第二章2 过程控制的数学模型-曲线响应
东北大学过程控制系统第二章2 过程控制的数学模型-曲线响应
3.由阶跃响应曲线确定过程的数学模型
3.4 二阶加时延过程参数的确定
数学模型:
TC
x
(1 x)x1x
(1)
TA
T1 T2 TC
(2)
(2)
(1)
3.由阶跃响应曲线确定过程的数学模型
利用公式(1)计算T1和T2较为复杂,绘制曲线利用图解法求取T1和T2。 根据公式(1)绘制曲线见右图。
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的
响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意: (1) 试验测定时,被控过程处于相对稳定的工作状态。 (2) 输入的阶跃信号不可太大,也不可太小。太大,影响生产;
1 0.46
20 33.5
3 1.7
25 27.2
4
5
3.7
9
30 40
21 10.4
8 10 19 26.4 50 60 5.1 2.8
15 16.5 36 371..55 70 80 1.1 0.5
第二题:
设阶跃扰动量△u=20%,某水槽的水位阶跃 响应数据见下表,用一阶惯性环节求取该液位的 传递函数。
欠佳,就难以获得对象的动态特性参数。
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号
作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。
用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作:
自动控制原理(第三版)第2章控制系统的数学模型(2)
自动控制原理
第二章 控制系统的数学模型
求取该电路在单位阶跃输入时的响应。 U c ( s) 1 G( s ) T RC U r ( s ) Ts 1
ur 1( t )
方法1
U c ( s ) G( s )U r ( s )
1
U r (s)
1 s
方法2
1 (Ts 1) s
1 t 1 g (t ) 1[G ( s)] e T T t uc (t ) g (t )ur ( )d
0 1 1 ( t ) t t 1 T 1 T e d e e T d 0T 0 T t
1 uc (t ) L [ ] (Ts 1) s T 1 1 1 L ( )L ( ) s Ts 1 1 e
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
传递函数的求法
例2-1 方法一 R-L-C串联电路
d 2 uc ( t ) R duc ( t ) 1 1 uc ( t ) ur ( t ) 2 dt L dt LC LC传递Fra bibliotek数: G( s)
U c ( s) 1 U r ( s) LCs 2 RCs 1
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
零、极点分布图
传递函数的零、极点分 布图: 将传递函数的零、 极点表示在复平面上的 图形。
零点用“o”表示 极点用“×”表示
j
1 -3 -2
-1
s2 G( s) = ( s 3)( s 2 2s 2)
大连民族学院机电信息工程学院
02 自动控制原理—第二章
Tm
d dt
K u u a K m (Ta
dM c dt
Mc)
电感La较小,故电磁时间常数Ta可以忽略 ,则
Tm
d dt
K uua K m M c
如果取电动机的转角 (rad)作为输出,电枢电压ua (V),考 虑到 d ,可将上式改写成
2.举例 ①一个自变量:励磁电流成正 比,但if增加到某个范围后,磁路饱和,发电机的电势与励磁电流呈 现一种连续变化的非线性函数关系。 设:x—励磁电流, y—发电机的输出电势。 y=f(x)
设原运行于某平衡点(静态工作点) A点:x=x0 , y=y0 ,且y0=f(x0) B点:当x变化△ x, y=y0+△ y 函数在(x0 , y0 )点连续可微,在A 点展开成泰勒级数,即
y k x
df ( x ) k dx x x0
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f y f ( x10 , x 20 ) ( x1 x10 ) ( x 2 x 20 ) ( x1 x10 ) 2 ( x1 x10 )( x 2 x 20 ) ( x 2 x 20 ) 2 2 2 x 2! x x 2 x1x 2 x 2 1 1
例2-2
解 设回路电流i1和i2为中间变量。根据基尔霍夫电压定律对前一回 路,有
u i R1i1
对后一回路,有
1 C1
(i
1
i 2 ) dt
1 C2
控制工程基础第二章——数学模型
② 脉冲函数: 脉动函数的极限,t0看作变量。
A
fT
(t)
lim
t0 0
t0
d [ A(1 et0s )]
L[
fT
(t
)]
lim
t0 0
A t0s
(1
et0s
)
lim t0 0
dt0
d dt0
(t0 s )
As A s
单位脉冲(Dirac) 定义:
面积为1的脉冲函数
(t)dt 1, (t 0, (t) 0)
fi (t)
此式为二阶常系 数线性微分方程。
系统的数学模型可用方块图表示:
方块图描述了系统
中信号转换、传递的 过程,给出了系统的 工作原理。
☆ 举例2:电网络系统
设输入端电压ui(t)为系统输入量。电容器c两端电压uo(t)为系统输
出量。现研究输入电压ui(t)和输出电压 uo(t)之间的关系。电路中的
.
