插补运动(逐点比较法)
[毕业设计]逐点比较法和数字积分的直线插补
[毕业设计]逐点比较法和数字积分的直线插补随着数控技术的不断发展,数字积分已经成为了控制机床运动的一种重要手段。
直线插补作为数控机床中最基本的控制方式之一,不仅能够有效提高机床的加工精度和效率,同时也可以降低操作难度,提高工作效率,因此十分受到广大用户的欢迎。
逐点比较法和数字积分两种插补方式,它们各有优缺点。
逐点比较法是一种基于宏观视角上的插补方法,即从整体上把握机床加工大致规律,在控制过程中逐步调整每个点的位置和状态,确定合适的插补曲线。
在操作上,逐点比较法要求能够对机床加工过程有较深入的了解,能够根据加工物料、设备性能、工艺流程等因素,快速作出正确的决策,因此对操作员要求较高。
但是,由于它采用线性插补方式,使得机床加工的东西能够准确地还原成数字轨迹,大大提高了加工精度。
数字积分是一种基于微观视角上的插补方法,即从插补点的微小变化中来处理插补曲线。
数字积分可以通过数学模型对加工物料、设备性能、工艺流程等进行分析,自动计算出合适的插补曲线,使得机床能够在不同加工条件下保持较高的生产效率和精度水平。
数字积分操作简单方便,操作员只需在计算机上输入相关数据、指令等信息即可自动完成插补过程,因此广泛应用于数控机床中。
相对于逐点比较法而言,数字积分能够更好的适应复杂的加工过程,具有更高的智能化水平。
然而,数字积分也存在一些缺陷,它的主要问题是精度问题。
由于数字积分采用数学模型计算,导致其有一定的误差,尤其是在复杂曲线的情况下,其误差更大。
因此,在高精度加工场合下,逐点比较法仍旧是一种比较流行和成熟的插补方式。
综上所述,在工业加工和制造的具体应用中,我们应该根据具体情况来选择逐点比较法和数字积分两种插补方式。
对于简单加工、精度要求较低的加工应用,数字积分是比较适合的方法;而对于复杂加工、精度要求较高的加工应用,逐点比较法则更加适合。
无论是逐点比较法还是数字积分,都应该被工业加工和制造企业充分利用,以便在工业制造的过程中,更好地提高加工效率和产品质量。
3.1数控插补原理(2)逐点比较法
开始 初始化 Xe→X,Ye→Y 0→Fi ,N =|Xe|+|Ye|
Y 进给方向:+X
F≥0 N 进给方向: +Y
Fi- Ye → Fi+1
Fi+ Xe → Fi+1
N = N -1
N =0
N
Y 结束
继续
逐点比较法Ⅰ象限直线插补流程图
例题:设欲加工第一象限直线OE,起点为坐标原点,
终点坐标为Xe=4,Ye=3,用逐点比较法插补之,并画出
+Y F6 F5 2Y5 1 4
-X F7 F6 2X6 1 1
8
F7>0
-X
F8 F7 2X7 1 0
坐标计算
X0=4,Y0=0 X1=3,Y1=0 X2=3,Y2=1 X3=3,Y3=2 X4=3,Y4=3 X5=2,Y5=3 X6=2,Y6=4 X7=1,Y7=4
X8=0,Y8=4
Fi 0, 朝 x 增大方向, Fi1 Fi ye Fi 0, 朝 y 增大方向, Fi1 Fi xe
5.2 脉冲增量插补 其它象限插补流程:
3.逐点比较法Ⅰ象限逆圆插补
(1)基本原理
①偏差判别 关键:寻找偏差函数F(x,y)
当动点N(Xi,Yi)位于圆弧上时有下式成立
Y
E(XeYe) Nˊ
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧外侧时,有下式成立
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧内侧时,有下式成立
O
N(Xi,Yi) R
N〞 S(XSYS)
X
X i2 Yi2 Xe2 Ye2 R2
I象限逆圆与动点之间的关系
逐点比较法
即
Fi1 Fi X e
6
在插补计算、进给的同时还要进行终点判别。常用终点判 别方法是:
设置一个长度计数器,从直线的起点走到终点,刀具沿
X 轴应走的步数为X e,沿Y 轴走的步数为Ye,计数器中存入 X和Y两坐标进给步数总和∑=∣Xe∣+∣Ye∣,当X 或Y
坐标进给时,计数长度减一,当计数长度减到零时,即∑= 0时,停止插补,到达终点。
终点判别:判断是否到达终点,若到 达x ,结束插补;否则,继续以上四个
步骤(如图3-3所示)。
图3-3 逐点比较法工作循环图
3
2. 直线插补
图3-4所示第一象限直线OE为给定轨迹,其方程为
XeY-XYe=0
(3-1)
P(X,Y)为动点坐标,与直线的关系有三种情况:
(1)若P1点在直线上方,则有XeY-XYe>0 E (2) 若P点在直线上,则有 XeY-XYe=0
2.由偏差方程确定加工动点引起的偏 差符号(若要计算偏差量,则偏差方程系数不能简 化)。
3.下一步插补方向确定原则:向使加 工偏差减小、并趋向轨迹终点的方向插补
.(将偏差等于零的情况并入偏差大于零的情况)。
4.关于插补量:每次插补一个脉冲当 量的位移
12
3. 圆弧插补
在圆弧加工过程中,可用动点到圆心的距离来描述刀具位置与 被加工圆弧之间关系。
b) 逆圆弧
图3-9 第一象限顺、逆圆弧
14
偏差递推简化:对第一象限顺圆,Fi≥0,动点Pi(Xi,Yi)应 向-Y向进给,新的动点坐标为(Xi+1,Yi+1),且Xi+1=Xi,Yi +1=Yi-1,则新点的偏差值为:
15
若Fi<0时,沿+X向前进一步,到达(Xi+1,Yi)点,新点
逐点比较法插补原理实验报告
南昌航空大学实验报告年月日课程名称:数控技术实验名称:逐点比较法插补原理班级:姓名:同组人:指导老师评定:签名:一、实验的目的与要求1.目的①掌握逐点比较法插补的原理及过程;②掌握利用计算机高级语言,设计及调试“插补运算轨迹”模拟画图的程序设计方法;③进一步加深对插补运算过程的理解;二、实验仪器计算机一台三、实验原理①逐点比较法插补运算的原理首先粗略的简单介绍一下机床是如何按照规定的图形加工出所需的工件的。
例如,现在要加工一段圆弧(图2-1),起点为A,终点为B,坐标原点就是圆心,Y轴、X轴代表纵、横拖板的方向,圆弧半径为R。
如从A点出发进行加工,设某一时刻加工点在M1,一般来说M1和圆弧有所偏离。
因此,可根据偏离的情况确定下一步加工进给的方向,使下一个加工点尽可能向规定图形(即圆弧)靠拢。
若用R M1表示加工点M1到圆心O的距离,显然,当R M1<R时,表示加工点M1在圆内,这时应控制纵拖板(Y拖板)向圆外进给一步到新加工点M2,由于拖板被步进电机带动,进给一步的长度是固定的(1微米),故新的加工点也不一定正好在圆弧上。
同样,当M2≥R时,表示加工点M2在圆外或圆上,这时应控制横拖板(X拖板)向圆内进给一步。
如此不断重复上述过程,就能加工出所需的圆弧。
图2-1 插补原理可以看出,加工的结果是用折线来代替圆弧,为了清楚起见,在图2-1中,每步的步长画的很大,因此加工出来的折线与所需圆弧的误差较大。
若步长缩小,则误差也跟着缩小,实际加工时,进给步长一般为1微米,故实际误差时很小的。
②计算步骤由上述可以看出,拖板每进给一步都要完成四个工作节拍。
偏差判别:判别偏差符号,确定加工点是在要求图形外还是在图形内。
工作台进给:根据偏差情况,确定控制X坐标(或Y坐标)进给一步,使加工点向规定的图形靠拢,以缩小偏差。
偏差计算:计算进给一步后加工点与要求图形的新偏差,作为下一步偏差判别的依据。
终点判断:判定是否到达终点,如果未达到终点,继续插补,如果以到达终点,停止插补。
逐点比较法的概念基本原理及特点
逐点比较法的概念基本原理及特点早期数控机床广泛采用的方法,又称代数法、醉步伐,适用于开环系统。
1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。
每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。
逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。
特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。
逐点比较法直线插补(1)偏差函数构造对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye若刀具加工点为Pi(X i,Y i),则该点的偏差函数F i可表示为若F i= 0,表示加工点位于直线上;若F i> 0,表示加工点位于直线上方;若F i< 0,表示加工点位于直线下方。
(2)偏差函数字的递推计算采用偏差函数的递推式(迭代式)既由前一点计算后一点Fi =Yi Xe -XiYe若F i>=0,规定向+X 方向走一步Xi+1 = Xi +1Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye若F i<0,规定+Y 方向走一步,则有Yi+1 = Yi +1Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe(3)终点判别直线插补的终点判别可采用三种方法。
1)判断插补或进给的总步数:;2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。
(4)逐点比较法直线插补举例对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。
终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。
逐点比较法圆弧插补3.逐点比较法圆弧插补(1)偏差函数任意加工点P i(X i,Y i),偏差函数F i可表示为若F i=0,表示加工点位于圆上;若F i>0,表示加工点位于圆外;若F i<0,表示加工点位于圆内(2)偏差函数的递推计算1)逆圆插补若F≥0,规定向-X方向走一步若F i<0,规定向+Y方向走一步2)顺圆插补若F i≥0,规定向-Y方向走一步若F i<0,规定向+y方向走一步(3)终点判别1)判断插补或进给的总步数:⎩⎨⎧+-=-+-=-=++12)1(122211iiiiiiiXFRYXFXX⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧+-=--+=-=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiXFRYXFXXbabaYYXXN-+-=baxXXN-=bayYYN-=2) 分别判断各坐标轴的进给步数;(4)逐点比较法圆弧插补举例对于第一象限圆弧AB ,起点A (4,0),终点B (0,4)4.逐点比较法的速度分析fN V L式中:L —直线长度;V —刀具进给速度;N —插补循环数;f —插补脉冲的频率。
