17三角形解的个数判断

合集下载

判断三角形解的个数的方法

判断三角形解的个数的方法

判断三角形解的个数的方法判断三角形解的个数的方法判断三角形解的个数是数学中一个重要的问题,在实际应用中也经常涉及到。

一般来说,有两种方法可以用来判断三角形解的个数:方法一:三角不等式法三角不等式法是判断三角形解个数的经典方法,也是一种比较直观的方法。

根据三角形的性质,三角形的任意两边之和大于第三边,即a + b > c,b + c > a,a + c > b,其中a、b、c分别为三角形的三条边。

如果已知一组三角形边长,只需将这组数据代入三角不等式,判断是否成立即可。

例如,若已知一组三角形边长为a=3 cm,b=4 cm,c=7 cm,则:a +b > c,即3 + 4 > 7,成立。

b +c > a,即4 + 7 > 3,成立。

a + c > b,即3 + 7 > 4,成立。

因此,该组数据满足三角不等式,故可构成一个三角形。

如果三边的长度难以直接比较,则可以取出其中最大的一边,判断其余两边之和是否大于最大边,以此来判断是否能构成三角形。

方法二:海龙公式法海龙公式法是利用三条边的长度求出用海龙公式求出面积,然后根据海龙公式,面积S=max{p(p-a)(p-b)(p-c)}^{1/2},其中p=(a+b+c)/2,判断是否能构成三角形的方法。

海龙公式法比三角不等式法更精准,适用于各种情况。

若a,b,c都是正数,且满足a+b>c,b+c>a,a+c>b,则S>0,这说明这三条边可以构成一个三角形。

若S=0,则说明这三条边不能构成一个三角形。

例如,若已知一组三角形边长为a=3 cm,b=4 cm,c=7 cm,则:p=(a+b+c)/2=14/2=7。

S=max{p(p-a)(p-b)(p-c)}^{1/2}=max{7*4*3*0}/2=0。

因此,该组数据不能构成一个三角形。

总的来说,三角不等式法适用于求三角形是否存在、没有求边长的时候判断是否存在三角形;而海龙公式法适用于求三角形的面积、判别三个给定边是否能构成三角形。

正弦定理判断三角形解的个数

正弦定理判断三角形解的个数

正弦定理判断三角形解的个数
正弦定理是三角形中常用的一个定理,它可以用来判断三角形解的个数。

在一个三角形中,若已知其中两个角和它们对应的两个边的长度,那么可以用正弦定理求出第三边的长度。

正弦定理的公式为:sin A/a = sin B/b = sin C/c,其中A、B、C分别表示三角形的三个角,a、b、c分别表示它们对应的边长。

在使用正弦定理时,我们需要注意以下几点:
1. 若给定的两个角之和小于180度,则可以构成一条边长为正数的第三边,三角形解唯一。

2. 若给定的两个角之和等于180度,则可以构成一条直线,三角形不存在。

3. 若给定的两个角之和大于180度,则无法构成三角形。

通过正弦定理,我们可以求出三角形的各个边长,从而判断三角形解的个数。

如果三个边长都为正数,则可以构成一个三角形,解唯一;如果有两个边长之和小于等于第三边长,则无法构成三角形;如果有两个边长之和等于第三边长,则可以构成一个退化三角形,解唯一;如果有两个边长之和大于第三边长,则可以构成一个锐角三角形或一个钝角三角形,解唯一;如果有一个边长为0,则无法构成三角形。

- 1 -。

第10讲 三角形个数及判断三角形形状问题(解析版)

第10讲 三角形个数及判断三角形形状问题(解析版)

