT ON OT OM =-==; (2)连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,结合对称的性质得出NM 为Δ'P QT 的中位线,推出1=2NM QT ,得出()12221SQ ST TQ t t =-=--=-,则()()max min 2PQ PQ PS QS PS QS QS -=+--=.(1)解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P', ∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q ,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵ //AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅, ∴12TA TO OA ==, ∵ ()3,3A ,(1,1)M ,(2,2)N ,∴OA ==OMON =∴12TO OA ==∴NT ON OT =-= ∴12NT OM =; (2)解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT , ∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.27. 【答案】(1)BME ∠或ABP ∠或PBM ∠或MBC ∠(2)①15,15;②MBQ CBQ ∠=∠,理由见解析 (3)4011AP =cm 或24cm 13【分析】(1)根据折叠的性质,得12BE BM =,结合矩形的性质得30BME ∠=︒,进而可得30ABP PBM MBC ∠=∠=∠=︒; (2)根据折叠的性质,可证()Rt Rt HL BQM BQC ∆≅∆,即可求解;(3)由(2)可得QM QC =,分两种情况:当点Q 在点F 的下方时,当点Q 在点F 的上方时,设AP PM x ==,分别表示出PD ,DQ ,PQ ,由勾股定理即可求解.(1) 解:12AE BE AB AB BM ===, 12BE BM =∴ 90BEM ∠=︒∵30BME ∠=︒∴60MBE ∠=︒∴ABP PBM ∠=∠∵30ABP PBM MBC ∠=∠=∠=︒∴(2)∵四边形ABCD 是正方形∴AB =BC ,∠A =∠ABC =∠C =90°由折叠性质得:AB =BM ,∠PMB =∠BMQ =∠A =90°∴BM =BC①BM BC BQ BQ ==∵,∴()Rt Rt HL BQM BQC ∆≅∆MBQ CBQ ∠=∠∴30MBC15MBQ CBQ ∠=∠=︒∴②BM BC BQ BQ ==∵,()Rt Rt HL BQM BQC ∆≅∆∴MBQ CBQ ∠=∠∴(3)当点Q 在点F 的下方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,,8413(cm)QC CD DF FQ =--=--=∴,DQ =DF +FQ =4+1=5(cm) 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222853x x -+=+ 解得:4011x =∴40cm 11AP =; 当当点Q 在点F 的上方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,, 5QC =∴cm ,DQ =3cm , 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222835x x -+=+ 解得:2413x =∴24cm 13AP =.。
中考数学专题复习题型九折叠旋转问题含解析
A.2 B.C.D.11.(20__新疆乌鲁木齐第9题)如图,在矩形中,点在上,点在上,把这个矩形沿折叠后,使点恰好落在边上的点处,若矩形面积为且,则折痕的长为( C )A. B. C. D.322312.(20__重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.13.(20__河南第15题)如图,在中,,,,点,分别是边,上的动点,沿所在的直线折叠,使点的对应点始终落在边上.若为直角三角形,则的长为.【答案】1或.21 214.(20__江苏苏州第18题)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则(结果保留根号).【答案】.74 515.(20__海南第17题)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【答案】.16.(20__·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .17.(20__·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a (用含a的式子表示).18.(20__河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE 折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.19.(20__年河南3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC 上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为▲.【答案】16或.20.(20__年江苏泰州3分)如图,矩形中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP, PE与CD相交于点O,且OE=OD,则AP的长为▲.【答案】.21.(20__湖北鄂州第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则sin∠ECF =()A.B.C.D.【答案】D.22.(20__•四川自贡,第10题4分)如图,在矩形中,,是边的中点,是线段边上的动点,将△沿所在直线折叠得到△,连接,则的最小值是( A )A. B.6 C. D.42102--213223.(20__•绵阳第12题,3分)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=( B )A.B.C.D.24.(20__•四川省__市,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.25.(20__•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .【答案】(10,3)。
中考数学点对点-几何折叠翻折类问题(解析版)
专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。
中考数学专题讲练 旋转(解析版)
旋转一.半角模型“半角”旋转模型,经常会出现在等腰直角三角形、正方形中,在一般的等腰三角形中也会有涉及.二.等腰三角形旋转模型等腰三角形的旋转模型比较多,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化,证明的基本思想“SAS”.1.一般等腰三角形的旋转2.等边三角形的旋转3.等腰直角三角形的旋转三.对角互补模型四边形对角互补模型多数题目给出的条件会以四边形或三角形等旋转为载体.四.旋转相似模型共顶点相似的一般三角形模型:如图,图中ABD ACE∆∆∽,得到AB AD BDAC AE CE==,ABD ACE∠=∠,ADB AEC∠=∠,BAD CAE∠=∠,则有ABC ADE∆∆∽.一.考点:1.旋转全等模型;2.旋转相似模型;3.旋转中的轨迹与最值问题;二.重难点:1.这类题的关键是找到题目中所给的特殊条件,结合问题所要证明或者求解的边长角度问题,再去选择是要构造旋转全等还是通过已经得到的旋转全等的性质进一步证明.2.观察图形发现旋转得到的相似;3.通过添加辅助线构造旋转相似或者去挖掘隐含的相似图形.三.易错点:1.在利用旋转构造全等的时候注意辅助线的做法问题;2.构造旋转全等时候一定要有相等边长的条件.3.全等是相似的一个特例,旋转有时候也会出现全等,注意和旋转全等的区别和联系.题模一:旋转与全等例1.1.1已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.【答案】图2成立,证明见解析,图3不成立,图3中AE、CF、EF的关系是AE﹣CF=EF【解析】∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=12BE,CF=12BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=12BE+12BF=BE=EF;图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.例1.1.2(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】(1)证明见解析(2)成立(3)EF=BE﹣FD 【解析】(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.例 1.1.3如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【答案】(1)见解析(2)见解析(3)△ACN仍为等腰直角三角形【解析】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.例1.1.4如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,2,求AG、MN的长.【答案】(1)见解析(2)MN2=ND2+DH2;理由见解析(3)AG=12;2【解析】(1)证明:∵△AEB由△AED翻折而成,∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,∵△AFD由△AFG翻折而成,∴∠ADF=∠AGF=90°,∠DAF=∠FAG,AD=AG,∵∠EAG+∠FAG=∠EAF=45°,∴∠ABE=∠AGE=∠BAD=∠ADC=90°,∴四边形ABCD 是矩形,∵AB=AD ,∴四边形ABCD 是正方形;(2)MN 2=ND 2+DH 2,理由:连接NH ,∵△ADH 由△ABM 旋转而成,∴△ABM ≌△ADH ,∴AM=AH ,BM=DH ,∵由(1)∠BAD=90°,AB=AD ,∴∠ADH=∠ABD=45°,∴∠NDH=90°,∴△AMN ≌△AHN ,∴MN=NH ,∴MN 2=ND 2+DH 2;(3)设AG=BC=x ,则EC=x ﹣4,CF=x ﹣6,在Rt △ECF 中,∵CE 2+CF 2=EF 2,即(x ﹣4)2+(x ﹣6)2=100,x 1=12,x 2=﹣2(舍去)∴AG=12,∵AG=AB=AD=12,∠BAD=90°,∴22AB AD +221212+2,∵2,∴MD=BD ﹣2﹣22,设NH=y,在Rt△NHD中,∵NH2=ND2+DH2,即y2=(2y)2+(22,解得2,即2.题模二:旋转与相似例1.2.1如图1,点P在正方形ABCD的对角线AC上,正方形的边长是a,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N.(1)操作发现:如图2,固定点P,使△PEF绕点P旋转,当PM⊥BC时,四边形PMCN是正方形.填空:①当AP=2PC时,四边形PMCN的边长是________;②当AP=nPC时(n是正实数),四边形PMCN的面积是___________.(2)猜想论证如图3,改变四边形ABCD的形状为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF 的两条直角边PE、PF分别交BC、DC于点M、N,固定点P,使△PEF绕点P旋转,则PMPN=__________.(3)拓展探究如图4,当四边形ABCD满足条件:∠B+∠D=180°,∠EPF=∠BAD时,点P在AC上,PE、PF分别交BC,CD于M、N点,固定P点,使△PEF绕点P旋转,请探究PMPN的值,并说明理由.【答案】(1)①13a②()221an+(2)ab(3)见解析【解析】(1)①如图2,∵PM⊥BC,AB⊥BC ∴△PMC∽△ABC又∵AP=2PC∴PMAB=13,即PMa=13∴PM=13a,即正方形PMCN的边长是13a②当AP=nPC时(n是正实数),PMAB=11n+∴PM=11n+a∴四边形PMCN的面积=(11n+a)2=()221an+(2)如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN由PG∥AB,PH∥AD可得,PG CP PH AB CA AD==∵AB=a,BC=b∴PG PHa b=,即PGPH=ab(3)如图4,过P作PG∥AB,交BC于G,作PH∥AD,交CD于H,则∠HPG=∠DAB ∵∠EPF=∠BAD∴∠EPF=∠GPH,即∠EPH+∠HPN=∠EPH+∠GPM∴∠HPN=∠GPM∵∠B+∠D=180°∴∠PGC+∠PHC=180°又∵∠PHN+∠PHC=180°∴∠PGC=∠PHN∴△PGM∽△PHN由PG∥AB,PH∥AD可得,PG CP PH AB CA AD==即PG AB PH AD=②∴由①②可得,PMPN=ABAD例1.2.2数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.【答案】探究1:见解析;探究2:见解析;探究3:①KD仍平分∠AKG②y=2x,其中≤≤4838x【解析】探究1,∵∠KAD=∠KDG=∠DBG=45°,∴∠KDA+∠BDG=135°.∵∠BDG+∠BGD=135°,∴∠KDA=∠BGD,∴△ADK∽△BGD;探究2,∵△ADK∽△BGD,∵点D是线段AB的中点,∴BD=AD,∵∠KAD=∠KDG=45°,∴△ADK∽△DCK,∴∠AKD=∠DKC,∴KD平分∠AKG.探究3,①KD仍平分∠AKG.理由如下:∵同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,∴∠AKD=∠DKG,∴KD仍平分∠AKG;②如图,过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,∴DM=DN.∵AC=BC=8,点D是线段AB的中点,∠KAD=45°,∴DM=DN=4.∵KG=x,∴S△DKG=y=12×4x=2x,对于图3的情况同理可得y=2x,综上所示,y=2x,其中38.题模三:旋转中的轨迹与最值问题例1.3.1如图,点P是平行四边形ABCD对角线BD上的动点,点M为AD的中点,已知AD=8,AB=10,∠ABD=45°,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为.【答案】18﹣2【解析】如图,作AP1⊥BD垂足为P1,∵∠DBA=45°,AB=10,∴∠P1AB=∠DBA=45°,AP1=P12,∵AM=MD=12AD=4,当AP1旋转到与射线AD的重合时(点P1与点E重合),ME就是MQ最小值24,当点P2与B重合时,旋转到与DA的延长线重合时(点P2与点F重合),此时MF就是MQ最大值=AM+AF=14,∴MQ的最大值与最小值的差=14﹣(2﹣4)=18﹣2故答案为18﹣2例 1.3.2如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为______;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为______.(结果都保留π)【答案】3231+nπ【解析】∵菱形ABCD中,AB=2,∠C=60°,∴△ABD是等边三角形,BO=DO=1,223AD DO-第一次旋转的弧长6033ππ⨯=∵第一、二次旋转的弧长和60360323ππ⨯⨯=,第三次旋转的弧长为:601 1803ππ⨯=∵3n÷3=n,故经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为:n 23π+3π)231+nπ.例1.3.3如图1,点O为正方形ABCD的中心.(1)将线段OE绕点O逆时针方向旋转90︒,点E的对应点为点F,连结EF,AE,BF,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE与BF的关系;(3)如图2,点G是OA中点,△EGF是等腰直角三角形,H是EF的中点,90EGF∠=︒,22AB=2GE=,△EGF绕G点逆时针方向旋转α角度,请直接写出旋转过程中BH的最大值.【答案】(1)见解析(2)AE⊥BF(3)25+【解析】(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分∵O 为正方形ABCD 的中心,∴OB OA =,∠AOB =90……3分∵OE 绕点O 逆时针旋转90角得到OF∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分在△EOA 和△FOB 中,∴BF AE =.……5分∴∠OFB +∠FHG =90∴AE ⊥BF ……6分(3)BH 的最大值为25+……8分随练1.1 在ABC ∆中,2AB BC ==,90ABC ∠=︒,BD 为斜边AC 上的中线,将ABD ∆绕点D 顺时针旋转α(0180α︒<<︒)得到EFD ∆,其中点A 的对应点为点E ,点B 的对应点为点F ,BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________;(2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN =__________;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系:____________________________.【答案】 (1)BE FC =;(2)22FC ;(3)222BF CE AC +=. 【解析】 (1)BE FC =;(2)证明:如图,∵AB BC =,90ABC ∠=︒,BD 为斜边中线,∴12BD AD CD AC ===,BD AC ⊥ ∵EFD ∆是由ABD ∆旋转得到的,∴DE DF DB DC ===,90EDF ADB BDC ∠=∠=∠=︒∴EDF BDF BDC BDF ∠+∠=∠+∠,即BDE FDC ∠=∠,∴BDE FDC ∆∆≌,∴BE FC =且12∠=∠又∵34∠=∠,∴90FHE FDE ∠=∠=︒ ,即BE CF ⊥连接BF ,取BF 中点G ,连接MG 、NG .