高三数学集合单元练习题
高三数学集合的运算试题
高三数学集合的运算试题1.已知集合,,若,则()A.B.C.或D.或【答案】C【解析】∵,,若,则或,则,又当时,集合出现重复元素,因此或.故选C.【考点】集合中子集的概念与集合中元素的互异性.M)=()2. [2014·惠州模拟]已知R是实数集,M=,N={y|y=},则N∩(∁RA.(1,2)B.[0,2]C.∅D.[1,2]【答案】BM=[0,2],N={y|y=}=[0,+∞),故【解析】因为M=={x|x>2或x<0},∁RN∩(∁M)=[0,2],选B.R3.设集合,,为虚数单位,R,则为()A.(0,1)B.,C.,D.,【答案】C【解析】确定出集合的元素是关键。
本题综合了三角函数、复数的模,不等式等知识点。
,所以;因为,所以,即,又因为R,所以,即;所以,故选C.4.已知,,则的元素个数为()A.1B.2C.3D.4【答案】C【解析】因为,所以,,则,故,即元素个数有3个.【考点】分式不等式的解法;集合的运算.5.表示实数集,集合,,则下列结论正确的是()A.B.C.D.【答案】B【解析】由题意,或,,则,所以,故选B.【考点】1.补集的运算;2.集合之间的关系.6.已知集合,,则( )A.B.C.D.【答案】C【解析】因为所以因为所以因此【考点】集合的运算7.已知全集,集合,,则( )A.B.C.D.【答案】A【解析】因为所以,选.【考点】集合的运算,一元二次不等式解法,对数函数的性质.8.设集合A={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则A、B的关系是________.【答案】A=B【解析】化简得A={x|x≥1},B={y|y≥1},所以A=B.9.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4B.3C.2D.1【答案】C【解析】法一由题得∴或A∩B={(1,0),(0,1)}.故选C.法二显然圆x2+y2=1上两点(1,0),(0,1)在直线x+y=1上,即直线与圆相交.故选C.10.已知集合,,则()A.B.C.D.【答案】C【解析】因为,所以,即,所以。
高三数学集合的运算试题
高三数学集合的运算试题1. 设全集U =R ,集合A =(-∞,-1)∪(1,+∞),B =[-1,+∞),则下列关系正确的是( ) A .B ⊆A B .A ⊆∁U BC .(∁U A)∪B =BD .A∩B =∅ 【答案】C【解析】借助数轴逐一判断.画出数轴易知A ,B 错误;因为∁U A ⊆B ,所以(∁U A)∪B =B ,故C 正确;又A∩B =(1,+∞),所以D 错误,故选C.2. 已知集合A={},B={},则=( ) A .{1,2,3} B .{0,1,2,3} C .{0,1,2,3,4} D .{1,2,3,4}【答案】 【解析】因为, 所以,.故选 【考点】绝对值不等式的解法,集合的运算3. 已知集合, ,则( ) A .B .C .D .【答案】B 【解析】,即。
,即,所以。
故B 正确。
【考点】1一元二次不等式;2集合的运算。
4. 已知全集,集合,则= .【答案】 【解析】,所以.【考点】集合的运算.5. 已知集合,,则A .B .C .D .【答案】B【解析】集合A 中的元素-1和0是集合B 中的元素,所以选B.6. 设全集为R,函数f(x)=的定义域为M,则为A .B .(0,1)C .(-∞,0)∪[1,+∞)D .(1,+∞)【答案】A【解析】(x-1)x≥0x≥1或x<0f(x)的定义域为M=(-∞,0)∪[1,+∞),故CRM=7.若全集,且,则集合的真子集共有()A.3个B.4个C.7个D.8个【答案】C【解析】由题意,,,则,所以集合A的真子集共有个,故选C.【考点】1.补集的运算;2.集合真子集个数的确定.8.定义集合运算:A·B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A·B的所有元素之和为________.【解析】依题意知α≠kπ+,k∈Z.①α=kπ+(k∈Z)时,B=,A·B=;②α=2kπ或α=2kπ+(k∈Z)时,B={0,1},A·B={0,1,-1};③α=2kπ+π或α=2kπ-(k∈Z)时,B={0,-1},A·B={0,1,-1};④α≠且α≠kπ+(k∈Z)时,B={sinα,cosα},A·B={0,sinα,cosα,-sinα,-cosα}.综上可知A·B中的所有元素之和为0.9.设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.【答案】8【解析】(1) ∵ P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a +b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11,∴ P+Q={1,2,3,4,6,7,8,11},∴ P+Q中有8个元素.10.设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁RS)∪T等于().A.(-2,1]B.(-∞,-4]C.(-∞,1]D.[1,+∞)【答案】C【解析】T={x|x2+3x-4≤0}={x|-4≤x≤1}.S={x|x>-2},∁R S={x|x≤-2},∴(∁RS)∪T={x|x≤1}=(-∞,1].11.已知全集,,则()A.B.C.D.【答案】B【解析】,选D.【考点】集合基本运算.12.已知集合,,那么()A.B.C.D.【答案】D【解析】,所以,画数轴分析可知,。
高三数学集合练习题
高三数学集合练习题1. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求:a) A∪Bb) A∩Bc) A-Bd) B-A2. 已知集合A={x | x是三位数},集合B={y | y是偶数},求:a) A∩Bb) A-Bc) A∪B3. 集合A={x | x是正整数,且x ≤ 10},集合B={y | y是奇数},求:a) A∩Bb) A-Bc) A∪B4. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={x | x是正整数,且x < 6},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B5. 设全集为U={-3,-2,-1,0,1,2,3,4,5},集合A={x | x是整数,-2 ≤ x ≤ 2},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B6. 设全集为U={a,b,c,d,e,f,g,h},集合A={a,b,c},集合B={c,d,e},集合C={b,c,f,g},求:a) (A∩B)∪Cb) (A-B)∩C7. 设全集为U={1,2,3,4,5,6,7,8},集合A={x | x是偶数},集合B={x | x是奇数},集合C={x | x能被3整除},求:a) A∩Bb) A∪Bc) (A∪B)-C8. 设全集为U={a,b,c,d,e,f,g,h,i,j,k,l,m,n},集合A={a,b,c,d,e},集合B={d,e,f,g,h},集合C={a,d,g,j,m},求:a) (A∩B)∪Cb) (A-B)∩Cc) (A∩B)-C9. 设全集为U={x | x是大写英文字母},集合A={x | x是元音字母},集合B={x | x是辅音字母},求:a) A∩Bb) A∪Bc) (A∪B)-U10. 设全集为U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},求:a) (A-B)∩(B-A)以上是高三数学集合练习题的内容,请按照题目要求计算并得出答案。
高三数学集合试题
高三数学集合试题1.设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A∩B=∅,则实数a的取值范围是()A.{a|0≤a≤6}B.{a|a≤2,或a≥4}C.{a|a≤0,或a≥6}D.{a|2≤a≤4}【答案】C【解析】A={x||x-a|<1,x∈R}={x|a-1<x<1+a},因为A∩B=∅,所以有a-1≥5或1+a≤1,即a≥6或a≤0,选C.2.若集合,则=()A.{4}B.{1,2,3,4,5}C.D.【答案】B【解析】由题意可知,所以【考点】本小题主要考查集合的运算.点评:解决此类问题,关键是看清集合中的元素是什么.3.设集合M={-1,0,1},N={x|x2x},则M∩N=()A.{0}B.{0,1}C.{-1,1}D.{-1,0,1}【答案】B【解析】N={x|x2x},所以M∩N={0,1}.【考点】本小题主要考查集合的运算.点评:解决集合的问题,要注意看清集合中的元素是什么.4. A=,B=,若,则的值的集合为()A.B.C.D.【答案】D【解析】集合A=表示的是直线(去掉点),集合B=表示直线,斜率为,要使,需要两直线平行,或第二条直线过点,可以求得的值的集合为.【考点】本小题主要考查两条直线的位置关系的应用,考查学生的运算能力和数形结合思想的应用.点评:解决本题的关键在于将集合A中的曲线转化为去掉一个点的直线,从而将问题转化为两条直线的位置关系.5.已知集合,集合,则()A.B.C.D.【答案】D【解析】由题意可知集合A表示的三个实数0,1,2,而集合B表示的是大于2的所有实数,所以两个集合的交集为空集.【考点】本小题主要考查集合的运算.点评:集合的关系和运算是每年高考必考的题目,难度较低,要注意分清集合元素到底是什么.6.已知集合,,若,则实数的取值范围是 ( ) A.B.C.D.R【答案】C【解析】由题意知,所以要使,显然有,所以,根据集合的关系可知.【考点】本小题主要考查已知集合的关系求参数的取值范围,考查学生分类讨论思想的应用.点评:解决本题的关键在于根据,推断出,另外集合的运算常常借助于数轴解决.7.(本小题满分13分)已知全集.(Ⅰ)求集合U的非空子集的个数;(Ⅱ)若集合M={2,3},集合N满足,记集合N元素的个数为,求的分布列数学期望E.【答案】(Ⅰ)集合的非空子集的个数为个.(Ⅱ).【解析】(I)若集合A中元素的个数为n,则其子集个数为个,真子集的个数为.(II)的所有取值为.并且满足条件的集合所有可能的结果总数为:.然后再求出对应每个值的概率,列出分布列,利用期望公式求出期望值.(Ⅰ)集合的非空子集的个数为个.……5分(Ⅱ)的所有取值为.满足条件的集合所有可能的结果总数为:.……7分则每个随机变量的概率分别为:,==,=,,=.……11分所以的分布列为:.……13分8.满足条件的所有集合B的个数是______。
全国100所名校单元测试示范卷高三数学
全国100所名校单元测试示范卷高三数学一、选择题(每题4分,共40分)1. 下列函数中,不是周期函数的是:A. y = sin(x)B. y = cos(x)C. y = tan(x)D. y = e^x2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 4}3. 若f(x) = 2x - 1,求f(3):A. 5B. 4C. 3D. 24. 已知a > 0,b > 0,且a + b = 1,求ab的最大值:A. 1/4B. 1/2C. 1/3D. 1/65. 直线y = 2x + 3与x轴的交点坐标是:A. (-1, 0)B. (3/2, 0)C. (0, 3)D. (1, 0)6. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值:A. 0B. -4C. -3D. 47. 根据题目所给的三角函数关系,求cos(α + β)的值:A. cosαcosβB. sinαsinβC. cosαsinβ - sinαcosβD. sinαcosβ + cosαsinβ8. 若a, b, c ∈ R,且a^2 + b^2 + c^2 = 1,求(a + b + c)^2的最大值:A. 1B. 3/2C. 2D. 9/49. 已知等差数列{an}的首项a1=2,公差d=3,求第10项a10:A. 29B. 32C. 35D. 3810. 已知函数f(x) = |x - 1| + |x - 3|,求f(2):A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值。