逐点比较法直线插补
3.2.1 逐点比较法直线插补
• 逐点比较法插补: 每走一步都要和给定轨迹上 的坐标值进行比较,看这点在给定轨迹的上方 或下方,或是给定轨迹的里面或外面,从而决 定下一步的进给方向。比较一次,决定下一步 走向,以便逼近给定轨迹,即形成逐点比较插 补。 • 加工精度: 逐点比较法规定的加工直线或圆弧 之间的最大误差为一个脉冲当量,因此只要把 脉冲当量(每走一步的距离即步长)取得足够 小,就可达到加工精度的要求。
3.2 插补原理
•在CNC数控机床上,各种曲线轮廓加工都是通过插补计算实现的, 插补计算的任务就是对轮廓线的起点到终点之间再密集的计算出有 限个坐标点,刀具沿着这些坐标点移动,用折线逼近所要加工的曲 线。 •插补方法可以分为两大类:脉冲增量插补和数据采样插补。 •脉冲增量插补是控制单个脉冲输出规律的插补方法,每输出一个脉 冲,移动部件都要相应的移动一定距离,这个距离就是脉冲当量, 因此,脉冲增量插补也叫做行程标量插补。如逐点比较法、数字积 分法。该插补方法通常用于步进电机控制系统。 •数据采样插补,也称为数字增量插补,是在规定的时间内,计算出 个坐标方向的增量值、刀具所在的坐标位置及其他一些需要的值。 这些数据严格的限制在一个插补时间内计算完毕,送给伺服系统, 再由伺服系统控制移动部件运动,移动部件也必须在下一个插补时 间内走完插补计算给出的行程,因此数据采样插补也称作时间标量 插补。数据采样插补采用数值量控制机床运动,机床各坐标方向的 运动速度与插补运算给出的数值量和插补时间有关。该插补方法是 用于直流伺服电动机和交流伺服电动机的闭环或半闭环控制系统。 •数控系统中完成插补工作的部分装置称为插补器。
Fm<0 x
注意:起点偏差F0=0
偏差公式简化
x y xy y Fm ye y ( x 1 ) y Fm 0 Fm 1 x e m me e e m m e
§1.4--逐点比较法——直线插补
电子教案教学程序教学内容及教学双边活动与教学方法导入新课讲授探究总结在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小误差的方向进给。
其算法最大偏差不会超过一个脉冲当量δ。
§1.4 逐点比较法——直线插补一、概述初称区域判别法,又称代数运算法或醉步式近似法。
这种方法应用广泛,能实现平面直线、圆弧、二次曲线插补,精度高。
每进给一步需要四个节拍:(1)偏差判别:判别加工点对规定图形的偏离位置,决定拖板进给的走向。
(2)坐标进给:控制某个坐标工作台进给一步,向规定的图形靠拢,缩小偏差。
(3)偏差计算:计算新的加工点对规定图形的偏差,作为下一步判别的依据。
(4)终点判断:判断是否到达终点。
若到达则停止插补,若没,再回到第一节拍。
介绍讲授图示分析讲授法理解记忆教学程序教学内容及教学双边活动与教学方法新课讲授探究总结二、直线插补1.偏差计算公式如图所示第一象限直线OA,起点O为坐标原点,编程时,给出直线的终点坐标A ,直线方程为:●偏差判别:(1)动点m在直线上:(2)动点m在直线上方:(3)动点m在直线下方:偏差判别函数●坐标进给(1)动点m在直线上:,可沿+⊿x轴方向,也可沿+⊿y方向;(2)动点m在直线上方:,沿+⊿x方向;(3)动点m在直线下方:,沿+⊿y方向。
举例板图分析总结e e(,)x ym e m ey x x y-=m e m ey x x y-=m e m ey x x y->m e m ey x x y-<m m e m eF y x x y=-mF<mF≥mF=教学程序教学内容及教学双边活动与教学方法探究总结例题讲授●新偏差计算+⊿x轴方向进给+⊿y轴方向进给●终点比较用Xe +Ye 作为计数器,每走一步对计数器进行减1计算,直到计数器为零为止。
2.终点判别法分别计数法双向计数法单向计数法3.插补运算过程插补计算时,每走一步,都要进行以下4个步骤(又称4个节拍)的算术运算或逻辑判断:方向判定:根据偏差值判定进给方向。
(二)逐点比较法圆弧插补
(二)逐点比较法圆弧插补
逐点比较法圆弧插补是数控加工中常用的一种圆弧插补方法,其原理是通过逐点比较给定的圆弧路径与机床实际移动轨迹的差异,不断调整目标点的加工速度和轨迹实现精细的加工。
1.将给定的圆弧路径分割成若干个目标点,通常每隔一定距离取一个目标点。
2.根据目标点之间的距离和已知的转速,计算每个目标点的加工速度。
3.将目标点逐个输入数控系统,根据当前位置和目标点的位置计算运动轨迹和加工速度。
4.在运动过程中不断比较实际轨迹和目标轨迹之间的误差,根据误差大小调整加工速度,保证加工精度。
5.重复步骤3和4,直到完成整个圆弧的加工。
逐点比较法圆弧插补的优点是在加工过程中能够动态地调整加工速度,避免加工误差的累积。
同时,它对系统精度要求不高,能够适应各种数控系统。
不过,逐点比较法圆弧插补的缺点也是比较明显的。
由于每个目标点的加工速度独立计算,导致加工过程中产生了较大的速度变化,容易引起加工表面的纹路和不良的表面质量。