∵M 为EF 中点,G 为BF 中点,N 为BC 中点又∵EB FC =,BE FC ⊥∴MG NG =,90MGN ∠=︒,∴MGN ∆为等腰直角三角形,∴2MN =. (3)222BF CE AC +=.随练1.2 在菱形ABCD 中,120BAD ∠=︒,4AB =,把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A 重合,两边分别落在AB 、AC 上.将三角板绕点A 按逆时针旋转,设旋转角为α.(1)如图①,当060α︒<<︒时,三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F ,请你通过观察或测量写出图中现有的两组相等线段(菱形的边和对角线除外).(2)如图②,当60120α︒<<︒时,三角板的两边分别与BC 、CD 的延长线相交于点E 、F ,你在(1)中得到的结论还成立吗?若成立,请你选择一组加以证明;若不成立,请你说明理由.(3)当060α︒<<︒时,三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F ,请你求出这个三角板与这个菱形重合部分的面积.【答案】 见解析【解析】 (1)BE CF =,AE AF =,CE DF =.写出两组即可.(2)(1)中的结论仍然成立.如图,BE CF =的结论仍然成立.证明如下:∵在菱形ABCD 中,120BAD ∠=︒,又由题意可知,60EAF ∠=︒,∴BAE CAF ∠=∠.在△BAE 和△CAF 中,∴△BAE ≌△CAF .∴BE CF =.(3)当060α︒<<︒时,三角板与这个菱形重合部分的面积就是四边形AECF 的面积.由题意可证△BAE ≌△CAF .∴四边形AECF 的面积就是△ABC 的面积.∵4AB =,∴所求图形的面积为43随练1.3如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.【答案】(1)DM=FM,DM⊥FM(2)DM⊥FM,DM=FM【解析】(1)如图2,DM=FM,DM⊥FM,证明:连接DF,NF,∵四边形ABCD和CGEF是正方形,∴AD∥BC,BC∥GE,∴AD∥GE,∴∠DAM=∠NEM,∵M是AE的中点,∴AM=EM,在△MAD与△MEN中,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∠DCF=∠DCB=90°,在△DCF与△NEF中,∴△DCF≌△NEF,∴DF=NF,∠CFD=∠EFN,∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,∴DM⊥FM,DM=FM(2)猜想:DM⊥FM,DM=FM,证明如下:如图3,连接DF,NF,连接DF,NF,∵四边形ABCD是正方形,∴AD∥BC,∵点E、B、C在同一条直线上,∴AD∥CN,∴∠ADN=∠MNE,在△MAD与△MEN中,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,∴∠DCF=∠NEF,在△DCF与△NEF中,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,∵∠CFD+∠EFD=90°,∴∠NFE+∠EFD=90°,∴∠DFN=90°,∴DM ⊥FM ,DM=FM .随练 1.4 已知:在ABC △中,AB AC =,点D 为BC 边的中点,点F 在AB 上,连结DF 并延长到点E ,使BAE BDF ∠=∠,点M 在线段DF 上,且ABE DBM ∠=∠.(1)如图,当45ABC ∠=°时, 求证:2AE MD =;(2)如图,当60ABC ∠=°时,则线段AE MD 、之间的数量关系为____________;(3)在(2)的条件下,延长BM 到P ,使MP BM =,连接CP ,若727AB AE ==,,求tan EAB ∠的值.【答案】 (1)见解析(2)2AE MD =(33 【解析】 该题考查的是四边形综合.(1)如图,连结AD又∵45ABC ∠=°∴cos BD AB ABC =∠即2AB BD =∴△ABE ∽△DBM(2)与(1)类似可知△DBM ∽△ABE ,又60ABC ∠=︒,(3)如图2连结AD 、EP ,∵△ABE ∽△DBM又∵BM MP =∴△BEP 等边三角形∴EM BP ⊥即90BMD ∠=︒在Rt △AEB 中,27AE =7AB =, tan EAB ∠的值为3随练 1.5 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M N D ,,为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M N ,分别在直线AB AC ,上移动时,BM NC MN ,,之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.(1)如图①,当点M N ,在边AB AC ,上,且DM DN =时,BM NC MN ,,之间的数量关系式_________;此时Q L=__________ (2)如图②,当点M N ,在边AB AC ,上,且DM DN ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3)如图③,当点M N ,分别在边AB CA ,的延长线上时,若AN x =,则Q =_________(用x L ,表示)【答案】 见解析【解析】 (Ⅰ)BM 、NC 、MN 之间的数量关系BM NC MN +=.此时23Q L =. (Ⅱ)猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE BM =,连结DE .∵BD CD =,且120BDC ∠=︒.又△ABC 是等边三角形,∴90MBD NCD ∠=∠=︒.在△MBD 与△ECD 中,BM CE MBD ECD BD DC =⎧⎪∠=∠⎨⎪=⎩∴△MBD ≌△ECD (SAS).∴DM DE =,BDM CDE ∠=∠.在△MDN 与△EDN 中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩∴△MDN ≌△EDN (SAS).△AMN 的周长Q AM AN MN =++而等边△ABC 的周长3L AB =(Ⅲ)如图③,当M 、N 分别在AB 、CA 的延长线上时,若AN x =,则223Q x L=+(用x、L表示).随练1.6(1)正方形ABCD中,对角线AC与BD相交于点O,如图1,请直接猜想并写出AO与CD 之间的数量关系:;(2)如图2,将(1)中的△BOC绕点B逆时针旋转得到△BO1C1,连接AO1,DC1,请猜想线段AO1与DC1的数量关系,并证明你的猜想;(3)如图3,矩形ABCD和Rt△BEF有公共顶点,且∠BEF=90°,∠EBF=∠ABD=30°,则AEDF=______.【答案】(1)AO=2CD.理由如下:∵四边形ABCD为正方形,∴AO=OC=OD,∠ODC=∠OCD=45°,∠DOC=90°,∴AO=CO=2 CD,故答案为AO=2 CD;(2)∵四边形ABCD为正方形,∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,∴△ABC和△OBC都是等腰直角三角形,∵△BOC绕点B逆时针方向旋转得到△BO1C1,∴∠O1BC1=∠OBC=45°,OB=O1B,BC1=BC,∴BC121,∵∠1+∠3=45°,∠2+∠3=45°,∴∠1=∠2,∴△BDC1∽△BAO1,(3)在R t△EBF中,cos∠EBF=EB FB在R t△ABD中,cos∠ABD=AD BD,∵∠EBF=∠ABD=30°,∵∠EBF+∠FBA=∠ABD+∠FBA,即∠EBA=∠FBD,∴△AEB∽△FBD,故答案为3【解析】(1)根据正方形的性质得AO=OC=OD,∠ODC=∠OCD=45°,∠DOC=90°,由勾股定理得到AO与CD之间的数量关系;(2)如图2根据正方形的性质得AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,得到△ABC和△OBC都是等腰直角三角形,求出AC=2AB BC=2BO,得到BD=2AB,因为△BOC绕点B逆时针方向旋转得到△BO1C1,所以∠O1BC1=∠OBC=45°,OB=O1B,BC1=BC,BC1=2BO1,由∠1+∠3=45°,∠2+∠3=45°,得到∠1=∠2,于是得到△BDC1∽△BAO1,求出结论;(3)如图3在R t△ABD中,cos∠ABD=ABBD,在Rt△EBF中,cos∠EBF=EBFB因为∠EBF=∠ABD=30°得到BE ADBF BD=3,再由∠EBF+∠FBA=∠ABD+∠FBA,得到∠EBA=∠FBD,△AEB∽△FBD,由相似的性质得到解.解:(1)AO=2CD.理由如下:如图1,∵四边形ABCD为正方形,∴AO=OC=OD,∠ODC=∠OCD=45°,∠DOC=90°,∴AO=CO=2 CD,故答案为AO=2 CD;(2)如图2,∵四边形ABCD为正方形,∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,∴△ABC和△OBC都是等腰直角三角形,∵△BOC绕点B逆时针方向旋转得到△BO1C1,∴∠O1BC1=∠OBC=45°,OB=O1B,BC1=BC,∴BC121,∵∠1+∠3=45°,∠2+∠3=45°,∴∠1=∠2,∴△BDC1∽△BAO1,(3)如图3 在R t△EBF中,cos∠EBF=EB FB在R t△ABD中,cos∠ABD=AD BD,∵∠EBF=∠ABD=30°,∵∠EBF+∠FBA=∠ABD+∠FBA,即∠EBA=∠FBD,∴△AEB∽△FBD,故答案为3.随练1.7如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF 相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是______.【答案】2【解析】如图点P运动的路径是以G为圆心的弧EF,在⊙G上取一点H,连接EH、FH.∵四边形AOCB是正方形,∴∠AOC=90°,∴∠AFP=12∠AOC=45°,∵EF是⊙O直径,∴∠EAF=90°,∴∠APF=∠AFP=45°,∴∠H=∠APF=45°,∴∠EGF=2∠H=90°,∵EF=4,GE=GF,∴2,∴EF的长9022π•2.随练1.8已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)见解析;(2)①∠CMD=135°②2π【解析】(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M 在以AC 为直径的⊙O 上,运动路径是弧CD ,∵OA=OC ,CD=DA ,∴DO ⊥AC ,∴∠DOC=90°,∴CD ∧的长=901180π=2π. ∴当α从90°变化到180°时,点M 运动的路径长为2π. 随练1.9 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=2OD ,OE=2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE .(1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°<α<360°)得到正方形OE ′F ′G ′,如图2.①在旋转过程中,当∠OAG ′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF ′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】 (1)如图1,延长ED 交AG 于点H ,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①α=30°;②α=315°.【解析】 (1)如图1,延长ED 交AG 于点H ,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O='OA OG =12, ∴∠AG′O=30°,∵OA ⊥OD ,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴2,∵OG=2OD,∴2∴OF′=2,∴2+2,∵∠COE′=45°,∴此时α=315°.作业1如图1,在△ABC中,∠BAC=90°,AB=AC.(1)若点M为AC上的任意一点,过M作MN⊥BC于点N,取BM的中点D,连接AD、DM,求证:AD=DN.(2)如图2,若M为BC上的任意一点,以线段CM为底边作等腰Rt△MCN,此时,取BM的中点D,连接AD、DN,则AD与DN有怎样的数量关系?说明理由.(3)如图3,在(2)的条件下将Rt△MNC绕C点旋转任意角度,连接BM,取BM的中点D,再连接AD、DN,则(2)中的结论仍然成立吗,它们之间又有怎样的位置关系?请说明理由.【答案】(1)见解析;(2)AD=DN;(3)AD=DN,AD⊥DN【解析】(1)证明:解法一:如图1中,延长AD到K,使得DK=AD,连接AN、KN、KM.在△ADB和△KDM中,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KMC=∠BAC=90°,∵AB=AC,∠BAC=90°,∴∠C=45°,∵MN⊥BC,∴∠MNC=90°,∠NMC=45°=∠KMC=∠C,∴MN=NC,在△ANC和△KNM中,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,即AD=DN.解法二:根据直角三角形斜边中线性质,可知AD=12BM,DN=12BM,由此即可证明.(2)如图2中,结论:AD=DN.理由:延长AD到K,使得DK=AD,连接AN、KN、KM.在△ADB和△KDM中,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KMN=∠B=45°,∵∠NMC=∠NCM=∠ACB=45°∴MN=NC,∠KMN=∠ACN=90°在△ANC和△KNM中,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,即AD=DN.(3)如图3中,结论:AD=DN,AD⊥DN.理由:延长AD到K,使得DK=AD,连接AN、KN、KM,延长KN交AC于G.在△ADB和△KDM中,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KGC=∠BAC=90°,∴∠ACN+∠NMG=180°,∵∠KMN+∠NMG=180°,∴∠ACN=∠NMK,在△ANC和△KNM中,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,DN⊥AK,即AD=DN.AD⊥DN.作业2已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】(1)见解析(2)成立(3)见解析【解析】本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质.(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG.(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=12 FD,同理,在Rt△DEF中,EG=12 FD,∴CG=EG.(1)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=12 MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.作业3在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:____(填“成立”或“不成立”)【答案】(1)见解析;(2)不成立;(3)成立【解析】(1)证明:如图1,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∵O为AB中点,∴OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(2)还成立,理由是:如图2,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∵OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(3)成立.作业4在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.请直接写出AC1与BD1的数量关系和位置关系.(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,判断AC1与BD1的数量关系和位置关系,并给出证明;(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1,请直接写出k 的值和AC12+(kDD1)2的值.【答案】(1)AC1⊥BD1(2)AC1=34BD1,AC1⊥BD1,理由见解析(3)AC12+(kDD1)2=36【解析】(1)AC1=BD1,AC1⊥BD1;理由:如图1,∵四边形ABCD是正方形,∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,在△AOC 1和△BOD 1中1111AO OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩ ,∴△AOC 1≌△BOD 1(SAS );∴AC 1=BD 1,∵∠AOB=90°,∴∠OAB+∠ABP+∠OBD 1=90°,∴∠OAB+∠ABP+∠OAC 1=90°,∴∠APB=90°,则AC 1⊥BD 1;故AC 1 与BD 1的数量关系是:AC 1=BD 1;AC 1 与BD 1的位置关系是:AC 1⊥BD 1;(2)AC 1=34BD 1,AC 1⊥BD 1. 