答案:__________12. 若sinθ = 1/3,且θ为锐角,求cosθ的值。
答案:__________13. 已知等比数列{bn}的首项b1=8,公比q=1/2,求第5项b5。
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用第一章集合与常用逻辑用语单元能力测试一、选择题(本大题共12小题,每小题5分,共60分)1、(2020山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4 D .{}0,2,3,42 .(2020浙江理)设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3、【2020韶关第一次调研理】若集合M 是函数lg y x =的定义域,N 是函数y =的定义域,则M ∩N 等于( )A .(0,1]B .(0,)+∞C .φD .[1,)+∞ 4、【2020厦门期末质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的”A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.(2020湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tan α≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π6、【2020泉州四校二次联考理】命题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤ D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> 7、(2020湖北理)命题“0x ∃∈R Q ,30x ∈Q ”的否定是( )A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉RQ ,3x ∈Q D .x ∀∈RQ ,3x ∉Q8、【2020深圳中学期末理】设集合A={-1, 0, 1},集合B={0, 1, 2, 3},定义A *B={(x, y)| x ∈A ∩B, y ∈A ∪B},则A *B 中元素个数是()A.7B.10C.25D.529、【2020粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;10、【江西省新钢中学2020届高三第一次考试】在△ABC 中,设命题,sin sin sin :Ac C b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件11、(2020浙江宁波市期末)已知()f x 是定义在实数集R 上的增函数,且(1)0f =,函数()g x 在(,1]-∞上为增函数,在[1,)+∞上为减函数,且(4)(0)0g g ==,则集合{|()()0}x f x g x ≥= ( )(A ) {|014}x x x ≤≤≤或(B ){|04}x x ≤≤(C ){|4}x x ≤ (D ) {|014}x x x ≤≤≥或 12.定义:设A 是非空实数集,若∃a ∈A ,使得关于∀x ∈A ,都有x ≤a (x ≥a ),则称a 是A 的最大(小)值 .若B 是一个不含零的非空实数集,且a 0是B 的最大值,则( )A .当a 0>0时,a -10是集合{x -1|x ∈B }的最小值B .当a 0>0时,a -10是集合{x -1|x ∈B }的最大值C .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最小值D .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最大值二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13、(2020上海理)若集合}012|{>+=x x A ,}21|{<-=x x B ,则A ∩B=_________ .14、【2020江西师大附中高三下学期开学考卷】若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因323334++不产生进位现象;23不是“给力数”,因232425++产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则集合A 中的数字和为__________ 15、【2020三明市一般高中高三上学期联考】下列选项叙述:①.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” ②.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++= ③.若p q ∨为真命题,则p ,q 均为真命题④.“2x >”是“2320x x -+>”的充分不必要条件 其中正确命题的序号有_______ 16、【2020泉州四校二次联考理】已知集合22{(,)||||1|1},{(,)|(1)(1)1}A x y x a y B x y x y =-+-≤=-+-≤,若A B φ⋂≠,则实数a 的取值范畴为 .三、解答题(本大题共6小题,共70分,解承诺写出文字说明、证明过程或演算步骤)17.(本小题满分12分) (2011年朝阳区高三上学期期中)设关于x 的不等式(1)0()x x a a --<∈R 的解集为M ,不等式2230x x --≤的解集为N .(Ⅰ)当1a =时,求集合M ;(Ⅱ)若M N ⊆,求实数a 的取值范畴.18、(本小题满分12分) 【山东省潍坊一中2020届高三时期测试理】已知集合{}}0)1(2|{,0)13(2)1(3|22<+--=<+++-=a x a x x B a x a x x A ,(Ⅰ)当a=2时,求B A ⋂;(Ⅱ)求使A B ⊆的实数a 的取值范畴19.(本小题满分10分) 【2020北京海淀区期末】若集合A 具有以下性质: ①A ∈0,A ∈1;②若A y x ∈,,则A y x ∈-,且0≠x 时,Ax∈1.则称集合A 是“好集”. (Ⅰ)分别判定集合{1,0,1}B,有理数集Q 是否是“好集”,并说明理由; (Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+; (Ⅲ)对任意的一个“好集”A ,分别判定下面命题的真假,并说明理由. 命题p :若A y x ∈,,则必有A xy ∈; 命题q :若A y x ∈,,且0≠x ,则必有Axy∈;20、(本小题满分12分)(山东省潍坊市2020届高三上学期期中四县一校联考) 已知集合{}{}R x x B x x x R x A x x ∈<=++≥+∈=-,42|,)23(log )126(log |32222.求⋂A (C R B ).21.(本小题满分12分)已知c >0,设命题p :函数y =c x为减函数,命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c 恒成立.假如p 或q 为真命题,p 且q 为假命题,求c 的取值范畴.22.(本小题满分12分) 【山东省微山一中2020届高三10月月考理】设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ; (2)若C ⊆∁R A ,求a 的取值范畴.祥细答案 一、选择题 1、【答案】C【解析】}4,0{=A C U,因此{0,24}U C A B =() ,,选C.2. 【答案】B【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3、【答案】A【解析】因为集合M 是函数lg y x =的定义域,;0>x N 是函数y = 因此01≥-x ,(](](0,),,1,0,1M N M N =+∞=-∞⋂=4、【答案】A【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k=ϕZk ∈+,2ππ;选A;5、【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,因此 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.6、【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x x x x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>;7、【答案】D解析:依照对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 8、【答案】B【解析】解:A ∩B ={ 0, 1},A ∪B {-1, 0, 1, 2, 3},x 有2种取法, y 有5种取法由乘法原理得2×5=10,故选B 。
高三数学集合测试卷及答案
一、选择题(每题5分,共50分)1. 下列集合中,属于空集的是()A. {x | x > 0}B. {x | x = 0}C. {x | x ∈ N}D. ∅2. 集合M = {x | x 是正整数},集合N = {x | x 是偶数},则M∩N=()A. {x | x 是正偶数}B. {x | x 是正整数}C. {x | x 是偶数}D. {x | x 是整数}3. 集合A = {1, 2, 3, 4},集合B = {2, 4, 6, 8},则A∪B=()A. {1, 2, 3, 4, 6, 8}B. {1, 2, 3, 4, 5, 6, 8}C. {1, 2, 3, 4, 6, 8}D. {1, 2, 3, 4, 5, 6, 7, 8}4. 集合A = {x | x² - 4x + 3 = 0},集合B = {x | x² - 3x - 4 = 0},则A∩B=()A. {1, 3}B. {1}C. {3}D. {1, 2}5. 集合A = {x | x 是实数},集合B = {x | x 是有理数},则A∩B=()A. {x | x 是有理数}B. {x | x 是实数}C. {x | x 是整数}D. {x | x 是无理数}6. 集合A = {x | x² < 4},集合B = {x | x > 0},则A∪B=()A. {x | x < 0}B. {x | x > 0}C. {x | -2 < x < 2}D. {x | x ≠ 0}7. 集合A = {x | x ∈ R 且x² - 5x + 6 = 0},集合B = {x | x ∈ R 且x² - 4x + 3 = 0},则A-B=()A. {3}B. {2}C. {2, 3}D. ∅8. 集合A = {x | x 是正偶数},集合B = {x | x 是正奇数},则A∪B=()A. {x | x 是正整数}B. {x | x 是整数}C. {x | x 是自然数}D. {x | x 是正数}9. 集合A = {x | x 是等差数列的第n项,首项为1,公差为2},集合B = {x | x 是等比数列的第n项,首项为2,公比为2},则A∩B=()A. {4}B. {2, 4}C. {2}D. ∅10. 集合A = {x | x 是实数且x² - 2x + 1 = 0},集合B = {x | x 是实数且x² - 4x + 4 = 0},则A∩B=()A. {1}B. {2}C. {1, 2}D. {1, 3}二、填空题(每题5分,共25分)1. 集合A = {x | x 是正整数},集合B = {x | x 是2的倍数},则A∩B=_________。
高三数学一轮复习 专题1 集合、常用逻辑用语、不等式、函数与导数综合测试(一)