(n)
x(t) sX (s) x (t) s n X (s)
x(t)dt
1 sn
X
(s)
①平移函数、延迟函数
对于函数 f (t) 函数 f (t )
称为延迟函数,函数本身并
不发生改变,只是延迟α时
间才发生。
注意:t 时,函数 f (t ) 0
②延迟定理
若 f (t) F (s) 则有 f (t ) es F (s) 延迟函数的拉氏变换 原函数的拉氏变换乘以 es
显然 (t) 1, A (t) A
结论:脉冲函数是面积函数; 脉冲函数的拉氏变换就是脉冲下的面积。 换言之,复数域中的实数在时域里是脉冲函数。
☆ 关于单位脉冲函数的说明
过程控制 第二章(过程建模与过程特性)
因此,qi H qo,直至qi=qo可见该系统受到干扰以后,即使不加控制,最 终自身是会回到新的平衡状态,这种特性称为“自衡特性”。 右图:如果水箱出口由泵打出,其不同之处在于:qi当发生变化时,qo不发生变化。如 果qi>qo ,水位H将不断上升,直至溢出,可见该系统是无自衡能力。 绝大多数对象都有自衡能力,一般而言有自衡能力的系统比无自衡能力的系统容易控制。
例1.液体储罐的动态模型 1.液体储罐(一阶对象) 干扰作用 Q1 h
液体储罐的 动态模型? ?
控制作用
水槽
Q2
列写微分方程式的依据可表示为: 对象物料蓄存量变化率=单位时间内(流入对象物料—流出对象物料)
假定t<0时,Q1=Q10,Q2= Q20, 且Q10= Q20, h =h0, 当t≥0时,Q1= Q10+ΔQ1,Q2= Q20+ΔQ2,h = h0+Δh, 则在很短一段时间d t内,由物料平衡关系可得:
u(t ) u1 (t ) u1 (t t )
其中
u 2 (t ) u1 (t t )
假定对象无明显非线性,则矩形脉冲 响应就是两个阶跃响应之和,即
y(t ) y1 (t ) y1 (t t )
Rs
Rs
将此关系式代入上式,便有:
(Q1 h )d t Adh Rs
AR S dh h RS Q1 dt
移项整理后可得:
令
T ARS
K RS
代入上式得:
THale Waihona Puke dh h KQ1 dt
上式是用来描述简单的水槽对象特性的一阶常系数微分方 程式。式中T称时间常数,K称放大系数。
传递函数:
H 2 ( s) K K Qi ( s) T1T2 s 2 (T1 T2 )s 1 (T1s 1)(T2 s 1)
自动控制原理:第二章 控制系统数学模型
TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入
自动控制原理-第二章 控制系统的数学模型
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt
Raia (t)
Ea (t)
ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt
fmm (t)
Mm
MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t
L1 U C
S
L1
S
2
1 S
1
1 S
S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)
过程控制第二章 过程建模
设 y p (t ) 为矩形脉冲响应
y(t) 为阶跃响应
u(t ) 为阶跃输入
y p (t)
u(t t0) 为 t 0
时刻的阶跃输入
o Fi.g218
t
0
2t0
3t0
4t0
5t0
t
曲线合成的数学描述:
up(t) u(t)u(t t0) yp(t) y(t) y(t t0) y(t) yp(t) y(t t0)
四、自衡对象与无自衡对象
四、自衡对象与无自衡对象
自衡对象: 在扰动作用下,过程平衡状态被破坏后, 不需人工或仪表干预,自身能建立新的 平衡状态。
无自衡对象:在扰动作用下,过程平衡状 态被破坏后,自身不能建立新的平衡状 态。
五、建模途径
1 机理建模 2 实验建模 3 其它方法
六、建模目的
1 控制系统设计与参数整定; 2 2 控制系统仿真研究。
令 t n 0,tn 0 ,1 ,2 ,,则:
y (n 0 )typ (n 0 ) ty (n 0 tt0 )
在输出坐标图上描出多个点,将这些点光滑连接, 得阶跃响应曲线。
二. 切线法
下面分类求模型参数:
u (t )
1. 一阶自衡模型
u
根据 Fig.220所示曲线:
O
t
1) 过原点作切线与y() 相交于
时间变化的特性。
时间常数用T表示,T表征对象物理量变