理由:∵四边形ABCD 是菱形,∴OC=OA=12AC ,OD=OB=12BD ,AC ⊥BD . ∵△C 1OD 1由△COD 绕点O 旋转得到,∴O C 1=OC ,O D 1=OD ,∠CO C 1=∠DO D 1.∴O C 1=OA ,O D 1=OB ,∠AO C 1=∠BO D 1,∴△AO C 1∽△BOD 1.∴∠O AC 1=∠OB D 1.又∵∠AOB=90°,∴∠O AB+∠ABP+∠OB D 1=90°.∴∠O AB+∠ABP+∠O AC 1=90°.∴∠APB=90°.∴AC 1⊥BD 1.∵△AO C 1∽△BOD 1,即AC 1=34BD 1,AC 1⊥BD 1.(3)如图3,与(2)一样可证明△AOC1∽△BOD1,∴k=12;∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OD1=OD,而OD=OB,∴OD1=OB=OD,∴△BDD1为直角三角形,在Rt△BDD1中,BD12+DD12=BD2=144,∴(2AC1)2+DD12=144,∴AC12+(kDD1)2=36.作业5在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD 上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=________度,线段BE、EF、FD之间的数量关系为________.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.【答案】解:(一)(1):30 ,BE+DF=EF(2)BE﹣DF=EF(二)3【解析】解:(一)(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′,则∠1=∠2,BE=DE′,AE=AE′,∵∠BAD=60°,∠EAF=30°,∴∠1+∠3=30°,∴∠2+∠3=30°,即∠FAE′=30°∴∠EAF=∠FAE′,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,即EF=DF+DE′,∴EF=DF+BE,即线段BE、EF、FD之间的数量关系为BE+DF=EF,故答案为:30,BE+DF=EF;(2)如图3,在BE上截取BG=DF,连接AG,在△ABG和△ADF中,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,且AG=AF,∵∠DAF+∠DAE=30°,∴∠BAG+∠DAE=30°,∵∠BAD=60°,∴∠GAE=60°﹣30°=30°,∴∠GAE=∠FAE,在△GAE和△FAE中,∴△GAE≌△FAE(SAS),∴GE=FE,又∵BE﹣BG=GE,BG=DF,∴BE﹣DF=EF,即线段BE、EF、FD之间的数量关系为BE﹣DF=EF;(二)如图4,将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′,则AE=AE ′,∠EAE ′=60°,∴△AEE ′是等边三角形,又∵∠EAF=30°,∴AN 平分∠EAF ,∴AN ⊥EE ′,∴直角三角形ANE 中,AN 3AE = ∵在等边△ABC 中,AM ⊥BC ,∴∠BAM=30°, ∴AM 3AB =,且∠BAE+∠EAM=30°, 又∵∠MAN+∠EAM=30°,∴∠BAE=∠MAN ,∴△BAE ∽△MAN , ∴MN AM =BE AB ,即MN 31= ∴3. 作业6 探索绕公用顶点的相似多边形的旋转:(1)如图1,已知:等边ABC ∆和ADE ∆,根据__________(指出三角形的全等或相似),可得到CE 与BD 的大小关系为:__________.(2)如图2,正方形ABCD 和正方形AEFG ,求:FCEB 的值;(3)如图3,矩形ABCD 和矩形AEFG ,AB kBC =,AE kEF =,求:FCEB 的值.【答案】 (1)全等,相等;(223)21k +.【解析】 解:(1)如图1,ABC ∆和ADE ∆都是等边三角形,在AEC ∆和ADB ∆中,AE ADCAE BADAC AB =⎧⎪∠=∠⎨=⎪⎩,AEC ADB ∴∆≅∆,CE BD ∴=;(2)如图2,四边形ABCD 和四边形AEFG 都是正方形,(3)连接FA 、CA ,如图3,四边形ABCD 和四边形AEFG 都是矩形,AB kBC =,AE kEF =,作业7 如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是( )A . 6B . 3C . 2D . 1.5【答案】D【解析】 取线段AC 的中点G ,连接EG ,如图所示.∵△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD=CG=12AB=3,∠ACD=60°, ∵∠ECF=60°,∴∠FCD=∠ECG .在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ECG (SAS ),∴DF=GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG=DF=12CD=32. 作业8 已知等边△ABC 边长为2,放置在如图的水平桌面上,将△ABC 水平向右作无滑动翻滚,使△ABC 首次落回开始的位置,则等边△ABC 的中心O 经过的路径长为_________.【答案】433π.【解析】如图,过点C作CD⊥AB于D,则CD一定经过点O,∵CD=32BC=3,∴OC=23CD=233,根据等边三角形的性质,∠BCD=12∠ACB=12×60°=30°,∴每一次翻滚中心O旋转的角度为:180°﹣2×30°=120°,等边三角形翻滚3次翻滚一周,∴点O旋转的角度为:120°×3=360°,∴中心O经过的路径长是:2π•OC=2π×233=433π,故答案为:433π.作业9已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.【答案】(1)①90°;②OA2+OB2=OC2;证明见解析(2)①α=β=120°,OA+OB+OC有最小值;图形见解析【解析】(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,。
2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)
几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
中考数学专题复习翻转折叠问题
翻转折叠问题【专题点拨】图形折叠是中考中常考题型,这种题型主要考察学生对图形的认知,特别是考察轴对称的性质、全等三角形、勾股定理、相似三角形等知识综合运用。
【解题策略】有关图形折叠的相关计算,首先要熟知折叠是一种轴对称变换,即位于折痕两侧的图形关于折痕成轴对称;然后根据图形折叠的性质,即折叠前、后图形的对应边和对应角相等,对应点的连线被折痕垂直平分并结合勾股定理或相似三角形的性质进行相关计算.【典例解析】类型一:三角形折叠问题例题1:(2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).类型二:平行四边形折叠问题例题2:(2016·湖北武汉·3分)如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.【考点】平行四边形的性质【解析】∵四边形ABCD为平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠EAD,=∠DAE=20°,∠AED,=∠AED=180°-∠DAE-∠D=180°-20°-52°=108°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∴∠FED′=108°-72°=36°.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°类型三:矩形折叠问题例题3:(2016贵州毕节3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【解析】正方形的性质;翻折变换(折叠问题).根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)变式训练3:(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°类型四:菱形折叠问题例题4:(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中OGD正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.变式训练4:(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .类型五:圆的折叠问题例题5:(2015•聊城)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A. 12B.13C.23D.352. 解:作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC=×⊙O面积.故选:B.变式训练5:(2016·山东省德州市·4分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.【能力检测】1.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.2.(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.3.(2016·浙江省绍兴市·5分)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.4.(2016·重庆市A卷·4分)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是多少?5.(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D 的坐标;若不能,请说明理由.【参考答案】变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a (用含a的式子表示).【解析】翻折变换(折叠问题).由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出△DEF的周长.【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【解析】平行线的性质,折叠关系。
2019-2020年中考数学专题复习翻转折叠问题
2019-2020年中考数学专题复习翻转折叠问题【专题点拨】图形折叠是中考中常考题型,这种题型主要考察学生对图形的认知,特别是考察轴对称的性质、全等三角形、勾股定理、相似三角形等知识综合运用。
【解题策略】有关图形折叠的相关计算,首先要熟知折叠是一种轴对称变换,即位于折痕两侧的图形关于折痕成轴对称;然后根据图形折叠的性质,即折叠前、后图形的对应边和对应角相等,对应点的连线被折痕垂直平分并结合勾股定理或相似三角形的性质进行相关计算.【典例解析】类型一:三角形折叠问题例题1:(2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).类型二:平行四边形折叠问题例题2:(2016·湖北武汉·3分)如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.【考点】平行四边形的性质【解析】∵四边形ABCD为平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠EAD,=∠DAE=20°,∠AED,=∠AED=180°-∠DAE-∠D=180°-20°-52°=108°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∴∠FED′=108°-72°=36°.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°类型三:矩形折叠问题例题3:(2016贵州毕节3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【解析】正方形的性质;翻折变换(折叠问题).根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)变式训练3:(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°类型四:菱形折叠问题例题4:(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中OGD正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.变式训练4:(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .类型五:圆的折叠问题例题5:(2015•聊城)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A. 12B.13C.23D.352. 解:作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC=×⊙O面积.故选:B.变式训练5:(2016·山东省德州市·4分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.【能力检测】1.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.2.(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.3.(2016·浙江省绍兴市·5分)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.4.(2016·重庆市A卷·4分)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是多少?5.(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D 的坐标;若不能,请说明理由.【参考答案】变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a (用含a的式子表示).【解析】翻折变换(折叠问题).由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出△DEF的周长.【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【解析】平行线的性质,折叠关系。
中考数学中的折叠问题精选全文
精选全中考数学中的折叠问题文完整版(可编辑修改)近年来,在各地中考数学命题时,十分重视对图形语言、文字语音、符号语言的理解运用及相互之间的关系,相互之间的转化能力以及动手操作能力的考查。
这样,图形的折叠问题就成为一个亮点,有关翻折的考题日趋增加。
翻折问题的解决方法,抓住翻折后与翻折的图形是以折痕为轴的轴对称图形这一关键,并运用代数方程,一般均可求得。
下面我们以中考题为例,谈谈翻折问题的几例类型及解法,供大家参考。
一、以矩形为母体的翻折这种类型最多,以折痕的不同位置又可分下面几种:1、沿对角线翻折例1、(2000年山西省)已知:如图1,将矩形ABCD沿直线BD折叠,使点C 落在C’处,BC’交AD于E,AD=8,AB=4,求△BED的面积。
分析:因为BD是对称轴,∴∠CBD=∠C’BD,又AD∥BC,∴∠CBD=∠ADB,得:∠C’BD=∠ADB,∴ED=EB设ED=x,∴AD=8-x在Rt△ABE中,AB2+AE2=BE2,即42+(8-x)2=x2,∴x=5,∴ED=EB=5又BD=∴S△BED==10方法2:过E作EF⊥BD,垂足F,在得到BE=5,BD=4后,在Rt△BEF中,EF=,得S△BED=BD×EF=×4×=10方法3:∵Rt△BEF∽Rt△BDC’,∴EF:DC’=BF:BC’,得EF==(以下略)2、沿一直线翻折,使一顶点落在对边上例2、(2000年山东省)已知矩形ABCD的两边AB与BC的比为4:5,E是AB 上一点,沿CE将△EBC向上翻折,若B点恰好落在边AD上的F点,如图2,则tg∠DCF=______。
A、B、C、D、分析:因为CF=CB,∴CF:CD=5:4,得CD:DF=4:3,∴tg∠DCF==,应选(A)。
例3、(1998年台州市)如图3,矩形ABCD的长、宽分别为5和3,将顶点C 折过来,使它落在AB上的C’点(DE为折痕),那么阴影部分的面积是______。
中考数学二轮专题复习图形变换——折叠问题【含答案】
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
图形的旋转、翻折与平移-三年中考数学真题分项汇编(解析版)