专题一:集合、常用逻辑用语、不等式、函数与导数阶段质量评估(一)一、选择题(本大题共12小题,每小题5分,总分60分)1.已知全集U =R ,集合2{|1}M x x =<,2{|0}N x x x =-<,则集合M ,N 的关系用韦恩(Venn )图可以表示为 ( )2.已知函数①()ln f x x =;②cos ()xf x e =;③()xf x e =;④()cos f x x =.其中对于()f x 定义域内的任意一个自变量1x ,都存在定义域内的唯一一个自变量2x ,使得12()()1f x f x •=成立的函数是( )A .①②④B .②③C .③D .④3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是( )A ()sin f x x = B.()1f x x =-+ C.()1()2x xf x a a -=+ D.2()ln 2x f x x -=+ 4.下列结论①命题“0,2>-∈∀x x R x ”的否定是“0,2≤-∈∃x x R x ”;②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方;③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0. ④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥.其中,正确结论的个数是( )A .1B . 2C . 3D . 4 5.命题“x R ∀∈,2240x x -+≤”的否定为 ( )A .x R ∀∈,2240x x -+≥ B .2,240x R x x ∀∉-+≤C .x R ∃∈,2240x x -+>D .x R ∃∉,2240x x -+>6.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .4x y -B .450x y +-=C .430x y -+=D .430x y ++=7.函数2()ln f x x x =-的零点所在的大致区间是( )A .(1,2)B .(e ,3)C .(2,e )D .(e,+∞)8.函数2()(0)f x ax bx c a =++≠的图像关于直线2bx a =-对称。
高三数学一轮复习集合和简易逻辑单元测试题
高三数学一轮复习集合和简易逻辑单元测试题姓名_________ 班级_________ 分数_________一、选择题:(本大题共10小题,每小题5分,共50分).}{}{1.=1,0,1,=A B x y x A y A -+∈∈已知集合则集合,中元素的个数是()A.1 B.3 C.5 D.9 }{}{[)(](][)(]22.=21,=3401,,4,41,0,1x A x B x x x <+-≥+∞-∞--∞-+∞已知集合集合,则A B=( )A. B. C. D.222223.,lg(22)0,lg(22)0,lg(22)0,lg(22)0,lg(22)0x R x x x R x x x R x x x R x x x R x x ∃∈++<∃∈++≥∀∉++>∃∉++>∀∈++≥命题“都有”的否定是( )A.都有B.都有C.都有D.都有4、设P 和Q 是两个集合,定义集合Q P -={}Q x P x x ∉∈且,|,如果{}1log 2<=x x P ,{}12<-=x x Q 那么Q P -等于 ( )A .{x|0<x<1} B.{x|0<x ≤1} C.{x|1≤x<2} D.{x|2≤x<3} 5.0(3)0.x x x A =+=“”是“”的_________充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件6、若函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=⋂N M ( ) A.{}1>x x B.{}1<x x C.{}11<<-x x D.φ7、对任意实数x , 若不等式k x x >+++|1||2|恒成立, 则实数k 的取值范围是 ( )A k ≥1B k >1C k ≤1D k <18、若不等式312≥-xx 的解集为 ( ) A.)0,1[- B.),1[∞+- C.]1,(--∞ D.),0(]1,(∞+--∞9、一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是: ( )A .0a <B .0a >C .1a <-D .1a >10、若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是( )A. a <-1B. a ≤1C.a <1D. a ≥1二、填空题(本大题共4小题,每小题5分,共20分).11、已知全集U {}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U ___.12、命题:“若12<x ,则11<<-x ”的逆否命题是____________13、集合{}1≤-=a x x A ,{}0452≥+-=x x x B ,若φ=B A ,则实数a 的取值范围是_____ . 14、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
高三数学专题练习题
高三数学专题练习题【题目一】已知集合$A=\{x|x^2-2x>5\}$,集合$B=\{y|y^2+y-12>0\}$,求集合$(A\cup B)\cap B^C$。
【解答一】首先,我们来求解集合$A$和$B$。
给定不等式$x^2-2x>5$,我们可以将其转化为$x^2-2x-5>0$,进一步因式分解为$(x-5)(x+1)>0$。
然后,我们可以通过建立数表或绘制数轴进行分析,最终得到$x<-1$或$x>5$。
类似地,我们可以解得集合$B$为$y<-4$或$y>3$。
接下来,我们来求解$(A\cup B)\cap B^C$,其中$B^C$表示集合$B$的补集,即$B^C=\{y|y\leq-4\text{或}y\geq3\}$。
首先,求解$A\cup B$,即找出同时属于集合$A$或属于集合$B$的元素。
由于$A$中的元素范围是$x<-1$或$x>5$,而$B$中的元素范围是$y<-4$或$y>3$,因此$A\cup B$的元素范围是$x<-1$或$x>5$,$y<-4$或$y>3$。
然后,我们在$B^C$的基础上再求解$(A\cup B)\cap B^C$,即找出同时属于$(A\cup B)$和$B^C$的元素。
根据前面的分析,我们可以得到$(A\cup B)\cap B^C$的元素范围是$x<-1$或$x>5$,$-4\leq y\leq3$。
综上所述,集合$(A\cup B)\cap B^C$的元素范围是$x<-1$或$x>5$,$-4\leq y\leq3$。
【题目二】已知函数$f(x)=\frac{2x}{x-1}$,求函数$f(x)$的反函数。
【解答二】要求一个函数的反函数,首先需要让函数是双射的,即函数是一一对应的。
我们来分析函数$f(x)=\frac{2x}{x-1}$的定义域。
高考数学第一轮复习单元试卷1-集合与简易逻辑
第一单元 集合与简易逻辑班级学号姓名一.填空题1.设集合M =,N =,则M N2.若集合M={y| y=},P={y| y=}, 则M∩P=3.不等式的解集为4.集合M={x|},N={},则MN =5.下列四个集合 ①;②.;③{ ; ④中,是空集的是6.已知集合M={a2, a+1,-3}, N={a-3, 2a-1, a2+1}, 若M∩N={-3}, 则a的值是7.对任意实数, 若不等式恒成立, 则实数的取值范围是8.一元二次方程有一个正根和一个负根的充分不必要条件是9.设命题甲:的解集是实数集R;命题乙:,则命题甲是命题乙成立的 条件10.函数f(x)=其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.给出下列四个判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M≠,则f(P)∩f(M) ≠;③若P∪M=R,则f(P)∪f(M)=R;④若P∪M≠R,则f(P) ∪f(M)≠R.其中正确判断有 个11.若不等式的解集是,则________12.抛物线的对称轴方程是 .13.已知全集U,A,B,那么14.设二次函数,若(其中),则等于二.解答题15.用反证法证明:已知,且,则中至少有一个大于1.16.设全集U=R, 集合A={x| x2- x-6<0}, B={x|| x|= y+2, y∈A}, 求C U B, A∩B, A∪B, A∪(C U B), A∩(B), C U(A∪B), (C U A)∩(C U B).17.若不等式的解集为,求的值18.已知集合A,B,且,求实数的值组成的集合。
19.设全集,函数的定义域为A,集合,若恰好有2个元素,求a 的取值集合。
20.,其中,由中的元素构成两个相应的集合:,.其中是有序数对,集合和中的元素个数分别为和.若对于任意的,总有,则称集合具有性质.(I)对任何具有性质的集合,证明:;(II)判断和的大小关系,并证明你的结论.参考答案( )A.M=NB.MNC.MND.MN=y| y=},则M∩P= ()A{y| y>1} B{y| y≥1} C{y| y>0} D{y| y≥0}(3) 不等式的解集为 ( )A. B. C. D.(4) 集合M={x|}, N={}, 则 MN = ( )A.{0}B.{2}C.D. {(5)下列四个集合中,是空集的是 ( )A .B .C. { D .3}, N={a-3, 2a-1, a2+1}, 若M∩N={-3}, 则a的值是( )A -1B 0C 1D 2(7) 对任意实数, 若不等式恒成立, 则实数的取值范围是( )A k≥1B k >1C k≤1D k <1(8) 一元二次方程有一个正根和一个负根的充分不必要条件是:()A. B. C. D.(9) 设命题甲:的解集是实数集R;命题乙:,则命题甲是命题乙成立的( )A . 充分非必要条件 B.必要非充分条件C. 充要条件D. 既非充分又非必要条件(10) 函数f(x)=其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.给出下列四个判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M≠,则f(P)∩f(M) ≠;③若P∪M=R,则f(P)∪f(M)=R;④若P∪M≠R,则f(P) ∪f(M)≠R.其中正确判断有 ( )A 0个B 1个C 2个D 4个1.1.B[解析]:当 k=2m (为偶数)时, N = =当 k=2m-1 (为奇数)时,N = ==M2.C[解析]:M={y| y=}=,P={y| y=}=3.A[解析]:4.A[解析]:M={x|}=,对于N={}必须有故x=2,所以N= {0}5.D[解析]:对于,,所以是空集.6.A[解析]:M∩N={-3} N={a-3, 2a-1, a2+1}若a-3=-3, 则a=0,此时M={0,1,- 3} ,N={- 3,- 1,1} 则M∩N={-3,1}故不适合若2a-1=-3,则a= - 1,此时M={1, 0,- 3}, N={- 4,- 3, 2}若a2+1=-3,此方程无实数解7.D[解析]:对任意实数, 若不等式恒成立等价于而=1故k<18. D[解析]:一元二次方程有一个正根和一个负根的充要条件是,即而的一个充分不必要条件是9.B.[解析]:的解集是实数集①a=0, 则1>0恒成立②a≠0,则,故0<a<1由①②得10.A[解析]:①②③④错若P={1}, M={- 1}则f(P)={1},f(M)={1} 则f(P)∩f(M) ≠故①错若P={1,2}, M={1}则f(P)={1,2},f(M)={1}则f(P)∩f(M) =故②错若P={非负实数},M={负实数}则f(P)={ 非负实数},f(M)={ 正实数} 则f(P) ∪f(M)≠R.故③错若P={非负实数},M={正实数}则f(P)={ 非负实数},f(M)={ 负实数} 则f(P) ∪f(M)=R.故④错2. 填空题11. 1 ,[解析]:不等式的解集是等价于有两个根0,112. ,[解析]: =13. ,[解析]:={1,5}14. .[解析]:若,则对称轴为直线,故=3. 解答题(15). 假设均不大于1,即,这与已知条件矛盾中至少有一个大于1(16) )解:A=(-2,3), ∵-2<x <3, ∴0<|x|<5. ∴B=(-5,0)∪(0,5).∴C U B=,A∩B=(-2,0)∪(0,3),A∪B=(-5,5),A∪(C U B)=∪(-2,3)∪, A∩(C U B)={0},C U(A∪B)=( C U A)∩(C U B)=∪(17) 由题意知方程的两根为,又,即,解得,(18)① ;② 时,由。
高考数学专题《集合》习题含答案解析
分析:由题意首先求得 CR B ,然后进行交集运算即可求得最终结果.
