概率论第一章小测试

合集下载

概率论测试题

概率论测试题

第一章测试题一、填空题()()11,P(AB)0,(AC)P(BC ,1.)416P A P P B P C ======则事件A,B,C 全不发生的概已知()率为()2.,(A)0.5,(B)0.6P(B|A)0.8A B P P B ===设事件满足,,则P (A )=()3.P =p =q =∅已知(A ),P (B )且AB ,则A 与B 恰有一个发生的概率为()4.====A B P 设事件,满足(A )0.4,P (B )0.3,P (A B )0.6,则P (AB )()5.r r ≤设有(3<r 365)个人,并设每人的生日在一年365天中的每一天的可能性为均等性,则此个人中恰有3个人生日相同(其他人的生日各不相同)的概率为()6.103张奖券中含有张中奖的奖券,现有三人各买1张,则恰有一人中奖的概率为()7.n n<N N 将个小球随机放到()个盒子中去,则某指定盒子中至多有1球的概率是()8.48081一袋中有两个黑球和若干个白球,现有放回地摸球次,若至少摸到一次白球的概率为,则袋中白球数是()9.a b k k+袋中有个白球,个黑球,现从中一次取球,则第次和第1次取得不同颜色球的概率是()111110.,,,5436A B C D 四人独立破译一份密码,已知每人能破译的概率分别为,,,,则密码最终能破译的概率为()11.若在区间(0,1)内任取两个数,则事件“两数之和小于1.2”的概率为()。

12.p n A A 设在一次试验中事件发生的概率为,现重复进行次独立试验,则事件至多发生一次的概率为()13.a h l l o o halloo 将,,,,,这六个字母任排一行,则拍成的概率为14.1042设件产品中有件不合格品,从中任取件,已知所取的2件中有1件是不合格品,则另一件也是不合格品的概率为()15.%%%设一批产品中的一、二、三等品各占60,30,10,先从中任取一件,结果不是三等品,则取到的是一等品的概率为()二、单项选择题1.,. =-=-==A B A P B 设为随机事件,则下列各式中正确的是()(AB )P(A)P (B ) B. P (A B )P (A )P (B )C. P (A )P (A-B ) D. P (AB )P(A)+P(B)2.. B.C. A A A 若用事件表示“甲产品畅销,乙产品滞销”,则事件表示()甲产品滞销,乙产品畅销甲、乙两产品均畅销甲产品滞销 D.甲产品滞销或乙产品畅销3.A. P -=A B A 设,为随机事件,则下列各式中不能恒成立的是()(A B )P(A)-P(AB) B. P(AB)=P(B)P(A|B),其中P (B )>0C. P(A B)=P(A)+P(B) D. P(A)+P()=14.A. P P 1. P =+AB C ≠∅≥≤≤若,则下列各式中错误的是()(AB )0 B.(AB )(A B )P (A )P (B ) D.P(A-B)P(A)5.. A,B B. =. = D. P(A-B)=P(A)AB A A B C AB ≠∅∅若,则()为对立事件6.,A. . B A A B P C ⊂若则()(A )<P(B) B. P(B-A)>0若不发生则也不发生 D. 若B 发生则A 必发生1117.. P min{P } B. A n {}()nnni i A P Ai Ai P Ai ==≤≠Ω≤≤∑∑下列关于概率的不等式,不正确的是()(AB )(A ),P (B )若,则(A )<1C. P()P(A1A2A ) D. P 8.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则()A. 先抽者有更大可能性抽到第一排座票B. 后抽者更可能获得第一排座票C. 各人抽签结果与抽签顺序无关D. 抽签结果受抽签顺序的制约12121212129.10052=≥设件产品中有件不合格产品,今从中依次取件。

概率论第一章历年试题答案

概率论第一章历年试题答案

第一章历年试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)( ABD.P (A ∪B )=1 答案:B2.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB ) B.P (A ) C.P (B ) D.1答案:D3.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( )A .10150B .10151C .10050D .10051答案:A4.设事件A 、B 满足P (A B )=0.2,P (A )=0.6,则P (AB )=( ) A .0.12 B .0.4 C .0.6 D .0.8答案:B5.设A 与B 互为对立事件,且P(A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|( B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=1 答案:A6.设A,B为两个随机事件,且P (AB)>0,则P(A|AB)=()A.P(A)B.P(AB)C.P(A|B)D.1答案:D7.设事件A与B相互独立,且P(A)>0,P(B)>0,则下列等式成立的是()φA.AB=B.P(A B)=P(A)P(B)C.P(B)=1-P(A)D.P(B |A)=0答案:B8.设A、B、C为三事件,则事件A ()BC=A.A C BB.A B CC.( A B )CD.( A B )C答案:A9.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157答案:D10.设随机事件A与B互不相容,P(A)=0.2,P(B)=0.4,则P(B|A)=()A.0 B.0.2C.0.4 D.1答案:A11.设事件A,B互不相容,已知P(A)=0.4,P(B)=0.5,则P(A B)=()A.0.1 B.0.4C.0.9 D.1答案:A12.已知事件A,B相互独立,且P(A)>0,P(B)>0,则下列等式成立的是()B)=P(A)+P(B)A.P(AB.P(A B)=1-P(A)P(B)B)=P(A)P(B)C.P(AB)=1D.P(A答案;B13.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为( ) A .0.002 B .0.04 C .0.08 D .0.104答案:D14.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件B .A 与A 互不相容C .Ω=⋃A AD .A A = 答案:C15.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6 D .0.8答案:D16.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.5答案:A17.设A、B为任意两个事件,则有()A.(A∪B)-B=AB.(A-B)∪B=A⊂AC.(A∪B)-B⊂AD.(A-B)∪B答案:C18.设A,B为两个互不相容事件,则下列各式错误..的是()A.P(AB)=0B.P(A∪B)=P(A)+P(B)C.P(AB)=P(A)P(B)D.P(B-A)=P(B)答案;C19.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则 P (A|B )=( )A .151B .51C .154D .31 答案:D20.设事件A与B互不相容,且P(A)>0,P(B) >0,则有()A.P(AB)=lB.P(A)=1-P(B)C.P(AB)=P(A)P(B)D.P(A∪B)=1答案;A21.设A、B相互独立,且P(A)>0,P(B)>0,则下列等式成立的是()A.P(AB)=0B.P(A-B)=P(A)P(B)C.P(A)+P(B)=1D.P(A|B)=0答案:B22.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为()A.0.125 B.0.25C.0.375 D.0.50答案:C23.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A D .21A A 答案:B24.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )答案:D25.已知P(A)=0.4,P(B)=0.5,且 B,则P(A|B)=()AA.0 B.0.4C.0.8 D.1答案:C26.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20 B.0.30C.0.38 D.0.57答案:D二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。

概率论习题试题集

概率论习题试题集

11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。

12. 某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。

13. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随意将这些油漆发给顾客。

问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少?14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求:(1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。

15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。

16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次;(3)三个数字中8至少出现一次;(4)三个数字之和等于6。

(利用事件的关系求随机事件的概率)17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少?18. 甲、乙两人先后从52张牌中各抽取13张,(1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率;(2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。

