电力系统三相短路电流的实用计算PPT(27张)

合集下载

电力系统三相短路电流的实用计算

电力系统三相短路电流的实用计算
节点的负荷在短路计算中一般作为节点的接地支路并 用恒定阻抗表示,其数值由短路前瞬间的负荷功率和节 点的实际电压算出,即

6.1 短路电流计算的基本原理和方法

节点 接入负荷,相
当于在 阵中与节点
对应的对角元素中
增加负荷导纳

最后形成包括所
有发电机支路和负荷
支路的节点方程如下
(6-2)

6.1 短路电流计算的基本原理和方法 二、利用节点阻抗矩阵计算短路电流
点i产生的电压,也就是短路前瞬间正常运行状态下的
节点电压,记为 。第二项是当网络中所有电流源都
断开,电势源都短接时,仅仅由短路电流 在节点i产
生的电压。这两个分量的叠加,就等于发生短路后节点
i的实际电压,即
(6-4)

6.1 短路电流计算的基本原理和方法
公式(6-4)也适用于故障节点f,于是有
(6-5)
(b)所示。

6.1 短路电流计算的基本原理和方法
4、利用网络的等值变换计算转移阻抗
(1)将电源支路等值合并和网络变换,把原网络简化 成一端接等值电势源另一端接短路点的单一支路,该支 路的阻抗即等于短路点的输入阻抗,也就是等值电势源 对短路点的转移阻抗,然后通过网络还原,算出各电势 源对短路点的转移阻抗。 (2)保留电势源节点和短路点的条件下,通过原网络 的等值变换逐步消去一切中间节点,最终形成以电势源 节点和短路点为顶点的全网形电路,这个最终电路中联 结电势节点和短路点的支路阻抗即为该电源对短路点的 转移阻抗。

6.3 短路电流计算曲线及其应用
(二)计算步骤 (1)绘制等值网络 选取基准功率 和基准电压 发电机电抗用 ,略去网络各元件的电阻、输电线 路的电容和变压器的励磁支路 无限大功率电源的内电抗等于零 略去负荷

第七章 电力系统三相短路

第七章 电力系统三相短路

短路后——两个独立的回路
有源回路:
短路的全电流:
di Ri L E m sin( t ) dt
t / Ta
i i P iaP I Pm sin( t ) Ce
i P I Pm sin( t ) 变化规律:
其中
I Pm Em R 2 (L) 2
T a=0
X/R Ta kim 14 0.045 1.799
kim
30 0.064 1.855
2
实际计算时:
1
短路点 发电机母线 发电厂高压侧母线 其它地点
kim 1.9 1.85 1.8
30
X/R
7.2.3 短路电流的有效值:
1 It T
以时刻t为中心的一个周期 内瞬时电流的均方根值
第七章 电力系统三相短路的分析计算

短路的一般概念 恒定电势源电路的三相短路 同步电机的三相短路的暂态过程 同步电机三相短路电流计算 电力系统三相短路的实用计算
7.1
短路的一般概念
所谓短路,是指一切不正常的相与相之间或 相与地之间(对于中性点接地的系统)发生通路 的情况。正常运行时,除中性点外,相与相之间 或相与地之间是绝缘的。如果由于某种原因使其 绝缘破坏而构成了通路,我们就称电力系统发生 了短路故障。 对称短路;不对称短路。
7.1.5 短路计算方法:

三相短路时系统三相参数仍然是对称的,可以采用 对称电路的分析计算方法。 不对称短路时,系统在短路发生处三相参数不再对 称,所以要采用对称分量法将这种不对称转化为对 称以后,再归结为对称短路的计算。