第10讲 三角形个数及判断三角形形状问题题型一:三角形解的个数问题已知a 、b 、A ,△ABC 解的情况如下图示. (ⅰ)A 为钝角或直角时解的情况如下:(ⅱ)A 为锐角时,解的情况如下:【例1】在ABC 中,30C =︒,b =c x =. 若满足条件的ABC 有且只有一个,则x 的可能取值是( )A .12 B C .1 D 因为ABC 只有一解,30︒>,则30B ︒<≤显然满足题意,10sin 2B或sin B 2x ≥或22x =;故选:D【例2】在ABC 中,若3b =,c =,45B =,则此三角形解的情况为( )A .无解B .两解C .一解D .解的个数不能确定为锐角,故满足条件的ABC 只有一个【例3】设ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,S 和R 分别为ABC 的面积和外接圆半径.若2,3b c ==,则选项中能使ABC 有两解的是( )A .30B =︒ B .30C =︒ C .3S =D .2R =【例4】在ABC 中,根据下列条件解三角形,其中有一解的是( ) A .9,4,30=︒==b c C B .5,4,45=︒==b c B C .6,60==︒=a b B D .20,30,30︒===a b A【答案】BC【分析】由正弦定理逐项判断.【题型专练】1.在ABC 中,内角,,A B C 所对的边分别为,,a b c ,则下列条件能确定三角形有两解的是( ) A .5,4,6a b A π=== B .4,5,4a b A π===C .55,4,6a b A π=== D .4,5,3a b A π===,故三角形ABC 有一解;sin b B =⇒,故三角形ABC 有两解;sin b A B =⇒一定为锐角,故三角形ABC 有一解;sin sin b B A B =⇒=,故故三角形ABC 无解故选:B.2.在ABC 中,已知2,45a b A ===,则满足条件的三角形( ) A .有2个 B .有1个 C .不存在 D .无法确定45 3.在ABC 中,已知2,3,30=︒==a b B ,则此三角形( ) A .有一解 B .有两解 C .无解 D .无法判断有几解【详解】在ABC 中,3013=,,有30A B <=,即4.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知6,6a b A π===,则此三角形( )A .无解B .一解C .两解D .解的个数不确定故此三角形有两解, 故选:C.5.在解三角形时,往往要判断三角形解的情况,现有∵ABC 满足条件:边20c =,角60B =︒,我想让它有两解,那么边b 的整数值我认为可取______(只填符合条件的一种即可) 2020sin60b ,320b,的整数值为18或19. 18或19.6.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .2【答案】A【解析】:解法一:因为b =60B =︒,由正弦定理得sin sin a b A B=,所以sin 2sin sin b Aa A B ==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点,所以0a <≤或2a =,故选:A解法二:可知当B a b b a sin 0=≤<或时,ABC 仅有一个解,所以0a <≤2a =,题型二:判断三角行形状 判断三角形形状的思路: 1.转化为三角形的边来判断:(1)∵ABC 为直角三角形⇔a 2=b 2+c 2或b 2=a 2+c 2或c 2=a 2+b 2; (2)∵ABC 为锐角三角形⇔a 2+b 2>c 2且b 2+c 2>a 2且c 2+a 2>b 2; (3)∵ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2; (4)按等腰或等边三角形的定义判断. 2.转化为角的三角函数(值)来判断:(1)若cosA =0,则A =90°,∵ABC 为直角三角形; (2)若cosA <0,则∵ABC 为钝角三角形;(3)若cosA >0且cosB >0且cosC >0,则∵ABC 为锐角三角形; (4)若sin 2A +sin 2B =sin 2C ,则C =90°,∵ABC 为直角角形; (5)若sinA =sinB 或sin (A -B )=0,则A =B ,∵ABC 为等腰三角形;(6)若sin 2A =sin 2B ,则A =B 或A +B =90°,∵ABC 为等腰三角形或直角三角形.在具体判断的过程中,应注意灵活地应用正、余弦定理进行边角的转化,究竟是角化边还是边化角应依具体情况决定.【例1】在ABC 中,2cos 0a c B -=则此三角形的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形【答案】A【解析】由正弦定理sin 2sin cos 0A C B -=,又因为A B C π++=,所以sin sin()A B C =+.即sin()2sin cos B C C B +=,用两角和的正弦公式展开左边,得:sin cos cos sin 2sin cos B C B C C B +=,整理得sin cos sin cos 0B C C B -=,所以sin()0B C -=,又因为B ∠和C ∠是三角形的内角,所以0,B C B C -==,此三角形为等腰三角形.【例2】(多选)下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 【答案】ABD【解析】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确;对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=,A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=,ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【例3】(多选题)ABC 的内角,,A B C 的对边分别为,,a b c ,下列四个命题中正确..的是( ) A .若2220a b c +->,则ABC 一定是锐角三角形 B .若cos cos cos a b cA B C==,则ABC 一定是等边三角形 C .若cos cos a A b B =,则ABC 一定是等腰三角形D .若cos cos a B b A a +=,则ABC 一定是等腰三角形【答案】BD 【解析】A 选项:当423a b c ===,,时,2220a b c +->,ABC 为钝角.错误.B 选项:因为cos cos cos a b cA B C==, 所以tan tan tan A B C ==,且(0,)A B C π∈,,所以A B C ==,ABC 为等边三角形.正确.C 选项:cos cos sin 2sin 2a A b B A B A B =⇒=⇒=或2A B π+=.ABC 不一定是等腰三角形.错误.D 选项:cos cos sin cos sin cos sin a B b A a A B B A A +=⇒+=sin()sin A B A ⇒+=sin sin C A ⇒=又因为(0,)A C π∈,,所以A C =.即ABC 为等腰三角形.正确.【例4】已知在ABC 中,3332sin sin sin sin sin sin sin A B CC A B C+-=+-,且sin 2cos sin C A B =,则该ABC 的形状为( )[附:()()3322a b a b a b ab +=++-]A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形∵sin cos cos sin 0A B A B -=,即()sin 0A B -=, ∵A B =.∵ABC 为等边三角形, 故选:D .【例5】在∵ABC 中,如果 lg lg lg sin a c B -==-,且B 为锐角,试判断此三角形的形状( ). A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形【例6】ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,若sin :sin :sin 3:4:5A B C =,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形【答案】B【分析】根据正弦定理的三边比值,然后能得到222+=a b c ,即可得到答案 【详解】由正弦定理可知::sin :sin :sin 3:4:5a b c A B C ==, 设3,4,5,(0)a t b t c t t ===>,所以222225a b t c +==,所以AC BC ⊥,所以ABC 的形状是直角三角形, 故选:B【例7】已知ABC 的三个内角,,A B C 所对应的边分别为,,a b c ,且满足222cos cos cos 1sin sin A B C A C -+=+,且sin sin sin 2A C π+=,且ABC 的形状是( )A .等边三角形B .等腰直角三角形C .顶角为56π的等腰三角形 D .顶角为23π的等腰三角形 又(0,B π∈sin sin A +整理得sin(A ABC ∆ 为顶角为【例8】在ABC 中,角A ,B ,C 对应边分别为a ,b ,c ,已知三个向量,cos 2A m a ⎛⎫= ⎪⎝⎭,,cos 2B n b ⎛⎫= ⎪⎝⎭,,cos 2p c C ⎛⎫= ⎪⎝⎭共线,则ABC 形状为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形【详解】解:向量(,cos m a =,(,cos 2B n b =cossin 22B A=. B 02A π<<所以cos 则sin2A =∴22A B=同理由,cos n b ⎛= ⎝,,cos p c ⎛= ⎝ABC ∴形状为等边三角形.故选:A .【例9】已知三角形的三边长分别为3,4,x ,若该三角形是钝角三角形,则x 的取值范围是( ) A .()7,7B .()7,5C .()()+∞⋃,57,0D .()()7,57,1⋃【答案】D【详解】由题意,ABC 为钝角三角形,三边长分别为3,4,x , 可得当4是最大边时,4所对的角是钝角,即此角的余弦值小于零,则2224334x x <+⎧⎨+<⎩,解得1x <<x 是最大边时,x 所对的角是钝角,即此角的余弦值小于零, 则2224334x x<+⎧⎨+<⎩,解得57x <<,综上可得,x 的取值范围是()()7,57,1⋃ 故选:D . 【题型专练】1.在ABC 中,已知tan tan a ba b A B+=+,则ABC 的形状一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形综上所述:ABC 的形状一定是直角三角形,2.在ABC 中,,,A B C 的对边分别是,,a b c ,若222a b c +<,则ABC 的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .锐角或直角三角形【答案】C【分析】由余弦定理确定C 角是钝角.3.ABC 的三内角,,A B C 的对边分别为,,a b c 且满足cos cos 2cos a B b A c C +=,且sin sin A B =,则ABC 的形状是( ) A .等腰三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形在ABC 中,由于A B C ==所以ABC 为等边三角形故选:B.4.已知ABC 内角A 、B 、C 所对的边分别为a 、b 、c 面积为S ,若sin sin 2A Ca b A +=,23S BA CA =⋅,则ABC 的形状是( ) A .钝角三角形 B .直角三角形 C .正三角形 D .等腰直角三角形6333322BA CA AB AC bc ⋅=⋅=cos sin A A =,故tan 3A =综上,ABC 为正三角形. 故选:C5.已知在ABC 中,()33323a b c c a b c +-=+-,且sin 2cos sin CA B=,则该ABC 的形状为( )[附:()()3322a b a b a b ab +=++-]A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形;由此可得ABC 形状,20A <<ABC ∴为等边三角形故选:D.6.ABC 中,a 、b 、c 分别是内角A 、B 、C 的对边,若222ABC a b c =+-,且()0||||AB ACBC AB AC +⋅=,则ABC 的形状是( ) A .等腰非直角三角形 B .三边均不相等的直角三角形 C .等边三角形 D .等腰直角三角形)0||||AB ACBC AB AC +⋅=,可判断ABCS 可得2cos 2ab C =,由()0||||AB AC BC AB AC +⋅=可得7.在∵ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则∵ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形8.已知角,,A B C 是ABC 的内角,向量()()sin ,sin ,cos ,cos m A B n A B ==且m 与n 共线,则可以判断ABC 的形状为( ) A .等腰三角形 B .等腰直角三角形 C .直角三角形D .等边三角形【答案】A【分析】根据向量共线的坐标运算,可得sin cos sin cos A B B A =,根据角A 、B 的范围,即可得tan tan A B =,即可得答案.【详解】因为m 与n 共线, 所以sin cos sin cos A B B A =, 所以in 0()s A B -=因为,(0,)A B π∈,所以(,)A B ππ-∈-, 所以0A B -=,即A B =,所以 ABC 为等腰三角形, 故选:A9.在ABC ∆中,若222cos cos 2sin A B C +>-,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法判断10.已知在ABC 中,22tan tan A a B b =,判断ABC 的形状为( ). A .等腰三角形 B .直角三角形 C .等腰或直角三角形 D .等腰直角三角形【详解】tan tan A a B b =sin sin A B=,∴sin 2B =B 或2+2A 或+=A B πABC 是等腰或直角三角形故选:C .【点睛】判断三角形形状的常用技巧若已知条件中既有边又有角,则(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A B C +=这个结论.11.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且(cos cos )a b c A B +=⋅+,则ABC ∆的形状是 A .等腰三角形 B .直角三角形C .锐角三角形D .不能判断12.在ABC 中,a ,b 分别是角A ,B 的对边,若cos cos a bB A=成立,那么ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰或直角三角形 D .无法判断【详解】ABC 中,sin 2A B =2B =或2A +所以ABC 是等腰三角形或者直角三角形故选:C.。

17《三角形》全章复习与巩固—知识讲解(提高)

17《三角形》全章复习与巩固—知识讲解(提高)

17《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三;8 (由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x<9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11).2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC <AB+AC 的理由吗?(2)若AB =5,AC =6,BC =7,你能写出OB+OC 的取值范围吗?【答案与解析】解:(1)如图,延长BO 交AC 于点E ,根据三角形的三边关系可以得到,在△ABE 中,AB+AE >BE ;在△EOC 中,OE+EC >OC ,两不等式相加,得AB+AE+OE+EC >BE+OC .由图可知,AE+EC =AC ,BE =OB+OE .所以AB+AC+OE >OB+OC+OE ,即OB+OC <AB+AC .(2)因为OB+OC >BC ,所以OB+OC >7.【总结升华】充分利用三角形三边关系的性质进行解题.类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

重点突破:判断三角形解的个数问题

重点突破:判断三角形解的个数问题
2 3 a sinA
0
=
b sinB
,即 1 =
2
3
3 3 sinB
∴B=60°或 B=120°. 故选:C . 点睛:本题主要考查正弦定理解三角形,属于简单题.在解与三角形有关的问题时,正弦定理、余弦定理是两个
主要依据. 解三角形时, 有时可用正弦定理, 有时也可用余弦定理, 应注意用哪一个定理更方便、 简捷一般来说 , 当条件中同时出现 ab 及b2 、a2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运 用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 5.D 【解析】分析:利用正弦定理即可得出. 详解:由正弦定理可得:
5 1 , B 1500 符合两解。选 D. 9 2
bsinA 0 , A 中 sinB 1, B 90 , 1 解, 不符。 C 中 sinB 2 1 , a
【点睛】
在己知两边一对角的题型中,有钝角或直角最多一解,己知角所对边为大边,最多一解,其余情况根据三角形内 角和 180 ,大边对大角来判断。 4.C【解析】分析:利用正弦定理求出 sinB,得出 B,利用内角和定理进行检验. 详解:由正弦定理得 ∴sinB= .π 2π π源自)B.2π 3
C.
π 3
D.
π 4
2.已知 ABC 中, a A. 0 个 B. 1个
0
2, b 3, A 45 ,则三角形的解的个数(
D. 0 个或 1个


