立体图形展开图截面视图
小学六年级立体图形三视图及展开图
立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。
比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。
对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。
(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。
二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”、“你”、“前”分别表示正方体的________________________。
【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。
【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。
【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。
三视图及展开图
如图,右边三幅图分别是从哪个方 向看这种个棱柱得到的?
( 1)
( 2)
( 3)
从上向下 从前向后 从左向右
如图,右边的几何体从正面看得到 A ) 的图形是(
(A)
(B)
(C)
(D)
下面是一个组合图形的三视图,请描述物体形状
正视图
左视图
俯视图
物体形状
活动三:几何体的表面展开图
有些几何体是由一些平面图形围成 的,将它们的表面适当剪开,这样 的平面图形称为相应立体图形的展 开图。
人教版七年级上
马 上 一 中
吕 志 彬
活动一:连连看
正方体
长方体
球
圆锥
六棱柱
读下面的一首诗,然后谈 谈您的体会!
•
•
•
宋-苏轼 横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。
题西林壁
从上面看 俯视图 从左边看
长方体
左视图 从正面看
主视图
俯视图
左视图
主视图
俯视图 左视图
主视图
左视图
俯视图
立体图形和平面图形的转化:
从不同角度看,你能得出什么样的平面图形?
从正面看
从 左 面 看
从上面看
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
活动二:
下面的几何体分别从正面、左面、上 面观察这个图形,各能得到什么图形
主视图
俯视图
左视图
主视图
从上面看
从左面看
从正面看
从你所在的位置看这组几何体,看到的是什么 样子?能否把你所看到的样子画下来?
立体几何中的截面(解析版)
立体几何中的截面(解析版)在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱、圆锥、球、棱柱、棱锥、长方体、正方体等),得到的平面图形。
总共有三种截面方式,分别为横截、竖截、斜截。
我们需要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
正六面体的基本斜截面不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
圆柱体的基本截面也有其特殊性质。
我们可以运用线、面平行的判定定理与性质求截面问题,或者结合线、面垂直的判定定理与性质定理求正方体中截面问题。
此外,我们还可以灵活运用一些特殊图形与几何体的特征,“动中找静”,如正三角形、正六边形、正三棱锥等。
建立函数模型也是求最值问题的一种方法。
在一个透明的塑料制成的长方体内灌进一些水,固定底面一边于地面上,再将倾斜,有四个命题。
其中,水的部分始终呈棱柱状,棱AD始终与水面平行,当倾斜到如图5(2)时,BE·BF是定值。
水面的面积在转动过程中会改变,而BC//FG//A1D1,所以A1D1//面EFGH。
因此,正确的命题序号为①③④。
一个容积为1立方单位的正方体,在棱AB、BB1及对角线B1C的中点各有一小孔E、F、G。
若此可以任意放置,则该可装水的最大容积是多少?分析本题,不能用一个平面去截一个正方体,使得截面为五边形。
进一步地,截面也不能为正五边形。
这是因为正方体的每个面都是正方形,而五边形无法与正方形相切。
因此,无论如何调整平面的位置,都不能得到五边形的截面。
而且OE=OC是抛物线的直线准线,所以焦点F在OC上,且OF=OC=1.故选:D二、完形填空在数学课上,老师讲到一个有趣的问题:如何用一个平面去截一个正方体所得截面不能是一个正五边形。
这个问题引起了我的思考,我开始想象一个平面在正方体中穿过的情景。
我发现,如果截面是一个正五边形,那么这个五边形的五条边必须分属于正方体的五个不同的面。
但是,正方体的每两个相对的面是平行的,所以这五条边中必有两条边是平行的。
立体几何中的截面(解析版)