7.2 恒定电势源电路的三相短路
7.2.1三相短路的暂态过程

电力系统三相短路实用计算

电力系统三相短路实用计算
电力系统三相短路实用计算
三相短路起始次暂态电流计算 应用运算曲线计算三相短路周期 分量
三相短路起始次暂态电流计算
• 计算参数与等效网络-次暂态分量成为统治分量 – 根据故障前状态计算各同步发电机电源次暂态电 势,或简化为全网电压标幺值为1 – 负荷的处理:接近短路点的大容量电动机作为提供 次暂态电流的电源处理,对于接在短路点的综合负 荷,近似地等值为一台异步电动机;短路点以外的 综合负荷近似用阻抗支路等值;远离短路点的负荷 可以略去不计 – 忽略线路对地电容和变压器的励磁支路 – 忽略元件电阻 – 各电压级基准采用各自的平均额定电压
根据等值电路计算起始次暂态电流
应用计算曲线法的具体计算步骤
1.作等值网络:选取网络基准功率和基准电压 1.作等值网络:选取网络基准功率和基准电压 (一般选取SB=100MVA, (一般选取SB=100MVA, UB=Uav),计算网络各 元件在统一基准下的标幺值,发电机采用次暂 态电抗,负荷略去不计 2.进行网络变换:求各等值发电机对短路点的转 2.进行网络变换:求各等值发电机对短路点的转 移电抗X 移电抗Xik 3.求计算电抗:将各转移电抗按各等值发电机的 3.求计算电抗:将各转移电抗按各等值发电机的 额定容量归算为计算电抗,即: XCi = XikSNi /SB
4. 求t时刻短路电流周期分量的标幺值 ① 根据各计算电抗和指定时刻t,从相应的 计算曲线或对应的数字表格中查出各等 值发电机提供的短路电流周期分量的标 幺值 ② 对无限大功率系统,取母线电压U*=1 5. 计算短路电流周期分量的有名值
合并电源的主要原则 – 距短路点电ห้องสมุดไป่ตู้距离(即相联系的电抗值) 大致 相等的同类型发电机可以合并; – 远离短路点的不同类型发电机可以合并; – 直接与短路点相连的发电机应单独考虑; – 无限大功率系统因提供的短路电流周期分 量不 衰减而不必查计算曲线,应单独计算。

第三章电力系统三相短路的实用计算

第三章电力系统三相短路的实用计算

计算的条件和近似:电源
E|0| U|0| jI|0| xd
发电机的等值电动势为次暂态电动势; 等值电抗为直轴次暂态电抗; 若忽略负荷,则短路前为空载状态,所有电源的等值电动 势标幺值均为1,且同相位。 当短路点远离电源时,发电机端电压母线看作恒定电压源。
计算的条件和近似:电网 • 忽略线路对地电容和变压器的励磁回路 • 计算高压网时忽略电阻,低压网和电缆 线路用阻抗模值计算 • 标幺值计算中取变压器变比为平均额定 电压之比
计算的条件和近似:负荷 • 不计负荷(均断开)。 • 短路前按空载情况决定次暂态电动势, 短路后电网上依旧不接负荷。 • 近似的可行性是由于短路后电网电压下 降,负荷电流<<短路电流。
计算的条件和近似:电动机
• 短路后瞬间电动机倒送短路电流现象:图3-1 异步电动机在失去电源后能提供短路电流: 机械惯性和电磁惯性。 异步电动机短路电流中有交流分量和直流分量。
• 电力系统短路电流的工程计算只要求计 算短路电流基频交流分量的初始值,即 次暂态电流 I 。
WHY? 由于使用快速保护和高速断路器以后, 断路器开断时间小于0.1S
Q:各种电机的时间常数的大致范围为多少?
P32 表2-2
第三章 电力系统三相短路电流的实用计算
第一节 短路电流交流分量初始值计算
线形 网络
I f
f
只有第i个电势源 单独作用时的电 流分布
Iii
表示第i个电势源单独作用时从节点i流入网络的电流 表示第j个电势源单独作用时从节点i流出网络的电流
Iij
第i个电源节点的电流可以表示为:
I i I ii I ij
j 1 j i
n