C. 2 个
3.在 ABC 中,利用正弦定理理解三角形时,其中有两解的选项是( A. a 3, b 6, A 30 B. a 6, b 5, A 150 D. a

正弦定理(2)

正弦定理(2)

课题:正弦定理(2) 1.正弦定理及其变形(1)定理内容:asin A=bsin B=csin C=2R(R为外接圆半径).(2)正弦定理的常见变形:①sin A∶sin B∶sin C=a∶b∶c;②asin A=bsin B=csin C=a+b+csin A+sin B+sin C=2R;③a=2R sin_A,b=2R sin_B,c=2R sin_C;④sin A=a2R,sin B=b2R,sin C=c2R.2.对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情练习:在△ABC中,a=9,b=10,A=60°,判断三角形解的个数.3.三角形的面积公式任意三角形的面积公式为:(1)S△ABC=12bc sin A=12ac sin B=12ab sin C,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S△ABC=12ah,其中a为△ABC的一边长,而h为该边上的高的长.(3)S△ABC=12r(a+b+c)=12rl,其中r,l分别为△ABC的内切圆半径及△ABC的周长.课前自测1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.b c B.sin B sin A C.sin C c D.c sin C 3.在△ABC 中,A =30°,a =3,b =2,则这个三角形有( ) A .一解 B .两解 C .无解 D .无法确定4.在△ABC 中,若sin A a =cos Bb,则B 的值为________.三角形解的个数的判断【例1】 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.练习1.满足B =60°,AC =12,BC =k 的△ABC 恰有一个,则k 的取值范围是( ) A .k =83 B .0<k ≤12 C .k ≥12 D .0<k ≤12或k =83 三角形的面积【例2】 在△ABC 中,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .练习2.(1)在△ABC 中,若a =32,cos C =13,S △ABC =43,则b =________.(2)在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于________.正弦定理的综合应用【例3】 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,m u r=(sin A ,sin B ),n r =(cos B ,cos A ),m n •u r r=-sin 2C .(1)求C 的大小;(2)若c =23,A =π6,求△ABC 的面积.练习3.若a +c =2b ,2cos 2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状. 课堂练习1.判断正误(1)在△ABC 中,等式b sin A =a sin B 总能成立.( ) (2)在△ABC 中,若A =30°,a =2,b =23,则B =60°.( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解.( ) 2.满足a =4,b =3和A =45°的△ABC 的个数为( ) A .0 B .1 C .2 D .无数个3.在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,其中a =4,b =3,C =60°,则△ABC 的面积为( )A .3B .33C .6D .6 34.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =________,a =________.5.在△ABC 中,若a ∶b ∶c =1∶3∶5,求2sin A -sin Bsin C的值.班级 姓名 学号 成绩 一、选择题 1.在△ABC 中,b +c =2+1,C =45°,B =30°,则………………………………( )A .b =1,c =2B .b =2,c =1C .b =22,c =1+22D .b =1+22,c =222.在△ABC 中,若a =18,b =24,A =45°,则此三角形有…………………………( ) A .无解 B .两解 C .一解 D .解的个数不确定 3.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( )A. 3B.33C.63 D .-634.在△ABC 中,A =60°,a =13,则a +b +csin A +sin B +sin C等于……………………( )A.833B.2393C.2633D .2 35.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若B =π2,a =6,sin 2B =2sin A sinC ,则△ABC 的面积S =……………………………………………………………………( )A.32B .3 C.6 D .6 6.在△ABC 中,A =π3,BC =3,则△ABC 的两边AC +AB 的取值范围是……( )A .[33,6]B .(2,43)C .(33,43)D .(3,6]7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m u r =(3,-1),n r=(cos A ,sin A ),若m u r ⊥n r,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为…( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3 二、填空题8.下列条件判断三角形解的情况,正确的是________(填序号). ①a =8,b =16,A =30°,有两解;②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解;④a =40,b =30,A =120°,有一解. 9.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.11.在Rt △ABC 中,C =90°,且A ,B ,C 所对的边a ,b ,c 满足a +b =cx ,则实数x 的取值范围是________.12.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =________.三、解答题13.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .14.在△ABC 中,已知c =10,cos A cos B =b a =43,求a ,b 及△ABC 的内切圆半径.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C . (1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小.。

三角形解的个数问题

三角形解的个数问题

05
三角形解的个数问题的扩 展和深化
三角形解的个数问题的推广
要点一
推广到多边形
要点二
推广到组合优化
将三角形解的个数问题推广到多边形,研究多边形的可解 性、解的个数和最优解等问题。
将三角形解的个数问题看作是组合优化问题的一种,研究 其他组合优化问题的解法,如旅行商问题、排班问题等。
三角形解的个数问题的变种
详细描述
在几何问题中,三角形解的个数问题通常涉及到三角形边长和角度的条件约束。根据三角形的性质, 任意两边之和大于第三边,任意两边之差小于第三边。同时,角度的条件也会影响三角形解的个数。 通过分析这些条件,可以判断三角形解的个数。
三角函数中的三角形解的个数问题
总结词
三角函数中的三角形解的个数问题主要 涉及到三角函数的性质和图象,通过分 析三角函数的性质和图象,判断三角形 解的个数。
考虑三角形边的长度
在三角形解的个数问题中,可以考虑 三角形的边长限制,研究不同边长条 件下三角形的可解性。
考虑三角形角度
在三角形解的个数问题中,可以考虑 三角形的角度限制,研究不同角度条 件下三角形的可解性。
三角形解的个数问题与其他数学知识的结合
与几何学结合
将三角形解的个数问题与几何学知识相结合,研究几 何图形中的可解性问题,如多边形、曲面等。
与图论结合
将三角形解的个数问题与图论知识相结合,研究图论 中的可解性问题,如子图、路径、连通性等。
感谢您的观看
THANKS
三角形解的个数问题
目 录
• 三角形解的个数问题的定义和分类 • 三角形解的个数问题的基本定理和公式 • 三角形解的个数问题的应用实例 • 三角形解的个数问题的解题技巧和方法 • 三角形解的个数问题的扩展和深化

三角形解的个数的判断

三角形解的个数的判断

三角形解的个数的判断1. 三角形的基本知识好啦,今天咱们来聊聊三角形。

大家都知道,三角形是个非常重要的几何图形,它可是构成我们生活中很多东西的基础。

想想,建筑物、桥梁、甚至一些小玩具,很多都是用三角形来设计的。

说到三角形,咱们先来捋一捋它的基本构成。

一个三角形由三条边和三个角组成,听起来简单吧?不过,三角形可不只是随便拼拼就行的哦!要想搞清楚一个三角形的形状和大小,咱们得从它的边长和角度入手。

2. 判断三角形解的个数2.1 边长的组合那么,怎样判断一个三角形能不能存在呢?首先,要知道一个三角形的边长必须满足“三角形不等式”。

这就是说,任意两条边的和一定要大于第三条边。

比如,假如你有三根绳子,分别是3米、4米和5米,嘿!这三根绳子可以拼成一个三角形,因为3+4大于5,4+5大于3,3+5大于4。

反之,假如你有3米、4米和8米,那就没戏了!因为3+4等于7,没法大于8,这根本不能组成三角形。

就像聚会上的好朋友,如果人数不够,热闹也不会起来,懂了吗?2.2 角度的关系再来说说角度。

三角形的三个内角加起来必须等于180度,这也是基本常识。

有些朋友可能会问:“那如果我给三角形的角度不同,能不能组成?”这就要看你的角度设置了!比如,如果你给的角度是30度、60度和90度,那绝对是个好三角形,完美无瑕。

而如果你给的是90度、90度和30度,那就别指望了,因为90+90=180度,哪还有地方留给第三个角?所以说,角度也是很重要的一环,就像一顿美味的饭菜,少了盐和调料就没味了!3. 解的个数3.1 一组边长的解的个数那么,关于三角形的解的个数,咱们怎么判断呢?这里面其实有点学问!有些时候,你给定了两条边和夹角,能确定出一个唯一的三角形。