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是()分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。
例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:①水的部分始终呈棱柱状;②水面EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当容器倾斜到如图5(2)时,BE·BF是定值;其中正确的命题序号是______________分析当长方体容器绕BC边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EHA CBDBC BF BE V ⋅⋅=21水例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( )A .21 B .87 C .1211 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为8712121211=⋅⋅⋅-=V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211112121311=⋅⋅⋅⋅-=V ,故选C 。
立体几何中的截面(解析版)
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是()分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。
例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:①水的部分始终呈棱柱状;②水面EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当容器倾斜到如图5(2)时,BE·BF是定值;其中正确的命题序号是______________分析当长方体容器绕BC边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG,但EH与FG的距离EF在变,所以水面EFGH的面积在改变,故②错误;在转动过程中,始终有BC//FG//A1D1,所以A1D1//面EFGH,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BCBFBEV⋅⋅=21水是定值,又BC是定值,所以BE·BF是定值,即④正确。
正方体展开图和三视图的初步认识
正方体展开图和三视图的初步认识1.认识立体图形和平面图形我们常见的立体图形有长方体、正方体、球、圆柱、圆锥,此外,棱柱,棱锥也是常见的几何体。
我们常见的平面图形有正方形、长方形、三角形、圆2. 立体图形和平面图形关系立体图形问题常常转化为平面图形来研究,常常会采用下面的作法(1)画出立体图形的三视图立体图形的的三视图是指正视图(从正面看)、左视图(从左面看)、俯视图(从上面看)得到的三个平面图形。
(2)立体图形的平面展开图常见立体图形的平面展开图圆柱、圆锥、三棱柱、三棱锥、正方体(共十一种)知识梳理知识梳理1 正方体的侧面展开图(共十一种)分类记忆:第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
知识梳理2 常见立体图形的平面展开图1. 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
两个侧面的公共边叫做棱柱的侧棱。
侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。
棱柱的底面可以是三角形,四边形,五边形……我们把这样的棱柱叫分别叫做三棱柱、四棱柱、五棱柱……棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)2. 棱锥:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥中的多边形叫做棱锥的底面。
棱锥中除底面以外的各个面都叫做棱锥的侧面。
相邻侧面的公共边叫做棱锥的侧棱。
棱锥中各个侧面的公共顶点叫做棱锥的顶点。
棱锥的顶点到底面的距离叫做棱锥的高。
棱锥中过不相邻的两条侧棱的截面叫做对角面。
棱锥的底面可以是三角形、四边形、五边形……我们把这样的棱锥分别叫做三棱锥、四棱锥、五棱锥……棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的。
初中数学中的立体几何知识点归纳
初中数学中的立体几何知识点归纳立体几何是数学中一个非常重要的分支,它研究的是空间中的各种几何图形,如立方体、长方体、圆锥、圆柱、球等。
在初中的数学学习中,立体几何也占据了很大的比重。