第6章 电力系统三相短路电流的实用计算

第6章 电力系统三相短路电流的实用计算

算例:f点发生三相短路时的短路计算
10.5kV T-1 115kV
G1 b
L-1
f T-3
LD-1 LD-3
a L-2 L-3
6.3kV
(1)制定等值电路,确定计算条件;
T-2 6.3kV c
LD-2
EG XG b XT1
XL1
a
XL2
XT2 c XSC ESC
XLD1
ELD3 XLD3
XL3
ELD1
1: k
z pq
p
q
I pq
6-1 短路电流计算的基本原理和方法
2.利用节点阻抗矩阵计算短路电流—忽略负荷电流
忽略负荷电流的影响, 短路前空载,各节点 电压:Vi(0) = 1
(1)故障点电流:
If
=
1 Z ff + z f
(2 )节点
i 电压:Vi
=
V (0) i

Zif
I
f
= 1− Zif Z ff + z f

t Tq′′
⎞ ⎟⎟⎠
jxe
G
f
Ip
x js1 x js 2
t
( ) ( ) I p∗ =
I2 p⋅d
+
I
2 p⋅q
=
f
xd′′ + xe , t
=f
x js , t
x js = xd′′ + xe —计算电抗,标么值 SB = SGN ,VB = Vav
6-3 短路电流计算曲线及其应用
2.计算曲线的制作
(3)支路电流:I pq
=
kVp −Vq z pq
1: k

第三章电力系统三相短路电流的实用计算

第三章电力系统三相短路电流的实用计算

第三章 电力系统三相短路电流的实用计算上一章讨论了一台发电机的三相短路电流,其阐发过程已经相当复杂,并且还不是完全严格的。

那么,对于包含有许多台发电机的实际电力系统,在进行短路电流的工程实际计算时,不成能也没有必要作如此复杂的阐发。

实际上工程计算时,只要求计算短路电流基频交流分量的初始值I ''即可。

1、I ''假设取 1.8M K =2.551.52M ch M ch i i I I I I ''==''==2、求I ''的方法:〔1〕手算 〔2〕计算机计算〔3〕运算曲线法:不单可以求0t =时刻的I ',还可以求任意时刻t 的t I 值。

§3-1I ''的计算〔I ''-周期分量起始有效值〕一、计算I ''的条件和近似1、电源参数的取用〔1〕发电机: 以101E ''和d X ''等值〔且认为d q X X ''''=,即都是隐极机〕 101101101d E U jI X ''''=+ 〔3-1〕101E ''在0t =时刻不突变。

〔2〕调相机: 与发电机一样,以101E ''和d X ''等值 但应注意:当调相机短路前为欠激运行时,∵101101E U ''< ∴不提供§3-2应用运算曲线法求任意时刻周期分量有效值tI由上章的阐发可知,即使是一台发电机,要计算其任意时刻的短路电流,也是较繁的。

首先必需知道各时间常数、电抗、电势参数,然后进行指数计算。

这对工程上的实用计算显然不适合的。

50年代以来,我国电力部分持久采用畴前苏联引进的一种运算曲线法来计算的。

此刻试行据我国的机组参数绘制的运算曲线,下面介绍这种曲线的制定和应用。

第三章电力系统三相短路电流的实用计算

第三章电力系统三相短路电流的实用计算

为短路电流周期分量是不衰减的,而求得的短路电流周 期分量的有效值即为起始次暂态电流 I 。
例3-1 (P66)
条件与近似
第三章 电力系统三相短路电流的实用计算 a)直接法(如图(3-1)所示)
假设条件: 1.所接负荷为综荷
2. E 1 0
短路电流为:
1 1 I f x1 x2
第三章 电力系统三相短路电流的实用计算
(a)
(b)
(a)等值网络 (b)分解后正常、故障运行网络 图3-4 计及负荷时计算短路电流等值网络
第三章 电力系统三相短路电流的实用计算
(c)
(d) 图3-5 不计及负荷短路电流计算等值网络
正常运行方式为空载运行,网络各点电压为1;
故障分量网络中, U f 0 1
U1 Z11 Z U 2 21 U i Z i1 Z f 1 U f U n Z n1 Z12 Z 22 Zi 2 Zf2 Zn2 Z1i Z1 f Z 2i Z 2 f Z ii Z fi Z ni Z if Z ff Z nf Z1n 0 Z1 f Z2 n 0 Z2 f Z in Z if (3-16) Z fn I f Z ff Z nn 0 Z nf
同步发电机计算方法与调相机类似;
异步电动机短路失去电源后能提供短路电流。
突然短路瞬间,异步电动机在机械和电磁惯性作用下,
定转子绕组中均感应有直流分量电流,当端电压低于 次暂态电动势时,就向外供应短路电流。