化的速率。
y
T1 T2
O
T1 T2
t
三、物料平衡与能量平衡
在静态情况下,单位时间流出过程的 物 料 (能量)等于流入过程的 物料 (能量)
在动态情况下,单位时间流入过程的 物 料 (能量)与流出过程的 物料 (能量)之 差等于过程物料 (能量)儲存量的变化率。
控制工程基础 第二章 控制系统的数学模型
R1 ui C1 K
R2 C2 uc
U c ( s) K U i ( s ) ( R1C1s 1)( R2C2 s 1)
有源网络:
Ur R0
R1
C1 +12V
+
-12V
Uc
U c ( s) R1C1s 1 U r ( s) R0C1s
2-3 典型环节及其传递函数
环节:具有某种确定信息传递关系的元 件、元件组或元件的一部分称为一个环 节。 系统传递函数可写为:
例2 电学系统: 其中:电阻为R,电感为L,电容为C。
+ ur(t) - i
+ uc(t) -
解:系统的微分方程如下
d U c (t ) dUc (t ) LC RC U c (t ) U r (t ) 2 dt dt
2
拉氏变换后(零初始条件下)
U c ( s) 1 2 U r ( s ) LCs RCs 1
2 2
1 1 1 , 2 2 s Ts 1, T s 2Ts 1
各典型环节名称:
比例环节:K 一阶微分环节:s 1 2 2 s 二阶微分环节: 2 s 1 1 积分环节: s 1 惯性环节: 1 Ts 1 二阶振荡环节:2 s 2 2Ts 1 T
传递函数的性质: (1)传递函数只取决于系统或元件的结构和 参数,与输入输出无关; (2)传递函数概念仅适用于线性定常系统, 具有复变函数的所有性质; (3)传递函数是复变量s 的有理真分式, 即n≥m; (4)传递函数是系统冲激响应的拉氏变换;
传递函数的性质: (5)传递函数与真正的物理系统不存在一 一对应关系; (6)由于传递函数的分子多项式和分母多 项式的系数均为实数,故零点和极点可以是 实数,也可以是成对的共轭复数。
第2章连续控制系统的数学模型
第2章连续控制系统的数学模型2.1 控制系统数学模型的概念控制理论分析、设计控制系统的第一步是建立实际系统的数学模型。
所谓数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。
建立描述控制系统的数学模型,是控制理论分析与设计的基础。
一个系统,无论它是机械的、电气的、热力的、液压的、还是化工的,都可以用微分方程加以描述。
对这些微分方程求解,就可以获得系统在输入作用下的响应(即系统的输出)。
对数学模型的要求是,既要能准确地反映系统的动态本质,又便于系统的分析和计算工作。
2.1.1 数学模型的类型数学模型是对系统运动规律的定量描述,表现为各种形式的数学表达式,从而具有不同的类型。
下面介绍几种主要类型。
1. 静态模型与动态模型根据数学模型的功能不同,数学模型具有不同的类型。
描述系统静态(工作状态不变或慢变过程)特性的模型,称为静态数学模型。
静态数学模型一般是以代数方程表示的,数学表达式中的变量不依赖于时间,是输入输出之间的稳态关系。
描述系统动态或瞬态特性的模型,称为动态数学模型。
动态数学模型中的变量依赖于时间,一般是微分方程等形式。
静态数学模型可以看成是动态数学模型的特殊情况。
2. 输入输出描述模型与内部描述模型描述系统输出与输入之间关系的数学模型称为输入输出描述模型,如微分方程、传递函数、频率特性等数学模型。
而状态空间模型描述了系统内部状态和系统输入、输出之间的关系,所以称为内部描述模型。
内部描述模型不仅描述了系统输入输出之间的关系,而且描述了系统内部信息传递关系,所以比输入输出模型更深入地揭示了系统的动态特性。
3. 连续时间模型与离散时间模型根据数学模型所描述的系统中的信号是否存在离散信号,数学模型分为连续时间模型和离散时间模型,简称连续模型和离散模型。
连续数学模型有微分方程、传递函数、状态空间表达式等。
离散数学模型有差分方程、Z传递函数、离散状态空间表达式等。
过程控制(第二版)第二章
其矩形脉冲响应曲线
y*( t )=y1 ( t ) – y1 ( t – a ) y1( t )=y* ( t ) – y1 ( t – a ) 可以用分段作图法求取阶跃响应曲线。 t = 0 ~ a, y1(a )=y* ( a ) + y1(0 )
一、检测仪表的基本概念
(一)测量误差:测量结果与被测变量真值之
差
误差产生的原因:选用的仪表精确度有限,实验 手段不够完善、环境中存在各种干扰因素,以及 检测技术水平的限制等原因.