图形的旋转、翻折与平移一、单选题1.(2022·浙江湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm【答案】C【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵∵ABC沿BC方向平移1cm得到△A′B′C′,∵BB′=CC′=1cm,∵B′C=2cm,∵BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.2.(2022·浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心'''',形成一个“方吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.2-1)cm D.21)cm【答案】D【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=22cm,由平移性质得BB'=1cm,∵点D,B′之间的距离为DB'=BD BB-′=(221-)cm,【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.3.(2021·浙江丽水)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A (−1,b) 关于y轴对称点为B (1,b),C (2,b)关于y轴对称点为(-2,b),需要将点D (3.5,b) 向左平移3.5+2=5.5个单位,故选:C.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.(2021·浙江绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【分析】根据平移和大菱形的位置得出菱形的个数进行判定即可【详解】如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.【点睛】本题考查了生活中的平移现象,菱形的判定,正确的识别图形是解题的关键.5.(2020·浙江台州)如图,把∵ABC 先向右平移3个单位,再向上平移2个单位得到∵DEF ,则顶点C (0,-1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1) 【答案】D 【分析】先找到顶点C 的对应点为F ,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C 的对应点为F ,由图可得F 的坐标为(3,1),故选D .【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的特点.6.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.7.(2020·浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .842+【答案】D 【分析】如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.【详解】解:如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .由题意∵EMN 是等腰直角三角形,EM=EN=2,MN=22∵四边形EMHK 是矩形,∵EK= A'K=MH=1,KH=EM=2,∵∵RMH 是等腰直角三角形,∵RH=MH=1,RM=2,同法可证NW=2,题意AR=R A'= A'W=WD=4,∵AD=AR+RM+MN+NW+DW=4+2+22+2+4=842+.故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.8.(2022·浙江衢州)下列图形是中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.【详解】解:A、不是中心对称图形,此项不符合题意;B、是中心对称图形,此项符合题意;C、不是中心对称图形,此项不符合题意;D、不是中心对称图形,此项不符合题意;故选:B.【点睛】本题考查了中心对称图形,熟记中心对称图形的定义是解题关键.9.(2020·浙江绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【答案】B【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【详解】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【点睛】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.二、填空题10.(2022·浙江台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′∵BC,则阴影部分的面积为______2cm.【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∵B ′C ′,∵四边形B ′C ′CB 为平行四边形,∵BB ′∵BC ,∵四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(2022·浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】823+【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∵AB =2BC =4,∵AC =2216423AB BC -=-=,∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∵1CC '=,=4+1=5AB ', =2B C BC ''=,∵四边形的周长为:23152823+++=+,故答案为:823+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键. 12.(2022·浙江嘉兴)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∵点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∵ME ∵OA ,MF ∵OB∵90MEO MFO ∠=∠=︒∵120AOB ∠=︒∵四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∵MEO MFO ≅(HL )∵1302EMO FMO FME ∠=∠=∠=︒ ∵643cos cos30ME OM EMO ===∠︒∵23MN =∵MO ∵DC∵222216(23)262DN DM MN CD =-=-== ∵46CD =故答案为:60°;46【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.13.(2020·浙江金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A与点B 重合),点O 是夹子转轴位置,O E ∵AC 于点E ,OF ∵BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm .(2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .【答案】1660 13【分析】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,可得CH AB⊥,AH=BH,利用已知先求出125CE cm=,在Rt△OEF中利用勾股定理求出CO的长,由sinOE AHECOCO AAC∠==,求出AH,从而求出AB=2AH的长.【详解】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,∵AB=CD=EF=2cm,∵以点A,B,C,D为顶点的四边形的周长为2+6+2+6=16cm.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,∵CH AB⊥,AH=BH,∵AC=BD=6cm,CE∵AE=2∵3,∵125CE cm=,在Rt△OEF中,2213 5CO OE CE=+=,∵sinOE AHECOCO AAC∠==,3013AH=,∴AB=2AH=60 13.故答案为16,60 13.【点睛】本题主要考查了勾股定理与旋转的结合,做题时准确理解题意利用已知的直角三角形进行求解是解题的关键.三、解答题14.(2022·浙江温州)如图,在26⨯的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180︒后的图形.【答案】(1)见解析(2)见解析【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.(1)画法不唯一,如图1或图2等.(2)画法不唯一,如图3或图4等.【点睛】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.15.(2022·浙江丽水)如图,在66的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与ABC相似的三角形,相似比不等于1.【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A,B平移后的对应点C,D,从而可得答案;(2)确定线段AB,AC关于直线BC对称的线段即可;(3)分别计算ABC的三边长度,再利用相似三角形的对应边成比例确定DEF的三边长度,再画出DEF 即可.(1)解:如图,线段CD即为所求作的线段,(2)如图,四边形ABDC是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,AB AC而2,BC = 同理:2226210,22,DFDE 而4,EF1,2AB AC BC DF DE EF.ABC DFE ∽【点睛】本题考查的是平移的作图,轴对称的作图,相似三角形的作图,掌握平移轴对称的性质,相似三角形的判定方法是解本题的关键.16.(2021·浙江温州)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (253中. 【答案】(1)见解析;(2)见解析【分析】(1)七巧板中有两个四边形,分别是正方形和平行四边形,根据题意可画出4种图形任意选一种即可,(2)七巧板中有五个等腰直角三角形,有直角边长2的两个,直角边长22的两个,直角边长2 的一个,根据题意利用数形结合的思想解决问题即可.【详解】解:(1)画法不唯一,当选四边形为正方形时可以是如图1或图2;当四边形式平行四边形时可以是图3或图4.(2)画法不唯一,当直角边长为2时,扩大5即直角边长为10利用勾股定理画出直角边长为10直角三角形可以是如图5或图6当直角边长为22时,扩大5即直角边长为210利用勾股定理画出直角边长为210直角三角形可以是如图7或图8等.【点睛】本题考查基本作图,平移,二次根式的乘法,以及勾股定理的应用,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.17.(2022·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【答案】(1)见解析(2)见解析【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一.(2)【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.18.(2020·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义画出图形构成一个大的等边三角形即可(答案不唯一).(2)根据中心对称图形的定义画出图形构成一个平行四边形即可(答案不唯一).【详解】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【点睛】本题考查利用中心对称设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(2020·浙江金华)如图,在∵ABC 中,AB =42∵B =45°,∵C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将∵AEF 折叠得到∵PEF . ∵如图2,当点P 落在BC 上时,求∵AEP 的度数. ∵如图3,连结AP ,当PF ∵AC 时,求AP 的长.【答案】(1)4;(2)∵90°;∵26【分析】(1)如图1中,过点A 作AD∵BC 于D .解直角三角形求出AD 即可. (2)∵证明BE=EP ,可得∵EPB=∵B=45°解决问题. ∵如图3中,由(1)可知:AC=83sin 603AD =︒,证明∵AEF∵∵ACB ,推出AF AE AB AC =,由此求出AF 即可解决问题.【详解】解:(1)如图1,过点A 作AD ∵BC 于点D , 在Rt∵ABD 中,sin 45AD AB =⋅︒=2422⨯=4.(2)∵如图2,∵∵AEF ∵∵PEF , ∵AE =EP . 又∵AE =BE , ∵BE =EP , ∵∵EPB =∵B =45°, ∵∵AEP =90°.∵如图3,由(1)可知:在Rt∵ADC 中,83sin 603AD AC ==︒. ∵PF ∵AC , ∵∵PF A =90°. ∵∵AEF ∵∵PEF ,∵∵AFE =∵PFE =45°,则∵AFE =∵B . 又∵∵EAF =∵CAB , ∵∵EAF ∵∵CAB ,∵AF AB=AE AC ,即42AF =22833, ∵AF =23,在Rt∵AFP 中,AF =PF ,则AP =2AF =26.【点睛】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.【答案】[探究1]152BC +=;[探究2]'D M DM =,证明见解析;[探究3]2MN PN DN =⋅,证明见解析 【分析】[探究1] 设BC x =,根据旋转和矩形的性质得出''//D C DA ,从而得出''D C B ADB ∆∆∽,得出比例式'''D C D BAD AB=,列出方程解方程即可; [探究2] 先利用SAS 得出''AC D DBA ∆∆≌,得出'DAC ADB ∠=∠,'ADB AD M ∠=∠,再结合已知条件得出''MDD MD D ∠=∠,即可得出'D M DM =;[探究3] 连结AM ,先利用SSS 得出ADM ADM ∆∆≌,从而证得MN AN =,再利用两角对应相等得出NPA NAD ∆∆∽,得出PN ANAN DN=即可得出结论. 【详解】[探究1]如图1,设BC x =.∵矩形ABCD 绕点A 顺时针旋转90︒得到矩形'''AB C D , ∵点A ,B ,'D 在同一直线上.∵'AD AD BC x ===,'1DC AB AB ===, ∵''1D B AD AB x =-=-. ∵'90BAD D ∠=∠=︒, ∵//D C DA ''.又∵点'C 在DB 延长线上, ∵''D C B ADB ∆∆∽, ∵'''D C D BAD AB =,∵111x x -=. 解得1152x +=,2152x -=(不合题意,舍去)∵152BC +=. [探究2] 'D M DM =. 证明:如图2,连结'DD .∵'//'D M AC , ∵'''AD M D AC ∠=∠.∵'AD AD =,''90AD C DAB ∠=∠=︒,''D C AB =,∵()''AC D DBA SAS ∆∆≌.∵'D AC ADB '∠=∠,'ADB AD M ∠=∠,∵AD AD =,''ADD AD D ∠=∠,∵''MDD MD D ∠=∠,∵'D M DM =.[探究3]关系式为2MN PN DN =⋅.证明:如图3,连结AM .∵'D M DM =,'AD AD =,AM AM =,∵()ADM AD M SSS '∆∆≌.∵'MAD MAD ∠=∠,∵AMN MAD NDA ∠=∠+∠,'NAM MAD NAP ∠=∠+∠,∵AMN NAM ∠=∠,∵MN AN =.在NAP ∆与NDA ∆中,ANP DNA ∠=∠,NAP NDA ∠=∠,∵NPA NAD ∆∆∽,∵PN AN AN DN=, ∵2AN PN DN =⋅.∵2MN PN DN =⋅.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.21.(2020·浙江绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt∵ABC中,∵ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG∵BC,OG=2,OC=4.将∵ABC绕点O逆时针旋转α(0°≤α<180°)得到∵A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.∵当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.∵当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.【答案】(1)点C′到直线OF的距离为23;(2)∵点C′到直线DE的距离为22±2;∵2≤d<4417或d=3.【分析】(1)过点C′作C′H∵OF于H.根据直角三角形的边角关系,解直角三角形求出CH即可.(2)∵分两种情形:当C′P∵OF时,过点C′作C′M∵OF于M;当C′P∵DG时,过点C′作C′N∵FG于N.通过解直角三角形,分别求出C′M,C′N即可.∵设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2;当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.【详解】解:(1)如图,过点C′作C′H∵OF于H.∵∵A′B′C′是由∵ABC绕点O逆时针旋转得到,∵C′O=CO=4,在Rt∵HC′中,∵∵HC′O=α=30°,∵C′H=C′O•cos30°=23,∵点C′到直线OF的距离为23.(2)∵如图,当C′P∵OF时,过点C′作C′M∵OF于M.∵∵A′B′C′为等腰直角三角形,P为A′B′的中点,∵∵A′C′P=45°,∵∵A′C′O=90°,∵∵OC′P=135°.∵C′P∵OF,∵∵O=180°﹣∵OC′P=45°,∵∵OC′M是等腰直角三角形,∵C′M =C′O•cos45°=4×22=22, ∵点C′到直线DE 的距离为222-.如图,当C′P∵DG 时,过点C′作C′N∵FG 于N .同法可证∵OC′N 是等腰直角三角形,∵C′N =22,∵GD=2,∵点C′到直线DE 的距离为222+.∵设d 为所求的距离.第一种情形:如图,当点A′落在DE 上时,连接OA′,延长ED 交OC 于M .∵OC=4,AC=2,∵ACO=90°,2216425OA CO AC =+∴+==∵OM =2,∵OMA′=90°,∵A′M =22A O OM '-=()22252-=4,∵DM=2,∵A′D=A′M-DM=4-2=2,即d=2,如图,当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.∵P为A′B′的中点,∵A′C′B′=90°,∵PQ∵A′C′,∵'12 B P C Q PQB A BC A C'''''''===∵B′C′=2∵PQ=1,C'Q=1,∵Q点为B′C′的中点,也是旋转前BC的中点,∵OQ=OC'+C'Q=5∵OP=2251+=26,∵PM=2226422OP OM-=-=,∵PD=222PM DM-=-,∵d=22﹣2,∵2≤d≤22﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.