详解:由题意可得: CR B x | x 1 ,
结合交集的定义可得: A CR B 0 x 1 .
本题选择 B 选项.
8.(2017·全国高考真题(理))已知集合 A={x|x<1},B={x| 3x 1 },则(
故选:C
8.(2019·北京临川学校高二期末(文))已知集合 = { ―1,3}, = {2,2},若 ∪ = { ―1,3,2,9},则实数
)
的值为(
A. ± 1
B. ± 3
C. ― 1
D.3
【答案】B
【解析】
∵ 集合 = { ―1,3}, = {2,2},且 ∪ = { ―1,3,2,9}, ∴ 2 = 9,因此, =± 3,
对③: {0,1, 2} 是集合, {1, 2, 0} 也是集合,由于一个集合的本身也是该集合的子集,故③正确.
对④: 0 是元素, 是不含任何元素的空集,所以 0 ,故④错误.
对⑤: 0 是元素, 是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.
故选:C.
3.(2021·浙江高一期末)已知集合 M 0,1, 2,3, 4 , N 2, 4, 6 , P M N ,则满足条件的 P 的非
则集合 A B 的所有元素之和为(
A.16
B.18
)
C.14
D.8
【答案】A
【解析】
由题设,列举法写出集合 A B ,根据所得集合,加总所有元素即可.
【详解】
由题设知: A B {1, 2,3, 4, 6} ,
∴所有元素之和 1 2 3 4 6 16 .
高三数学集训1.2《集合间的基本关系》同步检测
《集合间的基本关系》同步检测基 础 练1.下列集合中,结果是空集的是( )A .{x ∈R |x 2-1=0}B .{x |x >6或x <1}C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1}2.已知集合N ={1,3,5},则集合N 的真子集个数为( )A .5B .6C .7D .83.下列命题:∈空集没有子集;∈任何集合至少有两个子集;∈空集是任何集合的真子集;∈若∈ A ,则A ≠∈.其中正确的个数是( )A .0B .1C .2D .34.下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ∈P ,那么a 的值是________.6.设集合A ={x |x 2+x -6=0},B ={x |mx +1=0},则满足B ∈A 的实数m 的值所组成的集合为________.7. 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ∈A ,求实数m 的取值范围.8.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若B ∈A ,求实数a 的取值范围.9. 已知集合A ={1,3,-x 3},B ={x +2,1},是否存在实数x ,使得B 是A 的子集?若存在,求出集合A ,B ;若不存在,请说明理由.能 力 练10.若集合A ={1,3,x },B ={x 2,1},且B ∈A ,则满足条件的实数x 的个数是( )A .1B .2C .3D .411.适合条件{1}∈A {1,2,3,4,5}的集合A 的个数是( ) A .15 B .16 C .31 D .3212.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ∈C ∈B 的集合⊂≠⊂≠C的个数为()A.1 B.2 C.3 D.413.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∈,B∈A,则(a,b)不能是()A.(-1,1)B.(-1,0)C.(0,-1)D.(1,1)14.已知集合A={x|x2=a},当A为非空集合时a的取值范围是________.15.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是________.16.已知集合A={x|x2-4x+3=0},B={x|mx-3=0},且B∈A,求实数m的集合.17.已知集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},且B∈A.(1)求实数m的取值集合;(2)当x∈N时,求集合A的子集的个数.【参考答案】1. D 解析 对D ,显然不存在既大于6又小于1的数,故{x |x >6且x <1}=∈.2. C 解析 集合N 的真子集有:∈,{1},{3},{5},{1,3},{1,5},{3,5},共7个.3. B 解析 ∈错,空集是任何集合的子集,有∈∈∈;∈错,如∈只有一个子集;∈错,空集不是空集的真子集;∈正确,因为空集是任何非空集合的真子集.4. B 解析 由N ={-1,0},知N M ,故选B.5. 0,±1 解析 P ={-1,1},Q ∈P ,所以(1)当Q =∈时,a =0.(2)当Q ≠∈时,Q ={1a },∈1a =1或1a =-1,解之得a =±1.综上知a 的值为0,±1.6. ⎩⎨⎧⎭⎬⎫0,13,-12 解析 ∈A ={x |x 2+x -6=0}={-3,2},又∈B ∈A ,当m =0,mx +1=0无解,故B =∈,满足条件,若B ≠∈,则B ={-3},或B ={2},即m =13,或m =-12,故满足条件的实数m ∈⎩⎨⎧⎭⎬⎫0,13,-12. 7. 解 A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ∈A .∈若B =∈,则m +1>2m -1,解得m <2,此时有B ∈A ;∈若B ≠∈,则m +1≤2m -1,即m ≥2,由B ∈A ,得⎩⎨⎧ m ≥2m +1≥-22m -1≤5,解得2≤m ≤3.由∈∈得m ≤3. ∈实数m 的取值范围是{m |m ≤3}.8. 解 当B =∈时,只需2a >a +3, 即a >3.当B ≠∈时,根据题意作出如图所示的数轴,可得⎩⎨⎧ a +3≥2a ,a +3<-1或⎩⎨⎧a +3≥2a ,2a >4.解得a <-4或2<a ≤3. 综上,实数a 的取值范围为{a |a <-4或a >2}.9 . 解 因为B 是A 的子集,所以B 中元素必是A 中的元素,若x +2=3,则x =1,符合题意.若x +2=-x 3,则x 3+x +2=0,所以(x +1)(x 2-x +2)=0.因为x 2-x +2≠0,所以x +1=0,所以x =-1,此时x +2=1,集合B 中的元素不满足互异性. 综上所述,存在实数x =1,使得B 是A 的子集,此时A ={1,3,-1},B ={1,3}.10. C 解析 由B ∈A ,知x 2=3,或x 2=x ,解得x =±3,或x =0,或x =1,当x =1时,集合A ,B 都不满足元素的互异性,故x =1舍去.11. A 解析 因为集合A 中必须包含元素1,但从元素2、3、4、5中至多选取3个,于是集合A 的个数24-1=15个,故选A.12. D 解析 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数.由x 2-3x +2=0得x =1或x =2,∈A ={1,2}.由题意知B ={1,2,3,4},∈满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.13. B 解析 当a=-1,b=1时,B={x|x 2+2x+1=0}={-1},符合;当a=b=1时,B={x|x 2-2x+1=0}={1},符合;当a=0,b=-1时,B={x|x 2-1=0}={-1,1},符合;当a=-1,b=0时,B={x|x 2+2x=0}={0,-2},不符合.14. a ≥0 解析 要使集合A 为非空集合,则应有方程x 2=a 有解,故只须a ≥0.15. 0或±1 解析 因为A 有且仅有两个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0仅有一根,当a =0时,方程化为2x =0,A ={0},符合题意;当a ≠0时,Δ=4-4a 2=0,解得a =±1此时A ={-1}或{1},符合题意.综上所述a =0或a =±1.16. 解 由x 2-4x +3=0,得x =1或x =3.∈集合A ={1,3}.(1)当B =∈时,此时m =0,满足B ∈A .(2)当B ≠∈时,则m ≠0,B ={x |mx -3=0}={3m }.∈B ∈A ,∈3m =1或3m =3,解之得m =3或m =1.综上可知,所求实数m 的集合为{0,1,3}.17. 解:(1)∈当m -1>2m+1,即m<-2时,B=∈符合题意.∈当m -1≤2m+1,即m ≥-2时,B ≠∈.由B ∈A ,借助数轴(如图所示),得{m -1≥-1,2m +1≤6,m ≥−2,解得0≤m ≤52.所以0≤m ≤52. 经验证知m=0和m=52符合题意.综合∈∈可知,实数m 的取值集合为{m |m <−2或0≤m ≤52}.(2)∈当x ∈N 时,A={0,1,2,3,4,5,6},∈集合A 的子集的个数为27=128.。
高三数学集合的运算试题
高三数学集合的运算试题1.已知集合,A.B.C.D.【答案】C【解析】由题知={0,5},故选C.考点:集合补集运算2.已知集合,,则.【答案】【解析】因为,所以结合数轴得:【考点】集合运算3.已知集合和,则( )A.B.[1,2)C.[1,5]D.(2,5]【答案】D【解析】,,故,故选D.【考点】集合的交并补运算4.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵A={1,a},B={1,2,3},A⊆B,∴a∈B且a≠1,∴a=2或3,∴“a=3”是“A⊆B”的充分而不必要条件.5.设集合,集合,则集合中有___个元素A.4B.5C.6D.7【答案】C【解析】∵,所以,∴中有6个元素,故选.【考点】集合中元素个数.6.集合P={x|2kπ≤α≤(2k+1)π,k∈Z},Q={α|-4≤α≤4}.则P∩Q=()A.B.{α|-4≤α≤-π或0≤α≤π}C.{α|-4≤α≤4}D.{α|0≤α≤π}【答案】B【解析】令k=0,±1,在数轴上标注出P与Q如图所示,可知选B.7.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为A.3B.4C.5D.6【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的取值为5,6,7,8,因此集合M共有4个元素8.已知A={x||x+1|>0},B={-2,-1,0,1},则=A.{-1}B.{-2,0,1}C.{0,1}D.{-2}【答案】A【解析】∵A={x|x≠-1,x∈R},∴={-1}∴={-1}9.已知全集,集合,.若,则实数的取值范围是.【答案】【解析】由题意,,,由,得,即.【考点】集合的运算.10.已知集合,则集合中的元素个数为()A.B.C.D.【答案】C【解析】,的取值有、、、,又,值分别为、、、,故集合中的元素个数为,故选C.【考点】数的整除性11.设集合,则()A.R B.C.D.【答案】C【解析】因为,又,所以.选B【考点】集合的基本运算.B=________.12.设全集U=R,集合A={x|x2-2x<0},B={x|x>1},则集合A∩∁U【答案】{x|0<x≤1}【解析】∁U B={x|x≤1},A={x|0<x<2},故A∩∁UB={x|0<x≤1}.13.设集合,,则A∩B=()A.[-2,2]B.[0,2]C.(0,2]D.[0,+∞)【答案】B【解析】,又因为,故.【考点】集合的运算.14.设全集是实数集,,则()A.B.C.D.【答案】A【解析】或,则,故选A.【考点】1.一元二次不等式;2.集合的运算.15.设全集,集合,,则( )A.B.C.D.【答案】C【解析】因为,,所以,所以,故选C【考点】1、集合的表示法(列举法);集合的并、补运算.16.设,,若,则实数_______.【答案】【解析】由可得,即是方程的根,则可解得.【考点】集合的运算17.设集合S={x|3<x≤6},T={x|x2-4x-5≤0},则()A.(-∞,3]∪(6,+∞)B.(-∞,3]∪(5,+∞)C.(-∞,-1)∪(6,+∞)D.(-∞,-1)∪(5,+∞)【答案】B.【解析】由,得.【考点】集合的运算.18.已知全集为,集合,,则( )A.B.C.D.【答案】D【解析】因为,,,所以,,,故选D.【考点】集合的运算,简单不等式解法.19.已知集合,集合,表示空集,那么()A.B.C.D.【答案】C【解析】因为,所以,选.【考点】集合的运算.20.已知集合,则图中阴影部分表示的集合是()A.B.C.D.【答案】D【解析】阴影部分用集合表示为,经过计算.【考点】集合运算,Venn图.21.已知,(1)若,求实数的值;(2)若,求实数的取值范围。
高三数学单元测试卷(共18套含答案)
xyO1 3 。