下面,我们将对初中数学中的立体几何知识点进行归纳。
一、图形的分类在立体几何中,首先需要了解不同图形的分类。
常见的图形包括二维图形和三维图形。
二维图形是指在平面上的图形,如矩形、三角形、圆等。
而三维图形则是指具有长度、宽度和高度的图形,如立方体、长方体、圆锥、圆柱等。
二、表面积和体积在研究立体图形时,不可避免地要涉及到表面积和体积的计算。
表面积指的是立体图形外部的所有面积之和,而体积则是指立体图形所包含的空间大小。
不同的图形有不同的计算公式。
以下是一些常见图形的表面积和体积计算公式:1. 立方体的表面积为6a²,体积为a³,其中a为边长。
2. 长方体的表面积为2ab + 2bc + 2ac,体积为abc,其中a、b、c分别为长方体的三条边长。
3. 圆柱的表面积为2πr² + 2πrh,体积为πr²h,其中r为底面半径,h为高。
4. 圆锥的表面积为πr² + πrl,体积为(1/3)πr²h,其中r为底面半径,l为斜高,h 为高。
5. 球的表面积为4πr²,体积为(4/3)πr³,其中r为半径。
三、立体图形的展开图与视图为了更好地理解立体图形的形状及其在空间中的分布,我们可以通过展开图和视图来进行观察。
展开图是将一个立体图形展开成一个平面图形。
通过展开图,我们可以清楚地看到立体图形的各个面。
视图则是将一个立体图形从不同角度所看到的平面图。
常见的视图包括俯视图、正视图和侧视图。
四、平行立体图形平行立体图形是指具有相同的底面和顶面,并且底面与顶面之间的连线都是平行的立体图形。
常见的平行立体图形包括平行四边形柱、平行四边形锥等。
平行立体图形的特点是具有相同的底面积和顶面积,且底面与顶面之间的距离相等。
立体几何体的截面及三视图
立体几何专题(部分内容)一.圆柱的截面用一个平面去截(分三种情形:①用与圆柱的底面平行的平面去截;②用与圆柱的底面垂直的平面去截;③用与圆柱的底面不垂直的平面去截.),观察图1,很容易得出它们分别是:圆、长方形、椭圆.图1二.圆锥的截面用一个平面去截一个圆锥体,圆、三角形、椭圆.图2三.球的截面用一个平面去截一个球体图3四.三棱锥的截面请同学们尝试用一个平面去截一个三棱锥,试判断所截得的平面图形是什么?观察图4图4五.正方体的截面(需补充两面截图)补充:三视图或投影经典考题公式:空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2Srl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24SR π=扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积 柱体的体积 :VS h =⨯底锥体的体积 :13V S h =⨯底 台体的体积 : 1)3V S S S S h =++⨯下下上上( 球体的体积:343V R π=空间几何体的三视图和直观图:正俯长相等、正侧高相同、俯侧宽一样正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
1、线线平行的判断:(1)、平行于同一直线的两直线平行。
(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(12)、垂直于同一平面的两直线平行。
2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
机械制图4. 展开图画法举例
展开图画法举例A.展开概述在实际中,常常会使用各种金属板制件,诸如各种形状的容器、管道、壳罩、接头等。
在制造这种制件时,首先要在金属板上画出表面展开图(俗称放样),考虑金属板的厚度,然后剪裁、切割下料,再折、弯,最后焊接、铆接等,形成所需钣金件。
将立体的表面,按其实际大小,依次摊平在同一平面上,称为立体表面的展开,展开后得到的图形称为展开图。
平面立体的表面均为可展表面,曲面立体中的曲面分为可展曲面与不可展曲面两类。
在直线面中,若任意相邻两条素线相互平行或相交(即在同一平面上),则该直线面为可展曲面。
直线面中的柱面、锥面、切线曲面是可展曲面,其余的直线面,如单叶双曲面、双曲抛物面、柱状面、锥状面,均为不可展曲面。
所有的曲线面,如球面、圆环面、椭圆面、椭圆抛物面等均为不可展曲面。
A.1 可展表面展开图的基本作法1.平行线法根据两平行线确定一平面,将立体表面以相邻的两平行线为基础构成的平面图形依次逐个展开,得到展开图。
它用于柱面展开。
根据作图方法不同,又可分为正截面法和侧滚法。
1)正截面法当柱棱线与柱的底面不垂直时,可先作一与柱棱线垂直的正截面,并将组成正截面的各边展开成一直线,这时在展开图上柱棱线必垂直于该直线,即可逐一画出各表面的展开图。
当棱线垂直于柱底面时,柱底面就是正截面。
2)侧滚法当棱线平行于投影面时,以柱棱线为旋转轴,将柱的表面逐个绕投影面平行轴旋转到同一平面上,得到展开图。