由上可知OP=26,OF=5,∵FP=22OP OF-=2625-=1,∵OF=OT,PF=PT,∵F=∵PTO=90°,∵Rt∵OPF∵Rt∵OPT(HL),∵∵FOP=∵TOP,∵PR∵OQ,∵∵OPR=∵POF,∵∵OPR=∵POR,∵OR=PR,∵PT2+TR2=PR2,22215PR PR∴+(﹣)=∵PR=2.6,RT=2.4,∵∵B′PR∵∵B′QO,∵B ROB''=PRQO,∵3.46=2.6OQ,∵OQ=78 17,∵QG=OQ﹣OG=4417,即d=4417∵25﹣2≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,2≤d<4417或d=3.【点睛】(1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.(2)∵本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.∵本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系. 22.(2020·浙江嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∵ACB=∵DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE (如图4).【探究】当EF平分∵AEO时,探究OF与BD的数量关系,并说明理由.【答案】【思考】是,理由见解析;【发现】94;【探究】BD =2OF ,理由见解析; 【分析】【思考】由全等三角形的性质得出AB =DE ,∵BAC =∵EDF ,则AB ∵DE ,可得出结论;【发现】连接BE 交AD 于点O ,设AF =x (cm ),则OA =OE =12(x +4),得出OF =OA ﹣AF =2﹣12x ,由勾股定理可得()2221123424x x ⎛⎫-+=+ ⎪⎝⎭,解方程求出x ,则AF 可求出; 【探究】如图2,延长OF 交AE 于点H ,证明∵EFO ∵∵EFH (ASA ),得出EO =EH ,FO =FH ,则∵EHO =∵EOH =∵OBD =∵ODB ,可证得∵EOH ∵∵OBD (AAS ),得出BD =OH ,则结论得证.【详解】解:【思考】四边形ABDE 是平行四边形.证明:如图,∵∵ABC ∵∵DEF ,∵AB =DE ,∵BAC =∵EDF ,∵AB ∵DE ,∵四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∵OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∵OF =OA ﹣AF =2﹣12x ,在Rt∵OFE 中,∵OF 2+EF 2=OE 2,∵()2221123424x x ⎛⎫-+=+ ⎪⎝⎭, 解得:x =94, ∵AF =94cm . 【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,∵四边形ABDE 为矩形,∵∵OAB =∵OBA =∵ODE =∵OED ,OA =OB =OE =OD ,∵∵OBD =∵ODB ,∵OAE =∵OEA ,∵∵ABD +∵BDE +∵DEA +∵EAB =360°,∵∵ABD +∵BAE =180°,∵AE ∵BD ,∵∵OHE =∵ODB ,∵EF 平分∵OEH ,∵∵OEF =∵HEF ,∵∵EFO =∵EFH =90°,EF =EF ,∵∵EFO ∵∵EFH (ASA ),∵EO =EH ,FO =FH ,∵∵EHO =∵EOH =∵OBD =∵ODB ,∵∵EOH ∵∵OBD (AAS ),∵BD =OH =2OF .【点睛】本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.。
中考数学折叠,旋转问题专题含答案
【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。
中考数学专题讲义折叠与旋转类
折叠与旋转类联想融通:把折叠、旋转放在动态几何里,你觉得会和你过去做过的题目有什么相同?什么不同?动态几何中出现了折叠、旋转、自然会用他们的性质,如折叠问题一定会用其全等的性质,更用其对称点连线被折痕垂直平分的性质;旋转问题一般也会用旋转角相等。
动态几何要研究规律性,故与过去不同之处应该是引入函数吧。
解法归一:用轴对称、旋转的性质,别的与其他动点无异。
动态几何中出现了折叠、旋转、自然会用他们的性质,如折叠问题一定会用其全等的性质,更用其对称点连线被折痕垂直平分的性质。
其中较难题目更是如此,切记!和折叠一样,动态几何中的旋转,一般也用旋转角相等,对应点与旋转中心三点可连成等腰三角形。
一、几何图形的折叠与旋转类、例28-1-1 已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.图28-1-1①图28-1-1②(1)如图28-1-1①,当∠BOP=30°时,求点P的坐标为____________________;(2)如图28-1-1②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).交流分享:(1)略;(2)折叠出角平分线,用一线三角相似;(3)不仅又多一个相似的直角三角形,还产生了一个等腰三角形。
例28-1-2 (1)如图28-1-1①,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6)C (0,6),将四边形OABC 绕点O 按顺时针方向旋转α得到四边形OA ′B ′C ′,此时直线OA ′、直线B ′C ′分别与直线BC 相交于点P 、Q 。
(1)四边形OABC 的形状是______,当α=90°时,BPBQ的值是____;(2)①如图(2),当四边形OA ′B ′C ′的顶点B ′落在y 轴正半轴时,求BPBQ的值;②如图(3),当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求△OPB ′的面积;(3)在四边形OABC 旋转过程中,当0°<α≤180°时,是否存在这样的点P 和点Q ,使12BP BQ =?若存在,请直接写出点P 的坐标;若不存在,请说明理由。
中考数学专题练习 旋转(含解析)-人教版初中九年级全册数学试题
旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225°D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形 B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3) D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PAPB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两X完全重合的矩形纸片,小亮同学将其中一X绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225°D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形 B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3) D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点 A 、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF= 45 度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60 度,图中除△ABC外,还有等边三形是△AOD .【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ .【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ 逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两X完全重合的矩形纸片,小亮同学将其中一X绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
初三复习 数学几何中折叠问题 4大类 分类 含答案
初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题
2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。
中考数学中考最后压轴题训练---折叠旋转问题
一.折叠类 【1 】1. (13江苏徐州卷)在平面直角坐标系中,已知矩形ABCD 中,边2AB =,边1AD =,且AB .AD 分离在x 轴.y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在边DC 上,设点A '是点A 落在边DC 上的对应点.(1)当矩形ABCD 沿直线12y x b =-+折叠时(如图1),求点A '的坐标和b 的值;(2)当矩形ABCD 沿直线y kx b =+折叠时,①求点A '的坐标(用k 暗示);求出k 和b 之间的关系式; ② 假如我们把折痕地点的直线与矩形的地位分 为如图2.3.4所示的三种情况,请你分离写出每种情况时k 的取值规模. (将答案直接填在每种情况下的横线上)(——当如图1.2折叠时,求D A '的取值规模?)k 的取值规模是; k 的取值规模是;k 的取值规模是;[解] (1)如图答5,设直线12y x b =-+与OD 交于点E ,与OB 交于点F ,贯穿连接A O ',则OE = b ,OF = 2b ,设点A '的坐标为(a ,1)因为90DOA A OF ''∠+∠=︒,90OFE A OF '∠+∠=︒, 所以DOA OFE '∠=∠,所以△DOA '∽△OFE .所以DA DO OE OF '=,即12a b b =,所以12a =. 所以点A '的坐标为(12,1).贯穿连接A E ',则A E OE b '==.在R t △DEA '中,依据勾股定理有222A E A D DE ''=+ ,即2221()(1)2b b =+-,解得58b =.(2)如图答6,设直线y kx b =+与OD 交于点E ,与OB 交于点F ,贯穿连接A O ',则OE = b ,bOF k =-,设点A '的坐标为(a ,1).因为90DOA A OF ''∠+∠=︒,90OFE A OF '∠+∠=︒. 所以DOA OFE '∠=∠,所以△DOA '∽△OFE . 所以DA DOOE OF'=,即1a b b k=-,所以a k =-. 所以A '点的坐标为(k -,1).贯穿连接A E ',在Rt △DEA '中,DA k '=-,1DE b =-,A E b '=. 因为222A E A D DE ''=+,所以222()(1)b k b =-+-.所以212k b +=.在图答6和图答7中求解参照给分. (3)图13﹣2中:21k -≤≤-; 图13﹣3中:1-≤k≤2-+图13﹣4中:20k -≤[点评]这是一道有关折叠的问题,重要考核一次函数.四边形.类似形等常识,试题中贯串了方程思惟和数形结合的思惟,请留意领会.2. (13广西钦州卷)如图,在平面直角坐标系中,矩形OABC 的极点O 为原点,E 为AB 上一点,把CBE △沿CE 折叠,使点B 正好落在OA 边上的点D 处,点AD ,的坐标分离为(50),和(30),.(1)求点C的坐标;(2)求DE地点直线的解析式;(3)设过点C的抛物线22(0)y x c b=+<与直线BC的另一个交点为M,问在该抛物线上是否消失点G,使得CMG△为等边三角形.若消失,解释来由.[解] (1)依据题意,得53CD CB OA OD====,,90COD=∠,4OC∴=.∴点C的坐标是(04),;(2)4AB OC==,设AE x=,则4DE BE x==-,532AD OA OD=-=-=,在Rt DEA△中,222DE AD AE=+.222(4)2x x∴-=+.解之,得32x=,即点E的坐标是352⎛⎫⎪⎝⎭,.设DE地点直线的解析式为y kx b=+,30352k bk b+=⎧⎪∴⎨+=⎪⎩,,解之,得3494kb⎧=⎪⎪⎨⎪=-⎪⎩,.DE∴地点直线的解析式为3944y x=-;(3)点(04)C ,在抛物线22y x c =++上,4c ∴=.即抛物线为224y x =++.假设在抛物线224y x =++上消失点G ,使得CMG △为等边三角形,依据抛物线的对称性及等边三角形的性质,得点G 必定在该抛物线的极点上. 设点G 的坐标为()m n ,,224m ∴=-=-⨯,22424)323428b n ⨯⨯--==⨯,即点G 的坐标为232348b ⎛⎫-- ⎪ ⎪⎝⎭,.设对称轴x =CB 交于点F ,与x 轴交于点H .则点F 的坐标为4⎛⎫⎪⎪⎝⎭. 00b m <∴>,,点G 在y 轴的右侧,CF m ==2232334488b b FH FG -==-=,.2CM CG CF ===∴在Rt CGF △中,222CG CF FG =+,222238b ⎛⎛⎛⎫=+ ⎪ ⎝⎭⎝⎭⎝⎭.解之,得2(0)b b =-<..42m ∴=-=,2323582b n -==. ∴点G 的坐标为522⎛⎫⎪ ⎪⎝⎭,.∴在抛物线224(0)y x b =++<上消失点G 52⎫⎪⎪⎝⎭,,使得CMG △为等边三角形.[点评]这是一道以折叠为布景的分解型压轴题,分解性较强,这类试题在各地中考题中消失的频率不小,本题中第1.2小题只需依据折叠的基赋性质结合函数常识即可得解,第3小题是探讨型问题,是一道检测学生才能的好题.3(13湖北咸宁卷)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,53OA OC ==,.(1)在AB 边上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求点D ,E 的坐标;(2)若过点D E ,的抛物线与x 轴订交于点(50)F -,,求抛物线的解析式和对称轴方程; (3)若(2)中的抛物线与y 轴交于点H ,在抛物线上是否消失点P ,使PFH △的心坎在坐标轴...上?若消失,求出点P 的坐标,若不消失,请解释来由. (4)若(2)中的抛物线与y 轴订交于点H ,点Q 在线段OD 上移动,作直线HQ ,当点Q 移动到什么地位时,O D ,两点到直线HQ 的距离之和最大?请直接写出此时点Q 的坐标及直线HQ 的解析式.4. .(14台州市)24.如图,四边形OABC坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,折叠,使点B 落在边OA 的点D 处.已知折叠CE =3tan 4EDA ∠=.(1)断定OCD △与ADE △是否类似?请解释来由; (2)求直线CE 与x 轴交点P 的坐标;题)(3)是否消失过点D 的直线l ,使直线l .直线CE 与x 轴所围成的三角形和直线l .直线CE 与y 轴所围成的三角形类似?假如消失,请直接写出其解析式并画出响应的直线;假如不消失,请解释来由.解:(1)OCD △与ADE △类似. 来由如下:由折叠知,90CDE B ∠=∠=°,1290∠+∠=∴°,13902 3.∠+∠=∴∠=∠,又90COD DAE ∠=∠=∵°,OCD ADE ∴△∽△.(2)3tan 4AE EDA AD ∠==∵,∴设3AE t =,则4AD t =.由勾股定理得5DE t =.358OC AB AE EB AE DE t t t ==+=+=+=∴.由(1)OCD ADE △∽△,得OC CDAD DE=, 845t CDt t=∴, 10CD t =∴.在DCE △中,222CD DE CE +=∵,222(10)(5)t t +=∴,解得1t =.83OC AE ==∴,,点C 的坐标为(08),, 点E 的坐标为(103),, 设直线CE 的解析式为y kx b =+,1038k b b +=⎧⎨=⎩,∴,解得128k b ⎧=-⎪⎨⎪=⎩,,(第24题图2)182y x =-+∴,则点P 的坐标为(160),. (3)知足前提的直线l 有2条:212y x =-+,212y x =-.如图2:精确画出两条直线. 5. (14宁德市)26. 已知:矩形纸片ABCD 中,26AB =厘米,18.5BC =厘米,点E 在AD 上,且6AE =厘米,点P 是AB 边上一动点.按如下操纵:步调一,折叠纸片,使点P 与点E 重合,睁开纸片得折痕MN (如图1所示); 步调二,过点P 作PT AB ⊥,交MN 地点的直线于点Q ,衔接QE (如图2所示) (1)无论点P 在AB 边上任何地位,都有PQ QE (填“>”.“=”.“<”号); (2)如图3所示,将纸片ABCD 放在直角坐标系中,按上述步调一.二进行操纵: ①当点P 在A 点时,PT 与MN 交于点11Q Q ,点的坐标是(,); ②当6PA =厘米时,PT 与MN 交于点22Q Q ,点的坐标是(,);③当12PA =厘米时,在图3中画出MN PT ,(不请求写画法),并求出MN 与PT 的交点3Q 的坐标;(3)点P 在活动进程,PT 与MN 形成一系列的交点123Q Q Q ,,,…不雅察.猜测:浩瀚的交点形成的图象是什么?并直接写出该图象的函数表达式.解: (1)PQ QE =.C B图1图3CE图2(2)①(03),;②(66),. ③绘图,如图所示.解:办法一:设MN 与EP 交于点F . 在Rt APE △中,PE ==∵12PF PE ==∴390Q PF EPA ∠+∠=∵°,90AEP EPA ∠+∠=°,3Q PF AEP ∠=∠∴.又390EAP Q FP ∠=∠=∵°, 3Q PF PEA ∴△∽△.3Q P PFPE EA=∴. 315PE PFQ P EA==·∴. 3(1215)Q ∴,.办法二:过点E 作3EG Q P ⊥,垂足为G ,则四边形APGE 是矩形.6GP =∴,12EG =.设3Q G x =,则336Q E Q P x ==+. 在3Rt Q EG △中,22233EQ EG Q G =+∵. 222(6)12x x +=+∴.9x =∴.3125Q P =∴. 3(1215)Q ∴,.(3)这些点形成的图象是一段抛物线. 函数关系式:213(026)12y x x =+≤≤. 6. (14日照市)24. 