2 . 随堂步步高·高三数学·单元测试卷(一)第一单元 集合与简易逻辑(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P ={3,4,5},Q ={4,5,6,7},定义P ※Q ={(a ,b )|a ∈P ,b ∈Q},则P ※Q 中元素的个数为 A .3 B .4 C .7 D .12 2.设A 、B 是两个集合,定义A -B ={x |x ∈A ,且x ∉B},若M ={x ||x +1|≤2},N ={x |x =|sinα|,α∈R},则M -N = A .[-3,1]B .[-3,0]C .[0,1]D .[-3,0]3.映射f :A→B ,如果满足集合B 中的任意一个元素在A中都有原象,则称为“满射”.已知集合A中有4个元素,集合B 中有3个元素,那么从A 到B 的不同满射的个数为 A .24B .6C . 36D .724.若lg a +lg b =0(其中a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称5.若任取x 1、x 2∈[a ,b ],且x 1≠x 2,都有f (x 1+x 22)>f (x 1)+f (x 2)2成立,则称f (x ) 是[a ,b ]上的凸函数.试问:在下列图像中,是凸函数图像的为6.若函数f (x )=x - p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是A .[-1,+∞)B .[1,+∞)C .(-∞,-1]D .(-∞,1] 7.设函数f (x )=x |x |+bx +c ,给出下列四个命题: ①c =0时,f (x )是奇函数 ②b =0,c >0时,方程f (x )=0只有一个实根 ③f (x )的图象关于(0,c )对称 ④方程f (x )=0至多两个实根 其中正确的命题是A .①④B .①③C .①②③D .①②④8.函数y =e x +1e x -1,x ∈(0,+∞)的反函数是A .y =lnx -1x +1,x ∈(-∞,1) B .y =ln x +1x -1,x ∈(-∞,1)C .y =ln x -1x +1,x ∈(1,+∞)D .y =ln x +1x -1,x ∈(1,+∞)9.如果命题P :{}∅∈∅,命题Q :{}∅⊂∅,那么下列结论不正确的是 A .“P 或Q”为真B .“P 且Q”为假C .“非P”为假D .“非Q”为假10.函数y =x 2-2x 在区间[a ,b ]上的值域是[-1,3],则点(a ,b )的轨迹是图中的 A .线段AB 和线段AD B .线段AB 和线段CD C .线段AD 和线段BC D .线段AC 和线段BD答题卡二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.已知函数f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,则不等式f (x )cos x <0的解集是 .12.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800 元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为 元.13.已知函数f (x )=,2))((.0,cos 2,0,)(02=⎩⎨⎧<<≤=x f f x x x x x f 若π则x 0= .14.若对于任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是 .15.如果函数f (x )的定义域为R ,对于m ,n ∈R ,恒有f (m +n )=f (m )+f (n )-6,且f (-1)是不大于5的正整数,当x >-1时,f (x )>0.那么具有这种性质的函数f (x )= .(注:填上你认为正确的一个函数即可)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. ⑴求f (x )的解析式;⑵在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.题号 1 2 3 4 5 6 7 8 9 10 答案ya xb ya xb ya xb y a xb17.(本小题满分12分)已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x ax x a -<-+.⑴当a =2时,求AB ;⑵求使B ⊆A 的实数a 的取值范围. 18.(本小题满分14分)已知命题p :方程0222=-+ax x a 在[-1,1]上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤,若命题“p 或q ”是假命题,求实数a 的取值范围.19.(本小题满分14分)设函数()221x xf x a -=+⋅-(a 为实数).⑴若a <0,用函数单调性定义证明:()y f x =在(,)-∞+∞上是增函数;⑵若a =0,()y g x =的图象与()y f x =的图象关于直线y =x 对称,求函数()y g x = 的解析式.20.(本小题满分14分)函数xax x f -=2)(的定义域为(0,1](a 为实数). ⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.21.(本小题满分14分)对于函数)0(2)1()(2≠-+++=a b x b ax x f ,若存在实数0x ,使00)(x x f =成立,则称0x 为)(x f 的不动点.⑴当a =2,b =-2时,求)(x f 的不动点;⑵若对于任何实数b ,函数)(x f 恒有两相异的不动点,求实数a 的取值范围;⑶在⑵的条件下,若)(x f y =的图象上A 、B 两点的横坐标是函数)(x f 的不动点,且直线1212++=a kx y 是线段AB 的垂直平分线,求实数b 的取值范围.随堂步步高·高三数学·单元测试卷(二)第二单元 函数(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数)(x f y =与函数)(x g 的图象关于3=x 对称,则)(x g 的表达式为A .)23()(x f x g -=B .)3()(x f x g -=C .)3()(x f x g --=D .)6()(x f x g -=2.设的大小关系是、、,则,,c b a c b a 243.03.03log 4log -===A .a <b <cB .a <c <bC .c <b <aD .b <a <c 3.指数函数y =f(x)的反函数的图象过点(2,-1),则此指数函数为A .x y )21(=B .xy 2=C .xy 3=D .xy 10=4.已知函数,,,且、、,00)(32213213>+>+∈--=x x x x R x x x x x x f 13x x +>0,则)()()(321x f x f x f ++的值A .一定大于零B .一定小于零C .等于零D .正负都有可能5.若函数1log )(+=x x f a 在区间(-1,0)上有)(0)(x f x f ,则>的递增区间是 A .(-∞,1) B .(1,+∞) C .(-∞,-1) D .(-1,+∞) 6.已知b a b a 、,则2log 2log 0<<的关系是A .0<a <b <1B .0<b <a <1C .b >a >1D .a >b >17.已知x aa a xlog 10=<<,则方程的实根个数是A .1个B .2个C .3个D .1个或2个或3个 8.若y x y x +-=,则2log 的最小值为A .3322B .2333C .332D .2239.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f -1(-9)的值为A .2B .-2C .3D .-310.若方程m m x x 无实数解,则实数+=-21的取值范围是 A .(-∞,-1) B .[0,1) C .[2,+∞) D .(-∞,-1)∪(2,+∞)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.)2log (2)9(log )(91-==-ff x x f a ,则满足函数的值是__________________.12.使函数542+-=x x y 具有反函数的一个条件是____________________________.(只填上一个条件即可,不必考虑所有情形). 13.函数)2(log 221x x y -=的单调递减区间是________________________.14.已知)(x f 是定义在R 上的偶函数,并且)(1)2(x f x f -=+,当32≤≤x 时,x x f =)(,则=)5.105(f _________________.15.关于函数),0(||1lg)(2R x x x x x f ∈≠+=有下列命题: ①函数)(x f y =的图象关于y 轴对称;②在区间)0,(-∞上,函数)(x f y =是减函数; ③函数)(x f 的最小值为2lg ;④在区间),1(∞上,函数)(x f 是增函数.其中正确命题序号为_______________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数f (x )=a x +12+-x x (a >1) ⑴证明:函数f (x )在(-1,+∞)上为增函数; ⑵用反证法证明f (x )=0没有负数根.17.(本小题满分12分)已知f (x )=2x -1的反函数为1-f (x ),g (x )=log 4(3x +1).⑴若f -1(x )≤g (x ),求x 的取值范围D ;⑵设函数H (x )=g (x )-121-f (x ),当x ∈D 时,求函数H (x )的值域.18.(本小题满分14分)函数f(x)=log a(x-3a)(a>0,且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,Q(x-2a,-y)是函数y=g(x)图象上的点.⑴写出函数y=g(x)的解析式.⑵当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围.19.(本小题满分14分)某化妆品生产企业为了占有更多的市场份额,拟在2005年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销t万元之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2005年生产化妆品的设备折旧,维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%“与平均每件促销费的一半”之和,则当年生产的化妆品正好能销完.⑴将2005年的利润y(万元)表示为促销费t(万元)的函数;⑵该企业2005年的促销费投入多少万元时,企业的年利润最大?(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)20.(本小题满分14分)已知f(x)在(-1,1)上有定义,f(21)=-1,且满足x,y∈(-1,1)有f(x)+f(y)=f(xyyx++1)⑴证明:f(x)在(-1,1)上为奇函数;⑵对数列x1=21,x n+1=212nnxx+,求f(x n);⑶求证252)(1)(1)(121++->+++nnxfxfxfn21.(本小题满分14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:21<m<1;⑵若|x1|<2且|x1-x2|=2,求b的取值范围.随堂步步高·高三数学·单元测试卷(三)第三单元 数列(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.数列-1,85,-157,249,…的一个通项公式是A .a n =(-1)n n 3+n 2n +1B .a n =(-1)n n (n +3)2n +1C .a n =(-1)n(n +1)2-12n -1D .a n =(-1)n n (n +2)2n +12.设S n 是等差数列{a n }的前n 项和,已知S 6=36,S n =324,S n -6=144,则n =A .15B .16C .17D .183.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是A .14B .16C .18D .204.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=A .8B .-8C .±8D .985.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为 A .5 B .6 C .7 D .86.