1、绝对误差
绝对误差指仪表指示值与被测参数真值 之间的差值,即
x x x0
思考
χ——仪表指示值 χ0——被测量的真值
A
B
0-100℃
0-1000℃
x 1℃
2、相对误差
实际相对误差:绝对误差与被测变量的真
值之比的百分数
引用相对误差(相对百分误差):
x x0 100% 100% x上 x下 仪表量程
最大引用相对误差:
max
max x上 x下 100%
28
25 t/min
120
0 2
6
本节重点
掌握过程数学模型的特点; 掌握常用机理建模方法; 掌握二阶以下的阶跃响应曲线建模方法;
第二节 过程变量检测及变送
过程变量检测主要是指连续生产过程中的温度、 压力、流量、液位、和成分等参数的测量 过程变量的准确测量可以及时了解工艺设备的 运行工况;为操作人员提供操作依据;为自动 化装臵提供测量信号。 仪表组成: 传感器—直接感受被测变量,并将它变换成适于 测量的信号形式。(一次仪表) 中间环节—将传感器检测信号加以转换和传送; 显示器---将转换的物理量用仪表加以显示就地 指示型仪表、单元组合型仪表、数字式显示仪 表 。(二次仪表)
过程控制系统 第2章 工业过程数学模型
被控过程数学模型的应用与要求
被控过程数学模型的类型 非参量形式 用曲线或数据表格表示,如阶跃响 应曲线、脉冲响应曲线和频率特性曲线 参量形式 用数学方程来表示,如:微分方程、 传递函数、差分方程、状态空间表达式 等。
2.2.2 动态数学模型的类型:有过程机 理推导得到的几种数学模型如表2-2
的方法; 二是依据外部输入输出数据来求取,这就是过程辨 识和参数估计的方法。 当然,也可以把两者结合起来。
解析法建模的一般步骤: 1. 明确过程的输出变量、输入变量和 其他中间变量。 2. 依据过程的内在机理和有关定理、 定律以及公式列写静态方程或动态方 程。 3. 消去中间变量,求取输入、输出变 量的关系方程。 4.将其简化成控制要求的某种形式。
机理建模也有两个弱点: 1)对于复杂的过程,人们对基本方程的某些参数不完全 掌握,例如,换热器的K值,由传热学书籍提供的公式可 能有±(10%-30%)的误差。又如,精馏塔这样已经研 究得比较透彻的设备,对塔板效率、塔板流体中的汽液 比值等参数,很难预先精确估计。 2)如不经过输入/输出数据的验证,则近乎之纸上谈兵, 难以判断其正确性。 经验模型的优点和弱点与机理模型正好相反,特别是现 场测试,实施中有一定难处。
2.1.1机理建模
从机理出发,也就是从过程内在的物理和 化学规律出发,建立稳态数学模型 最常用的是解析法和仿真方法 解析法适用于原始方程比较简单的场合。 这里又分两类:
一是求输入变量作小范围变化的影响,通常采
用增量化处理方法; 二是求输入变量作大范围变化时的影响,这通 常需要逐步求解,如采用数值方法或试差方法, 则与仿真求解无甚区别了。
过程控制 第2章被控过程的数学模型
4. 建立数学模型的依据 要想建立一个好的数学模型,要掌握好以下三类 主要的信息源。 (1) 要确定明确的输入量与输出量 (2)要有先验知识 (3) 试验数据
13
5.被控对象数学模型的表达形式 被控对象的数学模型可以采取各种不同的表达形 式,主要可以从以下几个观点加以划分: (l ) 按系统的连续性划分为:连续系统模型和离散系统 模型。 (2) 按模型的结构划分为:输入输出模型和状态空间 模型。 (3) 输入输出模型又可按论域划分为:时域表达(阶 跃响应,脉冲响应)和频域表达(传递函数)。
9
1.建立数学模型的目的 在过程控制中,建立被控对象数学模型的目的主要 有以下几种: (l) 设计过程控制系统和整定控制器的参数 (2) 控制器参数的整定和系统的调试 (3) 利用数学模型进行仿真研究 (4) 进行工业过程优化 另外,设计工业过程的故障检测与诊断系统、制 订大型设备启动和停车的操作方案和设计工业过程运 行人员培训系统,等等都也需要被控过程的数学模型。