因此,在实际应用中,需要根据加工要求和机床精度选择合适的加工方法,并进行适当的加工优化。
逐点比较法直线插补程序
逐点比较法直线插补程序
一、实验目的
1、进一步理解逐点比较法直线插补的原理
2、掌握在计算机环境中完成直线逐点比较法插补的软件实现方法。
二、实验设备
1、计算机及其操作系统
2、VB 6.0软件
三、实验原理
机床数控系统依据一定方法确定刀具运动轨迹,进而产生基本廓形曲线,如直线、圆弧等。
其它需要加工的复杂曲线由基本廓形逼近,这种拟合方式称为“插补”(Interpolation)。
“插补”实质是数控系统根据零件轮廓线型的有限信息(如直线的起点、终点,圆弧的起点、终点和圆心等),在轮廓的已知点之间确定一些中间点,完成所谓的“数据密化”工作。
四、实验方法
本次实验是在VB6.0环境下完成了直线逐点比较法插补的软件实现。
软件中实现,主要分为两部分,一是人际交互,用户采集数据和演示其插补过程;二是插补的计算过程,此为这次实验的核心。
逐点比较法的插补有四个工作节拍:偏差判别、进给、偏差计算和终点判别,第一象限直线插补的偏差判别公式如下:
Fi = Xe Yi -Y e Xi
Fi≥0时,偏差判别公式为Fi+1= Fi-Y e,向X正方向进给
Fi< 0时,偏差判别公式为Fi+1= Fi+Xe,向Y正方向进给
其工作流程图如下所示:
根据流程编写合理的界面和控制主程序代码。
插补算法逐点比较
插补算法逐点比较插补算法(Interpolation Algorithm)是一种数学方法,用于在已知数据点之间估算出未知位置的数值。
插补算法可以用于各种领域,包括图像处理、信号处理、数据分析和数值模拟等。
其中最常见的插补算法有逐点比较插补算法(Point-by-Point Interpolation)。
逐点比较插补算法是一种简单但有效的插补方法。
它基于以下原理:在已知数据点之间进行插值时,可以使用已知点之间的线性关系来估算未知位置的数据。
逐点比较插补算法的基本思想是,对于每个未知位置,找到其左右邻近的已知数据点,并根据这两个点之间的线性关系来估算未知位置的数值。
具体而言,逐点比较插补算法的步骤如下:1.对于每个未知位置,找到其左右邻近的已知数据点。
一般来说,已知数据点的数量决定了插值结果的精度,因此选择合适的邻近点对很重要。
2.根据已知数据点之间的线性关系,计算未知位置的数值。
常用的插值方法有线性插值、多项式插值和样条插值等。
3.重复步骤2,直到所有未知位置的数值都被估算出来。
逐点比较插补算法的优点是简单易懂,计算速度快。
但是它也存在一些限制和不足之处。
首先,逐点比较插补算法只能在已知数据点之间进行插值,无法对超出这个范围的数据进行估算。
因此,它在处理边界问题时存在局限性。
其次,逐点比较插补算法对噪声和异常值比较敏感。
由于插值过程中是根据已知数据点之间的线性关系来估算未知位置的数值,如果存在噪声或异常值,将会对插值结果产生较大的影响。
另外,逐点比较插补算法的插值结果不一定满足各种数学性质和约束条件。
例如,插值结果可能不是连续的、不满足二阶导数连续等。
因此,在一些应用中,可能需要使用其他更高级的插值方法。
综上所述,逐点比较插补算法是一种简单而实用的插值方法。
它基于已知数据点之间的线性关系,通过逐点比较来估算未知位置的数值。
逐点比较插补算法在很多领域中都有广泛的应用,但也存在一些限制和不足。
因此,在实际应用中,需根据具体情况选择合适的插值方法,以达到所需的精度和效果。
轮廓插补原理——逐点比较法
第二节 逐点比较法逐点比较法的基本原理是,在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具沿着坐标轴向减小偏差的方向进给,且只有一个方向的进给。
也就是说,逐点比较法每一步均要比较加工点瞬时坐标与规定零件轮廓之间的距离,依此决定下一步的走向,如果加工点走到轮廓外面去了,则下一步要朝着轮廓内部走;如果加工点处在轮廓的内部, 则下一步要向轮廓外面走,以缩小偏差,周而复始,直至全部结束,从而获得一个非常接近于数控加工程序规定轮廓的刀具中心轨迹。
逐点比较法既可实现直线插补,也可实现圆弧插补。
其特点是运算简单直观,插补过程的最大误差不超过一个脉冲当量,输出脉冲均匀,而且输出脉冲速度变化小,调节方便,但不易实现两坐标以上的联动插补。
因此,在两坐标数控机床中应用较为普遍。
一般来讲,逐点比较法插补过程每一步都要经过如图3-1所示的四个工作节拍:(1)偏差判别 判别刀具当前位置相对于给定轮廓的偏差情况,即通过偏差值符号确定加工点处在理想轮廓的哪一侧,并以此决定刀具进给方向。
(2)坐标进给 根据偏差判别结果,控制相应坐标轴进给一步,使加工点向理想轮廓靠拢,从而减小其间的偏差。
(3)偏差计算 刀具进给一步后,针对新的加工点计算出能反映其偏离理想轮廓的新偏差,为下一步偏差判别提供依据。
(4)终点判别 每进给一步后都要判别刀具是否达到被加工零件轮廓的终点,若到达了则结束插补,否则继续重复上述四个节拍的工作,直至终点为止。
一、逐点比较法I 象限直线插补(一)基本原理设第一象限直线OE ,起点为坐标原点O(0,0),终点为E (X e ,Y e ),另有一个动点为N (X i ,Y i ),如图3-2所示。
