重积分的计算方法
重积分的积分性质和计算规则
重积分的积分性质和计算规则重积分是高等数学中的一种重要概念,指对于一个二元函数而言,将其在一个二维区域上进行积分的过程。
与单积分类似,重积分也有其特定的积分性质和计算规则。
本文将详细介绍重积分的这些性质和规则,以帮助读者更好地理解和应用重积分的相关知识。
一、积分性质1. 线性性质:重积分具有线性性,即对于常数c与两个可积函数f(x,y)和g(x,y),有如下式子成立:∬ (c*f(x,y) + g(x,y)) dxdy = c * ∬ f(x,y) dxdy + ∬g(x,y)dxdy2. 可积性与非负性:如果函数f(x,y)在一个有限二维区域上是可积的,那么它在该区域上的积分一定存在;而如果函数g(x,y)在该区域上非负,则其积分也是非负的。
3. 积分次序可交换:如果二元函数f(x,y)在一个矩形区域上是可积的,则对于该区域内的任意两个积分限定,这两个积分的次序可以任意交换而不影响结果,即:∬ f(x,y) dxdy = ∬ ( ∬f(x,y)dy ) dx = ∬(∬f(x,y) dx)dy二、计算规则1. Fubini定理:Fubini定理是重积分中的一个重要定理,可以将对二元函数在一个区域上的重积分转化为两个一元函数相应区域上的积分,即:∬f(x,y)dxdy = ∫a∫b f(x,y)dxdy = ∫b∫a f(x,y)dydx = ∫a∫b f(x,y)dydx其中f(x,y)为被积函数,a和b分别为区域在x和y轴上的积分限。
2. 直角坐标系下的计算规则:在直角坐标系下,重积分可以用二重积分的形式表示,即:∬f(x,y)dxdy = ∫c∫d f(x,y)dxdy其中 c 和 d 分别为区域在x和y轴上的积分限,这个积分区域可以是矩形、梯形、三角形等形状。
在进行计算时,通常需先用对x或y的积分公式进行计算,再对另一个变量进行积分。
3. 极坐标系下的计算规则:在极坐标系下,重积分可以用二重积分的极坐标形式表示,即:∬f(x,y)dxdy = ∫α∫β f(r*cosθ,r*sinθ)rdrdθ其中α和β为对应极角的积分限,r是到极点的距离,θ是到x轴的角度。
重积分与曲线曲面积分的计算方法
重积分与曲线曲面积分的计算方法重积分和曲线曲面积分是微积分中的重要概念,它们在多变量函数的研究和应用中起着重要作用。
本文将介绍重积分和曲线曲面积分的概念及其计算方法。
一、重积分的概念和计算方法1. 重积分的概念重积分是对多变量函数在一定区域上的积分运算。
设函数f(x, y)在闭区域D上有定义,则重积分的定义为:∬Df(x, y) dA,其中,dA表示面积元素,可以用dx dy来表示。
2. 重积分的计算方法(1)可分离变量的重积分若函数f(x, y)可以表示为f(x)g(y),则重积分可以分解为两个一元积分的乘积,即:∬Df(x, y) dA = (∫f(x)dx) (∫g(y)dy)。
(2)极坐标下的重积分若D是以极坐标表示的闭区域,即D={(r,θ) | α≤θ≤β, g1(r)≤r≤g2(r)},则重积分可以表示为:∬Df(x, y) dA = ∫βα∫g2(r)g1(r) f(r cosθ, r sinθ) r dr dθ。
(3)变量替换法的重积分当积分区域D是一般的闭区域,通过适当的变量替换可以将其变换为简单的形式。
例如,对于直角坐标系下的曲线,可以通过变量替换来简化重积分的计算。
二、曲线曲面积分的概念和计算方法1. 曲线积分的概念曲线积分是对向量场沿曲线的积分运算。
设向量场F(x, y)在曲线C上有定义,则曲线积分的定义为:∮CF(x, y)·dr,其中,dr为曲线的微元向量。
2. 曲线积分的计算方法(1)参数方程表示的曲线积分若曲线C可以由参数方程表示,即C: r(t)=[x(t),y(t)],a≤t≤b,则曲线积分可以表示为:∮CF(x, y)·dr = ∫baF(x(t),y(t))·r'(t)d t。
(2)向量场与切向量的内积在计算曲线积分时,常常需要将向量场与曲线上的切向量进行内积。
若曲线C由向量函数r(t)=[x(t),y(t)]表示,则曲线的切向量为r'(t)=[x'(t),y'(t)]。
重积分的计算方法及应用
重积分的计算方法及应用重积分是多元函数积分的一种形式,应用广泛。
本文将介绍重积分的计算方法和应用。
一、重积分的计算方法1. 重积分的定义重积分是对多元函数在一个具有面积的区域上进行的积分,它可以看作是对一个平面上的区域进行积分。
假设在二元函数f(x,y)的定义域D上选择了一个面积为S的区域R,那么多元函数f(x,y)在区域R上的重积分为∬Rf(x,y)dxdy。
2. 重积分的计算方法重积分的计算方法与一元函数积分类似,可以使用曲线积分或者换元法进行求解。
特别的,对于二元函数f(x,y),可以通过极坐标系进行重积分的计算,在极坐标系中,面积可以用rdrdθ表示,积分公式为f(x,y)dxdy=rdrdθ∫∫Rf(rcosθ,rsinθ)drdθ。