2.三角形法根据一三角形确定一平面,将立体表面分成若干个三角形(有的立体,如三棱锥的表面本来就是三角形),并依次逐个展开得到展开图的方法。
它通常用于锥面和切线曲面的展开。
A.2 求直线实长的垂直轴旋转法为了绘制展开图,有时需要准确求出立体轮廓线或表面素线的实际长度(简称实长)。
如图13-1a所示,将一般位置直线AB绕铅垂线Aa旋转为正平线AB0,AB0的正面上投影a’b0’即反映AB的实长。
因为AB在绕铅垂线旋转的过程中,其空间轨迹为一正圆锥面,AB=AB0,均为正圆锥的素线。
七年级苏教版数学复习要点考点专题四:立体图形及三视图(教师用,附答案分析)
七年级苏教版数学复习要点考点专题四:立体图形及三视图知识点一常见立体图形1.立体图形与平面图形①有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形.②有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形.3.常见立体图形的分类曲面体圆柱、圆锥、球体按是否有顶点是棱柱、棱锥、圆锥否圆柱、球体总结:在对几何体分类时首先确定分类的标准,分类标准不同,结果也就不同,不论选择哪种分类标准,都要做到不重、不漏.4、点、线、面、体体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是几何体,几何体也称体.面:包围着体的是面.面有平面和曲面两种.线:面和面相交的地方形成线.点:线和线相交的地方是点.用运动的观点来看:点动成线、线动成面、面动成体.例1(中山区期末)三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.【解答】解:由图形的旋转性质,可知ABC旋转后的图形为C,故选:C.例2(邳州市期末)如图,在下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.【解答】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.故选:A.例3(皇姑区期末)下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.【解答】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:D.知识点二几何体的表面展开图1.展开图:有些几何体的表面可以展开成平面图形,这个平面图形称为相应几何体的表面展开图.2.常见立体图形的平面展开图(1)圆柱的表面展开图是两个相同的圆面和一个长方形组成的;(2)圆锥的表面展开图是由一个圆面和一个扇形组成的;(3)棱柱的表面展开图是由两个相同的多边形和一个长方形组成的,侧面展开图是一个长方形。
初一数学展开图及点线面体讲解
练一练:围成下面这些几何体的各个面中,哪些 面是平的?哪些面是曲的?
观察我们的教室和周围环境,举出一些实际生活中“面” 的例子,并指出哪些面是平的,那些面是曲的?
观察几何体模型,回答下列问题: (1)面与面相交的地方形成了什么图形?它们有什么不同? (2)线与线相交的地方形成了什么图形?它们有什么不同?
点 动 成 线
物体的运动会留下运动轨迹,这些运动轨迹往往也 能抽象成几何图形.如果把笔尖看成一个点,这个点在 纸上运动时,形成的图形是什么?动手试一试.
归纳结论: 点动成线.
汽车的雨刷在挡风玻璃上画出一个扇面,从几何 的角度观察这种现象,你可以得出什么结论?
概括结论: 线动成面.
线 动 成 面
线 动 成 面
线 动 成 面
三角形 绕一边 旋转成 圆锥体
长方形 绕一边 旋转成 圆柱体
既然“点动成线,线动成面”,那么请同学 们想一想:当面运动时又会形成什么图形?如何 验证你的猜想?
概括结论:面动成体.
点动成—— 线 线动成—— 面 面动成—— 体
体是由面组成 面与面相交成线 线与线相交成点
观察可知:长方体有__6__个面,面与面相交的地方形成了 _1_2_条线,线与线相交成__8__个点;三棱柱有__5__个面,面与面 相交的地方形成了__9_条线,线与线相交成__6__个点.
归纳:图形的构成元素包括__点__、 _线___、 __面__、 __体__.
我们先来认识“体”.观察一本书、圆罐、篮球,从它们 外形中分别可以抽象出什么立体图形?
常见几何体展开图及点、线、面、体的关系 执教:小密初中 钟岩锋
从上面看
从左面看 主视图
从正面看
左视图
俯视图
立体图形展开图
第一类,中间四连方,两侧各一 个,共六种。
第二类,中间三连方,两侧一、 二个,共三种。
第三类,中间二连方,两侧各二个, 只有一种。
第四类,两排各三个,只有一种。
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A C
B
D
E
F
G
下列图形能折叠成什么立体图形?