如图,直线EF 将矩形纸片ABCD 分成面积相等的两部分,E .F 分离与BC 交于点E ,与AD 交于点F (E ,F 不与极点重合),设AB=a,AD=b,BE=x .(Ⅰ)求证:AF=EC ;(Ⅱ)用铰剪将纸片沿直线EF 剪开后,再将纸片ABEF 沿AB 对称翻折,然后平移拼接在梯形ECDF 的下方,使一底边重合,直腰落在边DC 的延伸线上,拼接后,下方的梯形记作EE′B′C .(1)求出直线EE ′分离经由原矩形的极点A 和极点D 时,所对应的 x ︰b 的值;(2)在直线EE ′经由原矩形的一个极点的情况下,衔接B E′,直线BE ′与EF 是否平行?你若认为平行,请赐与证实;你若认为不服行,请你解释当a 与b 知足什么关系时,它们垂直? 解: (Ⅰ)证实:∵AB=a ,AD=b ,BE=x ,S 梯形ABEF =S 梯形CDFE . ∴21a (x +AF )=21a (EC +b -AF ), ∴2AF =EC +(b -x ). 又∵EC =b -x ,∴2AF =2EC ,即AF=EC ;(Ⅱ)(1)当直线EE′经由原矩形的极点D 时,如图(一), ∵EC ∥E ′B ′, ∴B E EC ''=BD DC'. 由EC =b -x ,E ′B ′=EB =x ,DB ′=DC +CB ′=2a , 得aax x b 2=-, ∴x ︰b =32;当直线E′E 经由原矩形的极点A 时,如图(二), 在梯形AE ′B ′D 中,∵EC ∥E ′B ′,点C 是DB ′的中点, ∴CE =21(AD + E ′B ′),即b -x =21(b +x ), ∴x ︰b =31.(2) 如图(一), 当直线EE′ 经由原矩形的极点D 时,BE ′∥EF . 证实:衔接BF . ∵FD ∥BE , FD =BE ,∴四边形FBED 是平行四边形, ∴FB ∥DE , FB =DE ,又∵EC ∥E ′B ′, 点C 是DB ′的中点, ∴DE =EE ′,∴FB ∥EE ′, FB = EE ′,∴四边形BE ′EF 是平行四边形 ∴BE ′∥EF .如图(二), 当直线EE′ 经由原矩形的极点A 时,显然BE ′与EF 不服行,设直线EF 与BE′交于点G .过点E ′作E ′M ⊥BC 于M , 则E ′M =a ..∵x ︰b =31, ∴EM =31BC =31b .若BE′与EF 垂直,则有∠GBE +∠BEG =90°,又∵∠BEG =∠FEC =∠MEE ′, ∠MEE ′+∠ME ′E =90°, ∴∠GBE =∠ME ′E .在R t △BME ′中,tan ∠E ′BM = tan ∠GBE =BM M E '=b a32. 在R t △EME ′中,tan ∠ME ′E =M E EM '=ab31,∴b a 32=a b 31. 又∵a >0,b >0,=ba32, ∴当=ba32时,BE′与EF 垂直. 7. (14荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O .A 不重合).现将△P AB 沿PB 翻折,得到△PDB ;再在OC 边上拔取恰当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD .PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P .B .E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否消失点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不消失,解释来由;若消失,求出点Q 的坐标.解:(1)由已知PB 等分∠APD ,PE 等分∠OPF ,且PD .PF 重合,则∠BPE =90°.∴∠OPE +∠APB =90°.又∠APB +∠ABP =90°,∴∠OPE =∠PBA . ∴Rt △POE ∽Rt △BP A . ∴PO BA OE AP =.即34x y x =-.∴y =2114(4)333x x x x -=-+(0<x <4). 且当x =2时,y 有最大值13.图2图1(2)由已知,△P AB .△POE 均为等腰三角形,可得P (1,0),E (0,1),B (4,3).设过此三点的抛物线为y =ax 2+bx +c ,则1,0,164 3.c a b c a b c =⎧⎪++=⎨⎪++=⎩∴1,23,21.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩y =213122x x -+. (3)由(2)知∠EPB =90°,即点Q 与点B 重应时知足前提. 直线PB 为y =x -1,与y 轴交于点(0,-1). 将PB 向上平移2个单位则过点E (0,1), ∴该直线为y =x +1.由21,131,22y x y x x =+⎧⎪⎨=-+⎪⎩得5,6.x y =⎧⎨=⎩∴Q(5,6). 故该抛物线上消失两点Q (4,3).(5,6)知足前提.8. (14湖北省孝感市)25.在我们进修过的数学教科书中,有一个数学活动,其具体操纵进程是:第一步:半数矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片睁开(如图1); 第二步:再一次折叠纸片,使点A 落在EF 上,并使折痕经由点B ,得到折痕BM ,同时得到线段BN (如图2).(图1) (图2)请解答以下问题:(1)如图2,若延伸MN 交BC 于P ,△BMP 是什么三角形?请证实你的结论.(2)在图2中,若AB=a ,BC=b,a .b 知足什么关系,才干在矩形纸片ABCD 上剪出相符(1)中结论的三角形纸片BMP ?(3)设矩形ABCD 的边AB =2,BC =4,并树立如图3所示的直角坐标系. 设直线BM '为y kx =,当M BC '∠=60°时,求k 的值.此时,将△ABM ′沿BM ′折叠,点A 是否落在EF 上(E.F 分离为AB.CD 中点)?为什么?(图3)解:(1)△BMP 是等边三角形. 证实:贯穿连接AN ∵EF 垂直等分AB ∴AN = BN由折叠知 AB = BN∴AN = AB = BN ∴△ABN 为等边三角形 ∴∠ABN =60°∴∠PBN =30°又∵∠ABM =∠NBM =30°,∠BNM =∠A =90° ∴∠BPN =60°∠MBP =∠MBN +∠PBN =60° ∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60° ∴△BMP 为等边三角形 .(2)要在矩形纸片ABCD 上剪出等边△BMP ,则BC ≥BP在Rt △BNP 中, BN = BA =a ,∠PBN =30°∴BP =cos30a∴b ≥cos30a ∴a ≤23b .∴当a ≤23b 时,在矩形上能剪出如许的等边△BMP . (3)∵∠M ′BC =60°∴∠ABM ′=90°-60°=30°在Rt △ABM ′中,tan ∠ABM ′=AM AB '∴tan30°=2AM '∴AM ′∴M ′,2).代入y =kx 中 ,得k设△ABM ′沿BM ′折叠后,点A 落在矩形ABCD 内的点为A ' 过A '作A 'H ⊥BC 交BC 于H .∵△A 'BM ′≌△ABM ′∴A BM ''∠=ABM '∠=30°,A 'B = AB =2∴A BH MBH''∠=∠-A BM ''∠=30°. 在Rt △A 'BH 中,A 'H =12A 'B =1 ,BH=3 ∴()3,1A '∴A '落在EF 上.(图2) (图3)9. (14广东省茂名市)25. 如图,已知平面直角坐标系xoy 中,有一矩形纸片OABC ,O 为坐标原点,AB x ∥轴, B (3),现将纸片按如图折叠,AD ,DE 为折痕,30OAD ∠=︒.折叠后,点O 落在点1O ,点C 落在点1C ,并且1DO 与1DC 在统一向线上. (1)求折痕AD 地点直线的解析式; (2)求经由三点O ,1C ,C 的抛物线的解析式;(3)若⊙P 的半径为R ,圆心P 在(2)的抛物线上活动, ⊙P 与两坐标轴都相切时,求⊙P 半径R 的值. 解:(第25题图)C DOA BEO 1C 1 xy30OA OAD =∠=︒.∴tan 3013OD OA =︒==,∴(()010A D ,,. 设直线AD 的解析式为y kx b =+. 把A ,D 坐标代入上式得:b k b ⎧=⎪⎨+=⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩,折痕AD地点的直线的解析式是y = (2)过1C 作1C F OC ⊥于点F ,由已知得160ADO ADO ∠=∠=︒,∴160C DC ∠=︒. 又DC =3-1=2,∴12DC DC ==.∴在1Rt C DF △中,111sin 2sin60C F DC C DF =∠=⨯︒1112DF DC ==,∴(1C ,罢了知()3,0C .法一:设经由三点O ,C 1,C 的抛物线的解析式是()3y ax x =-点(12C 在抛物线上,∴()223a -=∴a =∴()23222y x x x x =--=-+为所求 法二:设经由三点O ,C 1,C 的抛物线的解析式是2,(0)y ax bx c a =++≠. 把O ,C 1,C 的坐标代入上式得:042930c a b c a b c =⎧⎪++=⎨⎪++=⎩解得0a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴2y x x =为所求.(3)设圆心(),P x y ,则当⊙P 与两坐标轴都相切时,有y x =±.由y x =,得2x x x =,解得10x =(舍去),233x =-. 由y x =-,得2x x x +=-解得10x =(舍去),23x =. ∴所求⊙P的半径3R =-或3R =+ 10. (14重庆市) 28.已知,在Rt △OAB 中,∠OAB =900,∠BOA =300,AB =2.若以O 为坐标原点,OA 地点直线为x 轴,树立如图所示的平面直角坐标系,点B 在第一象限内.将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求点C 的坐标;(2)若抛物线bx ax y +=2(a ≠0)经由C.A 两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB 交于点D,点P 为线段DB 上一点,过P 作y 轴的平行线,交抛物线于点M.问:是否消失如许的点P,使得四边形CDPM 为等腰梯形?若消失,请求出此时点P 的坐标;若不消失,请解释来由.注:抛物线c bx ax y ++=2(a ≠0)的极点坐标为⎪⎪⎭⎫⎝⎛--a b ac ,a b 4422,对称轴公式为abx 2-=解: (1)过点C 作CH ⊥x 轴,垂足为H∵在Rt △OAB 中,∠OAB =900,∠BOA =300,AB =2 ∴OB =4,OA =32由折叠知,∠COB =300,OC =OA =32 ∴∠COH =600,OH =3,CH =3 ∴C 点坐标为(3,3)(2)∵抛物线bx ax y +=2(a ≠0)经由C (3,3).A (32,0)两点∴()()⎪⎩⎪⎨⎧+=+=b a b a 3232033322解得:⎩⎨⎧=-=321b a∴此抛物线的解析式为:x x y 322+-=(3)消失.因为x x y 322+-=的极点坐标为(3,3)即为点CMP ⊥x 轴,设垂足为N,PN =t ,因为∠BOA =300,所以ON =3t ∴P (3t ,t )作PQ ⊥CD,垂足为Q,ME ⊥CD,垂足为E把t x ⋅=3代入x x y 322+-=得:t t y 632+-=∴ M (3t ,t t 632+-),E (3,t t 632+-)同理:Q (3,t ),D (3,1)要使四边形CDPM 为等腰梯形,只需CE =QD 即()16332-=+--t t t ,解得:341=t ,12=t (舍) ∴ P 点坐标为(334,34) ∴ 消失知足前提的点P,使得四边形CDPM 为等腰梯形,此时P 点的坐为(334,34)11. (15山东青岛)24.(本小题满分12分)已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 动身沿BA 偏向向点A 匀速活动,速度为1cm/s;点Q 由A 动身沿AC 偏向向点C 匀速活动,速度为2cm/s;衔接PQ .若设活动的时光为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥?(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否消失某一时刻t ,使线段PQ 正好把Rt ACB △的周长和面积同时等分?若消失,求出此时t 的值;若不消失,解释来由;(4)如图②,衔接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否消失某一时刻t ,使四边形PQP C '为菱形?若消失,求出此时菱形的边长;若不消失,解释来由.12. (15浙江湖州)24.(本小题12分)已知:在矩形AOBC 中,4OB =,3OA =.分离以OB OA ,地点直线为x 轴和y 轴,树立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反图①比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为若干?(3)请摸索:是否消失如许的点F ,使得将CEF △沿EF 半数后,C 点正好落在OB 上?若消失,求出点F 的坐标;若不消失,请解释来由.(15浙江湖州24题解析)24.(本小题12分)(1)证实:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分离为1S ,2S , 由题意得11k y x =,22k y x =.1111122S x y k ∴==,2221122S x y k ==. 12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分离为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, 1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设消失如许的点F ,将CEF △沿EF 半数后,C 点正好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EM MB MF∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭, 94MB ∴=. 222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.21432k BF ∴==. ∴消失相符前提的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.13(15浙江衢州)24.(本题14分)已知直角梯形纸片OABC 在平面直角坐标系中的地位如图所示,四个极点的坐标分离为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经由点T,折痕TP 与射线AB 交于点P,设点T 的横坐标为t,折叠后纸片重叠部分(图中的暗影部分)的面积为S; (1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值规模;(3)S 消失最大值吗?若消失,求出这个最大值,并求此时t 的值;若不消失,请解释来由.(15浙江衢州24题解析)24.(本题14分)解:(1)∵A,B 两点的坐标分离是A(10,0)和B(8,32),∴381032OAB tan =-=∠,∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´, ∴△A ´TA 是等边三角形,且A T TP '⊥, ∴)t 10(2360sin )t 10(TP -=︒-=,)t 10(21AT 21AP P A -===', ∴2TPA )t 10(83TP P A 21S S -=⋅'=='∆, 当A ´与B 重应时,A T=AB=460sin 32=︒, 所以此时10t 6<≤.(2)当点A ´在线段AB 的延伸线,且点P 在线段AB(不与B 重合)上时, 纸片重叠部分的图形是四边形(如图(1),个中E 是TA ´与CB 的交点),(3)S 消失最大值○1当10t 6<≤时,2)t 10(83S -=, 在对称轴t=10的左边,S 的值跟着t 的增大而减小,∴当t=6时,S 的值最大是32.○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-=∵△A ´EB 的高是︒'60sin B A , ∴23)4t 10(21)t 10(83S 22⨯----=34)2t (83)28t 4t (8322+--=++-=当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延伸线是(如图○2,个中E 是TA ´与CB 的交点,F 是TP 与CB 的交点),∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4, ∴3432421OC EF 21S =⨯⨯=⋅=综上所述,S 的最大值是34,此时t 的值是2t 0≤<.14 15浙江绍兴)24.将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 动身以每秒1个单位长的速度沿OC 向终点C 活动,活动23秒时,动点P 从点A 动身以相等的速度沿AO 向终点O 活动.当个中一点到达终点时,另一点也停滞活动.设点P 的活动时光为t (秒). (1)用含t 的代数式暗示OP OQ ,;(2)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 正好落在CB 边上的点D 处,求点D 的坐标;AT COF(3)贯穿连接AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 可否平行?PE 与AC 可否垂直?若能,求出响应的t 值;若不克不及,解释来由.(15浙江绍兴24题解析)24.(本题满分14分) 解:(1)6OP t =-,23OQ t =+.(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,. (3)①PQ 能与AC 平行. 