6
也有一些被控对象,例如图2-3中的单容积分水槽, 当进水调节阀开度改变致使物质或能量平衡关系破坏后, 不平衡量不因被控变量的变化而改变,因而被控变量将 以固定的速度一直变化下去而不会自动地在新的水平上 恢复平衡。这种对象不具有自平衡特性,具有这种特性 的被控过程称为非自平衡过程,其阶跃响应如图2-4所 示
第2章 被控过程的数学模型
目 录
2.1 过程模型概述 2.2 机理法建模 2.3 测试法建模 2.4 利用MATLAB建立过程模型 本章小结
1
2.1 过程模型概述
2.1.1 被控过程的动态特性
在过程控制中,被控过程(简称过程)乃是工业生 产过程中的各种装置和设备,例如换热器、工业窑炉、 蒸汽锅炉、精馏塔、反应器等等。被控变量通常是温 度、压力、液位、成分、转速等。被控对象内部所进 行的物理、化学过程可以是各式各样的,但是从控制 的观点看,它们在本质上有许多相似之处。 在生产过程中,控制作用能否有效地克服扰动对 被控变量的影响,关键在于选择一个可控性良好的操 作变量,这就要对被控对象的动态特性进行研究。因 此,研究被控对象动态特性的目的是据以配置合适的 控制系统,以满足生产过程的要求。
过程控制原理与工程第2章
2.1 建立被控对象的数学模型
描述系统的输出量与输入量之间关系的微分方程是系 统最基本的数学模型。 建立微分方程的一般步骤是: 1) 确定输出量和输入量。 2) 从输入端开始,根据相应的物理规律,依次列写各 环节的方程式。 3) 将各方程式联立起来消去中间量,获得一个只含有 输出量和输入量的微分方程式。 图2-1 R、C串联电路过程控制原理与工程第2章 过 程控制系统的数学模型4) 将该方程式整理成标准形式。 即把与输出量有关的各项放在等式的左边,把与输入 量有关的各项放在等式的右边,各导数项按降幂排列。
图2-7 比例环节的功能框图和阶跃响应曲线
过程控制原理与工程
2.积分环节
(1)微分方程 (2)传递函数 (3)动态响应
过程控制原理与工程
2.积分环节
图2-8 积分环节的功能框图和阶跃响应曲线
过程控制原理与工程
3.理想微分环节
(1)微分方程 (2)传递函数 (3)动态响应
过程控制原理与工程
3.理想微分环节
2.结构图的等效变换规则
图2-17 分支点互换
(3)比较点的后移 需乘以所越过环节的传递函数,如图218所示。
过程控制原理与工程
2.结构图的等效变换规则
图2-18 比较点后移
(4)比较点的前移 需乘以所越过环节的传递函数的倒数, 如图2-19所示。
过程控制原理与工程
2.结构图的等效变换规则
图2-19 比较点前移
过程控制原理与工程
2.3.1 拉氏变换的概念
表2-1 常用函数拉氏变换对照表
过程控制原理与工程
2.3.1 拉氏变换的概念
表2-1 常用函数拉氏变换对照表
过程控制原理与工程
2.3.2 拉氏变换的运算定理
第二章自动控制系统的数学模型
第二章自动控制系统的数学模型本章要点系统的数学模型是对系统进行定量分析的基础和出发点。
本章主要介绍从微分方程、传递函数和系统框图去建立自动控制系统的数学模型。
内容包括系统微分方程的建立步骤、传递函数的定义与性质、系统框图的建立、等效变换及化简、系统各种传递函数的求取以及典型环节的数学模型。
为了对自动控制系统性能进行深入的分析和设计,须定量计算系统的动、静态性能指标。
而要完成此项任务,就必须掌握其变化规律,用一个反映其运动状态的数学表达式描述系统的动态过程。
这种描述系统各变量之间关系的数学表达式称为系统的数学模型。