其中,各个坐标值均是以脉冲当量为单位的整数,以便于后面的推导与讲解,并且在脉冲增量式插补算法中都是这样约定的。
ee i i X Y X Y = (3-1a ) 即 X e Y i —X i Y e =0 (3-1b ) 当动点N 处于直线OE 的下方N ′处时,直线N O '的斜率小于直线OE 的斜率,从而有ii X Y <e e X Y (3-2a )即 X e Y i —X i Y e <0 (3-2b ) 当动点N 处于直线OE 的上方N ″处时,直线N O ''的斜率大于直线OE 的斜率,从而有ee i i X Y X Y > (3-3a ) 即 X e Y i —X i Y e >0 (3-3b ) 由上述关系可以看出,表达式(X e Y i —X i Y e )的符号就能反映出动点N 相对直线OE 的偏离情况,为此取偏差函数F 为F =X e Y i —X i Y e (3-4)根据上述过程可以概括出如下关系:当F =0时,动点N (X i ,Y i )正好处在直线OE 上;当F >0时,动点N (X i ,Y i )落在直线OE 上方区域;当F <0时,动点N (X i ,Y i )落在直线OE 下方区域。
轮廓插补原理——逐点比较法
现假设第i次插补后,动点坐标为N(Xi,Yi),偏差函数为
Fi=XeYi—XiYe
Fi+1=XeYi+1—Xi+1Ye=XeYi—XiYe+Xe
∴Fi+1=Fi+Xe(3-6)
由式(3-5)和式(3-6)可以看出,采用递推公式计算偏差函数F,将不涉及动点坐标与乘法运算,仅与直线的终点坐标以及前一点的偏差函数值有关,并且算法简单,易于实现。
要说明的是,通过坐标平移的方式可以使每个直线轮廓段的起点总处在坐标系的原点上。另外,在开始加工之前,应通过人工方式将刀具移至加工起点,这一过程称为“对刀”。由于刀具就在直线上,因此,偏差函数的初始值为F0=0。
当F<0时,Y1输出0,Y2输出1,向+Y进给一步,并使J-1→J。
第三个时序脉冲t3:完成偏差函数的计算。t3为移位脉冲序列,其数量等于参与运算的寄存器位数。至于当前的移位脉冲t3送往哪个寄存器,却由偏差符号触发器TF的状态决定。凡是允许移位的坐标寄存器,在t3每发送来一个移位脉冲时,将和偏差函数寄存器JF一道移出一位内容,进入全加器Σ进行加法运算,随后将运算结果回送至JF保存待用,直至t3发送完本次插补计算的所有脉冲。另外,坐标寄存器存放的是终点坐标值,每一次插补运算其值都不变,因此,坐标寄存器为循环移位寄存器。全加器Σ只能作加法运算,至于减法可通过补码转化为加法。偏差计算的逻辑关系如表3-2所示。
逐点比较法既可实现直线插补,也可实现圆弧插补。其特点是运算简单直观,插补过程的最大误差不超过一个脉冲当量,输出脉冲均匀,而且输出脉冲速度变化小,调节方便,但不易实现两坐标以上的联动插补。因此,在两坐标数控机床中应用较为普遍。
逐点比较法(代数运算法、醉步法)图解
逐点比较法(代数运算法、醉步法)图解1、逐点比较法直线插补第Ⅰ象限一加工直线,起点坐标原点O,终点坐标为A(xe,ye),则直线方程可表示为,即令Fi,j=xeyj-yexi为偏差判别函数,则有:(1)当Fi,j≥0时,向+X方向进给一个脉冲当量,到达点Pi+1,j,此时xi+1=xi+1,则点Pi+1,j的偏差判别函数Fi+1,j为(2)当Fi,j<0时,向+Y方向进给一个脉冲当量,到达点Pi,j +1,此时yj+1=yj+1,则点Pi,j+1的偏差判别函数Fi,j+1为可见,新加工点的偏差Fi+1,j或Fi,j+1是由前一个加工点的偏差Fi,j和终点的坐标值递推出来的,假如按前两式计算偏差,则计算大为简化。
终点判别三种方法:(1)判别插补或进给的总步数:N=Xe+Ye;(2)分别判别各坐标轴的进给步数;(3)仅推断进给步数较多的坐标轴的进给步数。
总结:第一拍判别其次拍判别第三拍判别第四拍比较Fij≥0+ΔxFi+1,j= Fi,j-yeEi+j=E终-1Fij0+ΔyFi,j+1= Fi,j+xe第Ⅰ象限直线插补流程图:例5-1 设加工第一象限直线,起点为坐标原点O(0,0),终点A (6,4),用逐点比较法对其进行插补,并画出插补轨迹。
终点判别寄存器E=6+4=10,每进给一步减1,E=0时停止插补。
步数偏差判别坐标进给偏差计算终点判别起点F0,0=0E=101F0,0=0+XF1,0=F0,0-ye=0-4=-4 E=10-1=92F1,0<0+YF1,1= F1,0+xe=-4+6=2 E=9-1=83F1,1>0+XF2,1= F1,1-ye=2-4=-2 E=8-1=74F2,1<0+YF2,2= F2,1+xe=-2+6=4 E=7-1=65F2,2>0+XF3,2= F2,2-ye=4-4=0 E=6-1=56F3,2=0+XF4,2= F3,2-ye=0-4=-4 E=5-1=47F4,2<0+YF4,3= F4,2+xe=-4+6=2 E=4-1=38F4,3>0+XF5,3= F4,3-ye=2-4=-2 E=3-1=29F5,3<0+YF5,4= F5,3+xe=-2+6=4E=2-1=110F5,4>0+XF6,4= F5,4-ye=4-4=0E=1-1=02、其他象限直线插补的方法:1)分别处理法分别建立其他三个象限偏差函数计算公式。