如果要计算三元函数的重积分,则需要使用球坐标系,积分公式为f(x,y,z)dxdydz=r^2sinθdrdθdϕ∫∫∫Rf(x,y,z)r^2sinθdxdydz。
二、重积分的应用重积分在实际生活中有许多应用,比如:1. 计算物体的质量和重心物体的质量可以看作是物体密度分布的加权平均值,因此可以使用重积分的概念来计算物体的质量。
同样的,对于一个平面图形,可以通过将图形分割为若干个小面积来计算它的面积和重心。
2. 计算物体的体积重积分还可以用于计算物体的体积。
假设在三元函数f(x,y,z)的定义域D上选择了一个体积为V的区域S,那么多元函数f(x,y,z)在区域S上的重积分为∭Sf(x,y,z)dxdydz。
3. 计算动量和角动量在物理学中,物体的动量和角动量可以通过积分的方式计算。
物体的动量可以看作是物体质量与运动速度的乘积,因此可以通过对速度的积分来计算动量。
同样的,物体的角动量可以看作是物体质量、运动速度和距离的乘积,因此可以通过对速度和距离的积分来计算角动量。
4. 计算电荷量和电场强度在电磁学中,电荷量可以通过积分来计算。
同样的,电场强度也可以通过积分来计算。
重积分计算方法
������������������������������ + ������������������������������ + ������������������������������ ∬ ������ 注:若∬ ������������������������������,S 取向与 dy^dz(x 正向)一致则为+,反之为-; ������ 若z = z(x, y),∬ ������������������������������ + ������������������������������ + ������������������������������ = ± ∬ (−������������������ − ������������������ + ������)������������������������ ������ ������ 若Σ单位法向量为n ⃗ = (a, b, c),原式= ∬ (������������ + ������������ + ������������)������������ ������
������
第二类曲线积分: (变力做功) : ∬ ������������������ + ������������������ ������ 对 L: x = φ(t) y = ∅(t)
������
t ∈ [α, β]
∫������ ������(������, ������) ������������ = ∫������ [������(������(������), ∅(������))������′ (������) + ������(������(������), ∅(������))∅′ (������)]������������ 第一类曲面积分(曲面质量) : ∬ ������(������, ������, ������)������������ = ∬ ������(������, ������, ������)√(������(������,������))2 + (������(������,������))2 + (������(������,������))2 ������������������������ ������ ������
重积分的计算方法
.重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f( x,y),三元函数( fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域 D 的草图;第二步:按区域 D 和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来” ,而对另一种次序却“积不出来” 。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫ f(x,y)dxdy=∫∫ f(pcosθ,psin)θ)pdpdθ下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
重积分基础概念
重积分基础概念在数学中,积分是一个非常重要的概念,它是微积分中的一个核心内容。
而在积分的概念中,重积分是其中的一种特殊情况。
本文将为您介绍重积分的基础概念。
1. 一重积分的定义一重积分是对一维空间中的函数在给定区间上的积分运算。
设函数f(x)在区间[a, b]上连续,则[a, b]上f(x)的积分可以表示为:∫[a,b] f(x) dx其中∫表示积分运算,f(x)为被积函数,dx表示积分变量。
2. 重积分的定义重积分是对多维空间中的函数在给定区域上的积分运算。
设函数f(x,y)在闭区域D上连续,则D上f(x,y)的积分可以表示为:∬D f(x,y) dσ其中∬表示重积分运算,f(x,y)为被积函数,dσ表示面积元素。
3. 重积分的几何意义重积分的几何意义是计算多维区域上的体积或者质量。