电力系统三相短路电流的实用计算培训课件

 电力系统三相短路电流的实用计算培训课件

x
及所指定的时刻t,查计算曲线(或对应的数
jsi
字表格)得出每台等值机组提供的短路电流标么值 。 Iti
b、无限大功率电源向短路点提供的短路电流周期分量的标幺值:

1 xsk
其数值不衰减。
c、第i台等值机组提供的短路电流有名值
Iti Iti I Ni Iti
S Ni 3U av
(kA)
d、无限大功率电源提供的短路电流有名值
* **上述将电源进行分组的计算方法称为:
个别变化法
* **如果全系统的发电机向短路点供出短路电流的 变化规律相同时,可把全系统中所有发电机看成一 台等值发电机进行计算,称之为:
同一变化法
二、应用运算曲线法求任意时刻短路电流周期分 量~~的~~有~~效~~值~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(3)进行网络化简,求取转移电抗 xik 。
a、采用星—三角变换法消去所有中间节点,最后只余下 电源节点和短路点;
b、每个电源与短路点之间直接相连的电抗就是 xik 。
c、化简过程中可进行电源分组合并,依据为: • 当发电机特性相近时,与短路点电气距离相似的发电机可以
合并; • 直接接于短路点的发电机应单独考虑; • 不同类型的机组不能合并; • 无限大功率的电源应单独计算。
(4)计算起始次暂态电流的标么值I”*和有名值I”。
I*
n i 1
1 Zik
I I* I B I*
SB (kA) 3U B
(5)计算短路冲击电流 iimp 。
Iimp Kimp 2 I (kA)
* **影响短路电流变化规律的主要因素有两个:
• 发电机的特性(类型、参数); • 发电机距短路点的电气距离。

《短路电流及其计算》PPT课件

《短路电流及其计算》PPT课件

图3-1 短路的形式(虚线表示短路电流路径) k ( 3 )-三相短路 k ( 2 ) -两相短路
k ( 1 )-单相短路 k (1 .1 ) -两相接地短路
第二节 无限大容量电力系统发生三相短路时的物理过程和物理量
一. 无限大容量电力系统及其三相短路的物理过程 无限大容量电力系统,是指供电容量相对于用户供电系统容量大得多的电力系统。其特点是:当用户供电系统的负荷变 动甚至发生短路时,电力系统变电所馈电母线上的电压能基本维持不变。如果电力系统的电源总阻抗不超过短路电路总阻抗 的5%~10%,或者电力系统容量超过用户供电系统容量的50倍时,可将电力系统视为无限大容量系统。
指数函数衰减到最大值的1/e =0.3679倍时所需的时间。
3. 短路全电流 短路电流周期分量 i p 与非周期分量i n p 之和,即为短路全电流 i k 。而某一瞬间t 的短路全电流有效值I k ( t ) ,则是以时间t 为中点的一个周期内的 i p 有效值I p ( t ) 与 i n p 在t 的瞬时值 i n p ( t ) 的方均根值,即
对一般工厂供电系统来说,由于工厂供电系统的 容量远比电力系统总容量小,而阻抗又较电力系统大 得多,因此工厂供电系统内发生短路时,电力系统变 电所馈电母线上的电压几乎维持不变,也就是说可将 电力系统视为无限大容量的电源。
图3-2a是一个电源为无限大容量的供电系统发生 三相短路的电路图。图中R W L 、X W L 为线路(WL)的 电阻和电抗,R L 、X L 为负荷(L)的电阻和电抗。由于 三相短路对称,因此这一三相短路电路可用图3-2b所 示的等效单相电路来分析研究。
二. 短路的后果 短路后,系统中出现的短路电流(short-circuit current)比正常负荷电流大得多。在大电力系统中,短路电流可达几 万安甚至几十万安。如此大的短路电流可对供电系统造成极大的危害: (1) 短路时要产生很大的电动力和很高的温度,而使故障元件和短路电路中的其他元件受到损害和破坏,甚至引发火 灾事故。 (2) 短路时电路的电压骤然下降,严重影响电气设备的正常运行。 (3) 短路时保护装置动作,将故障电路切除,从而造成停电,而且短路点越靠近电源,停电范围越大,造成的损失也 越大。 (4) 严重的短路要影响电力系统运行的稳定性,可使并列运行的发电机组失去同步,造成系统解列。 (5) 不对称短路包括单相和两相短路,其短路电流将产生较强的不平衡交流电磁场,对附近的通信线路、电子设备等 产生电磁干扰,影响其正常运行,甚至使之发生误动作。 由此可见,短路的后果是十分严重的,因此必须尽力设法消除可能引起短路的一切因素;同时需要进行短路电流的计 算,以便正确地选择电气设备,使设备具有足够的动稳定性和热稳定性,以保证它在发生可能有的最大短路电流时不致损 坏。为了选择切除短路故障的开关电器、整定短路保护的继电保护装置和选择限制短路电流的元件(如电抗器)等,也必 须计算短路电流。