19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。

试求下列事件的概率:(1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。

20.某人外出旅游两天,据预报,第一天下雨的概率为0.6,第二天下雨的概率为0.3,两天都下雨的概率为0.1,试求:(1)至少有一天下雨的概率;(2)两天都不下雨的概率;(3)至少有一天不下雨的概率。

概率论讲义_带作业

概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

概率论习题一

概率论习题一

第一章(A)A、AB互斥B、A、B互斥C A、B互斥D A、B互斥2、以A表示事件“甲种产品畅销,乙种产品滞销”,则A表示(C)A甲种产品滞销,乙种产品畅销B、甲乙两种产品均畅销C甲产品滞销或乙产品畅销D甲乙两种产品均滞销3、设A、B为两个事件,若AB,则一定有(B)A P(AB)=P(B)B、P(AB)=RB)CP(B|A)=P(B)D、P(A|B)=P(B)4、设AB为两个随机事件,则p(AB),P(AB),P(A)+P(B)由小到大的顺序是(A) AP(AB)<p(AB)<P(A)+P(B)BP(A)+P(B)<P(AB)<p(AB)Cp(AB»<P(AB)<P(A)+P(B)DP(AB)<P(A)+P(B)<p(AB)5、设AB为两个事件,且0<P(A)<1,RB)>0,P(B|A)=P(B|A),则必有(C)A、P(A|B)=P(A|B)RP(A|B)乎P(A|BCP(A|B)=P(A)D、P(A|B)=P(B)6、设A、B、C为三个相互独立的随机事件,且有0<P(C)<1,则下列事件不相互独立的是(A)A AC与CB AB与C C A B与CD A B与C7、在一次实验中,事件A发生的概率为p(0<p<1),进行n次独立重复试验,则事件A 之多发生一次的概率为(D)A1p n B p n C11P N D1p n np1p n18、对飞机连续射击三次,每次发射一枚炮弹,事件A(i=1,2,3)表示第i次射击击中飞机,则“至少有一次击中飞机”可表示为A,A2A3,“至多击中一次”表示为A〔A2A3A,2A3A1A2A3AA2A39、设A、B为随机事件,则ABAB=B10、若事件A、B互不相容,则PAB=P(A),PBA=RB),若事件A、B相互独立,则PAB=P(A)P(B),PBA=P(B)P(A)11、已知P(A)=0.5,P(B)=0.4,P(B|A)=0.6,则PAB=0.6,PAB0.75.12、已知P(A)=0.5,P(B)=0.4,若A、B相互独立,则PAB=0.7.13、根据调查所知,一个城镇居民三口之家每年至少用600元买粮食的概率是0.5,至少用4000元买副食的概率是0.64,至少用600元买粮食同时用4000元买副食的概率为0.27,则一个三口之家至少用600元买粮食或至少用4000元买副食的概率为。

概率论第一、二章测试题答案

概率论第一、二章测试题答案

概率论第一、二章测试题(答案)一、选择题1.选B 。

因为A 与B 相互独立,故A 与B 也相互独立。

根据独立的定义(P(AB)=P(A)P(B)),所以有P(A B )=P(A)P(B )。

2.选B 。

因为P (A B )= P (A )- P (AB )⇒ P (AB )= P (A )-P (A B )=0.6-0.2=0.43.选A 。

因为P (AB )=P (A )P (B ),根据两个随机事件的相互独立的定义可知A 正确。

4 选B .A.P (A )=1-P (B )(正确) B.P (AB )=P (A )P (B )(因为互为逆事件,故AB=φ,又P (A )>0,P (B )>0;则P (AB )=0≠ P (A )P (B ),所以是错误的)C.P 1)(=AB (正确)(因为AB=φ)D.P (A ∪B )=1(正确)5.选B 。

与正态分布的概率密度公式f (x)=222)(21σμσπ--x e 相比较,可得4,12=-=σμ6.选C 。

因为根据正态分布的线性组合(Y=aX+b )也为正态分布,且服从N (22,σμa b a +), 现X~N (1,4),Y=2X+1,可知1,2,4,12====b a σμ。

代入N (22,σμa b a +)即可。

7.选A 。

用对立事件求解。

设A={3次独立重复试验中至少成功一次},则A ={3次独立重复试验中没有一次成功},在一次试验中成功的概率为p ,则不成功的概率为1-p 。

故P (A )=1- P (A )=3)1(1p --。

8.选D 。

由分布函数的定义,F (3)=P { X 3≤ }= P { X=0 }+ P { X=1 }+ P { X=2 }+ P { X=3 }=19.选C 。

因为P{|X-μ|<σ}= P{1<-σμX }=1)1(2-Φ为常数。

10.选C 。

因为一维随机变量的均匀分布的概率实际上是长度,但是一定要计算落入随机变量X 所在区间的长度 。

《概率论与数理统计》第一章习题

《概率论与数理统计》第一章习题

第1章 概率论的基本概念---随机事件与样本空间、概率、古典概型和几何概型系 班姓名 学号1、写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和 Ω=(2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω=(3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2 个次品就停止,或检查4个产品就停止检查,记录检查的结果。