对于函数f(x,y),它在区域D上的积分结果表示了函数f(x,y)在该区域上的平均值乘以区域D的面积。
4. 重积分的计算方法对于重积分的计算,可以使用多种方法,包括直接计算和变量替换等。
直接计算是将区域D划分成小的子区域,然后计算每个子区域的面积乘以函数值的和。
变量替换是将原来的积分区域通过变换映射到更易计算的区域上。
5. 重积分的性质重积分具有一些重要的性质,包括线性性、保号性和积分中值定理等。
线性性表示对于任意实数k,两个函数f(x,y)和g(x,y)的线性组合的积分等于它们分别积分后再求和。
保号性表示对于函数f(x,y),如果f(x,y)在区域D上总是非负的,则D上f(x,y)的积分也非负。
积分中值定理表示在区域D上,存在一点(x0, y0),使得f(x0,y0)等于D上f(x,y)的平均值。
在实际问题中,重积分在物理学、经济学、工程学等领域中有广泛的应用。
通过对重积分的理解和运用,可以更好地解决实际问题,并推动科学的发展和进步。
总结起来,重积分是对多维空间中函数在给定区域上的积分运算。
它有着重要的几何意义和计算方法。
重积分(解题方法归纳)Word版
第十章 重积分解题方法归纳一、重积分的概念、性质重积分的定义是一个黎曼和的形式,对于一些和式的极限问题,有时可根据定义,将其转化为重积分,再利用重积分的计算方法求解. 另外很多考试在选择题或填空题中,直接考查重积分的性质,常考的性质一般有:比较性质、对称性质、中值定理等.例1 (2010年考研 数一、数二)2211lim ()()→∞==++∑∑nnn i j nn i n j =( ) 11211()()(1)(1)(1)(1)++++⎰⎰⎰⎰xxA dx dyB dx dy x y x y11112000011()()(1)(1)(1)(1)++++⎰⎰⎰⎰C dx dyD dx dy x y x y解 由于 222211111()()=====++++∑∑∑∑nnnni j i j n nn i n j n i n j而 10111111lim lim 11→∞→∞====+++∑∑⎰nn n n i i dx i n in x n12220211111lim lim 11()→∞→∞====+++∑∑⎰nn n n j j n dy j n j n y n 因此 1122200111lim ()()(1)(1)→∞===++++∑∑⎰⎰nnn i j n dx dy n i n j x y 故选()D .『方法技巧』 当遇到黎曼和的形式时,经常考查积分的定义式,在积分中,积分变量的符号是任意的,可根据题目的要求选取.例2 设(,,)f x y z 在{}2222(,,)Ω=++≤R x y z x y z R 上连续,又(0,0,0)0≠f ,则0→R 时,(,,)Ω⎰⎰⎰Rf x y z dv 是R 的 阶无穷小.解 由题意 要确定 0(,,)lim0Ω→=≠⎰⎰⎰RnR f x y z dva R 中的n .由积分中值定理知,存在000(,,)∈ΩR x y z ,使得30004(,,)(,,)3πΩ=⎰⎰⎰Rf x y z dv f x y z R 因此 30003300(,,)(,,)4lim lim (0,0,0)03πΩ→→==≠⎰⎰⎰RR R f x y z dvf x y z R f R R故 3=n ,即(,,)Ω⎰⎰⎰Rf x y z dv 是R 的3阶无穷小.『方法技巧』 要将被积函数从积分号内取出时,常会用到积分中值定理,尤其在证明题中经常遇到.二、重积分的计算方法当给定被积函数和积分区域时,重积分是一个确定的数值.对于简单的函数,用性质或几何意义即可求得积分值;对一般函数,需要化为累次积分计算.1.重积分的计算方法归纳如下:(1) 利用重积分的性质计算重积分.(2) 利用重积分的几何意义(针对二重积分)计算重积分. (3) 直角坐标系下计算重积分.(4) 极坐标系、柱面坐标系和球面坐标系下,计算重积分. (5) 利用换元法计算重积分.2. 在具体计算时,常用到如下一些结论: (1)若积分区域D 关于x (或y )轴对称,则10 (,)(,)(,)2(,)(,)(,)DD f x y f x y f x y d f x y d f x y f x y σσ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰(或10 (,)(,)(,)2(,)(,)(,)σσ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰DD f x y f x y f x y d f x y d f x y f x y )其中1D 是D 在x (或y )轴上(或右)方的部分. (2)若积分区域D 关于直线y x =对称,则10 (,)(,)(,)2(,)(,)(,)DD f x y f x y f x y d f x y d f x y f x y σσ=-⎧⎪=⎨=⎪⎩⎰⎰⎰⎰其中1D 是D 在直线y x =上方的部分.