第三章:电力系统三相短路实用计算

第三章:电力系统三相短路实用计算

E _
''

1
x '' d1
xL1
E _
''

2
xd'' 2
+ xL2
U f |0|
x '' d1 xL1
xd'' 2
xL2 U f |0|
正常分量
故障分量
采用
E'' |0|
1
和忽略负荷的近似后
I
'' f

1
x '' d1

xL1

1
x'' d2

x '' L2
或者应用叠加原理,直接由故障分量求的
G
G
S LD1
L1 L2
S LD 2
f (3)
K
S LD 3
SLD1 SLD 2 SLD 3 为负荷
短路发生在 K 点
发生三相短路后的等效电路图
_
+ E1''
x '' d1
_
+ E2''
xd'' 2
xL1
零点电势等效为
xL2
U f |0|
U f |0|
上图可以等效 故障后网络=正常分量+故障分量
SB
30 103

1650A
3U B 3 10.5
k (3) 115kV
50km
xd
xd
U S
2 N
N
U
2 B
xd 0.2

电力系统三相短路电流的实用计算

电力系统三相短路电流的实用计算

电力系统三相短路电流的实用计算
电力系统三相短路电流实用计算方法如下:
1. 首先确定短路发生的位置和类型,包括故障电压等级、故障类型(如单相接地、双相接地、两相短路等)等参数。

2. 根据故障点附近的变电站、母线、电缆等电气设备的参数,计算出系统的等效电路参数,包括等效电阻、等效电抗等。

3. 利用计算软件或者手动计算法,根据系统的等效电路参数,计算出各项电流参数,如短路电流、短路电压等。

4. 根据计算结果,进行后续的保护设备的选择和设置,确保系统在发生短路故障时能够自动切除故障部分,保证电力系统的安全稳定运行。

需要注意的是,在进行短路电流计算时,应该特别注意数据的准确性和计算过程的合理性,以免造成不必要的电力事故或故障。

电力系统三相短路电流的实用计算

电力系统三相短路电流的实用计算

然后相加即得短路点的电流
I "f
1 x1
1 x2
G ~
1
G ~
2
3
(a)
E" 1|0|
E" 2|0|
x" d1 1
x" d2
2
x x 13
23
3
x" d1 x1
x" d2
x2
x x 13 23
3
(b)
(c)
x1 x2
U f|0| U
f |0|
1 1
1
I" f
1
(正常情况)
(故障情况)
(d) 图3—2 简单系统等值电路 (a)系统图 (b)等值电路 (c)简化等值电路 (d)应用叠加定理的等值电路
(3)进行容量折算,把各电源点对短路点的转移阻抗归 算到各电源的额定容量下,得到的电抗称为各电源的计 算电抗。 (4)根据计算电抗查找运算曲线,得到各发电机向短路 点供给的短路电流标幺值,该标幺值的基准值是以各发 电机的额定功率和额定电压为基准。 (5)将各短路电流标幺值转化为有名值,短路点的电流
等于各短路电流之和。
2、计算的简化
实际系统可能有相当多的电源,在计算中可以把短路 电流变化规律相似的发电机合并,作为一个等值发电机 来进行计算。通常如果有两个以上相同类型的发电机接 在同一母线上,而这个母线不是短路点,这样的发电机 可以合并。
二、转移阻抗 1、概念
消去了中间节点的网络中,直接联系电源点和短路点 的阻抗是转移阻抗。那么根据戴维南定理,如果把所有 的转移阻抗并联,得到的是从短路点端口看进去的网络 等值电抗。 2、转移阻抗的求取 (1)网络化简法。针对等值网络进行化简,消去中间 节点,得到转移阻抗。 (2)单位电流法。这种方法不必消去中间节点,尤其适 用于辐射形网络。