系统数学模型的建立主要有解析法和实验法。
解析法是从系统元件所遵循的一些基本规律出发去推导系统的数学模型。
如果不了解系统的结构和运动规律,则应采用实验法建立数学模型,即在系统的输入端加上测试信号,在根据测试出的输出响应信号建立其数学模型。
系统的数学模型有多种,经典控制理论中常用的数学模型有:微分方程(时域数学模型)、传递函数(复域数学模型)、频率特性(频域数学模型)和动态结构图(几何模型)。
第一节系统的微分方程微分方程是描述系统的输入量和输出量之间关系最直接的方法。
当系统的输入量和输出量都是时间t的函数时,其微分方程可以确切描述系统的运动过程。
一、系统微分方程的建立步骤1.根据系统的组成结构、工作原理和运动规律,确定系统的输入量和输出量。
2.从输入端开始,根据各环节所遵循的运动规律,依次列写微分方程。
联立方程,消去中间变量,求取一个只包含系统输入量和输出量的微分方程。
3.将方程整理成标准形式。
即把含输出量的各项放在方程的左边,把含输入量的各项放在方程的右边,方程两边各导数按降幂排列,并将有关系数化为具有一定物理意义的表示形式,如时间常数等。
二、举例说明例2-1求图2-1所示RC网络的微分方程。
解:由图可知,输入量为u i(t) , 输出量为u o(t) ,根据电路遵循的基尔霍夫电压定律,有dtt du Ct i t u R t i t u o o i )()()()()(=+=消去上式中的中间变量i(t) ,得)()()(t u dtt du RCt u o o i += 整理得 ()()()o o i du t RCu t u t dt+= 例2-2 求直流电动机的微分方程。
第二章 过程控制系统的数学模型-1
上一页 下一页 返回 上一页 下一页 返回
被控对象的动态特性 2:对象动态特性的定义 是指对象的某一输入量发生扰动时,其 被控参数随时间变化的特性。 3:被控对象的分类 具有一个被控参数的被控对象——多输入单输 出的被控对象 具有若干个被控参数的被控对象——多输 入多输出的被控对象
过 统
上一页
几种典型的过渡过程:
过 统
上一页
下一页
返回
几种典型的过渡过程:
非周期衰减过程 衰减振荡过程 √ √
等幅振荡过程 发散振荡过程
? X
一般是不允许的 除开关量控制回路
单调发散过程
过 统
X
上一页
下一页
返回
数学
几种
数学模型
时域模型
频域模型
方框图和信号流图
状态空间模型
微 分 方 程
差 分 方 程
传 递 函 数
干扰:内干扰---调节器的输出量u(t); 外干扰---其余非控制的输入量。 通道:输入量与输出量间的信号联系。
过 统
控制通道 干扰通道
返回
上一页
下一页
被控对象特性:
指对象输入量与输出量之间的关系(数学模型) 指对象输入量与输出量之间的关系( 数学模型)
即对象受到输入作用后,被控变量是如何变化的、变化量为多少…… 即对象受到输入作用后,被控变量是如何变化的、变化量为多少…… 输入量?? 控制变量+各种各样的干扰变量
y(t)表示输出量,x(t)表示输入量,通常输出量的阶次不低与输入量的阶次(n≥m) 表示输出量,x(t) 表示输入量,通常输出量的阶次不低与输入量的阶次(
当n=m时,称对象是正则的;当n>m时,称对象是严格正则的;n<m 的对象是不可实现的。通常n=1,称该对象为一阶对象模型;n=2, 称二阶对象模型。
第二章系统的数学模型
2.2 控制系统的复数域数学模型(传递函数)
一.传递函数
1.线性定常系统的传递函数定义为:
零初始条件下,系统输出量的拉氏变换与输入 量的拉氏变换之比。
R(s) G(s) C(s)
传递函数
输出的拉氏变换 输入的拉氏变换
|零初始条件
C(s) R(s)
G(s)
零初始条件