(3)若积分区域Ω关于xOy (或,yOz zOx )面对称,则10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z (或10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z , 10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z ) 其中1Ω是Ω在xOy (或,yOz zOx )面上(或前,右)方的部分.(4)若积分区域D 是X (或Y )型域,即12:()()a x b D x y x ϕϕ≤≤⎧⎨≤≤⎩(或12:()()c y d D y x y ψψ≤≤⎧⎨≤≤⎩),则二重积分 21()()(,)(,)ϕϕσ=⎰⎰⎰⎰bx a x Df x y d dx f x y dy (或21()()(,)(,)ψψσ=⎰⎰⎰⎰dy cy Df x y d dy f x y dx )(5)若极点O 在积分区域D 内或边界上,即02:0()D θπρϕθ≤≤⎧⎨≤≤⎩,则二重积分2()(,)(cos ,sin )(cos ,sin )DDf x y d f d d d f d πϕθσρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(6)若极点O 在积分区域D 外,即12:()()D αθβϕθρϕθ≤≤⎧⎨≤≤⎩,则二重积分21()()(,)(cos ,sin )(cos ,sin )DDf x y d f d d d f d βϕθαϕθσρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(7)若积分区域{}12(,,)(,)(,),(,)Ω=≤≤∈xy x y z z x y z z x y x y D (或{}12(,,)(,)(,),(,)Ω=≤≤∈yz x y z x y z x x y z y z D , {}12(,,)(,)(,),(,)Ω=≤≤∈zx x y z y z x y y z x z x D )则三重积分(投影法)21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰xyz x y z x y D f x y z dv dxdy f x y z dz (或21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰yzx y z x y z D f x y z dv dydz f x y z dx21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰zxy z x y z x D f x y z dv dzdx f x y z dy )(8)若积分区域{}(,,),(,)Ω=≤≤∈z x y z a z b x y D (或{}(,,),(,)Ω=≤≤∈x x y z c x d y z D ,{}(,,),(,)Ω=≤≤∈y x y z m y n z x D ) 则三重积分(截痕法)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰zbaD f x y z dv dz f x y z dxdy (或(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰xdcD f x y z dv dx f x y z dydz ,(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰ynmD f x y z dv dy f x y z dzdx )(9)若积分区域{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O z z z z D (或{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O x x x x D ,{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O y y y y D )则三重积分(柱面坐标)(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O z z D d d f z dz(或(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O x x D d d f x dx(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O y y D d d f y dy )(10)若积分区域{}1212(,,)(,)(,),()(),ϕθϕθϕθϕθϕϕθαθβΩ=≤≤≤≤≤≤r r r r则三重积分(球面坐标)2(,,)(sin cos ,sin sin ,cos )sin f x y z dv f r r r rdrd d ϕθϕθϕϕϕθΩΩ=⎰⎰⎰⎰⎰⎰2211()(,)2()(,)sin (sin cos ,sin sin ,cos )r r d d f r r r r dr βϕθϕθαϕθϕθθϕϕϕθϕθϕ=⎰⎰⎰(1) 计算重积分的步骤:(1)二重积分画出积分区域D 的草图;三重积分想象出积分区域Ω的图形; (2)选取坐标系(依据D 或Ω的形状和被积函数(,)f x y 或(,,)f x y z 的形式);(3)选择积分次序;(4)确定累次积分的上、下限,分别计算定积分.