短路电流计算及保护整定课件

短路电流计算及保护整定课件
过流 ——通过设备的电流超过额定值。大于回路导体额定载流量的回路电流都是 过电流。过流保护包括过载、断相和短路保护。
短路——电力系统在运行中 ,相与相之间或相与地(或中性线)之间发生非正常 连接称为短路。
主保护——满足系统稳定性及设备安全要求,有选择性地切除被保护设备和全线路故障的
保护。 后备保护:应在主保护或断路器拒绝动作时切除故障。后备保护可分为远后备和近后备
只发挥了40%。
2、采区变电所的负荷计算中还应考虑采区变电所同时系数(供给二个工作面 0.95,三个以上为0.9);井下总负荷和地面变电所6-10KV母线还需考虑各 变电所同时系数(0.8~0.9)。
现在学习的是第11页,共27页
2.1.2 说明
需用系数,不仅与设备的效率、线路损耗、负荷的大小有关系,而且与用电设备组的 工作性质、操作方式、生产组织形式等因素有关。应尽可能通过实测数据分析确定, 使之接近于实际。
《煤矿井下低压电网短路保护装置的整定细则》短路电流的计算方法 ,采用的就 是有名制法。计算过程如下:
(1) 计算阻抗:
式中: ——短路回路总阻抗,Ω;
总电抗(—总—电短 阻路Z )回为路( 的短X 总路)2 电 回)抗 路,R 中)Ω2,; 各供—电—短元路件回的路电总抗电值阻(,Ω电;阻值)的总和。注意 不要遗漏Z任一个需要考虑的元件阻抗。
现在学习的是第16页,共27页
2.2.3 馈电开关
1、过载整定值:按实际负载电流值整定;
2、短路整定值: IdZIQ NK X I(N按躲过控制线路上尖峰电流值整定)
3、灵敏度:
I (2) d
1 .5
I dz
式中: I—N———被其保护余干电线动或机支的线额距定变电压器流最之远和点;的两相短路电流值

电力系统三相短路的实用计算(1-起始值)

电力系统三相短路的实用计算(1-起始值)
2 UD ZD p D jQD
信电XYJ-623
4)令故障点直接接地,按常规计算方法求解故 障后的网络。
二.异步电动机对短路电流的影响
接线图及等值电路: U |0|
M
I|0|
U |0|
jx I |0|
E|| U |0| jI |0| x 0

I|0|
第三章 电力系统三相短路的实用计算
本章讨论实际系统三相短路时周期电流的实用计 算方法,由于实际的短路周期电流是衰减的,所以 计算分为两个方面: 1)短路电流起始值的计算 2)短路过程中任意时刻电流的计算。 §3-1 短路电流周期分量起始值的计算
信电XYJ-623
一.计算条件及步骤 1)发电机模型:所有发电机均用次暂态模型,略 去交直轴的不对称性。
E|| 0
信电XYJ-623
xrs xad x x s xrs xad
电机启动电抗:
x
x
xr
r s
xad
1 x x st I st
三.叠加原理在短路计算中的应用 基本要点:在故障点,将短路等效为两个反向电压 源的串接(计及短路前负荷影响时,该方法优势明 显)。
E|0| U|0| jI|0| xd
注:若不计短路前的负荷电流(指短路前空载), 电势近似取1,且相位相同。 2)电网参数:采用近似法进行网络参数计算,忽 略线路对地电容和变压器的励磁回路。 注:高压网计算中,可忽略线路电阻;对低压网或 电缆线路,可近似用阻抗模值计算。 3)负荷支路影响:若计及短路后负荷支路的影响, 则用恒定阻抗模型,按下式计算;否则,将其开路。
信电XYJ-623
四.复杂系统的网络化简法 1)网络的等效变换(串并联,Y-△变换)