圆 柱
棱 柱 棱 柱
圆 锥
平面图形与立体图形之间的关系
展开
有些立体图形
平面图形
有些平面图形
折叠
立体图形
并不是所有的立体图形都有平面展开图
例如球
1、学会了简单几何体(如棱柱,正方体等)的平面 展开图,知道按不同的方式展开会得到 不同的展开图。 2、学会了动手实践,与同学合作。 3、友情提醒:不是所有立体图形都有平面展开图,
比如球体。
你有收获吗?
立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥等
平面图形:长方形、正方形、三角形、圆、五边形、六边形等
从正面看、从左面看、从上面看
立体图形的展开图 ……..
《数学》(人教版.七年级 上册)
实验中学
张利恒
从上面看
从左面看
从正面看 正面看
左面看
上面看
利用骰子,摆成下面的图形,分别从正面、 左面、上面观察这个图形,各能得到什么平 面图形?
从正面看
从左面看
从上面看
练习
• 1、课本118练习 • 2、导学128基础反思1 题2题,129页7题 三视图可以确定一个物体的形状 其中 从正面和上面看可以确定物体的长 从正面和左面看可以确定物体的高, 从上面和左面看可以确定物体的宽
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学培优班综合集训-1一、几何体1、分类圆柱:上下底面平行且为互相重合的圆,侧面是曲面.棱柱:上下底面平行且为互相重合的多边形,侧面是多个长方形或正方形.圆锥:一个底面且为圆,侧面是曲面.棱锥:一个底面且为多边形,侧面是多个三角形. 圆台:上下底面平行且为相似的圆,侧面是曲面. 棱台:上下底面平行且为相似多边形,侧面是多个梯形.球体:只有一个曲面,在每个方向上都对称分布.2、构成错误!图形是由点、线、面构成的.点动成线,线动成面,面动成体.○2面面相交得线(与平面相交得直线,与曲面相交的曲线),线线相交得点. 34、棱柱:所有 都相等,上下底面形状大小都相同,侧面都是 . 可分为直棱柱、斜棱柱;也可分为三棱柱、四棱柱、五棱柱……二、展开图1、将某一个几何体的表面沿着它的棱剪开,展成一个平面图形,这个平面图形就叫该几何体的平面展开图. 平面展开图与折叠成几何体是一个互逆的过程.棱柱: 棱锥: 圆柱: 圆锥: 2、正方体平面展开图(留 剪 ,不会出现“田”字型,“凹”字型) 1-4-1型(6种)2-3-1型或1-3-2型(3种)2-2-2型(1种) 3-3型(1种)三、截面1、用一个平面去截一个几何体,截出的平面图形叫截面,截面与几何体形状有关,与平面截几何体的角度方向有关.2、正方体截面名称 底面形状 顶点数 棱 数侧棱数 侧面形状 侧面数 总面数 n棱柱n 棱锥圆柱截面圆锥截面♦截面必须是平面图形♦截n棱柱,最少是三角形,最多是(n+2)边形♦与平面截出是直线,与曲面截出是曲线.四、三视图1、定义:从正面看到得图形叫主视图,从左面看到的图形叫左视图,站在正前方从上面看到得图形叫俯视图. 2、几种常见几何体的三视图错误!正方体:错误!长方体:错误!圆柱错误!圆锥错误!圆台错误!四棱锥错误!球3、小正方体组合图的三视图主视图:左视图: 俯视图:★要求必须会由主视图和左视图判断出小方块的个数(即往俯视图上填数字)★要求必须会由带数字的俯视图画出主视图和左视图.A组:1.写出下列几何体的名字错误!错误!错误!错误!错误!错误!错误!错误!错误!2.连线3.连线,写出几何体名称4.能折叠成正方体的是5.如图,截面形状是( )6.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是( )A.正方体B.棱柱 C.圆柱 D.圆锥7.请将正确的三视图名称写在对应图的下边8.根据三视图,说出几何体各是什么?9.根据俯视图,请画出主视图和左视图.B组:1.关于下列几何体叙述不正确的是( )A.四个几何体中,平面数最多的是图(4)B.图(2)有四个面是平的C.图(1)由两个面围成,其中一个面是曲面D.四个图中只有一个顶点的几何体是图(3)2.下列包含关系正确的是()3.说出折叠后的几何体的名称4.如图则正方体相对两个面上的数字和最小的是( ) A.4B.6 C.7 D.85.不能折成无盖小方盒的是( )6.如图所示,“?”处得数字是7.如果用一个平面截掉正方体的一个角,剩下的几何体有几个顶点,几条棱,几个面?8.用一个平面截几何体,如果截面是圆,则原几何体可能是( )A .