这就像在做数学题,公式给得好好的,答案自然也就出来了。

比如,如果你知道了两根绳子的长度是3米和4米,夹角是60度,那三角形就已经呼之欲出了,真的是个绝妙的组合。

3.2 不同情况下的解的个数可是,有时候就没那么简单了,尤其是当你知道的是两条边和非夹角时。

三角形解的个数判断公式

三角形解的个数判断公式

三角形解的个数判断公式三角形解的个数判断公式,这个话题听上去挺复杂的,但其实它就像一块美味的蛋糕,分层分得恰到好处,吃起来特别过瘾。

说到三角形,我们脑海中浮现的,除了那优雅的三个角和三条边,可能还有它在我们生活中扮演的各种角色。

你知道吗?无论是在建筑、艺术,还是日常的计算中,三角形都是个不可或缺的小角色。

哎呀,真是让人想起小学数学课上,老师拿着三角尺的样子,简直就像个科学家,兴致勃勃地给我们讲解这三角形的秘密。

如何判断三角形的解的个数呢?这可有讲究。

这个问题的关键在于我们手头有哪些条件。

比如说,你手里有三个边长,那就是“边边边”的情况。

或者你有一个边长和两个角,这就是“边角角”的组合。

这样一来,问题就开始变得有趣了,因为不同的组合会导致不同的解的个数,简直像是在玩拼图游戏。

你拼出了一幅美丽的图案,有时候却只是拼出了一堆碎片,让人摸不着头脑。

大家都知道,三角形有一个著名的特性,叫“内角和定理”。

你想啊,三角形的三个内角加起来总是180度,这就像是三个人聚在一起聊天,话题总是围绕着一个中心,大家轮流发言,气氛可热烈了。

可是,如果你给他们加了个条件,比如说,让一个角必须是90度,那剩下的两个角就得是一对好兄弟,绝对不能超过90度,否则就会闹得不可开交。

这样一来,解的个数就更明确了。

再说说“边边角”的情况,感觉像是在给三角形下“任务”。

这个时候,如果你给了两个边和夹角,那么你就能准确地拼出一个三角形。

如果条件再放宽一点,给两个边和一个不夹角,那就可能会有两个解,这就像是让你在两个不同的地方选择一个理想的度假胜地,让你为难得不得了。

不过,哎,这种情况总归是比较少见的,大多数情况下,一定的条件往往能让你找到唯一的解。

有趣的是,很多同学在面对这些问题时,总是感到头疼,心里默默想着“数学真是一门魔法”,理解这些条件就像是解开了一个个小谜题。

想象一下,你在一个神秘的宝藏地图上,标记着每一个线索,逐渐接近那个闪闪发光的宝藏,心里的期待感与日俱增。

专题17 解三角形-2020年高考数学(理)(全国Ⅱ专版)(原卷版)

专题17 解三角形-2020年高考数学(理)(全国Ⅱ专版)(原卷版)