用“0”表示次品,用“1”表示正品。

Ω=(4)在单位圆内任意取一点,记录它的坐标 Ω=(5)将一尺长的木棍折成三段,观察各段的长度 Ω=2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系(1)δ<-||a x 与δ≥-||a x (2)20>x 与20≤x (3)20>x 与18<x (4)20>x 与22≤x (5)20个产品全是合格品与20个产品中只有一个废品 (6)20个产品全是合格品与20个产品中至少有一个废品3、设A,B,C 为三事件,用A,B,C 的运算关系表示下列各事件(1)A 发生,B 与C 不发生 (2)A 与B 都发生,而C 不发生 (3)A,B,C 中至少有一个发生 (4)A,B,C 都发生(5)A,B,C 都不发生 (6)A,B,C 中不多于一个发生 (7)A,B,C 中不多于两个发生 (8)A,B,C 中至少有两个发生4、盒内装有10个球,分别编有1- 10的号码,现从中任取一球,设事件A 表示“取 到的球的号码为偶数”,事件B 表示“取到的球的号码为奇数”,事件C 表示“取 到的球的号码小于5”,试说明下列运算分别表示什么事件.(1)B A (2)AB (3)C (4)C A (5)AC (6) AC(7)C B (8)BC 5、指出下列命题中哪些成立,哪些不成立.(1)B B A B A =(2)AB AB =(3)C B A C B A =(4)φ=))((B A AB(5)若B A ⊂,则AB A = (6)若φ=AB ,且A C ⊂,则φ=BC(7)若B A ⊂,则A B ⊂(8)若A B ⊂,则A B A =6、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品” (1,2,3,4)i =,用1234,,,A A A A 的运算关系表达下列事件.(1)没有一个产品是次品;(2)至少有一个产品是次品; (3)只有一个产品是次品; (4)至少有三个产品不是次品7、 设,,E F G 是三个随机事件,试利用事件的运算性质化简下列各式: (1) ()()E F E F (2) ()()()E F E F E F (3)()()EF F G解 :(1) (2) (3)8、 设事件,,A B C 分别表示开关,,a b c 闭合,D 表示灯亮,则可用事件,,A B C 表示: (1) D = (2) D =9、 (1)设事件,A B 的概率分别为51与41,且A 与B 互斥,则()P AB = . (2)一个盒中有8只红球,3只白球,9只蓝球 ,如果随机地无放回地摸3只 球 ,则取到的3 只 都 是 红 球 的 事 件 的 概 率 等 于 .(3) 一 袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果 从每只袋中各摸一只球 ,则摸到的一只是白球,一只是黑球的事件的概 率 等于 .(4) 设123,,A A A 是随机试验E 的三个相互独立的事件,已知12(),(),P A P A αβ==3()P A γ=,则123,,A A A 至少有一个发生的概率是(5) 一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地摸3 只球,则摸到的没有一只是白球的事件的概率等于 . (6)设,,A B C 是随机事件,,A C 互不相容,11(),(),23P AB P C ==则()P AB C = . (7)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 . (8)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为 . 10、若,A B 为任意两个随机事件,则: ( )(A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C) ()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB11、设,A B 是两事件且()0.6,()0.7P A P B ==,问(1)在什么条件下()P AB 取到最大值,最大值是多少?(2)在什么条件下()P AB 取到最小值,最小值是多少?12、设,,A B C 是三事件,且11()()(),()()0,()48P A P B P C P AB P BC P AC ======, 求,,A B C 至少有一个发生的概率.13、在1500个产品中有400个次品,1100个正品,任取200个,求(1)恰有90个次品的概率; (2)至少有2个次品的概率.14、两射手同时射击同一目标,甲击中的概率为0.9,乙击中的概率为0.8,两射手同时击中的概率为0.72,二人各击一枪,只要有一人击中即认为“中”的,求“中”的概率.15、8封信随机地投入8个信箱(有的信箱可能没有信),问每个信箱恰有一封信的概率是多少?16、房间里有4个人,问至少有两个人的生日在同一个月的概率是多少?17、将3个球随机地放入4个杯子中去,问杯子中球的最大个数分别为1,2,3的概率各是多少?18、设一个质点等可能地落在xoy平面上的三角形域D内 ( 其中D是由==+=所围成的 ) , 设事件A为:质点落在直线1y=的下x y x y0,0,2P A侧,求().第1章 概率论的基本概念---条件概率、事件的独立性系 班姓名 学号1、一批产品共100个,其中有次品5个,每次从中任取一个,取后不放回, 设(1,2,3.)i A i =表示第i 次抽到的是次品,求:()21P A A = ()21P A A = ()21P A A =()21P A A =()312P A A A =()312P A A A =2、市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率为95%,乙厂的合格率是80%。

概率论与数理统计自测题

概率论与数理统计自测题

概率论与数理统计自测题(第一章)一、选择题(毎小题3分,共15分):1. 在某学校学生中任选一名学生,设事件A 表示“选出的学生是男生”,B 表示“选出的学生是三年级学生”,C 表示“选出的学生是篮球运动员”,则ABC 的含义是( ).(A )选出的学生是三年级男生;(B )选出的学生是三年级男子篮球运动员; (C )选出的学生是男子篮球运动员; (D )选出的学生是三年级篮球运动员;2. 在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ).(A )C B C A(B )C AB (C )BC A C B A C AB(D )C B A3.甲乙两人下棋,甲胜的概率为0.6,乙胜的概率为0.4,设A 为甲胜,B 为乙胜,则甲胜乙输的概率为( ).(A )6.06.0⨯ (B )4.06.06.0⨯- (C )4.06.0- (D )0.6 4.下列正确的是( ).(A )若)()(B P A P ≥,则A B ⊆ (B )若B A ⊂,则)()(B P A P ≥(C )若)()(AB P A P =,则B A ⊆ (D )若10次试验中A 发生了2次,则2.0)(=A P 5.设A 、B 互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误的是( ).(A )0)|(=A B P (B )0)|(=B A P (C )0)(=AB P(D )1)(=B A P二、填空题(毎小题3分, 共15分):1.A 、B 、C 代表三件事,事件“A 、B 、C 至少有二个发生”可表示为 . 2.已知)()(),()()(,161)(B A P B A P B P A P AB P B A P ===,则)(A P = . 3.A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=-)(B A P . 4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为7.0,5.0,4.0,则在三次射击中恰有一次击中目标的概率为 .5.设A 、B 、C 两两相互独立,满足21)()()(,<==Φ=C P B P A P ABC ,且已知169)(=++C B A P ,则=)(A P . 三、判断题(正确的打“√”,错误的打“⨯”,毎小题2分,共10分):1. 设A 、B 为任意两个互不相容事件,则对任何事件AC C ,和BC 也互不相容. [ ]2.概率为零的事件是不可能事件.[ ]3. 设A 、B 为任意两个事件,则)()()(AB P A P AB A P -=- . [ ]4. 设A 表示事件“男足球运动员”,则对立事件A 表示“女足球运动员” .[ ]5. 设0)(=A P ,且B 为任一事件,则A 与B 互不相容,且相互独立 .[ ] 四、(6分)从1,1,2,3,3,3,4,4,5,6这10个数中随机取6个数,求取到的最大数是4的概率.五、(6分)3人独立地去破译一个密码,他们能破译的概率分别为41,31,51若让他们共同破译的概率是多少?六、(10分)已知一批产品的次品率为4%,今有一种简化的检验方法,检验时正品被误认为是次品的概率为0.02,而次品被误认为是正品的概率为0.05,求通过这种检验认为是正品的一个产品确实是正品的概率.七、(10分)假设有3箱同种型号零件,里面分别装有50件,30件和40件,而一等品分别有20件,12件及24件.现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回),试求先取出的零件是一等品的概率;并计算两次都取出一等品的概率. 八、(10分)设21)(,31)(==B P A P . 1. 若Φ=AB ,求)(A B P ;2. 若B A ⊂,求)(A B P ;3. 若81)(=AB P ,求)(A B P . 九、(10分)一批产品10件,出厂时经两道检验,第一道检验质量,随机取2件进行测试,若合格,则进入第二道检验,否则认为这批产品不合格,不准出厂;第二道检验包装,随机取1件,若合格,则认为包装合格,准予出厂.两道检验中,1件合格品被认为不合格的概率为0.05,一件不合格品被认为合格的概率为0.01,已知这批产品中质量和包装均有2件不合格,求这批产品能出厂的概率.十、(8分)设1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ,试证事件A 与B 相互独立.概率论与数理统计自测题 (第二章)一、选择题(每小题3分, 共15分):1.设随机变量X 的分布律为),2,1(}{ ===k b k X P k λ,则().(A )10<<λ,且11--=λb (B )10<<λ,且1-=λb (C )10<<λ,且11-=-λb(D )10<<λ,且11-+=λb2.设随机变量X 的密度函数为xx Ae x f 22)(+-=,则( ).(A )πe(B )πe 1 (C )πe 1(D )πe 23.设随机变量X 的概率密度和分布函数分别是)(x f 和)(x F ,且)()(x f x f -=,则对任意实数a ,有=-)(a F ().(A ))(21a F - (B ))(21a F + (C )1)(2-a F (D ))(1a F -4.设相互独立的随机变量Y X ,具有同一分布,且都服从区间[0,1]上的均匀分布,则在区间或区域上服从均匀分布的随机变量是().(A )(Y X ,)(B )Y X +(C )Y X -(D )2X5.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某随机变量的分布函数,在下列给定的各组数值中应取( ).(A )52,53-==b a (B )32,32==b a (C )23,21=-=b a(D )23,21-==b a二、填空题(每小题3分, 共15分): 1.二维随机变量(Y X ,)的联合分布律为:则α与β应满足的条件是 ,当Y X ,相互独立时,α= .2.二维随机变量(Y X ,)的联合密度为:])()[(212122221121),(σμσμσπσ-+--=y x ey x f ,则X的边缘概率密度为 .3.连续型随机变量X 的概率密度为其它10,0,)(2<<⎩⎨⎧=x kx x f ,则常数=k .4.设)02.0,10(~2N X ,已知Φ(2.5)=0.9938,则=<≤}05.1095.9{X P . 5.设Y X ,是相互独立的随机变量,),3(~),,2(~22σσ-N Y N X ,且95.0}7654.8|12{|=≤-+Y X P ,则σ= .三、(12分)随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=4||,04||,cos )(ππx x x A x f ,试求(1)系数A ;(2)X 的分布函数;(3)X 落在⎪⎭⎫⎝⎛6,0π内的概率. 四、(12分)假设一设备开机后无故障工作的时间X 服从参数为5=θ的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h 便关机,试求设备每次开机无故障工作的时间Y 的分布函数.五、(10分)随机变量X 的概率密度为⎩⎨⎧≤>=-0,00)(,x x e x f x ;求2X Y =的概率密度.六、(12分)随机变量X 和Y 均服从区间[0,1]上的均匀分布且相互独立.七、(12分)已知随机变量Y X 与的分布律为:且已知1}0{==XY P .(1)求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?八、(12分)设Y X ,是两个相互独立的随机变量,其概率密度分别为:⎩⎨⎧≤≤=其它,010,1)(x x f x ⎩⎨⎧≤>=-0,00,)(y y e y f y Y求随机变量Y X Z +=的概率密度函数.概率论与数理统计自测题(第三章)一、选择题(毎小题3分, 共6分):1. 对目标进行3次独立射击,每次射击的命中率相同,如果击中次数的方差为0.72,则每次射击的命中率等于( ).(A )0.1 ( B ) 0.2 ( C ) 0.3 ( D ) 0.42.若)()(Y X D Y X D +=-,则( ).(A )X 与Y 独立(B ))()(Y D X D = (C )0)(=+Y X D(D )X 与Y 不相关二、判断题(每小题3分, 共12分): 1.设随机变量X 的概率密度为+∞<<-∞+=x x x f ,)1(1)(2π,则)(X E =0.( ) 2.设),0(~2σN X ,则对任何实数a 均有:),(~22a a N a X ++σ.()3.设),(~2σμN X ,Y 从参数为λ的指数分布,则2222)(σμ+=+Y X E .( ) 4.设)()()(Y E X E XY E =,则X 与Y 独立.( )三、填空题(每空2分, 共22分):1则)(X E = ,)(X D = ,)(Y E = ,)(Y D = ,),cov(Y X = ,=XY ρ .2.设连续型随机变量X 概率密度为⎩⎨⎧≤≤+=其它,010,2)(x ax x f ,且31)(=X E ,则常数=a .3.设随机变量X 的数学期望5)(,.75)(==X D X E ,且05.0}|75{|≤≥-k X P ,则≥k .4.对圆的直径作近似测量,测量近似值X 均匀分布于区间],0[a 内,则圆面积的数学期望是 .5.设随机变量X 与Y 相互独立,且)1,0(~),,2,1(~N Y N X .令32++-=X Y Z ,则=)(Z D .6.设随机变量(Y X ,)在区域}||,10|),{(x y x y x D <<<=内服从均匀分布,则=++)253(Y X E .四、(10分)设随机变量(Y X ,)的概率密度为:⎪⎩⎪⎨⎧≤≤≤≤+=其它,010,20),(31),(y x y x y x f求数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X 及相关系数XY ρ.五、(10分)设有甲、乙两种投资证券,其收益分别为随机变量21,X X ,已知均值分别为21,μμ,风险分别为21,σσ,相关系数为ρ,现有资金总额为C (设为1个单位).怎样组合资金才可使风险最小?六、(10分)设随机变量X 的分布密度为⎩⎨⎧≤≤-=其它,010),1()(x x ax x f ,求)(),(,X D X E a 和})(2|)({|X D X E X P <-.七、(10分)设随机变量X 与Y 相互独立,且均服从密度为⎩⎨⎧≤>=-0)(x x e x f x,的分布,求(1)X +Y 的分布密度;(2)求)(XY E .八、(10分)设随机变量X 服从泊松分布,6)(=X E ,证明:31}93{≥<<X P .九、(10分)X 为连续型随机变量,概率密度满足:当],[b a x ∉时,0)(=x f ,证明:2)2()(,)(a b X D b X E a -≤≤≤.《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