逐点比较法插补VC程序设计
str.Format(_T("%d"),0);
pDC.TextOutW(-8,15,str);
str.Format(_T("%d"),-AXIS_SCALE);
pDC.TextOutW(-AXIS-30,15,str);
pDC.TextOutW(-25,-AXIS+15,str);
//绘制矩形
CBrushbrush;
brush.CreateSolidBrush(RGB(255,0,255));
CPenpen;
pen.CreatePen(PS_SOLID,1,RGB(255,0,255));
CClientDCdc(this);
dc.SelectObject(&pen);
dc.SelectObject(&brush);
dc.SetMapMode(MM_LOMETRIC);
CRectRecto;
GetClientRect(&Recto);
dc.SetViewportOrg(Recto.Width()/2,Recto.Height()/2);
dc.Rectangle(x1,y1,x2,y2);
}
//通过坐标平移实现任意两点间直线绘制
intS_LEN :单位长度像素数(=AXIS/AXIS_SCALE)
intsx,sy:直线插补用到的平移系数
(二)对话框
设置4个Edit框,连接变量m_x1、m_y1、m_x2、m_y2用于存储输入的坐标值。默认值:m_x1=10,m_y1=0,m_x2=0,m_y2=10。
(三)菜单
Caption
说明:同时创建了三个右键菜单与“清空”、“直线插补”、“圆弧插补”同ID。
§1.4 逐点比较法——直线插补
电子教案教学程序教学内容及教学双边活动与教学方法导入新课讲授探究总结在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小误差的方向进给。
其算法最大偏差不会超过一个脉冲当量δ。
§1.4 逐点比较法——直线插补一、概述初称区域判别法,又称代数运算法或醉步式近似法。
这种方法应用广泛,能实现平面直线、圆弧、二次曲线插补,精度高。
每进给一步需要四个节拍:(1)偏差判别:判别加工点对规定图形的偏离位置,决定拖板进给的走向。
(2)坐标进给:控制某个坐标工作台进给一步,向规定的图形靠拢,缩小偏差。
(3)偏差计算:计算新的加工点对规定图形的偏差,作为下一步判别的依据。
(4)终点判断:判断是否到达终点。
若到达则停止插补,若没,再回到第一节拍。
介绍讲授图示分析讲授法理解记忆教学程序教学内容及教学双边活动与教学方法新课讲授探究总结二、直线插补1.偏差计算公式如图所示第一象限直线OA,起点O为坐标原点,编程时,给出直线的终点坐标A ,直线方程为:●偏差判别:(1)动点m在直线上:(2)动点m在直线上方:(3)动点m在直线下方:偏差判别函数●坐标进给(1)动点m在直线上:,可沿+⊿x轴方向,也可沿+⊿y方向;(2)动点m在直线上方:,沿+⊿x方向;(3)动点m在直线下方:,沿+⊿y方向。
举例板图分析总结e e(,)x ym e m ey x x y-=m e m ey x x y-=m e m ey x x y->m e m ey x x y-<m m e m eF y x x y=-mF<mF≥mF=教学程序教学内容及教学双边活动与教学方法探究总结例题讲授●新偏差计算+⊿x轴方向进给+⊿y轴方向进给●终点比较用Xe +Ye 作为计数器,每走一步对计数器进行减1计算,直到计数器为零为止。
2.终点判别法分别计数法双向计数法单向计数法3.插补运算过程插补计算时,每走一步,都要进行以下4个步骤(又称4个节拍)的算术运算或逻辑判断:方向判定:根据偏差值判定进给方向。
圆弧插补(逐点比较法)20页文档
Fi<0
O Fi≥0
X Fi<0 Fi≥0
2、圆弧插补的象限处理
前面的圆弧插补(顺圆、逆圆)只限于第一象限,其他 情况如图所示: Y
O
X
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
代入偏差函数,得Pi+1点的偏差为: Fi+1 = Fi-2Yi + 1
当Fi<0时,向+X方向进给一步,动点由Pi(Xi,Yi) 移动到 Pi+1(Xi +1,Yi),则新动点的坐标为 Xi+1=Xi +1
代入偏差函数,得Pi+1点的偏差为:
Fi+1 = Fi + 2Xi + 1
所以,第一象限顺时针圆弧插补加工时偏差加工的递推 公式为:
10 F9=1 -X F10=F9-2X9+1 = 0, X10=0,Y10=5 ∑=0
加工过程为: Y 5
4 3
2 1
O
1 23 45
X
(三)象限处理 1、直线插补的象限处理 前面的公式只适用于第一象限,对于其他象限直线,偏
差函数用│X│和 │Y│代替X,Y。则进给方向为:
Y Fi<0 Fi≥0 Fi≥0
X
同理,对于第一象限顺圆加工时,即B→A,当Fi≥0时, 应向-Y方向进给一步,当Fi<0时,应向+X方向进给 一步。
Y
B(Xe,Ye)
Pi(Xi,Yi)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、概述在机床的实际加工中,被加工工件的轮廓形状千差万别,各式各样。