若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=.②PE 不克不及与AC 垂直.图1图1(第24题图)若PE AC ⊥,延伸QE 交OA 于F ,如图3,则23335t QF OQ QFAC OC +==.23QF t ⎫∴=+⎪⎭.EF QF QE QF OQ ∴=-=- 2233t t ⎫⎛⎫=+-+⎪ ⎪⎭⎝⎭21)1)3t =+.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 63261)3t t -∴=⎛⎫+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤,t ∴不消失.15. (15浙江宿迁24题解析)24.如图,在矩形ABCD 中,9AB =,AD =,点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 半数,点C 的对应点是R 点,设CP 的长度为x ,PQR △与矩形ABCD 重叠部分的面积为y . (1)求CQP ∠的度数;(2)当x 取何值时,点R 落在矩形ABCD 的AB 边上? (3)①求y 与x 之间的函数关系式;②当x 取何值时,重叠部分的面积等于矩形面积的727?二.扭转类1. (15湖南常德26题)如图9,在直线l 上摆放有△ABC 和直角梯形DEFG ,且CD =6㎝;在△ABC 中:∠C =90O ,∠A =300,AB =4㎝;在直角梯形DEFG 中:EF//DG,∠DGF =90O ,DG =6㎝,DE =4㎝,∠EDG =600.解答下列问题:(1)扭转:将△ABC 绕点C 顺时针偏向扭转900,请你在图中作出扭转后的对应图形 △A 1B 1C,并求出AB 1的长度;(2)翻折:将△A 1B 1C 沿过点B 1且与直线l 垂直的直线翻折,得到翻折后的对应图形 △A 2B 1C 1,试剖断四边形A 2B 1DE 的外形?并解释来由;(3)平移:将△A 2B 1C 1沿直线l 向右平移至△A 3B 2C 2,若设平移的距离为x,△A 3B 2C 2与直角梯形重叠部分的面积为y,当y等于△ABC 面积的一半时,x的值是若干?(15湖南常德26题解析)解:(1)在△ABC 中由已知得:BC=2,AC =AB×cos30°=32,∴AB 1=AC+C B 1=AC+CB=322 .……………………………………2分AC DG图9(2)四边形A 2B 1DE 为平行四边形.来由如下:∵∠EDG =60°,∠A 2B 1C 1=∠A 1B 1C =∠ABC =60°,∴A 2B 1∥DE又A 2B 1=A 1B 1=AB =4,DE =4,∴A 2B 1=DE,故结论成立.………………4分 (3)由题意可知: S △ABC =3232221=⨯⨯, ① 当20<≤x 或10≥x 时,y=0此时重叠部分的面积不会等于△ABC 的面积的一半……………5分②当42<≤x 时,直角边B 2C 2与等腰梯形的下底边DG 重叠的长度为DC 2=C 1C 2-DC 1=(x-2)㎝,则y=()()()222323221-=--x x x , 当y=21S △ABC = 3时,即()32232=-x , 解得22-=x (舍)或22+=x .∴当22+=x 时,重叠部分的面积等于△ABC 的面积的一半.③当84<≤x 时,△A 3B 2C 2完整与等腰梯形重叠,即32=y ……………7分 ④当108<≤x 时,B 2G=B 2C 2-GC 2=2-(x -8)=10-x则y=()()()210231031021x x x -=-⋅-, 当y=21S △ABC = 3时,即()310232=-x , 解得210-=x ,或210+=x (舍去).∴当210+=x 时,重叠部分的面积等于△ABC 的面积的一半.………9分由以上评论辩论知,当22+=x 或210+=x 时, 重叠部分的面积等于△ABC 的面积的一半.………10分2. (广西玉林卷)在矩形ABCD 中,4AB =,2BC =,认为A 坐标原点,AB 地点的直线为x 轴,树立直角坐标系.然后将矩形ABCD 绕点A 逆时针扭转,使点B 落在y 轴的E 点上,则C 和D 点依次落在第二象限的F 点上和x 轴的G 点上(如图). (1)求经由B E G ,,三点的二次函数解析式;(2)设直线EF 与(1)的二次函数图象订交于另一点H ,试求四边形EGBH 的周长. (3)设P 为(1)的二次函数图象上的一点,BP EG ∥,求P 点的坐标. [解] (1)解:由题意可知,4AE AB ==,2AG AD BC ===.(40)B ,∴,(04)E ,,(20)G -,.设经由B E G ,,三点的二次函数解析式是(2)(4)y a x x =+-.把(04)E ,代入之,求得12a =-. 3分 ∴所求的二次函数解析式是:211(2)(4)422y x x x x =-+-=-++.(2)解:由题意可知,四边形AEFG 为矩形.FH GB ∴∥,且6GB =.∵直线4y =与二次函数图象的交点H 的坐标为(24)H ,, 2EH =∴.G ∵与B E ,与H 关于抛物线的对称轴对称,BH EG ===∴. ∴四边形EGBH 的周长262=++⨯8=+.BP EG ∵∥,::AB AG AM AE =∴,即4:2:4AM =.8AM =∴,于是(08)M -,. 设直线BM 的解析式为y kx b =+. 把(40)B ,,(08)M -,代入之,得408.k b b +=⎧⎨=-⎩,解得28.k b =⎧⎨=-⎩,28y x =-∴.结合一次,二次函数解析式构成方程组2281 4.2y x y x x =-⎧⎪⎨=-++⎪⎩,解得620x y =-⎧⎨=-⎩,或40.x y =⎧⎨=⎩,(此组数为B 点坐标)∴所求的P 点坐标为(620)P -,. 解法2:过P 作PN x ⊥轴于N .由BP EG ∥,得EGB PBN ∠=∠. 设所求P 点的横坐标为(0)a a <,则纵坐标为214(0)2a a a -++<. tan PN PBN NB ∠=∵,4tan 22AE EGB AG ∠===, 2PN AENB AG==∴. 4NB NA AB a =+=-∴,22114422PN a a a a ⎛⎫=--++=-- ⎪⎝⎭,214224a a a--=-∴. 解之,得6a =-或4a =.经磨练可知,6a =-是原方程的根;4a =是原方程的增根,故应舍去.当6a =-时,22114(6)642022a a -++=-⨯--+=. ∴所求的P 点坐标为(620)P -,. [点评]此题的分解性较强,考核的常识点较多,但是解法较多,使试题的切入点也较多,很轻易入题.3. (14南京市) 27.在平面内,先将一个多边形以点O 为位似中间放大或缩小,使所得多边形与原多边形对应线段的比为k ,并且原多边形上的任一点P ,它的对应点P '在线段OP 或其延伸线上;接着将所得多边形以点O 为扭转中间,逆时针扭转一个角度θ,这种经由和扭转的图形变换叫做扭转类似变换,记为()O k θ,,个中点O 叫做扭转类似中间,k 叫做类似比,θ叫做扭转角.(1)填空:①如图1,将ABC △以点A 为扭转类似中间,放大为本来的2倍,再逆时针扭转60,得到ADE △,这个扭转类似变换记为A (,);②如图2,ABC △是边长为1cm 的等边三角形,将它作扭转类似变换)A ,得到ADE △,则线段BD 的长为cm ;(2)如图3,分离以锐角三角形ABC 的三边AB ,BC ,CA 为边向外作正方形ADEB ,BFGC ,CHIA ,点1O ,2O ,3O 分离是这三个正方形的对角线交点,试分离应用12AO O △与ABI △,CIB △与2CAO △之间的关系,应用扭转类似变换的常识解释线段12O O 与2AO 之间的关系.解:(1)①2,60; ②2;(2)12AO O △经由扭转类似变换)A ,得到ABI △,此时,线段12O O 变成线段BI ; CIB △经由扭转类似变换45C ⎫⎪⎪⎝⎭,得到2CAO △,此时,线段BI 变成线段1AO . 2212⨯=,454590+=, 122O O AO ∴=,122O O AO ⊥.4. (15湖北恩施)六.(本大题满分12分)C ADE图1ABCDE图2EDBFGCHAI3O1O2O图324. 如图11,在统一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一路,A 为公共极点,∠BAC =∠AGF =90°,它们的斜边长为2,若∆ABC 固定不动,∆AFG 绕点A 扭转,AF .AG 与边BC 的交点分离为D .E (点D 不与点B 重合,点E 不与点C 重合),设BE =m,CD =n. (1)请在图中找出两对类似而不全等的三角形,并拔取个中一对进行证实. (2)求m 与n 的函数关系式,直接写出自变量n 的取值规模.(3)以∆ABC 的斜边BC 地点的直线为x 轴,BC 边上的高地点的直线为y 轴,树立平面直角坐标系(如图12).在边BC 上找一点D ,使BD =CE ,求出D 点的坐标,并经由过程盘算验证BD 2+CE 2=DE 2.(4)在扭转进程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证实,若不成立,(15湖北恩施24题解析)六.(本大题满分12分)24. 解:(1)∆ABE ∽∆DAE , ∆ABE ∽∆DCA 1分 ∵∠BAE =∠BAD +45°,∠CDA =∠BAD +45° ∴∠BAE =∠CDA 又∠B =∠C =45° ∴∆ABE ∽∆DCA 3分 (2)∵∆ABE ∽∆DCA ∴CDBACA BE由依题意可知CA =BA =2 ∴nm 22∴m=n25分 自变量n 的取值规模为1<n<2. 6分 (3)由BD =CE 可得BE =CD ,即m=n ∵m=n2 ∴m=n=2 ∵OB =OC =21BC =1 ∴OE =OD =2-1 ∴D (1-2, 0) 7分∴BD =OB -OD =1-(2-1)=2-2=CE , DE =BC -2BD =2-2(2-2)=22-2∵BD 2+CE 2=2 BD 2=2(2-2)2=12-82, DE 2=(22-2)2= 12-82∴BD 2+CE 2=DE 28分 (4)成立 9分证实:如图,将∆ACE 绕点A 顺时针扭转90°至∆ABH 的地位,则CE =HB ,AE =AH , ∠ABH =∠C =45°,扭转角∠EAH =90°.衔接HD ,在∆EAD 和∆HAD 中∵AE =AH , ∠HAD =∠EAH -∠F AG =45°=∠EAD , AD∴∆EAD ≌∆HAD ∴DH =DE又∠HBD =∠ABH +∠ABD =90°∴BD 2+HB 2=DH 2 即BD 2+CE 2=DE 2 12分5.(15湖北武汉)(本题答案暂缺)25.(本题 12分)如图 1,抛物线y=ax2-3ax+b 经由A (-1,0),C (3,2)两点,与y 轴交于点D,与x 轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD 面积二等分,求k 的值;(3)如图2,过点 E (1,-1)作EF ⊥x 轴于点F,将△AEF 绕平面内某点扭转 180°后得△MNQ (点M,N,Q 分离与 点 A,E,F 对应),使点M,N 在抛物线上,求点M,N 的坐标.(15湖北武汉25题解析)25.⑴213222y x x =-++;⑵43k =;⑶M (3,2),N (1,3) 6. (15江苏淮安)(本题答案暂缺)28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的极点为P,与x 轴交点为 A.B,与y 轴交点为C .贯穿连接BP 并延伸交y 轴于点D. (1)写出点P 的坐标;(2)贯穿连接AP,假如△APB 为等腰直角三角形,求a 的值及点C.D 的坐标;(3)在(2)的前提下,贯穿连接BC.AC.AD,点E(0,b)在线段CD(端点C.D 除外)上,将△BCD 绕点E 逆时针偏向扭转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S,依据不合情况,分离用含b 的代数式暗示S .选择个中一种情况给出解答进程,其它情况直接写出成果;断定当b 为何值时,重叠部分的面积最大?写出最大值.7. (15江苏徐州)(本题答案暂缺)28.如图1,一副直角三角板知足AB =BC,AC =DE,∠ABC =∠DEF =90°,∠EDF =30°【操纵】将三角板DEF 的直角极点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕.点.E .扭转..,并使边DE 与边AB 交于点P,边EF 与边BC 于点Q 【探讨一】在扭转进程中, (1) 如图2,当CE1EA=时,EP 与EQ 知足如何的数目关系?并给出证实. (2) 如图3,当CE2EA=时EP 与EQ 知足如何的数目关系?,并解释来由. (3) 依据你对(1).(2)的探讨成果,试写出当CEEA=m 时,EP 与EQ 知足的数目关系式为_________,个中m 的取值规模是_______(直接写出结论,不必证实)【探讨二】若,AC =30cm,持续PQ,设△EPQ 的面积为S(cm 2),在扭转进程中: (1) S 是否消失最大值或最小值?若消失,求出最大值或最小值,若不消失,解释来由. (2) 跟着S 取不合的值,对应△EPQ 的个数有哪些变更?不出响应S 值的取值规模.(15山东青岛24题解析)24.(本小题满分12分)FC(E)A(D)Q PDEFCBAQPDEFCBA解:(1)在Rt△ABC 中,522=+=AC BC AB ,由题意知:AP = 5-t ,AQ = 2t , 若PQ ∥BC ,则△APQ ∽△ABC ,∴=AC AQ AB AP, ∴5542t t -=, ∴710=t .3′(2)过点P 作PH ⊥AC 于H . ∵△APH ∽△ABC , ∴=BC PH AB AP, ∴=3PH 55t-,∴t PH 533-=, ∴t t t t PH AQ y 353)533(221212+-=-⨯⨯=⨯⨯=.6′ (3)若PQ 把△ABC 周长等分, 则AP+AQ=BP+BC+CQ .∴)24(32)5(t t t t -++=+-, 解得:1=t .若PQ 把△ABC 面积等分,则ABC APQ S S ∆∆=21, 即-253t +3t =3. ∵ t =1代入上面方程不成立,∴不消失这一时刻t ,使线段PQ 把Rt △ACB 的周长和面积同时等分.9′ (4)过点P 作PM ⊥AC 于M,PN ⊥BC 于N ,若四边形PQP ′ C 是菱形,那么PQ =PC . ∵PM ⊥AC 于M , ∴QM=CM .图①B∵PN ⊥BC 于N,易知△PBN ∽△ABC .∴AB BPAC PN =, ∴54t PN =, ∴54tPN =, ∴54t CM QM ==, ∴425454=++t t t , 解得:910=t .∴当910=t 时,四边形PQP ′ C 是菱形.此时37533=-=t PM , 9854==t CM ,在Rt△PMC 中,9505816494922=+=+=CM PM PC , ∴菱形PQP ′ C 边长为9505.12′ 7.(15山东枣庄)25.(本题满分10分)把一副三角板如图甲放置,个中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针扭转15°得到△D 1CE 1(如图乙).这时AB 与CD 1订交于点O ,与D 1E 1订交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;(3)若把三角形D 1CE 1绕着点C 顺时针再扭转30°得△D 2CE 2,这时点B 在△D 2CE 2的内部.外部.照样边上?解释来由.BN(甲)ACE DBB(乙)AE 1CD 1OF(15山东枣庄25题解析)25.(本题满分10分) 解:(1)如图所示,315∠=,190E ∠=,∴1275∠=∠=. ………………………………1分 又45B ∠=,∴114575120OFE B ∠=∠+∠=+=. ………3分 (2)1120OFE ∠=,∴∠D 1FO =60°.1130CD E ∠=,∴490∠=.4分又AC BC =,6AB =,∴3OA OB ==.90ACB ∠=,∴116322CO AB ==⨯=.5分 又17CD =,∴11734OD CD OC =-=-=.在1Rt AD O △中,15AD ===.6分 (3)点B 在22D CE △内部.7分来由如下:设BC (或延伸线)交22D E 于点P ,则2153045PCE ∠=+=. 在2Rt PCE △中,2CP ==…………9分3CB =<,即CB CP <,∴点B 在22D CE △内部. ……………10分 815浙江金华)(本题答案暂缺)24. (本题12分) 如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,贯穿连接AP,并把ΔAOP 绕着点A 按逆时针偏向扭转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 活动到点(3,0)时,求此时DP的长及点D 的坐标;(3)是否消失点P,使ΔOPD 的面积等于43,若消失,请求出相符前提的点P 的坐标;若不消失,请解释来由.1EC A 19. (15辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =矩形ABOC绕点O 按顺时针偏向扭转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)断定点E 是否在y 轴上,并解释来由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否消失点P ,点Q ,使以点O B P Q ,,,为极点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若消失,请求出点P ,点Q 的坐标;若不消失,请解释来由.(15辽宁沈阳26题解析)解:(1)点E 在y 轴上1分 来由如下:衔接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上.3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=。
九年级数学专题复习图形的折叠和动点问题