考研数学概率论和数理统计第一章测试题(卷)(含答案解析)

考研数学概率论和数理统计第一章测试题(卷)(含答案解析)

考研数学概率论与数理统计第一章测试题(含答案)一、单项选择题(每小题2分,共20分)1.对于任意二事件A 和B ,与B BA不等价...的是()(A)B A (B)A B(C)BA (D)BA 2.设事件A 与事件B 互不相容,则()(A)0)(B A P (B))()()(B P A P AB P (C))(1)(B P A P (D)1)(B AP 3.对于任意二事件A 和B ,则以下选项必然成立的是()(A)若AB ,则B A,一定独立 (B)若AB ,则B A,有可能独立(C)若AB ,则B A,一定独立 (D)若AB,则B A,一定不独立4.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是()(A)A 与B 互不相容(B)A 与B 相容(C))()()(B P A P AB P (D))()(A P B AP 5.设B A,为任意两个事件,且B A ,0)(B P ,则下列选项必然成立的是()(A))|()(B A P A P (B))|()(B A P A P (C))|()(B A P A P (D))|()(B A P A P 6.设B A,为两个随机事件,且0)(B P ,1)|(B A P ,则必有()(A))()(A P B A P (B))()(B P B A P (C))()(A P B A P (D))()(B P B AP 7.已知1)(0B P ,且)|()|(]|)[(2121B A P B A P B A A P ,则下列选项成立的是()(A))|()|(]|)[(2121B A P B A P B A A P (B))()()(2121B A P B A P B A BA P (C))|()|()(2121B A P B A P A A P (D))|()()|()()(2211A B P A P A B P A P B P 8.将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件()(A)321,,A A A 相互独立 (B)432,,A A A 相互独立(C)321,,A A A 两两独立 (D)432,,A A A 两两独立9.某人向同一目标独立重复射击,每次射击命中目标的概率为p (10p ),则此人第4射击恰好第2次命中目标的概率为()(A)2)1(3p p (B)2)1(6p p (C)22)1(3p p (D)22)1(6p p 10.设C B A ,,是三个相互独立的随机事件,且1)()(0C P AC P ,则在下列给定的四对事件中不.相互独立的是()(A)B A与C (B)AC 与C (C)B A与C (D)AB 与C二、填空题(每小题2分,共14分)1.“C B A ,,三个事件中至少有两个发生”,这一事件可以表示为___2.若事件B A ,满足1BP A P ,则A 与B 一定____________3.在区间)1,0(中随机地取两个数,则两数之差的绝对值小于21的概率为4.在一次试验中,事件A 发生的概率为p 。