正方体、球 B.圆柱、棱柱 C.球、长方体 D.球、圆柱、圆锥 9.如图圆柱体高为8,底面半径为2,则截面面积不可能为( ) A.16B .32 C.48 D.20 10.请根据俯视图判断左视图为( )11.根据三视图确定小正方体的个数 12.根据主视图和左视图判断小正方体个数最多为 个?C组:1.请判断,是否存在有51条棱、32个顶点、18个面的棱柱? 2.正方体展开图正确的是( )4. 根据几何体的三视图,计算该几何体的体积.5. 如图,含有※的正方形共有多少个?作业:1.球体的三视图是 . 2.(1)圆柱、圆锥的底面都是________; (2)_______和_______的底面可以是三角形;(3)_____的上下底面的形状、大小是一样的;(4)棱锥的侧面都是_________;______的侧面都是长方形;3.如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由______个面围成的,其中正方形有______个,长方形有_____个.4.足球是由正五边形,正六边形皮缝制而成,若将它视为一个多面体,且已知棱数为48,顶点数为24,则面数为_____________ .5.如图是立方体的展开图,如将它组成原来的立方体,则(1)点P 与 点重合;(2)点Z与 点重合.6. 下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面7.小丽制作了一个对面图案均相同的正方体礼品盒(如下左图所示),则这个正方体礼品盒的平面展开图可能是·············································································································· ( )A .B . C. D.8.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是ﻩ( )A . B. C. D.9.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱A C、BC、CD 剪开展成平面图形,则所得的展开图是 ········································································································· ( ) 10.如图是一个正方体的平面展开图,那么用它围成的正方体只能是 ·················· ( )A .B .C . D. 11.正方体的截面中,边数最多的多边形是 ······················································ ( ) A .四边形 B .五边形 C .六边形D .七边形 1相等).把两个三角形相等的边靠在一起(两张纸片不重叠),可以拼出若干种图形.其中,形状不同的四边形有( )A.3种 B .4种 C.5种 D .6种13.如图,在正方体能见到的面上写上数1,2,3,而在展开图中已写上了两个或一个指定的数,试在展开图的其他面上写上适当的数,使得相对两数的和等于7. 14.如图,在正方体的两个相距最远的顶点处有一只苍蝇B 和一只蜘蛛A,蜘蛛可以从哪条最短的路径爬到苍蝇处?说明理由!画出示意图!15.如图是一个多面体的展开图,每个面的内部都标注了字母,请根据要求回答下列问题:(1)如果面E 在多面体的底部,那么哪一个面会在上面?(2)如果面A 在后面,从上面看是面D ,那么面E在哪一面?(3)从左面看是面D,面C 在下面,那么面E 的对面在哪一面? 16.如图是一个多面体的展开图,每个面上都标注了一个汉字,请根据要求回答问题: (1)如果“祝”字在多面体的底部,那么哪一个字会在上面?(2)如果“功”字在前面,从左面看是“你”字,那么哪一个字会在上面? (3)从右面看是“考”字,“试”字在后面,那么哪一个字会在上面?17.如图是由几个小立方块搭成的几何体的俯视图,正方形中的数字表示该位置小立方块的个数,请画出该几何体的左视图和正视图.A B C D E F 6 2 35 1 4 A . B . D . (第7题) A BC D 祝你 考 试功 成 1 13 1 3 212 1 23 32 1 AB。