电力系统三相短路分析(PPT50页)

电力系统三相短路分析(PPT50页)
9
二、具有变压器的多电压级网络标幺值等值电路的建立(近似法)
GⅠ
T1

T2

T3 Ⅳ
x1
x2
x3
x4
x5
x6
U1
U2
U3
U4
x1*j
x2*j
x3*j
x4*j
x5*j
x6*j
取U4为基本

采用平均电压后简化计算,无需考虑变压器变比归算
1、发电机
有名值
2
U x x''
1
d*N
1
SGN
归算到基本级
U U U U x x '
''
1
d*N
2
2
1 2 3 4
S U U U GN
1
2
3
10
2
2
S U U U U S x' U S U U U U 1* j
x1'
B 2
x '' d*N
4
1 GN
2 1
3 2
4 3
B 2
4
2、变压器
S
x '' d*N
B
S GN
%
2
2
%
U U U U S U S
k1
x S U U U S 2* j
RR
13
假定t=0时刻发生短路 a相的微分方程式如下:
RiLd d ti Ems i nt ()
其解就是短路的全电流,它由两部分组成: 周期分量和非周期分量。
14
周期分量:
短路电流的强制分量, 并记为 i d z a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导纳矩阵 y i 。
节点的负荷在短路计算中一般作为节点的接地支路并 用恒定阻抗表示,其数值由短路前瞬间的负荷功率和节 点的实际电压算出,即
6.1 短路电流计算的基本原理和方法
*
zLD.k Vk2 /SLD.k 或
节点 k 接入负荷,相
*
yLD.k SLD.k/Vk2
当于在 Y N 阵中与节点 k
电若流将节Ii点fE短i /路zi,,这便时有在电节流点fI将fi产V生fi电/Z压f,f V于f(i是0) 可Z得f,iIi
z fi

Ei Ifi

Z ff Z fi
zi
(6-13)
同理可得电势源I和电势源m之间的转移阻抗为
zimzizm/Zim
6.1 短路电流计算的基本原理和方法
6.1 短路电流计算的基本原理和方法
根据(6-12),当电势源i单独作用时,
zz fi

E i I fi
z mi

E i Imi
fi 为电势源i对短路点f的转移阻抗
z mi 为电势源i对电势源节点m 之间的转移阻抗
6.1 短路电流计算的基本原理和方法
2、利用节点阻抗矩阵计算转移阻抗
当电势源E i 单独存在时,相当于在节点i单独注入
端节点I的电压为Vi Zif If,而该电源支路的电流为
Ii Vi /zi 。由此可得
ci

Ii If
Zif zi
(6-15)
对照公式(6-13),计及 Zif

Z
可得
fi
z fi

Z ff ci
(6-16)
6.1 短路电流计算的基本原理和方法
电流分布系数是说明网络中电流分布情况的一种 参数,对于确定的短路点网络中的电流分布是完全确定 的。图6-10(a)表示某网络的电流分布情况。若令电
(或阻抗)矩阵。不含发电机和负荷节点导纳矩阵 Y N 的
形成可参见第四章。这里主要研究包含发电机和负荷时 系统节点导纳矩阵的形成。
z 如图6-1所示,节点接入 i 接入电势源 E i 与阻抗 i 的
串联支路。接入发电机支路后,将 Y N 阵中与机端节点 i
对应的对角线元素增加发电机导纳 Y 即可形成系统节点
6.2 起始次暂态电流和冲击电流的实用计算
一、起始次暂态电流 I 的计算 1、起始次暂态电流:短路电流周期分量的初值
2、次暂态参数的选择
发电机:E 0 V [0]xI[0]si[n 0]
其简化相量图如图6-15所示。 假定发电机在短路前额定满载运行
不E 计0负荷1.影0响7~,1.取11E0 1