概率论基础-李贤平-试题+答案-期末复习

概率论基础-李贤平-试题+答案-期末复习

C. A 与B 互不相容A+B 是必然事件第一章随机事件及其概率一、选择题:1设A 、B C 是三个事件,与事件 A 互斥的事件是: (A . AB AC BC. ABC D2•设B A 贝UA . P(AI B)=1-P (A )B . C. P(B|A) = P(B) D3.设 A B 是两个事件,P (A ) > 0 , P ( B ) > 0,当下面的条件 定独立 A . P(AI B) P(A)P(B) B . P (A|B ) =0 C. P (A|B):=P (B ) D.P (A|B ) =P(A)4.设 P (A ) =a , P ( B ) = b, P (A+B )= c,贝U P(AB)为 A. a-bB .c-bC. a(1-b) D.b-a 5.设事件A 与B 的概率大于零,且 A 与B 为对立事件,则不成立的是 A . A 与B 互不相容B . A 与B 相互独立 C. A 与B 互不独立 D . A 与B 互不相容6.设A 与B 为两个事件,P (A )M P( B ) > 0,且A B ,则一定成立的关系式是( )A . P (A|B ) =1 B. P(B|A)=1C. p(B|A) 1D . p(A| B) 17.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A . (AU B)B A B . (AU B) B A C. (AUB) B A D . (A B) U B A &设事件A 与B 互不相容,则有( )A . P (AB ) =p (A ) P (B ) B . P (AB =0.A(B C) .ABCP(B A) P(B) (A).P(A|B) P(A)成立时,A 与B9 .设事件A与B独立,则有( )A . P(AB) =p ( A) P ( B)B .P (A+B) =P (A) +P (B)C.P (AB) =0D.P (A+B) =1( )10.对任意两事件A与B, 一定成立的等式是A . P(AB) =p ( A) P ( B)B .P (A+B) =P (A) +P (B)C.P (A|B) =P (A)D.P (AB =P (A) P ( B|A)11.若A、B是两个任意事件,且P (AB) =0,贝U( )A . A与B互斥B.AB是不可能事件C.P (A) =0 或P ( B) =0D.AB未必是不可能事件12.若事件A、B满足A B,则( )A . A与B同时发生B.A发生时则B必发生C.B发生时则A必发生D.A不发生则B总不发生13.设A、B为任意两个事件,则P (A-B)等于( )A. P(B) P(AB) B . P(A) P(B) P(AB)C. P(A) P(AB) D . P(A) P(B) P(AB)14 .设A、B C为二事件,则AB U BC U AC表示( )A . A、B、C至少发生-个B . A、B、C至少发生两个C.A、B、C至多发生两个 D . A、B、C至多发生一个15.设0 < P (A) < 1.0 <P (B)< 1. P(A|B)+P(A B)=1 .则下列各式正确的是( )A .A与B互不相容B A与B相互独立C.A与B相互对立D A与B互不独立16 .设随机实际A B、C两两互斥,且P (A) =, P ( B) =, P( C)=,则P( AU B C)( ).A. B .C. D .17掷两枚均匀硬币,出现一正一反的概率为( )A. 1/2 B . 1/3C. 1/4 D . 3/418 .一种零件的加工由两道工序组成,第一道工序的废品率为p1,第二道工序的废品率为p2,则该零件加工的成品率为A. 1 p1p2 B . 1 p1 p2C. 1 5 P2 P1P2 D . 2 P1 P2p(0 p 1),则在3次重复试验中至少失败一次概率为19 .每次试验的成功率为A. (1 p)2B. 1 p 2C . 3(1 p)D •以上都不对20 .射击3次,事件A i 表示第i 次命中目标(i =).则表示至少命中一次的是 ( )S A 1A 2 A 3C. A , A 2 A 3 AA 2A 3 A i A 2A 3 D .、填空题:12.已知 P (A ) = P ( B ) =P (C ) =1/4,P (AB )= 0,P (AC ) =P (BC ) =1/6,贝 U A 、 BC 至少发生一个的概率为13.已知 P (A ) = P ( B ) =P (C ) =1/4,P (AB )=0, P (AC ) =P (BC )=1/6,贝 U A 、BC 全不发生的一个概率为14.设A 、B 为两事件,P (A )=, P (B ) =,P(B A) =,则 P (A+B )=15.设A 、B 为两事件,P (A )=, P (B ) =,P(B A)=,则 P (A+B )=11.若A 、B 为两个事件,且 P ( B ) B)=A . A , U A 2 U AAl A 2 A 31. 2. 若A 、若B 为两个相互独立的事件,且 B 为两个相互独立的事件,且3. 若A 、B 为两个相互独立的事件,且 4. 若A 、B 为两个相互独立的事件,且 5. 若A 、B 为两个相互独立的事件,且 (A): =,P ( B )= =,贝U P (AB )= .(A): =,P ( B )= =,贝U P (A+B )= . (A): =,P ( B )= =,则 P(AI B)= .(A): =,P ( B )= =,则 P(AB)=. (A): =,P ( B )= =,则 P(A B)= . 6. 若A 、 7. 若A 、 8. 若A 、 9. 若A 、 10.若A 、B 为两个互不相容事件,且P (A )= ,P ( B )= ,则 P(AI B)=. 且 P (A )= ,P ( B )= ,贝U P(AUB)= .且 P (A )= ,P ( B )= ,则 P(AB)= . 且P (A )= ,P ( B )= ,则 P(B A)= . 且P (A ) =,P (B )=,贝UP(BA)=.=,P(AB)=,贝y P(AP P P P P B 为两个互不相容事件, B 为两个互不相容事件, B 为两个互不相容事件, B 为两个互不相容事件,19.若A 与B 互斥,则P (AU B ) = 116. 设A 、B 为两事件, P (A ) =,P (B ) =,A B = =,贝U P (A+B ) 17. 设A 、 B 为两事件, P (A ) =,P (B ) =,A B = =,贝U P (AB )18.设A 、 B 为两事件,P (A ) =,P (B )=,A B ==,贝U P(AB)=19 设A 、 B 为两事件, P (A )= ,P (B )=,A B = ,则 P(AB) = 20. 设A 、B 为两事件,P (A ) =,P (B )=,AB=「则 P(A B)三、判断题:1. 2. 3, 4. 5. 6. 概率为零的事件是不可能事件。

概率论与数理统计——第一章练习题

概率论与数理统计——第一章练习题

第一章 随机事件与概率(一)随机事件知识点1、称试验E 的样本空间的子集为随机事件,用A 、B 、C …表示。

事件A 的元素是样本点,它在一次试验中,可能出现,也可能不出现。

A 中的某个样本点出现了,事件A 发生,否则,A 不发生。

因此,在一次试验中,可能发生也可能不发生的事情,就是随机事件。

样本空间S 有两个特殊的子集;S 自身和空集φ。

S 含所有的样本点,每次试验,必然发生;φ不含样本点,每次试验一定不发生。

在一定条件下,每次试验一定发生的事情,称为必然事件。

每次试验一定不发生的事情,称为不可能事件。

必然事件S ,不可能事件φ是事先就能明确是否会发生,属于确定性现象,但在概率统计中,为了研究问题的需要,仍将其作为特殊的随机事件处理,使得事件间有着完整的关系,S A ⊂⊂φ。