严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成。
然而,对于简单的曲线,数控装置易于实现,但对于较复杂的形状,若直接生成,势必会使算法变得很复杂,计算机的工作量也相应地大大增加。
因此,在实际应用中,常常采用一小段直线或圆弧去进行逼近,有些场合也可以用抛物线、椭圆、双曲线和其他高次曲线去逼近(或称为拟合)。
所谓插补是指数据密化的过程。
在对数控系统输入有限坐标点(例如起点、终点)的情况下,计算机根据线段的特征(直线、圆弧、椭圆等),运用一定的算法,自动地在有限坐标点之间生成一系列的坐标数据,即所谓数据密化,从而自动地对各坐标轴进行脉冲分配,完成整个线段的轨迹运行,以满足加工精度的要求。
机床数控系统的轮廓控制主要问题就是怎样控制刀具或工件的运动轨迹。
无论是硬件数控(NC)系统,还是计算机数控(CNC)系统或微机数控(MNC)系统,都必须有完成插补功能的部分,只是采取的方式不同而已。
在CNC或MNC中,以软件(程序)完成插补或软、硬件结合实现插补,而在NC中有一个专门完成脉冲分配计算(即插补计算)的计算装置——插补器。
无论是软件数控还是硬件数控,其插补的运算原理基本相同,其作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路线移动。
有关插补算法问题,除了要保证插补计算的精度之外,还要求算法简单。
这对于硬件数控来说,可以简化控制电路,采用较简单的运算器。
而对于计算机数控系统来说,则能提高运算速度,使控制系统较快且均匀地输出进给脉冲。
经过多年的发展,插补原理不断成熟,类型众多。
从产生的数学模型来分,有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,有基准脉冲插补(又称脉冲增量插补)和数据采样插补。
在基准脉冲插补中,按基本原理又分为以区域判别为特征的逐点比较法插补,以比例乘法为特征的数字脉冲乘法器插补,以数字积分法进行运算的数字积分插补,以矢量运算为基础的矢量判别法插补,兼备逐点比较和数字积分特征的比较积分法插补,等等。
在CNC系统中,除了可采用上述基准脉冲插补法中的各种插补原理外,还可采用各种数据采样插补方法。
本文将介绍在数控系统中常用的逐点比较法、数字积分法、时间分割法等多种插补方法以及刀具半径补偿计算原理。
2、逐点比较法逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。
逐点比较法,顾名思义,就是每走一步都要将加工点的瞬时坐标同规定的图形轨迹相比较,判断其偏差,然后决定下一步的走向,如果加工点走到图形外面去了,那么下一步就要向图形里面走;如果加工点在图形里面,那么下一步就要向图形外面走,以缩小偏差。
这样就能得出一个非常接近规定图形的轨迹,最大偏差不超过一个脉冲当量。
在逐点比较法中,每进给一步都须要进行偏差判别、坐标进给、新偏差计算和终点比较四个节拍。
下面分别介绍逐点比较法直线插补和圆弧插补的原理。
2.1逐点比较法直线插补如上所述,偏差计算是逐点比较法关键的一步。
下面以第Ⅰ象限直线为例导出其偏差计算公式。
如图2-1所示,假定直线——OA 的起点为坐标原点,终点A 的坐标为A (X e ,Y e ),P (X i ,Y i )为加工点,若P 点正好处在直线——OA 上,那么下式成立:X e Y i —X i Y e =0若任意点P (X i ,Y i )在直线——OA 的上方(严格地说,在直线——OA 与y 轴所成夹角区域内),那么有下述关系成立:亦即:X e Y i —X i Y e >0由此可以取偏差判别函数F ij 为:F ij =X e Y i —X i Y e由F ij 的数值(称为“偏差”)就可以判别出P 点与直线的相对位置。
即:当F ij =0时,点P (X i ,Y i )正好落在直线上;当F ij >0时,点P (X i ,Y i )落在直线的上方;当F ij <0时,点P (X i ,Y i )落在直线的下方。
从图2—1看出,对于起点在原点,终点为A (X e ,Y e )的第Ⅰ象限直线OA 来说,当点P 在直线上方(即F ij >0)时,应该向+x 方向发一个脉冲,使机床刀具向+x 方向前进一步,以接近该直线;当点P 在直线下方(即F ij <0)时,应该向+y 方向发一个脉冲,使机床刀具向+y方向前进一步,趋向该直线;当点P正好在直线上(即F ij=0)时,既可向+x方向发一脉冲,也可向+y方向发一脉冲。
因此通常将F ij>0和F ij=0归于一类,即F ij≥0。
这样从坐OA,步步前进。
当两标原点开始,走一步,算一次,判别F ij,再趋向直线,逐点接近直线——个方向所走的步数和终点坐标A(X e,Y e)值相等时,发出终点到达信号,停止插补。
对于图2—1的加工直线OA,我们运用上述法则,根据偏差判别函数值,就可以获得如图中折线段那样的近似直线。
但是按照上述法则进行F ij的运算时,要作乘法和减法运算,这对于计算过程以及具体电路实现起来都不很方便。
对于计算机而言,这样会影响速度;对于专用控制机而言,会增加硬件设备。
因此应简化运算,通常采用的是迭代法,或称递推法,即每走一步后新加工点的加工偏差值用前一点的加工偏差递推出来。