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N +),设其前n 项和为S n ,则使S n <-5成立的正整数nA .有最小值63B .有最大值63C .有最小值31D .有最大值317.设数列{a n }是公比为a (a ≠1),首项为b 的等比数列,S n 是前n 项和,对任意的n ∈N + ,点(S n ,S n +1)在A .直线y =ax -b 上B .直线y =bx +a 上C .直线y =bx -a 上D .直线y =ax +b 上8.数列{a n }中,a 1=1,S n 是前n 项和,当n ≥2 时,a n =3S n ,则31lim 1-++∞→n n n S S 的值是A .-2B .-45C .-13D .19.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数(参考数据1.14=1.46,1.15=1.61)A .10%B .16.5%C .16.8%D .20%10.已知a 1,a 2,a 3,…,a 8为各项都大于零的数列,则“a 1+a 8<a 4+a 5”是“a 1,a 2,a 3,…,a 8不是等比数列”的A .充分且必要条件B .充分但非必要条件C .必要但非充分条件D .既不充分也不必要条件二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.已知 .我们把使乘积a 1·a 2·a 3·…·a n 为整数的数n 叫做“劣数”,则在区间(1,2004)内的所有劣数的和为 .12.已知集合},,17,22|{1++∈+=<<=N n m m x x x A n n n 且,则A 6中各元素的和为 .13.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值))(2(log 1++∈+=N n n a n n是4,则抽取的是第 项.14.若a +b +c ,b +c -a ,c +a -b ,a +b -c 依次成等比数列,公比为q ,则q 3+q 2+q= . 15.若数列)}({+∈N n a n 为等差数列,则数列)(321+∈+⋯+++=N n na a a ab nn 也为等差数列,类比上述性质,相应地,若数列{c n }是等比数列且)(0+∈>N n c n ,则有数列d n = (n ∈N +)也是等比数列.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项.⑴求数列{a n }与{b n }的通项公式.⑵设数列{c n }对任意正整数n ,均有1332211+=+⋯⋯+++n n n a b c b c b c b c ,求c 1+c 2+c 3+…+c 2004的值.17.(本小题满分12分)已知f (x +1)=x 2-4,等差数列{a n }中,a 1=f (x -1),a 2=-32,a 3=f (x ).求: ⑴x 的值;⑵数列{a n }的通项公式a n ; ⑶a 2+a 5+a 8+…+a 26.18.(本小题满分14分) 正数数列{a n }的前n 项和为S n ,且2S n =a n +1.(1) 试求数列{a n }的通项公式;(2)设b n =1a n ·a n +1,{b n }的前n 项和为T n ,求证:T n <12.19.(本小题满分14分)已知函数f (x )定义在区间(-1,1)上,f (12)=-1,且当x ,y ∈(-1,1)时,恒有 f (x )-f (y )=f (x -y 1-xy),又数列{a n }满足a 1=12,a n +1=2a n 1+a n 2,设b n=1f (a 1)+1f (a 2)+…+1f (a n ). ⑴证明:f (x )在(-1,1)上为奇函数; ⑵求f (a n )的表达式; ⑶是否存在正整数m ,使得对任意n ∈N ,都有b n <m -84成立,若存在,求出m 的最小值;若不存在,请说明理由.20.(2005年湖南理科高考题14分) 自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用x n 表示某鱼群在第n 年年初的总量,n ∈N *,且x 1>0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x n 2成正比,这些比例系数依次为正常数a ,b ,c . ⑴求x n +1与x n 的关系式;⑵猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)⑶设a =2,c =1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *,则捕捞强度b 的最大允许值是多少?证明你的结论.21.(本小题满分14分)已知函数f (t )满足对任意实数x ,y 都有f (x +y )=f (x )+f (y )+xy +1,且f (-2)= -2. ⑴求f (1)的值;⑵证明:对一切大于1的正整数t ,恒有f (t )>t ; ⑶试求满足f (t )=t 的整数t 的个数,并说明理由.随堂步步高·高三数学·单元测试卷(四)第四单元 [三角函数]通,性质大集中(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2005年全国高考题)函数f (x ) = | sin x +cos x |的最小正周期是A .π4B .π2C .πD .2π2.若θθθ则角且,02sin ,0cos <>的终边所在象限是A .第一象限B .第二象限C .第三象限D .第四象限 3.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是 A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是A . ]3,0[πB . ]127,12[ππC . ]65,3[ππD . ],65[ππ5.定义在R 上的函数)(x f 既是偶函数又是周期函数.若)(x f 的最小正周期是π,且当]2,0[π∈x时,x x f sin )(=,则)35(πf 的值为A . 21- B . 21C . 23-D . 236.(2005年全国高考题)锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B ,则有A .sin 2A –cosB = 0 B .sin 2A + cos B = 0C .sin 2A – sin B = 0D .sin2A +sinB =07.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度 8.当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x 的最小值是 ( )A .4B .12C .2D .149.(2005年全国高考题)已知函数y =tan x ω在(-π2,π2)内是减函数,则( )A .0 <ω≤1B .-1 ≤ω< 0C .ω≥ 1D .ω≤ -110.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该函数中,最能近似表示表中数据间对应关系的函数是(]24,0[∈t )( ) A .t y 6sin 312π+= B .)6sin(312ππ++=t y C .t y 12sin312π+=D . )212sin(312ππ++=t y二、填空题:本大题共5小题,每小题4分(15小题每空2分),共20分.把答案填在横线上.11.(2005年全国高考题)设α为第四象限的角,若sin3αsin α=135,则tan2α =_____________. 12.(2005年上海春季高考题)函数x x y arcsin sin +=的值域是 .13.设f (n )=cos( n π2+π4 ),则f (1)+f (2)+…+f (2006)= .14.已知tanα+cotα=-2,则tan n α+cot n α=______ .15.(2005年湖南高考题)函数y =f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在[0,πn ]上的面积为2n(n ∈N *),则(i)函数y =sin3x在[0,2π3]上的面积为 ;(ii) 函数y =sin(3x -π)+1在[π3,4π3]上的面积为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)已知1cot tan sin 2),2,4(,41)24sin()24sin(2--+∈=-⋅+αααππααπαπ求的值. 17.(本题满分12分)(2005年上海春季高考题)已知tan α是方程01sec 22=++αx x 的两个根中较小的根,求α的值.18.(本题满分14分) (2005年湖南高考题)已知在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0.求角A 、B 、C 的大小.19.(本题满分14分)(2005年广东高考题)化简f (x )=cos(6k +13π+2x )+cos(6k -13π-2x )+23sin(π3+2x )(x ∈R ,k ∈Z),并求函数f (x )的值域和最小正周期. 20.(本题满分14分)(2005年天津高考题)某人在一山坡P 处观看对面山项上的一座铁塔,如图所示,塔高BC =80(米),塔所在的山高OB =220(米),OA =200(米),图中所示的山坡可视为直线l 且点P 在直线l 上,l 与水平地面的夹角为α,tanα=12,试问此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)21.(本题满分14分)设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a . ⑴ 写出()f a 的表达式;⑵试确定能使1()2f a =的a 值,并求出此时函数y 的最大值.随堂步步高·高三数学·单元测试卷(五)第五单元 [向量]作运算,图形见奇观(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(2005年全国Ⅱ高考题)已知点A(3,1),B(0,0),C(3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有→BC =λ→CE ,其中λ等于 A .2 B .12 C .-3 D .- 132.已知O 是△ABC 内一点,且满足→OA·→OB =→OB·→OC =→OC·→OA ,则O 点一定是△ABC 的 A .内心 B .外心 C .垂心 D .重心 3.在四边形ABCD 中,,,,b a CD b a BC b a AB 3542--=--=+=其中b a 、不共线,则四边形ABCD 是 A .梯形B .矩形C .菱形D .正方形4.在边长为1的正△ABC 中,若AB a =,BC b =,CA c =,则a ·b +b ·c +c ·a = A .32 B .-32C .3D .05.已知c b a ,,为非零的平面向量. 甲:则乙,:,c b c a b a =⋅=⋅甲是乙的( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件 D .非充分条件非必要条件6.已知三角形的三条边成公差为2的等差数列,且它的最大角的正弦值为32,则这个三角形的面积是A .154B .1534C .2134D .35347.把点(3,4)按向量a 平移后的坐标为(-2,1),则y =2x的图象按向量a 平移后的图象的函数表达式为A .y =2x -5+3B .y =2x -5-3C .y =2x +5+3D .y =2x +5-38.(2005年全国Ⅱ高考题)点P 在平面上作匀数直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)9.已知向量OB =(2,0),OC =(2,2),CA =(cos α,sin α)( α∈R ),则OA 与OB 夹角的取值范围是 A .[0,p4]B .[p 4,5p 12]C .[p 12,5p 12]D .[5p 12,p 2]10.在△ABC 中,a =x ,b =2,B =45°,若这样的△ABC 有两个,则实数x 的取值范围是 A .(2,+∞) B .(0,2) C .(2,22) D .(2,2)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.(2005年湖南高考题)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB |=3,则OA ·OB = .12.