此外,在样本空间的子集中,只含一个样本点的事件,称为基本事件。

样本点的个数超过一个的事件,称为复合事件。

2、事件之间的关系和运算由于事件是样本点的集合,因此,事件之间的关系和运算可借助集合之间的关系与运算来定义。

其运算规律也同集合间的运算规律。

(1)事件的包含与相等若事件A 发生必然导致事件B 发生,则称A 包含于B (或B 包含A ),记B A ⊂(或A B ⊃)。

若B A ⊂且A B ⊃,则称事件A 与事件B 相等,记B A =。

(2)事件的和事件A 与事件B 至少有一个发生的事件,记作B A ,称为A 与B 的和事件,有{}B e A e e B A ∈∈=或 。

同样地有限个事件n A A A ,,,21 至少有一个发生的事件,记作 ni i A 1=,称为有限个事件的和事件。

可列多个事件 ,,,,21i A A A 至少有一个发生的事件,记作 ∞=1i i A ,称为可列多个事件的和事件。

(3)事件的积事件A 与事件B 同时发生的事件,记作B A (或AB ),称为A 与B 的积事件,{}B e A e e AB ∈∈=且 类似地,有限个多个事件n A A A ,,,21 同时发生的事件,记作 ni i A 1=。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题一、填空题(每题3分)1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生 。

2)A 、B 、C 中恰有一个发生 。

3)A 、B 、C 不多于一个发生 。

2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 袋中有编号为1,2,3,4,5的5个彩球,从中取出3个球,则取到最大号码为4的概率为 。

5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 。

二、选择题(每题3分)1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 。

(A )P(A ∪B) = P(A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 。

(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/54. 对于事件A ,B ,下列命题正确的是(A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、解答题(每题10分)1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

概率论课本作业第一章

概率论课本作业第一章

第一章1、一般事件(复合事件):由不止一个样本点做成的事件。

以下哪些试验是随机试验。

(1)抛掷一枚硬币,观察出现的是正面在上还是反面在上;(2)记录某电话传呼台在一分钟内接到的呼叫次数;(3)从一大批元件中任意取出一个,测试它的寿命;(4)观察一桶汽油遇到明火时的情形;(5)记录一门炮向某一目标射击的弹着点位置。

:(1)(2)(3)(5)是随机试验,(4)不是随机试验。

2、写出下列随机试验的样本空间。

(1)抛掷一颗骰子,观察出现的点数;(2)抛掷二次硬币,观察出现的结果;(3)记录某汽车站在5分钟内到达的乘客数;(4)从一批灯泡中任取一只,测试其寿命;(5)记录一门炮向其目标射击的弹落点;(6)观察一次地震的震源;:(1){1,2,3,4,5};(2){(正,正),(正,反),(反,正),(反,反)};(3){0,1,2,3,4...}(4),其中x表示灯泡的寿命;(5),其中x、y分别表示弹着点的横坐标、纵坐标;(6),其中x、y、z分别表示震源的经度、纬度、离地面的深度。

3、抛掷一个骰子,观察出现的点数。

用A表示“出现的点数为奇数”,B表示“出现的点数大于4”,C表示“出现的点数为3”,D表示“出现的点数大于6”,E表示“出现的点数不为负数”,(1)写出实验的样本空间;(2)用样本点表示事件A、B、C、D、E;(3)指出事件A、B、C、D、E何为基本事件,何为必然事件,何为不可能事件。

:(1){1,2,3,4};(2){1,3,5},{5,6},{3},,{1,2,3,4,5,6};(3)C为基本事件,E为必然事件,D为不可能事件。

1.先抛掷一枚硬币,若出现正面(记为Z),则再掷一颗骰子,试验停止;若出现反面(记为F),则再抛一次硬币,试验停止,请写出样本空间。

1.答案:2.10个产品,其中2个次品,现从中任取3个产品,用A表示“取到的3个中恰有一个次品”,B表示“取到的3个中没有次品”,C表示“取到的3个都是次品”,D表示“取到的3个中次品数小于3”。

概率论与数理统计第一单元随机事件与概率测试

概率论与数理统计第一单元随机事件与概率测试

概率论与数理统计第⼀单元随机事件与概率测试概率论与数理统计第⼀单元测试学号______班级______姓名________成绩______⼀、选择题(每⼩题3分,共30分)1.某⼈连续抛掷⼀枚均匀的硬币240000次,则正⾯向上的次数在下列数据中最可能是( ) A.120120 B.110120 C.130000D.140000 2.对于事件 A,B, 下列命题正确的是() A .如果A,B 互斥,那么A ,B 也互斥; B .如果A,B 不互斥,那么A ,B 也不互斥;C .如果A,B 互斥,且P(A),P(B) 均⼤于0,则A,B 互相独⽴;D .如果A,B 互相独⽴, 那么A ,B 也互相独⽴.3.⼀批零件共100个,其中有95件合格品,5件次品,每次任取1个零件装配机器,若2次取到合格品的概率是2p ,第3次取到合格品的概率是3p ,则()A .2p >3pB .2p =3pC .2p <3pD .不能确定4.商场开展促销抽奖活动,摇奖器摇出的⼀组中奖号码是6,5,2,9,0,4.参抽奖的每位顾客从0,1…,9这⼗个号码中抽出六个组成⼀组.如果顾客抽出的六个号码中⾄少有5个与摇奖器摇出的号码相同(不计顺序)就可以得奖,某位顾客可能获奖的概率为()A .421B .301C .354D .4255.进⼊世界前8名的乒乓球⼥⼦单打选⼿中有4名中国选⼿,抽签后平均分成甲、⼄两组进⾏⽐赛,则四名中国选⼿不都分在同⼀组的概率为()A .3533B .1817 C .3534 D .986.⼀个⼝袋有10张⼤⼩相同的票,其号数分别为9,,2,1,0 ,从中任取2张,其号数⾄少有⼀个为偶数的概率是()A .185 B .187 C .95 D .97 7.⼀个袋中有5个红球,2个⽩球,从中任意摸出3个,下列事件中是不可能事件的是( ). A.3个都是红球 B.⾄少1个是红球 C.3个都是⽩球 D.⾄多1个是⽩球8.从⼀副混合后的扑克牌(52张,去掉⼤、⼩王)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为⿊桃”,则概率P(A ∪B)的值是()5.27A 6B.27 7.52C 5.52D 9.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第⼀次抽出的是次品,则第2次抽出正品的概率为________. 19.20A 95.99B 5.99C 5.100D 10.某⼈提出⼀个问题,甲先答,答对的概率为0.4,如果甲答错,由⼄答,答对的概率为0.5,则问题由⼄答对的概率为________.A.0.1B.0.2C.0.3D.0.4 ⼆、填空题(本⼤题共5⼩题,每⼩题5分,共25分)11.从装有两个⽩球、两个⿊球的袋中任意取出两个球,取出⼀个⽩球⼀个⿊球的概率为 .12.某国际科研合作项⽬成员由11个美国⼈、4个法国⼈和5个中国⼈组成.现从中随机选出两位作为成果发布⼈,则此两⼈不属于同⼀个国家的概率为 .(结果⽤分数表⽰)13.⼀个家庭中有两个⼩孩.假定⽣男、⽣⼥是等可能的,已知这个家庭有⼀个是⼥孩,则这时另⼀个⼩孩是男孩的概率是________.14.从1~100这100个整数中,任取⼀数,已知取出的⼀数是不⼤于50的数,则它是2或3的倍数的概率为________.15.从⼀筐苹果中任取⼀个,质量⼩于250g 概率为0 .25, 质量不⼩于350g 的概率为0.22, 则质量位于[)g 350,g 250范围内的概率是 .三、解答题(共计45分) 16.(10分)盒中有25个球,其中10个⽩的、5个黄的、10个⿊的,从盒⼦中任意取出⼀个球,已知它不是⿊球,试求它是黄球的概率.17(10分)袋中有红、⽩两种颜⾊的球,作⽆放回的抽样试验,连抽3次,每次抽⼀球。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 .2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 .8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P .11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P .14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P .17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P .18、设21)(,41)(,31)(===B A P B P A P ,则=)(B A P 。