专题17解三角形【母题来源一】【2020年高考全国Ⅱ卷理数】ABC △中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【答案】(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴△周长3L AC AB BC =++≤+ABC ∴△周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.【母题来源二】【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==113sin 222ABC S ac B ==⨯=△【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【母题来源三】【2018年高考全国Ⅱ理数】在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A .BC .D .【答案】A【解析】因为2253cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.【命题意图】三角函数主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题,多以选择、填空、解答题的形式出现,属解答题中的低档题.预测今后的高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,可能与三角函数的图象和性质等交汇命题,重点考查计算能力以及应用数学知识分析和解决问题的能力.【命题规律】本考点一直是高考的热点,尤其是已知边角求其他边角,判断三角形的形状,求三角形的面积考查比较频繁,既有直接考查两个定理应用的选择题或填空题,也有考查两个定理与和差公式、倍角公式及三角形面积公式综合应用的解答题,解题时要掌握正、余弦定理及灵活运用,注意函数与方程思想、转化与化归思想在解题中的应用.【应试技巧】在ABC △中,若角A ,B ,C 所对的边分别是a ,b ,c ,则1.正弦定理:sin sin sin a b c==A B C.2.常见变形sin sin sin 1,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B b a B b A a C c A b C c B B b A a C c ======()2;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b c A B C A B A C B C A B C+++++======+++++()3::sin :sin :sin ;a b c A B C =()3.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,4.余弦定理的推论从余弦定理,可以得到它的推论222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===5.三角形面积公式(1)三角形的高的公式:h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A .(2)三角形的面积公式:S =21ab sin C ,S =21bc sin A ,S =21ca sin B.6.正弦定理可以用来解决两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角.4==.sin sin sin a b cR R ABC A B C()正弦定理的推广:,其中为△外接圆的半径7.三角形解的个数的探究(以已知a b ,和A 解三角形为例)(1)从代数角度来看:①若sin sin 1b AB=a>,则满足条件的三角形的个数为0,即无解;②若sin sin 1b A B=a =,则满足条件的三角形的个数为1;③若sin sin 1b A B=a<,则满足条件的三角形的个数为1或2.注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”“三角形内角和等于180°”等进行讨论.(2)从几何角度来看:①当A 为锐角时,一解一解两解无解②当A 为钝角或直角时,一解一解无解无解8.利用余弦定理解三角形的步骤【解题经验分享】1.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”.2.在解实际问题时,需注意的两个问题(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决.3.利用正弦定理与余弦定理解题时,经常用到转化思想一个是把边转化为角,另一个是把角转化为边,,具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,也是我们利用正弦定理与余弦定理化简式子的最终目标,对于两个定理都能用的题目,应优先考虑利用正弦定理,会给计算带来相对的简便,根据已知条件中边的大小来确定角的大小,此时利用正弦定理去计算较小边所对的角,可避免分类讨论,利用余弦定理的推论,可根据角的余弦值的正负直接确定所求角是有锐角还是钝角,但计算麻烦.1.(2020·河北新乐市第一中学高三)已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若222a b c bc =+-,4bc =,则ABC 的面积A .12B .1C .D .22.(2020·安徽省高三三模)在ABC 中,若3,120AB BC C ==∠= ,则AC =A .1B .2C .3D .43.(2020·横峰中学高三)在ABC 中,已知45A ∠=︒,AB =,且AB 边上的高为则sin C =A .1010BC .5D .54.(2020·广西壮族自治区高三)已知ABC 中,BC 边上的中线3AD =,4BC =,60BAC ∠=︒,则ABC ∆的周长为A 4+B .4+C .4+D .45.(2020·山东省高三)在ABC 中,cos cos A B +=,AB =当sin sin A B +取最大值时,ABC 内切圆的半径为A .3B .2C .13D .26.(2020·陕西省洛南中学高三)在ABC 中,若7a =,8b =,1cos 7B =-,则A ∠的大小为A .6πB .4πC .3πD .2π7.(2020·广东省深圳外国语学校高三月考)海伦公式是利用三角形的三条边的边长,,a b c 直接求三角形面积S 的公式,表达式为:+c2a b S p +==;它的特点是形式漂亮,便于记忆.中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它与海伦公式完全等价,因此海伦公式又译作海伦-秦九韶公式.现在有周长为的△ABC 满足sin :sin :sin 2:A B C =,则用以上给出的公式求得△ABC 的面积为A .B .C .D .128.(2020·广东省深圳外国语学校高三月考)ABC 的内角,,A B C 的对边分别为,,a b c ,已知3b a cosC sinC 3⎛⎫=+ ⎪ ⎪⎝⎭,a 2=,c 3=,则角C =A .π3B .π6C .3π4D .π49.(2020·麻城市实验高级中学高三)锐角ABC ∆中,角,,A B C ,所对的边分别为,,a b c ,若()sin 04A B C π⎛⎫+++= ⎪⎝⎭,1b c ==,则角C 的大小为A .12πB .6πC .3πD .512π10.(2020·麻城市实验高级中学高三)《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为A .2114mB .257mC .254m D .248m 11.(2020·福建省高三)设ABC 内角A ,B ,C 所对应的边分别为a ,b ,c .已知()4cos cos a c B b C -=,则cos B =______.12.(2020·青海省高三)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =4b =,120A =︒,则ABC 的面积为______.13.(2020·重庆市凤鸣山中学高三月考)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,3A π=,6a =,b =,则C =_______.14.(2020·四川省阆中中学高三二模)在ABC 中,若()22235a c b+=,则cos B 的最小值为______.15.(2020·全国高三月考)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()2cos cos 0a c B b C ++=,且4ac =,则ABC 的面积为______.16.(2020·内蒙古自治区高三二模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sinsin 2B Cb a B +⋅=⋅,且2c =,则锐角ABC 面积的取值范围是______.17.(2020·赣榆智贤中学高三)在ABC 中角A ,B ,C 的对边分別为a ,b ,c ,且352115cos cos cos bc A ac B ab C==,则cos C 的值为______.18.(2020·河南省高三月考)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且满足()222cos cos b a a B b A -=+,ABC ∆的周长为)51,则ABC ∆面积的最大值为______.19.(2020·福建省厦门外国语学校高三)如图所示,三个全等的三角形ABF 、BCD 、CAE V 拼成一个等边三角形ABC ,且DEF 为等边三角形,2EF AE =,设ACE θ∠=,则sin 2θ=______.20.(2020·江苏省高三)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其接圆半径为R .已知1c =,且△ABC 的面积()()22sin sin S R B A B A =-+,则a 的最小值为______.21.(2020·山东省高三二模)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .若sin sin b A a C =,1c =,则b =______,ABC ∆面积的最大值为______.22.(2020·西藏自治区高三二模)在ABC 中,4a =,5b =,6c =,则cos A =________,ABC 的面积为________.23.(2020·浙江省杭州高级中学高三)在平面四边形ABCD 中,BC CD ⊥,135o B ∠=,AB =,AC =,5CD =,则sin ACB ∠=________,AD =________.24.(2020·广东省高三月考)已知锐角ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且sin cos cos b A A C =2cos A,则tan A =______;若2a =,则b c +的取值范围为______.25.(2020·浙江省高三)已知在ABC 中,1cos3B =,AB =,8AC =,延长BC 至D ,使2CD =,则AD =______,sin CAD ∠=______.26.(2020·山东省高三三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c )cos sin a b C c B -=.(Ⅰ)求角B ;(Ⅱ)若b =,sin 3sin A C =,求BC 边上的高.27.(2020·天津高三二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a 2+c 2=b 2105+ac .(1)求cosB 及tan 2B 的值;(2)若b =3,A 4π=,求c 的值.28.(2020·定远县育才学校高三)ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知()2cos c a B -=.(1)求角A ;(2)若2a =,求ABC 面积的取值范围.29.(2020·黑龙江省哈尔滨市第六中学校高三三模)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知()cos 2cos a C b c A =-.(1)求角A 的大小;(2)若a =,2b =,求ABC ∆的面积.30.(2020·全国高三月考)已知ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且57b c =,4cos 5A =,ABC 的面积21S =.(1)求边b 和c ;(2)求角B .31.(2020·广东省高三)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且满足22sin 1cos22A B C +=-.(1)求出角C 的大小;(2)若ABC ,求ABC 的周长的最小值.32.(2020·湖北省高三)已知ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,其面积S 2224b c a +-=.(1)若a =b =cos B .(2)求sin (A +B )+sin B cos B +cos (B ﹣A )的最大值.33.(2020·四川省泸县五中高三二模)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且22212cos 2B C a b c +⎛⎫+=- ⎪⎝⎭.(1)求角C ;(2)若c =,求ABC ∆周长的最大值.34.(2020·六盘山高级中学高三)已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c +的最大值.35.(2020·宜宾市叙州区第一中学校高三二模)在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c ,且3cos sin b A B=.(1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积.36.(2020·定西市第一中学高三)在锐角ABC 中,a =,________,(1)求角A ;(2)求ABC 的周长l 的范围.注:在①(cos ,sin ),(cos ,sin )2222A A A A m n =-= ,且12m n ⋅=- ,②cos (2)cos A b c a C -=,③11()cos cos(,()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.37.(2020·天津耀华中学高三一模)在ABC △中,,,a b c 分别是三个内角,,A B C 的对边,若3,4,2b c C B ===,且a b ¹.(Ⅰ)求cos B 及a 的值;(Ⅱ)求cos 23B π⎛⎫+ ⎪⎝⎭的值.38.(2020·山东省高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin sin cos cos cos A B C A B C+=+(1)若ABC 还同时满足下列四个条件中的三个:①7a =,②10b =,③8c =,④ABC 的面积S =(2)若3a =,求ABC 周长L 的取值范围.39.(2020·广东省金山中学高三三模)已知ABC 内接于单位圆,且()()112tanA tanB ++=,()1求角C()2求ABC 面积的最大值.40.(2020·梅河口市第五中学高三)已知a ,b ,c 分别是ABC 的内角A ,B ,C 的对边,()sin sin sin sin a A C b B c C -=-,点D 在边AB 上,1BD =,且DA =.(1)求角B 的大小;(2)若BCD 的面积为2,求b 的值.41.(2020·江苏省高三三模)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若5(sin C sin B)5sin A 8sin B a b c--=+.(1)求cosC 的值;(2)若A =C ,求sinB 的值.42.(2020·湖南省高三三模)已知,,a b c 分别是ABC 内角,,A B C 的对边,()cos (cos cos )b a C c A B -=-,22b ac =.(1)求cos C ;(2)若ABC c .43.(2020·云南省云南师大附中高三)设ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,且三个内角A 、B 、C 依次成等差数列.(1)若2sin sin sin B A C =,求角A ;(2)若ABC 为钝角三角形,且a c >,求21cos cos 2222A A C -+的取值范围.44.(2020·巩义市教育科研培训中心高三)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒.(1)若2a b =,求tan A 的值;(2)若ACB ∠的平分线交AB 于点D ,且1CD =,求ABC 的面积的最小值.45.(2020·甘肃省静宁县第一中学高三)在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos c B b C =,BC 边上的高12AD =,4sin 5BAC ∠=.(1)求BC 的长:(2)过点A 作AE AB ⊥,垂足为A ,且CAE ∠为锐角,AE =sin ACE ∠.46.(2020·甘肃省民乐县第一中学高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin c b A b -=.(1)证明:2A B =.(2)若3cos 4B =,求sinC 的值.47.(2020·甘肃省高三)如图所示,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且s 3c in os 3b C C a-=.(1)求A ;(2)若点P 是线段CA 延长线上一点,且3PA =,2AC =,6C π=,求PB .48.(2020·黑龙江省哈师大附中高三)在锐角ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,且直线x C =为函数()22cos sin cos f x x x x x =--图象的一条对称轴.(Ⅰ)求C ;(Ⅱ)若kc a b ≥+恒成立,求实数k 的最小值.49.(2020·甘肃省西北师大附中高三)在ABC ∆中,角、、A B C 的对边分别为a b c 、、,且)()2cos cos b A C π--=.(Ⅰ)求A 的值;(Ⅱ)若角,6B BC π=边上的中线AM =,求ABC ∆的面积.50.(2020·福建省厦门一中高三)如图,在梯形ABCD 中,AB ∥CD ,33CD AB ==.(1)若CA CD =,且tan ABC ∠=ABC 的面积S ;(2)若2cos 4DAC ∠=,3cos 4ACD ∠=,求BD 的长.51.(2020·全国高三三模)已知△ABC 的内角A ,B ,C 的对边长分别等于a ,b ,c ,列举如下五个条件:①sin sin 2B C a B b +=;sin A A +=;③cos A +cos2A =0;④a =4;⑤△ABC 的面积等于.(1)请在五个条件中选择一个(只需选择一个)能够确定角A 大小的条件来求角A ;(2)在(1)的结论的基础上,再在所给条件中选择一个(只需选择一个),求△ABC 周长的取值范围52.(2020·山东省高三二模)在①222b ac a c +=+,②cos sin B b A =cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,_________,4A π=,b =(1)求角B ;(2)求ABC 的面积.。

正弦定理1.1.1(二)

正弦定理1.1.1(二)