(2005年全国Ⅰ高考题)△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = .13.(2005年天津高考题)在直角坐标系xOy 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上且|OC |=2,则OC = .14.(2005年全国Ⅲ高考题)已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k = .15.设c b a、、是任意的非零平面向量,且相互不共线,则①0)()( =⋅⋅-⋅⋅b a c c b a ; ②b a b a -<-;③b a c a c b )()(⋅-⋅不与c垂直;④)23()23(b a b a-⋅+=2249b a -中是真命题的有 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分l2分)如图,在Rt △ABC 中,已知BC =a ,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与 的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值. 17.(本题满分12分)A 、B 、C 为△ABC 的三内角,且其对边分别为a 、b 、c .若m =(-cos A 2,sin A 2),n =(cos A2,sin A 2),且m ·n =12.(1)求A ;(2)若a =23,三角形面积S =3,求b +c 的值.18.(本题满分14分)如图,△AOE 和△BOE 都是边长为1的等边三角形,延长OB 到C 使|BC|=t (t >0),连AC 交BE 于D 点.⑴用t 表示向量OC 和OD 的坐标;⑵(理)求向量OD 和EC 的夹角的大小.(文)当OC =32OB 时,求向量OD 和EC 的夹角的大小.19.(本题满分14分)已知)0)(sin ,(cos ),sin ,(cos πβαββαα<<<==b a.⑴求证:b a b a-+与互相垂直;⑵若b k a b a k-+与大小相等,求αβ-(其中k 为非零实数).20.(本题满分14分)设△ABC 的外心为O ,以线段OA 、OB 为邻边作平行四边形,第四个顶点为D ,再以OC 、OD 为邻边作平行四边形,它的第四个顶点为H .⑴若,,,c OC b OB a OA===用OH c b a 表示、、 ;⑵求证:AH ⊥BC ;⑶设△ABC 中,∠A =60°,∠B =45°,外接圆半径为R ,用R 表示|→OH|.21.(本题满分14分)已知圆O 的半径为R ,它的内接△ABC 中,B b a C A R sin )2()sin (sin 222-=-成立,求三角形ABC 面积S 的最大值.随堂步步高·高三数学·单元测试卷(六)第三单元 [不等]符号定,比较技巧深(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是A . 2B .1C .22 D .2-13.(2005年天津高考题)给出下列三个命题 ①若1->≥b a ,则bb a a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(nm n m ≤-③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1.当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为A .(1,2)B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .非充分条件非必要条件6.(2005年全国Ⅲ高考题)若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足,且,那么下列选项中不一定成立的是 A . B . C . D .0)(<-c a ac8.(2005年全国Ⅰ高考题) 设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则 A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则 A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.(2005年全国Ⅰ高考题)若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 .15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分l2分) (2005年全国Ⅱ高考题)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围. 17.(本题满分12分)(2005年全国Ⅲ高考题)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合. 18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f (x )=|x -m |-mx ,其中m 为常数且m <0.⑴解关于x 的不等式f (x )<0;⑵试探求f (x )存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a >0,函数f (x )=ax -bx 2.⑴当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;⑵当b >1时,证明对任意x ∈[0,1],都有|f (x )|≤1的充要条件是b -1≤a ≤2b ; ⑶当0<b ≤1时,讨论:对任意x ∈[0,1],都有|f (x )|≤1的充要条件.21.(本题满分14分) (2005年全国Ⅰ高考题)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .随堂步步高·高三数学·单元测试卷(七)第三单元 直线与圆(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知θ∈R ,则直线013sin =+-y x θ的倾斜角的取值范围是A .[0°,30°]B .[150°,180°)C .[0°,30°]∪[150°,180°)D .[30°,150°]2.已知两点M (-2,0),N (2,0),点P 满足PN PM ⋅=12,则点P 的轨迹方程为A .x 216+y 2=1 B .x 2+y 2=16C .y 2-x 2=8D .x 2+y 2=83.已知两点P (4,-9),Q (-2,3),则直线PQ 与y 轴的交点分PQ 所成的比为A .13B .12C .2D .34.M(),00y x 为圆)0(222>=+a a y x 内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系为A .相切B .相交C .相离D .相切或相交5.已知实数x ,y 满足22,052y x y x +=++那么的最小值为A . 5B .10C .2 5D .2106.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为A .x -y +1=0B .x -y =0C .x +y +1=0D .x +y =07.已知a ≠b ,且a 2sin θ+a cos θ-4π=0 ,b 2sin θ+b cos θ-4π=0,则连接(a ,a 2),(b ,b 2)两点的直线与单位圆的位置关系是 A .相交 B .相切C .相离D .不能确定8.直线l 1:x +3y-7=0、l 2:kx- y-2=0与x 轴、y 轴的正半轴所围成的四边形有外接圆,则k 的值等于A .-3B .3C .-6D .69.在如图所示的坐标平面的可行域(阴影部分且包括边 界)内,目标函数ay x z -=2取得最大值的最优解有无 数个,则a 为A .-2B .2C .-6D .610.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线方程分别是x =0,y =x ,则直线BC的方程是A .y =2x +5B .y =2x +3C .y =3x +5D .252+-=x y 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.三边均为整数且最大边的长为11的三角形的个数为 .12.已知圆C 的方程为,222r y x =+定点M(x 0,y 0),直线200:r y y x x l =+有如下两组论断:第Ⅰ组 第Ⅱ组(a) 点M 在圆C 内且M 不为圆心 (1) 直线l 与圆C 相切 (b) 点M 在圆C 上 (2) 直线l 与圆C 相交 (c )点M 在圆C 外 (3) 直线l 与圆C 相离由第Ⅰ组论断作为条件,第Ⅱ组论断作为结论,写出所有可能成立的命题 . (将命题用序号写成形如q p ⇒的形式)13.已知x 、y 满足⎪⎩⎪⎨⎧≥≥≤-+0,0033y x y x ,则z =12-+x y 的取值范围是 .14.已知A (-4,0),B (2,0)以AB 为直径的圆与y 轴的负半轴交于C ,则过C 点的圆的切线方程为 .15.过直线上一点M 向圆作切线,则M 到切点的最小距离为_ ____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)自点(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆074422=+--+y x y x 相切,求光线L 所在直线方程.17.(本小题满分12分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元。
高中数学《集合》练习题 (250)
高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知全集I =N *,集合A ={x |x =2n ,n ∈N *},B ={x |x =4n ,n ∈N },则( ) A .I =A ∪BB .I =(IC A )∪BC .I =A ∪(I C B )D .I =(I C A )∪(I C B )(1996全国理,1)2.定义集合运算*{,,},{1,2},{0,2}A B Z Z xy x A y B A B =|=∈∈==设,则集合*A B 的所有元素之和为( )。
A . 0 B.2 C. 3 D. 6(2008江西)3.若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为 A |x ∈R |0<x <2| B |x ∈R |0≤x <2| C |x ∈R |0<x≤2| D |x ∈R |0≤x≤2|4.已知全集U R =,则正确表示集合{1,0,1}M =−和{}2|0N x x x =+=关系的韦恩(Venn )图是(2009年广东卷文)5.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 ( )A .A ⊂≠B B .B ⊂≠AC .A=BD .A∩B=∅(2012课标文)二、填空题6.已知集合{}1,0,1,2A =−,{}20B x x x =−≤,则AB = .7.若非空集合{2135}A x a x a =+≤≤−,{322}B x x =≤≤,则能使()A A B ⊆成立的所有a 的集合为_______________8.已知集合{}{}1,3,1,2,A B m ==,若A B ⊆,则实数m = ▲ .9.设集合{|1A x =−≤x ≤2},B={x |0≤x ≤4},则A ∩B=( A )(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4](2006浙江文)10.设集合{|32}M m m =∈−<<Z ,{|13}N n n M N =∈−=Z 则,≤≤{}101−,,11.设全集{1,3,5,7,9}I =,集合A ={1,3,9},则I C A =___________ 12.已知全集U =R ,集合A =(),0−∞,{}1,3,B a =−−,若()U C A B ≠∅,则实数a的取值范围是 。
高三数学集合的运算试题