概率论第一章测试题

概率论第一章测试题

C 卷 姓名________,班级________,学号_________1.设B 为样本空间S 的一个事件, 123,,A A A 为样本空间S 的一个事件组,且满足:(1)123,,A A A 互不相容,且P(i A )>0 (I=1,2,3) ; (2) S=123A A A 则贝叶斯公式为_______。

2.已知在10只晶体管中,有2只次品,在其中取两次,每次随机地取一只,做不放回抽样,则一只正品,一只为次品的概率为____。

3.已知事件A 的概率P(A)=0.5,B 的概率P(B)=0.6,以及条件概率P(A|B)=0.8,则._________)(=⋃B A P4.已知男人中有5%的是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机挑选一人,恰好是色盲患者。

则此人是男人的概率为_______。

5. 某人投篮3次,已知他投篮的命中率为0.8,则他3次中投中2次的概率为 _______。

6. 在区间)1,0(中随机取出两个数Y X ,,则两数之和大于0.5的概率为_______。

7.对以往的数据分析结果表明,当机器调整的良好时,产品的合格率为0.95,而当机器发生某一故障时,其合格率为0.2,每天早上机器开动时调整良好的概率为0.8,则某天早上第一件产品是合格品的概率为___________。

8. 设事件A 及B A 发生的概率分别为2.0,6.0,则当B A ,相互独立时,)(B A P =__________9. 从0~9十个数字中任意选出三个不同的数字,则三个数字中含5的概率为____。

10.一名工人看管三台独立工作的机床,已知在一小时内甲、乙、丙三台机床需要工人看管的概率分别为:,85.0,8.0,9.0则在一小时内有一台机床需要看管的概率为________。

11.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( )(A ) 甲种产品滞销,乙种产品畅销(B ) 甲乙两种产品均畅销(C ) 甲种产品滞销(D ) 甲种产品滞销或乙种产品畅销12. 设A 为随机事件且P (A )=1,B 为任意随机事件,则(A )(A ))()(B P AB P = (B ))()(B P B A P =(C ))()(B P B A P =- (D ))()(B P A B P =-13. 某人射击时,中靶的概率为3/4,如果射击直到中靶为止,则射击次数为3的概率是(C )(A )343⎪⎭⎫ ⎝⎛(B )41432⨯⎪⎭⎫ ⎝⎛ (C )43412⨯⎪⎭⎫ ⎝⎛ (D )341⎪⎭⎫ ⎝⎛ 14. 某人忘记三位号码锁(每位均有0~9十个数码)的最后一个号码,因此在正确拨出前两个数码后,只能随机试拨最后一个数码,每拨一次算作试开一次,则他在第四次试开时才将锁打开的概率是( )(A )1/4 (B )1/6 (C )2/5 (D )1/1015. 假设事件A 与事件B 互斥,P(A)>0,P(B)>0,则下列结论一定成立的有( ) (A )A,B 为对立事件 (B) A,B 不独立(C )A,B 相互独立(D)B A 与互斥。

概率论(华南农业大学)智慧树知到答案2024年华南农业大学

概率论(华南农业大学)智慧树知到答案2024年华南农业大学

概率论(华南农业大学)华南农业大学智慧树知到答案2024年第一章测试1.设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件=( )。

A:{1,2,5,6,7,9,10} B:{1,2,3,5,6,7,8,9,10} C:{1,2,5,6,7,8,9,10}D:{1,2,4,5,6,7,8,9,10}答案:C2.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为( )。