1.1.1正弦定理(二)学习目标 1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题(重点);2.能根据条件,判断三角形解的个数(难点);3.能利用正弦定理、三角恒等变换解决较为复杂的三角形问题(难点).知识点1对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定,现以已知a,b和A解三角形为例,从两个角度予以说明:(1)代数角度由正弦定理得sin B =b sin A a,①若b sin Aa>1,则满足条件的三角形个数为0,即无解.②若b sin Aa=1,则满足条件的三角形个数为1,即一解.③若b sin Aa<1,则满足条件的三角形个数为1或2.(2)几何角度图形关系式解的个数A为锐角①a=b sin A;②a≥b一解b sin A<a<b 两解a<b sin A 无解A 为 钝角 或直 角a >b 一解a ≤b 无解【预习评价】1.已知三角形的两边及其中一边的对角往往得出不同情形的解,有时需舍去一解,有时又不能舍.那么我们怎么把握舍不舍的问题?提示 例如在△ABC 中,已知a ,b 及A 的值.由正弦定理a sin A =bsin B ,可求得sin B =b sin Aa .在由sin B 求B 时,如果a >b ,则有A >B ,所以B 为锐角,此时B的值唯一;如果a <b ,则有A <B ,所以B 为锐角或钝角,此时B 的值有两个. 2.已知三角形的两边及其夹角,为什么不必考虑解的个数?提示 如果两个三角形有两边及其夹角分别相等,则这两个三角形全等.即三角形的两边及其夹角确定时,三角形的六个元素即可完全确定,故不必考虑解的个数的问题.知识点2 三角形面积公式 任意三角形的面积公式为:(1)S △ABC =12bc sin__A =12ac sin__B =12ab sin__C ,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S △ABC =12ah ,其中a 为△ABC 的一边长,而h 为该边上的高的长.(3)S △ABC =12r (a +b +c )=12rl ,其中r ,l 分别为△ABC 的内切圆半径及△ABC 的周长.(4)S △ABC =p (p -a )(p -b )(p -c )⎝ ⎛⎭⎪⎫其中p =a +b +c 2. 【预习评价】1.在△ABC 中,若B =30°,a =2,c =4,则△ABC 的面积为________.2.在△ABC 中,若B =30°,AB =23,AC =2,则△ABC 的面积是________.题型一 三角形解的个数的判断【例1】 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.规律方法 判断三角形解的情况:先判断角,若有一个为钝角,则有一解或无解;若无钝角,则有一解、两解或无解,然后再由大边对大角来具体判断解的情况.【训练1】 根据下列条件,判断三角形是否有解,若有解,有几个解: (1)a =3,b =2,A =120°; (2)a =60,b =48,B =60°; (3)a =7,b =5,A =80°; (4)a =14,b =16,A =45°.题型二 判断三角形形状问题【例2】 在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.规律方法 判断三角形形状的常用方法有:(1)化边为角.将题目中的条件,利用正弦定理化边为角⎝ ⎛⎭⎪⎫若sin 2A =sin 2B ,则A =B 或A +B =π2,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状;(2)化角为边.将题目中的所有条件,利用正弦定理化角为边,再根据代数恒等变换得到边的关系(如a =b ,a 2+b 2=c 2),进而确定三角形的形状.【训练2】在△ABC中,已知3b=23a sin B,且cos B=cos C,角A是锐角,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形方向1 三角函数式的化简、证明及求值【例3-1】如图所示,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC =β.(1)求证:sin α+cos 2β=0;(2)若AC=3DC,求β的值.规律方法在三角形中,进行三角函数式的化简、证明或求值时,一要注意边角互化,二要注意三角函数公式的灵活应用,特别是三角恒等式变形的技巧.方向2 与三角形面积有关的问题【例3-2】在△ABC中,∠A=60°,c=3 7a.(1)求sin C的值;(2)若a=7,求△ABC的面积.方向3 求范围或最值【例3-3】在锐角△ABC中,角A,B,C分别对应边a,b,c,且a=2b sin A,求cos A+sin C的取值范围.规律方法 三角函数、三角恒等变换与解三角形的综合问题是近几年高考的热点,在高考试题中频繁出现.解决此类问题,要根据已知条件,灵活运用正弦定理,能够对边角关系进行互相转化.课堂达标1.△ABC 满足下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中有两个解的是( ) A.①② B.①④ C.①②③ D.③④2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a =1,b =3,B =60°,则△ABC 的面积为( ) A.12 B.32 C.1 D. 33.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( ) A .a =2b B .b =2a C .A =2BD .B =2A4.在△ABC 中,lg(sin A +sin C )=2lg sin B -lg(sin C -sin A ),则此三角形的形状是________.5.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.课堂小结1.已知两边和其中一边的对角,求第三边和其他两个角,这时三角形解的情况:可能无解,也可能一解或两解.首先求出另一边的对角的正弦值,当正弦值大于1或小于0时,这时三角形解的情况为无解;当正弦值大于0小于1时,再根据已知的两边的大小情况来确定该角有一个值或者两个值.2.判断三角形的形状,最终目的是判断三角形是不是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.3.结合正弦定理,同时注意三角形内角和定理及三角形面积公式、三角恒等变换等知识进行综合应用.基础过关1.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( ) A.π12 B.π6 C.π4 D.π32.在△ABC 中,A =60°,a =6,b =4,则满足条件的△ABC ( ) A.有一个解 B.有两个解 C.无解 D.不能确定3.在△ABC 中,a cos B =bcos A,则△ABC 一定是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形D.等腰三角形或直角三角形4.已知c=50,b=72,C=135°,则三角形解的个数为________.5.在△ABC中,角A,B,C所对的边分别为a,b,c.若a cos A=b sin B,则sin A cos A+cos2B=________.6.在△ABC中,a,b,c分别是角A,B,C的对边,若tan A=3,cos C=5 5,(1)求角B的大小;(2)若c=4,求△ABC的面积.7.在△ABC中,求证:a2-b2c2=sin(A-B)sin C.能力提升8.已知方程x2-(b cos A)x+a cos B=0的两根之积等于两根之和,且A,B为△ABC 的两内角,a,b为角A,B的对边,则此三角形为()A.等腰直角三角形B.等边三角形C.等腰三角形D.直角三角形9.在△ABC中,∠BAC=120°,AD为角A的平分线,AC=3,AB=6,则AD等于()A.2B.2或4C.1或2D.510.在△ABC中,A=π3,BC=3,则△ABC的周长为________(用B表示).11.在△ABC中,C=90°,M是BC的中点,若sin∠BAM=13,则sin∠BAC=________.12.在△ABC中,已知c=10,cos Acos B=ba=43,求a、b及△ABC的内切圆半径.创新突破13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知m=(2b-3c,cosC),n=(3a,cos A),且m∥n.(1)求角A的大小;(2)求2cos2B+sin(A-2B)的最小值.。