高三数学集合的运算试题1.已知集合,集合为整数集,则()A.B.C.D.【答案】A【解析】,选A.【考点】集合的基本运算.2.已知,,则的元素个数为()A.1B.2C.3D.4【答案】C【解析】因为,所以,又由得,所以,则,故,即元素个数有3个.【考点】分式不等式的解法;集合的运算.3.已知集合,集合,则()A.B.C.D.【答案】B【解析】由题知集合A是含绝对值的解集,由绝对值不等式解法解得A=,由题意知集合B是函数的定义域,则,由实数运算的符号法则知不等式可化为,解得B=,利用数轴及补集的概念知=(-1,2],由数轴及交集的概念知(1,2],故选B.【考点】1.含绝对值不等式解法;2.分式不等式解法;3.集合的补集、交集运算.B等于().4.已知全集为R,集合A=,B=,则A∩∁RA.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2,或x>4}D.{x|0<x≤2,或x≥4}【答案】CB={x|x≥0}∩{x|x>4,或x<2}【解析】A={x|x≥0},B={x|2≤x≤4}.∴A∩∁R={x|0≤x<2,或x>4}.5.若集合,,则“”是“”的A.充要条件B.既不充分也不必要条件C.必要不充分条件D.充分不必要条件【答案】D【解析】【考点】集合的运算和充分条件、必要条件.6.设集合¢.(Ⅰ)实数的取值范围是;(Ⅱ)当时,若,则的最大值是.【答案】(Ⅰ);(Ⅱ)5.【解析】(Ⅰ)设,如左图所示,作出两函数图像.则集合表示在函数图像上方的点的集合,集合表示在函数图像下方的点的集合.要使,由图像易知,所以实数的取值范围是.(Ⅱ)作出表示的平面区域(如下方右图所示)设目标函数,易知当直线过点时,取得最大值为,所以的最大值是5.【考点】平面区域、线性规划、集合的基本运算7.已知全集U,A,B,那么 __.【答案】【解析】这是基本题型,考查集合的运算,,即B的补集由全集U中不属于B的元素所组成.两个集合的并集简单地讲就是把两个集合的元素合在一起,相同的只写一个即可.【考点】集合的运算.8. 1.集合A={x,B=,则=( )A.{0}B.{1}C.{0,1}D.{-1,0,1}【答案】B【解析】,,所以.【考点】1.指数不等式的解法;2.三角函数的函数值;3.集合的交集运算.9.设集合U={1,2,3,4,5,6,7},集合A={2,4,5},集合B={1,3,5,7},则=( ) A.{5}B.{2,4}C.{2,4,5}D.{2,4,6}【答案】B【解析】由已知得,,所以.【考点】集合间的基本运算10.已知集合,,则.【答案】【解析】,,所以.【考点】1、不等式的解法;2、集合的运算.11.若集合,集合,则()A.B.C.D.【答案】C【解析】因为,,,故选C.【考点】1.函数的定义域;2.集合的交集运算12.已知集合A={1,2,3,4},,则A∩B=" (" )A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A;【解析】依题意,,故.【考点】本题考查集合的表示以及集合的基本运算,考查学生对基本概念的理解.13.已知集合,,则 ( )A.{x|0<x<}B.{x|<x<1}C.{x|0<x<1}D.{x|1<x<2}【答案】B【解析】因为,,所以.【考点】1.集合的交集运算;2.一元二次不等式的解法;3.函数的值域.14.已知集合,则A.B.C.D.【答案】A【解析】因为A与B的交集,是集合A,B中的相同元素构成的集合,所以,选A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学单元练习题:集合与简易逻辑(1)一、选择题:1、下列四个集合中,是空集的是 A . B. C. { D. }33|{=+x x }01|{2=+-x x x }|2x x x <},,|),{(22R y x x y y x ∈-=2、集合M =,N =, 则 },412|{Z k k x x ∈+=},214|{Z k k x x ∈+=A.M=NB.M NC.M ND.M N=⊂⊃ Φ3、命题:“若,则”的逆否命题是12<x 11<<-x A.若,则 B.若,则12≥x 11-≤≥x x ,或11<<-x 12<x C.若,则 D.若,则11-<>x x,或12>x 11-≤≥x x ,或12≥x 4、一元二次方程有一个正根和一个负根的充分不必要条件是:2210,(0)axx a ++=≠A . B . C . D .0a <0a >1a <-1a >5、若函数的定义域为,的定义域为,则xx f -=11)(M )1ln()(x x g +=N =⋂N M A. B. C. D. {}1>x x {}1<x x {}11<<-x x φ6、对任意实数, 若不等式恒成立, 则实数的取值范围是x k x x >+++|1||2|k A k ≥1 B k >1 C k ≤1 D k <17、若不等式的解集为 312≥-xx A. B. C. D.)0,1[-),1[∞+-]1,(--∞),0(]1,(∞+--∞ 8、若对任意R,不等式≥ax 恒成立,则实数a 的取值范围是∈x x A. a <-1 B.≤1 C.<1 D.a ≥1a a 9、设I 为全集,是I 的三个非空子集,且,则下面论断正确的是321S S S 、、IS S S =⋃⋃321A .B .C .D .123I S S S ⋂⋃=Φ()ð123I I S S S ⊆⋂()ðð123(I I I S S S ⋂⋂=Φ)ððð123I I S S S ⊆⋃()ðð10、若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为 A .9 B .6 C .4 D .2 二、填空题: 11、.已知函数,则集合中含有元素的个数为))((b x a x f y ≤≤=}2|),{(}),(|),{(=⋂≤≤=x y x b x a x f y y x ;12、已知全集U ,A ,B ,那么 __;{}5,4,3,2,1={}3,1={}4,3,2==⋃)(B C A U 13、集合,,若,则实数的取值范围是 ;{}1≤-=a x x A {}0452≥+-=x x x B φ=B A a 14、已知是的充分条件而不是必要条件,是的必要条件,是的充分条件, 是的必要条件。
现有下列命题:p r s r q r q s ①是的充要条件; ②是的充分条件而不是必要条件;s q p q ③是的必要条件而不是充分条件; ④的必要条件而不是充分条件;r q s p ⌝⌝是⑤是的充分条件而不是必要条件; 则正确命题序号是 ;r s 15、设集合若B 是非空集合,且则实数a 的取值范围是{|29},{|123}A x x B x a x a =<<=+<<-()B A B ⊆16. 已知全集为R ,.125|log (3)2,|1,2R A x x B x A B x ⎧⎫⎧⎫=-≥-=≥⎨⎬⎨⎬+⎩⎭⎩⎭求ð17.已知p :方程x 2+m x +1=0有两个不等的负实根,q :方程4x 2+4(m -2)x +1=0无实根。
若p 或q 为真,p 且q 为假。
求实数m的取值范围。
18.已知集合A =,B =.{|(2)[(31)]0}x x x a --+<22{|0}(1)x ax x a -<-+⑴当a =2时,求A B ; ⑵求使B A 的实数a 的取值范围.⊆19. 已知不等式221(1)x m x ->- ⑴若对于所有实数,不等式恒成立,求的取值范围x m ⑵若对于[-2,2]不等式恒成立,求的取值范围m∈x 20.已知集合,,若,求实数的取值范{}2(,)|20,A x y x mx y x R =+-+=∈{}(,)|10,02B x y x y x =-+=≤≤A B φ≠ m 围.e1. 设集合,,则集合间的关系为( ){21,}A x x k k Z ==+∈{21,}B x x k k Z ==-∈A B 、A. B. C. D.以上都不对A B =A B ØB A Ø2. 如果,那么( ){}3P x x =≤A. B. C. D.1P ⊆-{}1P ∈-P ∈∅{}1P ⊆-3. 命题“若,则”的逆命题.否命题.逆否命题中,真命题的个数是( )0a >1a >A.0 B.1 C.2 D.34. 已知, 则是的( )条件.:1231,:(3)0p x q x x -<-<-<p q A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要5. 已知集合, , 且, 则的取值范围是( ).{}121A x a x a =+≤≤-{}25B x x =-≤≤A B ⊆a A. B. C. D.2a<3a <23a ≤≤3a ≤二、填空题:6. 已知集合(填、).{,}A x R x a a Z b Z =∈=+∈∈A ∈∉7. 写出命题“,使得”的否定 .x A ∃∈2230x x --=8.设集合,,则集合{}533x A x =<{}2430B x x x =-+≥{|P x x A x =∈且∉A }B ⋂= .三、解答题:本大题共3小题,满分40分,第9小题12分,第10.11小题各14分. 解答须写出文字说明.证明过程或演算步骤.9. 已知集合,集合,且,求的值.2{|30}A x xpx =+-=2{|0}B x x qx p =--={1}A B ⋂=-2p q +10.设全集,若,,{010,}Ux x x N +=<<∈{3}A B ⋂={1,5,7}U A C B ⋂=()U C A ⋂()U C B ,求、.{9}=A B 11. 已知,,且是的必要不充分条件,求实数的取值范围. 1:2123x p --≤-≤22:210(0)q x x m m -+-≤>p ⌝q ⌝m一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设P ,Q 为两个非空实数集合,定义集合P+Q={a+b|, a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q 中元素的个数是( )A.9 B.8 C.7 D.62、若集合M={y | y =},P={y | y =},则M∩P= ( )x-333-x A {y | y >1} B {y | y ≥1} C {y | y >0} D {y | y ≥0}3、下列四个集合中,是空集的是 ( )A . B . C. { D ..}33|{=+x x },,|),{(22R y x x y y x ∈-=}|2x x x <}01|{2=+-x x x 4、若关于x 的不等式<1的解集为{x|x <1或x > 2},则实数a 的值为( )1-x axA.1B.0C.2D.215、已知集合M={a 2, a+1,-3}, N={a-3, 2a-1, a 2+1}, 若M∩N={-3}, 则a 的值是 ( )A -1 B 0 C 1 D 26、设集合A={x| < 0},B={x||x-1|<a},则“a=1”是“A∩B≠”的( )11+-x x ∅A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7、50名学生参加跳远和铅球两项测试,跳远、铅球测试及格的分别有40人和31人,两项测试均不及格的有4人,两项测试全都及格的人数是( )A.35B.25C.28D.158、一元二次方程有一个正根和一个负根的充分不必要条件是:2210,(0)ax x a ++=≠( )A .B .C .D .0a<0a>1a <-1a >9、若二次不等式ax 2+bx+c > 0的解集是{x| < x <},那么不等式2cx 2-2bx-a < 0的解集是( )5141A.{x|x< -10或x > 1}B.{x|-< x <}C.{x|4< x <5}D.{x|-5< x < -4}415110、已知函数f(x)在(-∞,+∞)上为增函数,a,b∈R,对于命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”有下列结论:①此命题的逆命题为真命题 ②此命题的否命题为真命题③此命题的逆否命题为真命题 ④此命题的逆命题和否命题有且只有一个真命题其中正确结论的个数为( )A.1个B.2个C.3个D.4个11、对任意实数, 若不等式恒成立, 则实数的取值范围是 ( )x k x x >+++|1||2|k A k ≥1 B k <1 C k ≤1 D k >112、若集合A B, A C, B={0,1,2,3,4,7,8}, C={0,3,4,7,8}, 则满足条件的集合A 的个数为( )⊆⊆A. 16 B 15 C 32 D 31二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上。
13、已知全集U ,A ,B ,那么 ___{}5,4,3,2,1={}3,1={}4,3,2==⋃)(B C A U 14、若集合A={x∈R|ax 2+x+2=0,a∈R}至多含有一个元素,则a 的取值范围是 。
15、有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲、丙未获奖”,丙说:“是甲或乙获奖”,丁说:“是乙获奖”。
四位歌手的话有两句是对的,则是 歌手获奖三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或推演步骤。
17、设全集U=R, 集合A={x | x 2- x -6<0}, B={x || x |= y +2, y ∈A}, 求C U B 、A∩B、A∪B、C U (A∪B), (C U A)∩(C U B).。