A:0.375 B:0.25 C:0.325 D:0.125答案:A3.假设任意的随机事件A与B,则下列一定有()。

A: B: C: D:答案:B4.设A,B为任意两个事件,则下式成立的为( ) 。

A: B: C: D:答案:A5.设则=()。

A:0.24 B:0.48 C:0.30 D:0.32答案:C6.设A与B互不相容,则结论肯定正确的是 ( )。

A: B:与互不相容 C: D:答案:C7.已知随机事件A, B满足条件,且,则()。

A:0.3 B:0.4 C:0.7 D:0.6答案:C8.若事件相互独立,且,则( )。

A:0.775 B:0.875 C:0.95 D:0.665答案:A9.A:B: C: D:答案:D10.不可能事件的概率一定为0。

()A:错 B:对答案:B11.A:错 B:对答案:A12.贝叶斯公式计算的是非条件概率。

()A:错 B:对答案:A第二章测试1.下列各函数中可以作为某个随机变量X的分布函数的是( )。

A: B: C:D:答案:C2.设随机变量,随机变量, 则 ( )。

A: B: C: D:答案:C3.设随机变量X服从参数为的泊松分布,则的值为()。

A: B: C: D:答案:C4.设随机变量X的概率密度函数为,则常数()。

A: B: C:5 D:2答案:C5.如果随机变量X的密度函数为,则()。

A:0.875 B: C: D:答案:D6.A:对任意实数,有 B:只对部分实数,有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章小测试一、选择题1.设A 、B 、C 为三个事件,则A 、B 、C 不全发生可表示为( )A. ABCB. ABCC. C B AD. C B A2.设事件A 和B 互为对立事件,则下列各式不成立的是( )A. ()0P AB =B. ()0P AB =C. ()1P A B =D.()1P B A =3.将一枚均匀硬币抛掷3次,则至少有2次出现币值面朝上的概率是( )A. 18B. 38C. 12D. 584.盒内有6个产品,其中正品4个次品2个,不放回地一个一个往外取产品,则第二次才取到次品的概率与第二次取产品时取到次品的概率分别为( )A. 41153,B. 441515,C. 1133, D. 14315, 5.设两个事件A 和B 相互独立,且()0.5P A =,()0.4P B =, 则()P A B 的值是( ) A. 0.9 B. 0.8 C. 0.7 D. 0.66.对于任意事件A,B,若A B ⊂,则下列各等式不成立的是( )A. B B A =B. φ=B -AC. B B A =D. φ=B A7.设A,B 为任意两个概率不为0的互斥事件,则下列结论中一定正确的是( )A. ()()P A B P A =B. ()()()P A B P A P B -=-C. ()()()P AB P A P B =D.()()P A B P A -=8.将一枚均匀硬币抛掷3次,则恰有一次出现币值面朝上的概率是( )A. 38B. 18C. 58D. 129. 已知在10只电子元件中,有2只是次品,从其中取两次,每次随机地取一只,作不放回抽取,则第二次取出的是次品的概率是( )A. 145B. 15C. 1645D. 84510.设两个事件A 和B 相互独立,且()0.6P A =,()0.3P B =, 则()P A B 的值是( ) A. 0.3 B. 0.7 C. 0.72 D. 0.911.事件A 、B 、C 中恰有一个事件发生的事件是( )A .ABCB .C AB C .C B AD .C B A C B A C B A ++12.设A 和B 是两个随机事件,则下列关系式中成立的是( )A.()()()P A B P A P B -=-B.()()()P AB P A P B =+ C.()()()P A B P A P B -≤- D.()()()P AB P A P B ≤+13.设B A ,满足1)(=B A P , 则有( ) A .A 是必然事件 B .B 是必然事件C .Φ=⋂B A D.)B (P )A (P ≥14.已知A ,B 是两个随机事件,且知()0.5P A =,()0.8P B =,则()P AB 的最大值是( )A. 0.5B. 0.8C. 1D. 0.315. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得成功的概率为( )A .1(1)n p p --B .1(1)n np p --C .1(1)(1)n n p p --- D.1(1)n p --16. 掷一枚钱币,反复掷4次,则恰有3次出现正面的概率是( ).A .116B . 18C . 110 D.1417.设A 、B 、C 为三个事件,则A 、B 、C 全不发生的事件可表示为( )(A )ABC (B )C B A (C )C B A (D )C B A18.设A 和B 是两个随机事件,且A B ⊂,则下列式子正确的是( )(A ))()(A P B A P = (B ))()(A P AB P =(C ))()(B P A B P = (D ))()()(A P B P A B P -=-19.设A 和B 相互独立,4.0)(,6.0)(==B P A P ,则=)(B A P ( )(A )0.4 (B )0.6 (C )0.24 (D )0.520.设c B A P b B P a A P ===)(,)(,)( ,则)(B A P =( )(A )b a - (B )b c - (C ))1(b a - (D )a b -21随机掷两颗骰子,已知点数之和为8,则两颗骰子的点数都是偶数的概率为( )(A )53 (B )21 (C )121 (D )3122.设N 件产品中有n 件是不合格品,从这N 件产品中任取2件,则2件都是不合格品的概率是( )(A )121---n N n (B ))1()1(--N N n n (C )2)1(N n n - (D ))(21n N n -- 23. 设A 和B 是两个随机事件,则下列关系式中成立的是( )A .()()()P AB P A P B -=- B.()()()P A B P A P B =+C.()()()P A B P A P B -≤-D.()()()P A B P A P B ≤+24. 将3个相同的小球随机地放入4个盒子中,则盒子中有小球数最多为一个的概率为( )A. 3/32B. 1/16C. 3/8D. 1/825. 同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A .0.125B .0.25C .0.375D .0.5026. 设在三次独立重复试验中,事件A 出现的概率都相等,若已知三次独立试验中A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( )A . 31 B .41 C .61 D .21 27. 设A 和B 为两个随机事件,且()0P A >,则[()]P A B A =( )A. ()P ABB. ()P AC. ()P BD. 128. 已知A ,B 是两个随机事件,且知()0.5P A =,()0.8P B =,则()P AB 的最大值是( )A. 0.5B. 0.8C. 1D. 0.329. 设事件A 和B 互斥,且()0P A >,()0P B >,则有( )A .()1P AB =B .()1()P A P B =-C .()()()P AB P A P B =D .()1P A B =30. 设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( )A .()0P AB =B .()()()P A B P A P B -=C .()()1P A P B +=D .()0P A B =31. 设A 为随机事件,则下列命题中错误的是( )A. A 与A 互为对立事件B. A 与A 互斥C. A A =D. A A =Ω32. 设A 与B 相互独立,()0.2P A =,()0.4P B =,则()P A B =( )A. 0.2B. 0.4C. 0.6D. 0.833. 检查产品时,从一批产品中任取3件样品进行检查,则可能的结果是:未发现次品,发现一件次品,发现两件次品,发现3件次品。

设事件i A 表示“发现i 件次品” (0,1,2,3i =)。

对于事件“发现1件或2件次品”,下面表示正确的是( )A.12A AB.12A A +C.012()A A A +D.312()A A A +34. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为( ) A. 11a a b -+- B. (1)()(1)a a a b a b -++- C. a a b + D. 2a ab ⎛⎫ ⎪+⎝⎭35. 将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A. 3/32B. 3/8C. 1/16D. 1/836. 已知A ,B 是两个随机事件,且知()0.6P A =,()0.9P B =,则()P AB 的最大值是( )A. 0.6B. 0.9C. 1D. 0.337. 设A,B 为任意两个概率不为0的互斥事件,则下列结论中一定正确的是( ) A. A 与B 互斥 B. A 与B 相容 C. ()()()P AB P A P B = D.()()P A B P A -=二、填空1. 设事件A 与B 互不相容,P(A)=0.2,P(B)=0.3,则()P AB =2. 一个盒子中有6颗黑棋子,9颗白棋子,从中任取2颗,则这两颗棋子是不同色的概率3. 设P(A)=1/3 ,P(B ∣A)=1/4, P(A ∣B)=1/2,则P (A ∪B )=4. 事件A 与B 相互独立,已知P(A)=0.4, P (A ∪B )=0.7,则P(AB)= , P(B ∣A )=5.已知A 和B 是两个相互独立的随机事件,且知()0.6P A =,()0.3P B =,则()P A B = .6. 设两个事件A 和B 相互独立,且()0.2P A =,()0.4P B =, 则()P A B =_______.7.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。

8.设3/2)(3)(==B P A P ,A 与B 都不发生的概率是A 与B 同时发生的概率的2倍,则 =-)(B A P .9.已知P(A)=0.7,P(A-B)=0.3,则)(AB P = .10.已知事件A ,B 互斥,且6.0)(,3.0)(==B A P A P ,则=)(B P .11.设两个相互独立的事件A ,B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P(A)= . 12.设事件A,B 满足()0.4P A =,()0.5P B =,()0.6P A B =,则()P AB = .三、计算题1. 袋中有10个球,8红2白,现从袋中任取两次,每次取一球作不放回抽取,求下列事件的概率:(1) 两次都取红球;(2)两次中一次取红球,另一次取白球;(3)至少有一次取白球;(4)第二次取白球;(5)第二次才取到白球。

2. 针对某种疾病进行一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应。

设人群中有1%的人患这种病,若某人做这种化学反应呈阳性反应,则他患这种病的概率是多少?3.两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率是0.02,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多1倍。

求任意取出的零件是合格品的概率?4.加工某一种零件需要经过三道工序,设三道工序的次品率分别为2%,1%,5%,假设各道工序是互不影响的,求加工出来的零件的次品率。

5.某车间生产了同样规格的6箱产品,其中有3箱,2箱和1箱分别是由甲、乙、丙3个车床生产的,且3个车床的次品率依次为111,,101520,现从这6箱中任选一箱,再从选出的一箱中任取一件,试计算:(1)取得的一件是次品的概率;(2)若已知取得的一件是次品,试求所取得的产品是由丙车床生产的概率。

相关文档
最新文档