高考数学 第四章 三角函数与解三角形 专题17 解三角形考场高招大全-人教版高三全册数学试题

高考数学 第四章 三角函数与解三角形 专题17 解三角形考场高招大全-人教版高三全册数学试题

专题十七解三角形考点37 正弦定理与余弦定理考场高招1 应用正、余弦定理的解题技巧1.解读高招技巧解读适合题型典例指引边化角将表达式中的边利用公式a=2R sin A,b=2R sinB,c=2R sin C化为角的关系等式两边是边的齐次形式典例导引1(1)角化边将表达式中的角利用公式转化为边,出现角的正弦值用正弦定理转化,出现角的余弦值由余弦定理转化等式两边是角的齐次形式、a2+b2-c2=λab形式典例导引1(2)和积互化a2=b2+c2-2bc cos A=(b+c)2-2bc(1+cos A).可联系已知条件,利用方程思想进行求解三角形的边出现b+c,bc等结构形式典例导引1(4)方积互化与重要不等式相联系,由b2+c2≥2bc,得a2=b2+c2-2bc cos A≥2bc-2bc cos A=2bc(1-cos A),可探求边或角的X围问题求边、角、面积等取值X围问题典例导引1(3)2.典例指引1(1)△ABC的三个内角A,B,C对边的长分别为a,b,c,若a sin A sin B+b cos2A=a,则等于()A.2B.2C.D.(2)在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2-c2=b,且sin(A-C)=2cos A sin C,则b等于()A.6B.4C.2D.1(3)已知△ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sin B+cos B的取值X围是()A. B. C.(1, ] D.(4)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a sin B=b cos A.若a=4,则△ABC周长的最大值为(2)(角化边)由题意,得sin A cos C-cos A sin C=2cos A sin C,即sin A cos C=3cos A sin C,由正、余弦定理,得a·=3c·,整理得2(a2-c2)=b2.①又a2-c2=b, ②联立①②得b=2,故选C.(3)设y=sin B+cos B=sin.∵a,b,c成等比数列,∴b2=ac,∴cos B=,∴0<B<<sin≤1,1<sin,故选C.(4)由正弦定理,可将a sin B=b cos A化为sin A sin B=sin B cos A.∵在△ABC中,sin B>0,∴si n A=cos A,即tan A=.∵0<A<π,∴A=.由余弦定理,得a2=16=b2+c2-2bc cos A=(b+c)2-3bc≥(b+c)2-3,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),所以△ABC的周长=a+b+c=4+b+c≤12,即最大值为12.【答案】 (1)D(2)C(3)C(4)123.亲临考场1.(2016某某,理3)在△ABC中,若AB= 13,BC=3,∠C=120°,则AC=()A.1B.2C.3D.4【答案】 A由余弦定理得13=9+AC2+3AC⇒AC=1.故选A.2.(2016课标Ⅱ,理13)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=.【答案】2113【解析】因为cos A=,cos C=,且A,C为△ABC的内角,所以sin A=,sin C=,sin B=sin[π-(A+C)]=sin(A+C)=sin A cos C+cos A sin C=.又因为,所以b=.3.(2015某某,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b=.考点38 解三角形及其应用考场高招2 判断三角形形状问题的规律1.解读高招规律解读典例指引角化边利用正弦、余弦定理把已知条件转化为只含边的关系,从而判断三角形的形状典例导引2(1)边化角利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论典例导引2(2)温馨提醒注意在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解2.典例指引2(1)在△ABC中,角A,B,C的对边分别为a,b,c,若,(b+c+a)(b+c-a)=3bc,则△ABC的形状是() A.直角三角形 B.等腰非等边三角形C.等边三角形D.钝角三角形(2)已知△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若=2c ,则△ABC 的形状是()A.等边三角形B.锐角三角形C.等腰直角三角形D.钝角三角形(2)∵=2c ,∴由正弦定理可得=2sin C , 而≥2=2,当且仅当sin A=sin B 时取等号.∴2sin C ≥2,即sin C ≥1. 又sin C ≤1,故可得sin C=1,∴∠C=90°.又∵sin A=sin B ,∴A=B ,故三角形为等腰直角三角形,故选C. 【答案】 (1)C(2)C 3.亲临考场1.在△ABC 中,若sin B ·sin C =cos 2A2,且sin 2B +sin 2C =sin 2A ,则△ABC 是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【答案】D【解析】sin B ·sin C =1+cos A2,∴2sin B ·sin C =1+cos A =1-cos(B +C ), ∴cos(B -C )=1,∵B 、C 为三角形的内角,∴B =C ,又sin2B+sin2C=sin2A,∴b2+c2=a2,综上,△ABC为等腰直角三角形.2.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不确定考场高招3 解三角形应用题的规律1.解读高招规律解读典例指引1实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解典例导引3(1)2 实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解典例导引3(2)温馨提醒解三角形应用题的一般步骤:分析(画出图形)——建模(建立解斜三角形模型)——解模(利用正余弦定理有序地求解)——检验(检验上述所求三角形是否有实际意义)2.典例指引3(1)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()A.240(-1) mB.180(-1) mC.120(-1) mD.30(+1) m(2)(2016某某某某一模)如图,为了测量河对岸A,B两点之间的距离,观察者找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到:CD=2,CE=2,∠D=45°,∠ACD=105°,∠ACB=48.19°,∠BCE=75°,∠E=60°,则A,B两点之间的距离为.(2)依题意知,在△ACD中,∠A=30°,由正弦定理得AC==2,在△BCE中,∠CBE=45°,由正弦定理得BC==3.∵在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB=10,∴AB=.3.亲临考场1.(2017某某,11)我国古代数学家X徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.【答案】【解析】将正六边形分割为6个等边三角形,则S6=6×.2.(2015某某,理13)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.【答案】100考场高招4三角形与不等式相结合解题的规律1.解读高招方法解读典例指引利用三角形有解已知三角形的边a及对角A,求三角形有两解时边b的X围,根据b sinA<a<b,解出相应的不等式即可典例导引4(1)利用基本不等式余弦定理与重要不等式a2+b2≥2ab,三角形两个边的和与基本不等式a+b≥2,三角形面积公式与ab≤,通过这些结合点,求解X围问题,注意等号成立的条件典例导引4(2)利用函通过建立参数与已知角或边的关系,把角或边作为自变量,参数作为函典例导引数的值域数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利4(3)用条件中的X围限制,以及三角形自身X围限制2.典例指引4(1)(2017某某某某调研)在△ABC中,角A,B,C的对边分别是a ,b,c,若a=2b,△ABC的面积记作S ,则下列结论一定成立的是()A.B>30°B.A=2BC.c<bD.S≤b2(2)(2017某某某某、某某摸底联考)已知△ABC 中,角B, C,A成等差数列,且△ABC的面积为 ,则AB边的最小值是.(3)在等腰三角形ABC中,AB=AC,AC边上的中线BD长为6,则当△ABC的面积取得最大值时,AB的长为. 【解析】 (1)由a=2b,得sin A=2sin B ≤1,则sin B ≤,∵B不是最大角,∴B≤30°,故A错;sin A=2sin B与A=2B没有关系,故B错;若a=4,b=2,c=5,符合a=2b,但c>b,所以C错;三角形面积S=ab sin C=b2sin C≤b2,故选D.(2)∵B,C,A成等差数列,∴A+B=3C.又∵A+B+C=π,∴C=,由S△ABC=ab sin C=1+,得ab=2(2+).∵c2=a2+b2-2ab cos C=a2+b2-ab,a2+b2≥2ab,∴c2≥(2-)ab=4,解得c≥2,∴c的最小值为2.(3)根据题意,可设AB=AC=2x,则AD=x(2<x<6),由余弦定理,得cos A=,∴sin A=,∴S△ABC=AB·AC sin A=×4x2=2≤24,当x2=20,即x=2时等号成立,所以当△ABC的面积取得最大值时,AB的长为4.【答案】(1)D(2)2(3)43.亲临考场1.(2015课标Ⅰ,理16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值X围是.【答案】()2.(2014课标Ⅰ,理16)已知a,b,c分别为△ABC三个内角A,B,C的对边, a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为【答案】。

已知三角形两边及其中一边的对角时解三角形的个数判定方法及其应用

已知三角形两边及其中一边的对角时解三角形的个数判定方法及其应用

已知三角形两边及其中一边的对角时解三角形的个数判定方法及其应用作者:***来源:《教育界·下旬》2015年第11期一、已知三角形两边及其中一边的对角时解三角形的个数的探讨在△ABC中,已知两边a、b和其中边a的对角A,解三角形时,解的个数有哪些情况?问题相当于:在△ABC中,已知两边a、b和其中边a的对角A画三角形时,能画多少个三角形?画法:(1)画∠MAN等于已知角A;(2)在射线AM上截取AC=b;(3)以C为圆心、a为半径画弧,交射线AN于点B(交点B的个数决定画出的三角形的个数),则△ABC就是要画的三角形。

1.当A为锐角时:(1)当a(2)当a=bsinA时,画出唯一的三角形,如图(2),只有一个解;(3)当bsinA(4)当a≥b时,画出唯一的三角形,如图(4),只有一个解.2.当A为直角或钝角时:(1)当a≤b时,无解,如图(5)、图(6);(2)当a>b时,一个解,如图(7)、图(8)。

记忆方法:解的个数判定方法一(1)当A为锐角时;(2)当A为直角或钝角时.当已知角的对边是大边,有一解,否则,无解。

在△ABC中,已知两边a、b和其中边a的对角A解三角形,解的个数的判定方法还可以用下面方法:方法二:由余弦定理a2=b2+c2-2bccosA得到以第三边c为未知数的一元二次方程,此方程正数解的个数即为三角形解的个数。

已知a,b,A,由余弦定理a2=b2+c2-2bccosA,得c2-(2bcosA)c+b2=a2=0,(l)若方程无解或无正数解,则三角形无解;(2)若方程有唯一正数解,则三角形有一解;(3)若方程有两个不同的正数解,则三角形有两解。