kVp Vq Z pq
(6-9)
6.1 短路电流计算的基本原理和方法
三、利用电势源对短路点的转移阻抗计算短路电 流
1、转移阻抗的概念
对于如图6-8(a)所示的多源线性网络,根据叠加原
理总可以把节点f的短路电流表示成
If Ei /zfi
(6-12)
iG
其ห้องสมุดไป่ตู้z fi 便称为电势源i对短路点f的转移阻抗。
的边界条件
Vf zf If 0
(6-6)
由方程式(6-5)和(6-6)解出
I f

Vf(0) Z ff z f
(6-7)
6.1 短路电流计算的基本原理和方法
而网络中任一节点的电压
Vi Vi(0)
Zif Zff zf
Vf (0)
任一支路(图6-5)的电流
(6-8)
Ipq
6.1 短路电流计算的基本原理和方法
Vi ZijIj ZifIf jG
(6-3)
由式(6-3)可见,任一节点电压i的电压都由两项叠
加而成。第一项是当 I f 0 时由网络内所有电源在节
点i产生的电压,也就是短路前瞬间正常运行状态下的
节点电压,记为Vi ( 0 ) 。第二项是当网络中所有电流源都 断开,电势源都短接时,仅仅由短路电流I f 在节点i产
生的电压。这两个分量的叠加,就等于发生短路后节点
i的实际电压,即
Vi Vi(0) ZifIf
(6-4)
6.1 短路电流计算的基本原理和方法
公式(6-4)也适用于故障节点f,于是有
Vf Vf(0) ZffIf
(6-5)
Z ff 是故障节点f的自阻抗,也称输入阻抗。
方程式(6-5)含有两个未知量Vf , I f ,根据故障
势 E 的标幺值与Z ff 的标幺值相等,便有 I f 1 ,各支路
电路标幺值即等于该支路的电流分布系数,如图6-10 (b)所示。
6.1 短路电流计算的基本原理和方法
4、利用网络的等值变换计算转移阻抗
(1)将电源支路等值合并和网络变换,把原网络简化 成一端接等值电势源另一端接短路点的单一支路,该支 路的阻抗即等于短路点的输入阻抗,也就是等值电势源 对短路点的转移阻抗,然后通过网络还原,算出各电势 源对短路点的转移阻抗。 (2)保留电势源节点和短路点的条件下,通过原网络 的等值变换逐步消去一切中间节点,最终形成以电势源 节点和短路点为顶点的全网形电路,这个最终电路中联 结电势节点和短路点的支路阻抗即为该电源对短路点的 转移阻抗。
第六章 电力系统三相短路电流的实用计算
6.1 短路电流计算的基本原理和方法 6.2 起始次暂态电流和冲击电流的实用计算 6.3 短路电流计算曲线及其应用 6.4 短路电流周期分量的近似计算
6.1 短路电流计算的基本原理和方法
一、电力系统节点方程的建立 利用节点方程作故障计算,需要形成系统的节点导纳
对应的对角元素中
增加负荷导纳 y LD .k 。 最后形成包括所
有发电机支路和负荷
支路的节点方程如下
YVI (6-2)
6.1 短路电流计算的基本原理和方法
二、利用节点阻抗矩阵计算短路电流 如图6-3所示,假定系统中的节点f经过过渡阻抗 z f
发生短路。对于正常状态的网络而言,发生短路相 当于在故障节点f增加了一个注入电流 I f 。因此, 网络中任一节点i的电压可表示为:
3、利用电流分布系数计算转移阻抗
对于图6-8(a)所示的系统,令所有电源电势都
等于零,只在节点f接入电势 E,使产生电流 If E /Zff ,各电源支路对节点f的电流分布系数[见图
6-9]为
ci Ii / If
6.1 短路电流计算的基本原理和方法
在节点f单独注入电流 I f 时,第i个电势源支路的
相关文档
最新文档