➢ 零初始条件指的是输入、输出初始条件均为零,即
在给定工作点 ( x0,y0 )附近,将上式展开泰勒级数:
y
f (x)
df f ( x0 ) dx
1 d2 f x x0 ( x x0 ) 2! dx2
(x x0 )2
x x0
若在工作点 ( x0,y0 ) 附近增量 x x0 的变化很小,则可略去式中 ( x x0 )2 项及其后面所有的高阶项,这样,上式近似表示为:
l
s
1)
G(s)
i 1 d
l 1 e
sv (Tjs 1) (Tk2s2 2 kTk s 1)
j 1
k 1
纯微分环节
s
es
积分环节
惯性环节
振荡环节
延迟环节
典型环节
➢ 比例环节的传递函数为:
Proportional element (link)
C(s) G(s) K R(s)
齿轮传动
方框图为:
➢ 频域数学模型:
频率特性
2.1 线性系统的时域数学模型
本节主要研究描述 线性、定常、集总参量控制系统的微分方程的
建立和求解方法
线性元件的微分方程
一.微分方程:
给定量和扰动量作为系统输入量,被控制量作为系统输出 的一种系统描述方法
第二章 被控过程的数学模型
后才反应出来。 要经过路程 l 后才反应出来。
℃
0 t
τ
0
纯滞后时间
l τ0 = v
℃
v ——水的流速; 水的流速;
0 有些对象容量滞后与 纯滞后同时存在,很难严格 纯滞后同时存在, Δh2 (∞) 区分。常把两者合起来, 区分。常把两者合起来,统 称为滞后时间τ 0
τ0
t
τ=τ
o
+τc
τ0 τc
单回路控制系统框图
过程通道: 过程通道:
被控过程输入量与输出量之间的信号联系
控制通道: 控制通道:
控制作用与被控量之间的信号联系
扰动通道: 扰动通道:
扰动作用与被控量之间的信号联系
建立过程数学模型的基本方法: 建立过程数学模型的基本方法:
解析法: 解析法: 又称为机理演绎法 ,根据过程的内在机理,运用已知 根据过程的内在机理, 的静态和动态物料(能量)平衡关系, 的静态和动态物料(能量)平衡关系,用数学推理的方法建 立过程的数学模型。 立过程的数学模型。 实验辨识法: 实验辨识法: 又称为系统辨识与参数估计法。该法是根据过程输入、 又称为系统辨识与参数估计法。该法是根据过程输入、输 出的实验测试数据, 出的实验测试数据,通过过程辨识和参数估计建立过程的数学 模型。 模型。 混合法: 混合法: 即用上述两种方法的结合建立过程的数学模型。 即用上述两种方法的结合建立过程的数学模型。首先通 过机理分析确定过程模型的结构形式, 过机理分析确定过程模型的结构形式,然后利用实验测试数据 来确定模型中各参数的大小
其中: 其中:
T = R 2 C 为被控过程的时间常数
K = R2
为被控过程的放大系数
Hs +1 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)半对数坐标作图法 由于较为繁杂,一般不用。
3.由阶跃响应曲线确定过程的数学模型
3.4 二阶加时延过程参数的确定
数学模型:
x TC (1 x) x1 x TA
(1) (2)
(2)
T1 T2 TC
(1)
3.由阶跃响应曲线确定过程的数学模型
利用公式(1)计算T1和T2较为复杂,绘制曲线利用图解法求取T1和T2。 根据公式(1)绘制曲线见右图。
(1) 直角坐标图解法求K0和T0 阶跃输入量为x0,一阶无时延响应为:
将采集的输出测量数据减去原来的稳态数据, 即响应曲线是在原稳态工作点基础上的增量 曲线。
3.由阶跃响应曲线确定过程的数学模型
确定
y () y (0) K0 x0
确定
3.由阶跃响应曲线确定过程的数学模型
y() y(t ) K0 x0e
1 0.46 20 33.5
3 1.7 25 27.2