二、已知三角形两边及其中一边的对角时三角形解的个数判定方法应用举例1.已知三角形两边及其中一边的对角时判定解的个数。

例1:在△ABC中,角A、B、C的对边分别为a、b、c,根据下列条件,不解三角形判断有几组解?。

三角形解的个数问题专题

三角形解的个数问题专题

第 1 页 共 3 页解三角形专题2三角形解的个数问题1 已知下列三角形中的两边及其中一边的对角,判断三角形是否有解,并指出有几解?(1) 78105a ,b ,A ==∠=(2) 102080a ,b ,A ==∠=(3) 1060b ,c C ==∠=(4) 630a ,A ==∠=答案:(1) 90A ∠>而a b <,故无解(2) 90A ,a b sin Ab ∠<<<,故有无解(3) c b >,故有一组解(4) 90A ,b sin A a b ∠<<<,故有两组解2在△ABC 中,A =45°,AB =3,则“BC=2”是“△ABC 只有一解且C =60°”的A .充分不必要条件B .必要不充分条件C .充要条件D .既为充分也不必要条件另解法法1:大角对大边在已知ABC ∆中的边长a ,b 和角A ,且已知a ,b 的大小关系,常利用正弦定理结合“大边对大角”来判断三角形解的个数,一般的做法如下,首先利用大边对大角,判断出角B 与角A 的大小关系,然后求出B 的值,根据三角函数的有界性求解.【例1】在ABC ∆中,已知a =b =45B =︒,求A 、C 及c .第 2 页 共 3 页解:由正弦定理,得sin sin a B A b ===4590B =︒<︒,b a <,∴60A =︒或120︒. 当60A =︒时,75C =︒,sin 75sin sin 452b Cc B ︒===︒; 当120A =︒时,15C =︒,sin sin b C c B ===. 点评:在三角形中,sin sin a b A B A B >⇔>⇔>这是个隐含条件,在使用时我们要注意挖掘. 法2:二次方程的正根个数一般地,在ABC ∆中的边长a ,b 和角A ,常常可对角A 应用余弦定理,并将其整理为关于c 的一元二次方程2222cos 0c bc A b a -+-=,若该方程无解或只有负数解,则该三角形无解;若方程有一个正数解,则该三角形有一解;若方程有两个不等的正数解,则该三角形有两解. 【例2】如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=︒,135BCD ∠=︒,求BC 的长.解:在ABD ∆中,设BD x =,由余弦定理得2221410210cos60x x =+-⋅︒,整理得210960x x --=,解得16x =.由正弦定理,得sin 16sin30sin sin135BD CDB BC BCD ∠︒===∠︒ 点评:已知三角形两边和其中一边的对角,我们可以采用正弦定理或余弦定理求解,从上述例子可以看出,利用余弦定理结合二次方程来判断显得更加简捷.法3:画圆法已知ABC ∆中,A 为已知角(90≠︒),先画出A ,确定顶点A ,再在A 的一边上确定顶点C ,使AC边长为已知长度,最后以顶点C 为圆心,以CB 边长为半径画圆,看该圆与A 的另一边是否有交点,如果没有交点,则说明该三角形的解的个数为0;若有一个交点,则说明该三角形的解的个数为1;若有两个交点,则说明该三角形的解的个数为2.A BCD第 3 页 共 3 页 【例3】在ABC ∆中,60A ∠=︒,a =3b =,则ABC ∆解的情况( ) (A )无解 (B )有一解 (C )有两解 (D)不能确定 解:在A 的一边上确定顶点C ,使3AC b ==,作60CAD ∠=︒, 以顶点C 为圆心,以CB a ==AD 没有交点, 则说明该三角形的解的个数为0,故选A .A b Ca D。

(2021年整理)17三角形解的个数判断

(2021年整理)17三角形解的个数判断

17三角形解的个数判断
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(17三角形解的个数判断)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为17三角形解的个数判断的全部内容。

三角形解的个数判断
A 为锐角 A 为钝角或直角 图



A 〈bsinA A=bsinA
bsinA<a<b a ≥b a ≤b

的个

无解 一解 两解 一解 无解
1 已知下列三角形中的两边及其中一边的对角,判断三角形是否有解,并指出有几解? (1) 78105a ,b ,A ==∠=
(2) 102080a ,b ,A ==∠=
(3) 105660b ,c C ==∠=
(4) 23630a ,A ==∠=
答案: (1) 90A ∠>而a b <,故无解
(2) 90A ,a b sin A b ∠<<<,故有无解
(3) c b >,故有一组解
(4) 90A ,b sin A a b ∠<<<,故有两组解
2在△ABC 中,A =45°,AB =3,则“BC=2”是“△ABC 只有一解且C =60°"的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既为充分也不必要条件。

三角形解的个数的判断方法

三角形解的个数的判断方法

画图法:以已知角的对边为半径画弧,通过与邻边的交点个数判断解的个数。

①若无交点,则无解;
②若有一个交点,则有一个解;
③若有两个交点,则有两个解;
④若交点重合,虽然有两个交点,但只能算作一个解。

公式法:运用正弦定理进行求解。

①a=bsinA,△=0,则一个解;
②a>bsinA,△>0,则两个解;
③a<bsinA,△<0,则无解。

a>b 一个解(a b是三角形的边)利用正弦定理解三角形,假如解得sinA=c,(其中c是一个具体数字),而且没有任何额外的条件,那么就会有两个解:即A=arcsin(c)或A=π-arcsin(c)。

但是假如有别的条件或者要求,那么A的取值可能就只有一个。

举个例子,如果sinA=1/2,但是sinB=√2/2,那么这时A的取值就只能是arcsin(1/2)=π/6,而不再可能取值为A=π-arcsin(1/2)=5π/6。

原因是这时不管B的取值为arcsin(√2/2)=π/4或者3π/4都会使得A+B>π,与三角形内角和等于π矛盾,所以A=π/6。

当然,如果有其它条件比如已知a为最长边,那么同样有可能去掉A的一个可能的取值,比如上面的A在这种情况下就不可能取π/6(因为A应该是最大角,所以一定会大于π/3)。

总之,如果除了sinA=c之外还有条件或者限制,那么A可能就只有一个解,否则就是有两个解。

三角形解的个数问题

三角形解的个数问题

练习:在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且 a=λ, b= 3λ(λ>0),A=45° ,则满足此条件的三角形个数是( A.0 B.1 C.2 D.无数个 )
a b 解析:直接根据正弦定理可得 = ,可得 sin A sin B bsin A 3λsin 45° 6 sin B= = = >1,没有意义, a λ 2 故满足条件的三角形的个数为 0,选 A.
【解析】设 c=AB= 3,b=AC=1,由于 B=30°, 1 3 ∴c·sin B= 3×2= 2 ,c· sin B<b<c, ∴符合条件的三角形有两个. b c 1 3 3 ∵sin B=sin C,即1=sin C,∴sin C= 2 , 2 ∴C=60°或 120°,∴A=90°或 30°, 1 3 3 又 S△ABC=2bcsin A,∴S△ABC= 2 或 4 ,故选 D.
【例 1】在 ABC 中,已知 a 3 , b 2 , B 45 ,求 A 、 C 及 c .
a sin B 3sin 45 3 解:由正弦定理,得 sin A , b 2 2 ∵ B 45 90 , b a ,∴ A 60 或 120 . b sin C 2 sin 75 6 2 当 A 60 时, C 75 , c ; sin B sin 45 2
a b 无解 若A为直角或钝角时: 锐角 a b一解
评述:注意在已知三角形的两边及其中一边的对角解三 s i n 角形时,只有当A为锐角且 时,有两解; 其它情况时则只有一解或无解。
b Aab
【例 1】在 ABC 中, A 60 , a 6 , b 3 ,则 ABC 解的情况( ) (A)无解 (B)有一解 (C)有两解 (D)不能确定

高中数学判断三角形解的个数

高中数学判断三角形解的个数

高中数学判断三角形解的个数
在高中数学中,判断三角形解的个数是一道常见的题目。

一般来说,可以根据给定的条件来判断三角形是否存在以及解的个数。

首先,对于给定的三边长a、b、c,如果a+b>c,a+c>b,b+c>a
均成立,那么这三条边可以构成一个三角形。

如果有两边之和等于第三边,即a+b=c,a+c=b,b+c=a,则这个三角形是退化的,也称为直线三角形。

如果不满足以上两种情况,则这三条边不能构成三角形。

其次,根据三角形的性质,如果已知三角形的两边和夹角,那么可以通过余弦定理求出第三边的长度。

如果已知三角形的三个角度,则可以通过正弦定理或余弦定理求出三条边的长度。

根据解得的边长,可以进一步判断三角形是否存在以及解的个数。

需要注意的是,在计算中要注意精度问题,避免出现误差。

此外,有时会遇到无解或无穷多解的情况,需要根据题目要求进行判断。

综上所述,通过给定的条件来判断三角形解的个数是一道不容易的数学题目,需要仔细分析和计算。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档