中考冲刺:动手操作与运动变换型问题【中考展望】1.对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化〞和“再创造〞的过程,不断提升自己的创新意识与综合水平,这是?全日制义务教育数学课程标准〔实验稿〕?的根本要求之一,因此,近年来实践操作性试题受到命题者的重视,屡次出现.2.估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查.需具备一定的分析问题水平和归纳推理水平.图形的设计与操作问题,主要分为如下一些类型:1.设计好的图案,求设计方案〔如:在什么根本图案的根底上,进行何种图形变换等〕.2.利用根本图案设计符合要求的图案〔如:设计轴对称图形,中央对称图形,而积或形状符合特定要求的图形等〕.3.图形分割与重组〔如:通过对原图形进行分割、重组,使形状满足特定要求〕.4.动手操作〔通过折叠、裁剪等手段制作特定图案〕.解决这样的问题,除了需要运用各种根本的图形变换〔平移、轴对称、旋转、位似〕外,还需要综合运用代数、几何知识对图形进行分析、计算、证实,以获得重要的数据,辅助图案设计.另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息.必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效.从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题, 在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析水平进行考查.所以说, 动态问题是中考数学当中的重中之重,只有完全掌握,才有时机拼高分.【方法点拨】实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题, 揭示其数学本质,并转化为我们所熟悉的数学问题.解答实践操作题的根本步骤为:从实例或实物出发, 通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜测.在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题.动态几何问题:1、动态几何常见类型〔1〕点动问题〔一个动点〕〔2〕线动问题〔二个动点〕〔3〕面动问题〔三个动点〕2、运动形式平移、旋转、翻折、滚动3、数学思想函数思想、方程思想、分类思想、转化思想、数形结合思想4、解题思路〔1〕化动为静,动中求静〔2〕建立联系,计算说明〔3〕特殊探路,一般推证【典型例题】例1.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下〔如下图〕:请你用上而图示的方法,解答以下问题:〔1〕对以下图中的三角形,设计一种方案,将它分成假设干块,再拼成一个与原三角形而积相等的矩形;〔2〕对以下图中的四边形,设计一种方案,将它分成假设F块,再拼成一个与原四边形而积相等的矩形.举一反三:【变式】把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,那么展开后图形是〔〕例2.如下图,现有一张边长为4的正方形纸片点尸为正方形助边上的一点〔不与点儿点,重合〕将正方形纸片折卷,使点6落在P处,点.落在G处,PG交DC干H,折痕为历,连接出\ BH.〔1〕求证:/AP斤4BP氏〔2〕当点尸在边月〃上移动时,△府的周长是否发生变化?并证实你的结论;〔3〕设"为x,四边形质GF的面积为S,求出S与x的函数关系式,试问S是否存在最小值?假设存在, 求出这个最小值;假设不存在,请说明理由.例3.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,ZB=90° , NC=60° ,ZA=30° , BC=6 cm;图②中,ZD=90° , ZE=45° , DE=4 cm.图③是刘卫同学所做的一个实验:他将ADEF的直角边DE与AABC的斜边AC重合在一起,并将aDEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在4DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变〞、“变大〞或“变小〞)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当ADEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当ADEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在ADEF的移动过程中,是否存在某个位置,使得NFCD=15° ?如果存在,求出AD的长度;如果不存在,请说明理由.举一反三:【变式】如图,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC〃0B,0B=6, CD=BC二4, BCLOB于B,以0为坐标原点,0B所在直线为x轴建立平面直角坐标系,开发区综合效劳治理委员会〔其占地而积不计〕设在点P〔4,2〕处.为了方便驻区单位准备过点P修一条笔直的道路〔路宽不计〕,并且是这条路所在的直线?将直角梯形OBCD分成面积相等的两局部,你认为直线?是否存在?假设存在求出直线?的解析式,假设不存在,请说明理由.例4.两个全等的直角三角形ABC和DEF重叠在一起,其中NA=60, , AC=1.固定AABC不动,将4DEF进行如下操作:(1)如下图,ZkDEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF 的形状在不断地变化,但它的面积不变化,请求出其面积.B E⑵如下图,WD点移动到.AB的中点时,请你猜测四边形CDBF的形状,并说明理由.(3)如下图,4DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转aDEF,使DF落在AB请你求出sin的值.例5.如图,在平面直角坐标系中,点C的坐标为〔0, 4〕,动点A以每秒1个单位长的速度,从点O 出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中央,沿顺时针方向旋转90., 得到线段AB,过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.〔1〕当点B与点D重合时,求t的值;〔2〕当t为何值时,S A BCD=^?4举一反三:【变式】如图,平行四边形ABCD中,AB=10, AD=6, NA=60° ,点P从点A出发沿折线AB-BC以每秒1 个单位长的速度向点C运动,当P与C重合时停止运动,过点P作AB的垂线PQ交AD或DC于Q.设P 运动时间为t秒,直线PQ扫过平行四边形ABCD的面积为S.求S关于t的函数解析式.D C【稳固练习】 一、选择题将一张正方形纸片按如下图对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个3.如图,把矩形ABCD 对折,折痕为MN 〔图甲〕,再把B 点棒在折痕MN 上的B,处.得到RtZ\AB' E 〔图1. A. K B.区启启展开后的这个图形的内角和是多少度?〔 〕2D.直角三角形4.如图,边长为5的等边三角形ABC 纸片,点E 在AC 边上,乙〕,再延长EB'交AD 于F,所得到的4EAF 是〔〕点F在AB边上,沿着EF折福,使点A落在BC边上的点D的位置,且EDLBC,那么CE的长是〔A、B、10-56C、56-5D、20-10V3二、填空题5.如佟1(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图⑵所示的一个菱形.对于图⑴ 中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:6.如图,AABC中,ZBAC=60°, NABC=45* AB= 2点,D是线段BC上的一个动点,以AD为直径画.0 分别交AB, AC于E, F ,连接EF,那么线段EF长度的最小值为7.如图①,在四边形ABCD中,ADII BC, Z C=90% CD=6cm.动点Q从点B出发,以lcm/S的速度沿BC运动到点C停止,同时,动点P也从B点出发,沿折线B玲A玲D运动到点D停止,且PQ±BC.设运动时间为t(s),点P运动的路程为y (cm),在直角坐标系中画出y关于t的函数图象为折线段OE 和EF (如图②).点M (4, 5)在线段OE上,那么图①中AB的长是cm.三、解做题8.阅读以下材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图(1)所示,将它们分割后拼接成一个新的正方形.他的做法是:按图⑵所示的方法分割后,将三角形纸片①绕AB的中点D旋转至三角形纸片②处, 依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决以下问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图(3)所示.请将其分割后拼接成一个平行四边形.要求:在图⑶中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图(4),在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点, 分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图(4)中探究平行四边形MWQ面积的大小(画图并直接写出结果).9.如图(a),把一张标准纸一次又一次对开,得到“2开〞纸、“4开〞纸、“8开〞纸、“16开〞纸……・已知标准纸的短边长为a.(1)如图(b),把这张标准纸对开得到的“16开〞张纸按如下步骤折叠:第一步将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;第二步将长边AD与折痕AE对齐折登,点D正好与点E重合,铺平后得折痕AF:贝|JAD:AB的值是 _______ , AD, AB的长分别是___________ ,:22) “2开〞纸、“4开〞纸、“8开〞纸的长与宽之比是否都相等?假设相等,直接写出这个比值;假设不相等,请分别计算它们的比值:(3)如图(c),由8个大小相等的小正方形构成“L〞型图案,它的4个顶点E, F, G, H分别在“16 开〞纸的边AB, BC, CD, DA上,求DG的长:(4)梯形MNPQ中,MN〃PQ, ZM=90° , MN=MQ=2PQ,且四个顶点乩N, P, Q都在“4开〞纸的边上,请直接写出两个符合条件且大小不同的直角梯形的面积.10.操作与探究(1)图(a)是一块直角三角形纸片•.将该三角形纸片按图中方法折登,点A与点C重合,DE为折痕.试证实aCBE是等腰三角形;(2)再将佟1(b)中的ACBE沿对称轴EF折叠(如图(b)).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝重叠)所成的矩形,我们称这样的两个矩形为“组合矩形〞.你能将图(c)中的AABC折登成一个组合矩形吗?如果能折成,请在图(c)中画出折痕:(3)请你在图(d)的方格纸中画出一个斜三角形,同时满足以下条件:①折成的组合矩形为正方形:②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折登也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?11.在图1至图5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE 在同一直线上.操作例如:当2bVa时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉4FAG和aCGB并分别拼接到AFEH和ACHD的位置构成四边形FGCH.思考发现:小明在操作后发现:该剪拼方法是先将AFAG绕点F逆时针旋转90°到AFEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,故ACHD乌ZkCGB,从而又可将4CGB绕点C顺时针旋转90.到aCHD的位置.这样,对于剪拼得到的四边形FGCH 〔如下图〕,过点F作FM_L AE于点M 〔图略〕,利用SAS公理可判断△HFMgZkCHD,易得FH = HC=GC = FG, ZFHC=90° .进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.〔1〕正方形FGCH的面积是__________ :〔用含a、b的式子表示〕⑵类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展:小明通过探究后发现:当bWa时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时,如下图的图形能否剪拼成一个正方形?假设能,请你在图中画出剪拼的示意图;假设不能,12.AABC是等腰直角三角形,AC二BC=2, D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角.得到ACEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当a =90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF//AC;(2)如图2,当90° WaW180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求NCMD的度数;②设D为边AB的中点,当a从90°变化到180°时,求点M运动的路径长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型(九)折叠、旋转问题
1.(2017贵州安顺第7题)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()
A.6cm B.7cm C.8cm D.9cm
【答案】C.
2.(2017湖南张家界第14题)如图,在正方形ABCD中,AD=BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.
【答案】9
3.(2016·湖北荆门·3分)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,
则CF= 2cm.
4.(2017甘肃兰州第14题)如图,在正方形ABCD和正方形DEFG中,点G在CD上,2
DE=,将正方形DEFG 绕点D顺时针旋转60°,得到正方形'''
+=( )
CE CG
CE,则''
DE F G,此时点'
G在AC上,连接'
1 【答案】AA
5.(2017浙江嘉兴第16题)一副含30︒和45︒角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,12BC EF cm ==(如图1)
,点G 为边BC ()EF 的中点,边FD 与AB 相交于点H ,此时线段BH 的长是 .现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长共为 .(结果保留根号)
【答案】12.1-18.
6.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .
.
7.(2015年重庆A4分)如图,矩形ABCD 中,10AB AD ==,连接BD , ∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为''BC E ∆,当射线'BC 和射线'BE 都与线段AD 相交时,设交点分别F ,G ,若△BFD 为等腰三角形,则线段DG 长为 ▲ .
【答案】
9817
. 8.(2015年上海4分)已知在△ABC 中,8AB AC ==,30BAC ∠=︒.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于 ▲ .
【答案】4.
9.(2015年福建福州4分)如图,在Rt ABC ∆中,ABC ∠ABC 绕点C 逆时针转60°,
【答案】1+.
10.(2017江苏无锡第10题)如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( D )
A .2
B .
54 C .53 D .7
5
11.(2017新疆乌鲁木齐第9题)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折
叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为60,2AFG GE BG ∠==,则折痕EF 的长为( C )
A .1
B 2 D .12.(2017重庆A 卷第18题)如图,正方形ABCD 中,AD =4,点E 是对角线A
C 上一点,连接DE ,过点E 作EF ⊥E
D ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 的中点,则△EMN 的周长是 .
13.(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =
,点M ,N 分别是边BC ,
AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC
∆为直角三角形,则BM 的长为 .
【答案】1或
1
2
. 14.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '
='BB
(结果保留根号).
15.(2017海南第17题)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.
【答案】3
5
.
16.(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,
将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .
17.(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a(用含a的式子表示).
18.(2016河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为
或.
19.(2015年河南3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为▲ .
【答案】16或。