4 3.7 30 21
5 9 40 10.4
8 19 50 5.1
10 26.4 60 2.8
15 36 70 1.1
16.5 31.5 80 0.5
第二题: 设阶跃扰动量△u=20%,某水槽的水位阶跃 响应数据见下表,用一阶惯性环节求取该液位的 传递函数。
0 y0 (t ) t T0 1 e
y0 (t1 ) 1 e t2 y0 (t2 ) 1 e T0
t1 T0
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
3.由阶跃响应曲线确定过程的数学模型
t/s h/mm t/s h/mm 0 0 150 78 20 18 200 86 40 33 300 95 60 45 400 98 80 55 500 98.5 100 63
t T0
1
3.由阶跃响应曲线确定过程的数学模型
3.2 由阶跃响应曲线确定一阶时延过程的参数 一阶时延环节响应曲线特点:
在t=0时,斜率几乎为零,之后逐渐增大到某点(拐点)后,斜率 又逐渐减小。曲线呈S形状。
3.由阶跃响应曲线确定过程的数学模型
y0 (t )
y (t ) y ( )
t t
放大系数K0确定同前: K0
y() x0
课堂作业:
第一题: 采用矩形方波法测定温度对象的动态特性,所用方波 脉冲宽度t0=10min,方波幅值为2℃/h,测试记录如下 表, (1)试将矩形脉冲响应曲线换算成阶跃响应曲线。 (2)用二阶惯性环节求取该温度对象的传递函数。
t/min T/℃ t/min T/℃
u2 (t ) u1 (t a)
矩形脉冲响应曲线:
3.由阶跃响应曲线确定过程的数学模型
首先确定过程数学模型的结构,然后确定数学模型的具体参数。 传递函数: (1)一阶无延 时 无自衡过程。
(2)二阶无延 时
(3)一阶有延 时
3.由阶跃响应曲线确定过程的数学模型
3.1 阶跃响应确定一阶过程参数 放大系数K0、时间常数T0、时延时间τ0。 t=0,曲线斜率最大,之后斜率减小,逐渐达稳态。
(1) (2)
试验测定时,被控过程处于相对稳定的工作状态。
输入的阶跃信号不可太大,也不可太小。太大,影响生产; 太小,被干扰信号淹没。
(3)
分别输入正负阶跃信号,并测取其响应曲线作对比,以便 显示过程的非线性影响。一般取正常信号的10%。
在相同条件下重复测试几次,选择两次比较接近的响应曲 线作为分析数据,以减小干扰。 完成一次试验测定后,使过程稳定在原来的工况一段时间, 再作第二次试验测试。 注意记录响应曲线的起始部分,如果这部分没有测出或者 欠佳,就难以获得对象的动态特性参数。
第二章 过程控制的数学模型
2.3 响应曲线辨识过程的数学模型
1. 阶跃响应曲线的测定
利用响应曲线辨识建立数学模型是一种常用的方法。 1.1 阶跃响应曲线的测定 过程:使输入量作一阶跃变化,记录输出量随时间变化的 响应曲线。即阶跃响应曲线。
输入信号:
响应曲线:
1. 阶跃响应曲线的测定
试验时必须注意:
(4)
(5)
(6)
2. 矩形脉冲响应曲线的测定
阶跃响应法缺陷: 过程长时间的处于较大幅值的阶跃信号 作用下,被控量变化的幅度可能会超出生 产工艺允许的范围。 用矩形脉冲作为输入信号,将响应曲线 转化为阶跃响应曲线,确定数学模型。 脉冲信号看作: 两个极性相反、幅值相同、时间相差 a的阶跃信号叠加而成。
3.3 由阶跃响应曲线确定二阶过程的参数 阶跃响应方程为:
T1 T2 T1 y(t ) K 0 x0 [1 e e T2 ] T1 T2 T1 T2 t t
(1)两点法
求静态放大系数K0,同前
2-15
取输出最终变化量的 40%和80%点来拟合, 结果比较理想.
3.由阶跃响应曲线确定过程的数学模型