下面推导该递推式:已经知道,加工点的坐标为(X i,Y i)时的偏差为:F ij=X e Y i—X i Y e若F ij≥0时,则向x轴发出一进给脉冲,刀具从这点即(X i,Y i)点向x方向前进一步,到达新加工点P(X i+1,Y i),X i+1=X i+1,因此新加工点P(X i+1,Y i)的偏差值为=F ij-Y e(2-1)即:F i+1,j如果某一时刻,加工点P(X i,Y i)的F ij<0,则向y轴发出一个进给脉冲,刀具从这一点向y方向前进一步,新加工点P(X i,Y i+1)的偏差值为即:F i=F ij+X e(2-2),j+1根据式(2-1)及式(2-2)可以看出,新加工点的偏差完全可以用前一加工点的偏差递推出来。
综上所述,逐点比较法的直线插补过程为每走一步要进行以下4个节拍(步骤),即判别、进给、运算、比较。
(1)判别。
根据偏差值确定刀具位置是在直线的上方(或线上),还是在直线的下方。
(2)进给。
根据判别的结果,决定控制哪个坐标(x或y)移动一步。
(3)运算。
计算出刀具移动后的新偏差,提供给下一步作判别依据。
根据式(2—1)及式(2—2)来计算新加工点的偏差,使运算大大简化。
但是每一新加工点的偏差是由前一点偏差F ij推算出来的,并且一直递推下去,这样就要知道开始加工时那一点的偏差是多少。
当开始加工时,我们是以人工方式将刀具移到加工起点,即所谓“对刀”,这一点当然没有偏差,所以开始加工点的F ij=0。
(4)比较。
在计算偏差的同时,还要进行一次终点比较,以确定是否到达了终点。
若已经到达,就不再进行运算,并发出停机或转换新程序段的信号。
下面以实例来验证图2-1。
设欲加工直线OA,其终点坐标为X e=5*,Y e=3*,则终点判别值可取为E8=X e+Y e=5+3=8(终点判别方法详见下述)。
开始时偏差F=0,加工过程的运算节拍如表2—1所示。
2.2逐点比较法圆弧插补加工一个圆弧,很容易联想到把加工点到圆心的距离和该圆的名义半径相比较来反映加工偏差。
这里,我们以第Ⅰ象限逆圆弧为例导出其偏差计算公式。
设要加工图2—3所示第Ⅰ象限逆时针走向的圆弧,半径为R,以原点为圆心,起点坐标为A(X0,Y0),对于圆弧上任一加工点的坐标设为P(X i,Y i),P点与圆心的距离R P的平方为R P2=X i2+Y i2,现在讨论这一加工点的加工偏差。
若点P(X i,Y i)正好落在圆弧上,则下式成立:X i2+Y i2=X02+Y02=R若加工点P(X i,Y i)在圆弧外侧,则R P>R,即:X i2+Y i2>X02+Y02若加工点P(X i,Y i)在圆弧内侧,则R P<R,即:X i2+Y i2<X02+Y02将上面各式分别改写为下列形式:(X i2-X02)+(Y i2-Y02)=0(加工点在圆弧上)(X i2-X02)+(Y i2-Y02)>0(加工点在圆弧外侧)(X i2-X02)+(Y i2-Y02)<0(加工点在圆弧内侧)取加工偏差判别式为:F ij=(X i2-X02)+(Y i2-Y02)运用上述法则,利用偏差判别式,即获得图2—2折线所示的近似圆弧。
若P(X i,Y i)在圆弧外或圆弧上,即满足F ij≥0的条件时,应向x轴发出一个负向运动的进给脉冲(-Δx),即向圆内走一步。
若P(X i,Y i)在圆弧内侧,即满足F ij<0的条件,则向y轴发出一个正向运动的进给脉冲(+Δy),即向圆弧外走一步。
为了简化偏差判别式的运算,仍用递推法来推算下一步新的加工偏差。
设加工点P(X i,Y i)在圆弧外侧或圆弧上,则加工偏差为F ij=(X i2-X02)+(Y i2-Y02)≥0x坐标需向负方向进给一步(-Δx),移到新的加工点P(X i+1,Y i)位置,此时新加工点的x坐标值为X i-1,y坐标值仍为Y i,新加工点P(X i+1,Y i)的加工偏差为:F i+1,j=(X i-1)2-X02+(Y i2-Y02)F ij-2Xi+1(2-3)经展开并整理,得:F i+1,j=设加工点P(X i,Y i)在圆弧的内侧,则:F ij=(X i2-X02)+(Y i2-Y02)<0那么,y坐标需向正方向进给一步(+Δy),移到新加工点P(X i,Y i+1),此时新加工点的x坐标值仍为X i,y坐标值则改为Y i+1,新加工点P(X i,Y i+1)的加工偏差为:F i,j+1=(X i2-X02)+(Y i-1)2-Y02,展开上式,并整理得:F ij+2Yi+1F i,+1j=综上所述可知:当F ij≥0时,应走-Δx,新偏差为F i+1,j=F ij-2Xi+1,动点(加工点)坐标为X i+1=X i-1,Y i=Y i;当F ij<0时,应走+Δy,新偏差为F i,j+1=F ij+2Yi+1,动点坐标为X i=X i,Y i+1=Y i+1。
下面举例说明插补过程。
设欲加工第Ⅰ象限逆时针走向的圆弧(见图2—4),起点A 的坐标是X0=4,Y0=3,终点E的坐标是X e=0,Y e=5,终点判别值:E=(X0-Y e)+(X0-Y e)=(4-0)+(5-3)=6图2-5逐点比较法圆弧插补过程加工过程的运算节拍见表2-3,插补后获得的实际轨迹如图2—3折线所示。