例3 设{}222(,),0D x y x y a a =+≤>,若Dπ=,则a =( ).()1()()()A B C D 解由于被积函数z =a 的上半个球面,根据二重积分的几何意义知,D等于以D 为底,z =31423Da ππ==因此 a =()B . 『方法技巧』 当被积函数是我们比较熟悉的曲面时,首先要考虑二重积分的几何意义.本题也可直接利用极坐标计算二重积分.例4 设{}(,)1D x y x y =+≤,计算二重积分()Dx y dxdy +⎰⎰.解 积分区域D 如图10.35所示,它关于x 轴、y 轴及原点对称,1D 为D 在第一象限部分.()DDDx y dxdy x dxdy ydxdy +=+⎰⎰⎰⎰⎰⎰对于二重积分Dx dxdy ⎰⎰,由于被积函数对变量x均为偶函数,由二重积分的对称性知14DD x dxdy xdxdy =⎰⎰⎰⎰.对于二重积分Dydxdy ⎰⎰,由于被积函数对y 为奇函数,由二重积分的对称性知0Dydxdy =⎰⎰.故1110()44xDD x y dxdy xdxdy dx xdy -+==⎰⎰⎰⎰⎰⎰124(1)3x x dx =-=⎰ 『方法技巧』 当积分区域关于x 轴或y 轴对称时,首先要考虑被积函数是否存在对变量x 和y 的奇、偶性,若存在,可以先化简,再计算,这样会简化运算过程. 本题也可直接利用直角坐标计算二重积分.例5 设{}22(,)1,1D x y x y x y =+≤+≥,计算二重积分22x ydxdy x y++⎰⎰. 解 积分区域D 如图10.36所示,由于积分区域 与圆有关,被积函数中含有22x y +,因此采用极坐标.2211x y ρ+=⇒=11sin cos x y ρθθ+=⇒=+所以 1(,)1,0sin cos 2D πρθρθθθ⎧⎫=≤≤≤≤⎨⎬+⎩⎭,故222cos sin (cos sin )D D Dx y dxdy d d d d x y ρθρθρρθθθρθρ++==++⎰⎰⎰⎰⎰⎰ 1221sin cos (cos sin )(cos sin 1)22d d d ππθθπθθθρθθθ+=+=+-=-⎰⎰⎰『方法技巧』 当积分区域与圆(圆、圆环、扇形)有关,被积函数中含有22x y +、x y 或yx时,一般计算二重积分时,会考虑利用极坐标. 例6 设{}22(,)D x y x y x y =+≤+,计算二重积分()Dx y dxdy +⎰⎰.解 积分区域是由圆周22111()()222x y -+-=围成的,令1212u x v y ⎧=-⎪⎪⎨⎪=-⎪⎩,则作变换11,22x u y v =+=+,将xOy 面上的闭区域D 转化为uOv 面上的闭区域221(,)2D u v u v ⎧⎫'=+≤⎨⎬⎩⎭,则 10(,)(,)1001(,)x y J u v u v ∂===≠∂因此()(1)(1)DD D x y dxdy u v J dudv u v dudv ''+=++=++⎰⎰⎰⎰⎰⎰又由于D '关于u 轴、v 轴均对称,所以()0D u v dudv '+=⎰⎰,故2()()22DD x y dxdy dudv ππ'+===⎰⎰⎰⎰『方法技巧』 当复杂的积分区域D 可经过坐标变换(平移或旋转),变成简单区域D '时,一般会用二重积分的换元法.例7 设{}2222222(,,),,0Ω=++≤+≤≥x y z x y z R x y z z ,将三重积分(,,)Ω⎰⎰⎰f x y z dv 在三种坐标系下化为累次积分.解 积分区域Ω如图10.37所示.在直角坐标系下,先对z 积分,作平行于z 轴并与其方向一致的射线穿入Ω,穿进的曲面=z 是变量z 的下限,穿出的曲面=z是变量z 的下限,再将Ω投影 到xOy 面得闭区域(,)⎧⎫⎪⎪=≤≤≤≤⎨⎬⎪⎪⎩⎭xy D x yy x在xy D 上将二重积分转化为二次积分,故(,,)(,,)Ω=⎰⎰⎰f x y z dv dx f x y z dz在柱面坐标系下,将Ω转化为柱面坐标系下的积分区域,即(,,),022ρθρρθπ⎧⎫⎪⎪Ω=≤≤≤≤≤≤⎨⎬⎪⎪⎩⎭z z R则(,,)(cos,sin,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz200(cos,sin,)πρθρρθρθρ=⎰d d f z dz 在球面坐标系下,将Ω转化为球面坐标系下的积分区域,即(,,)0,0,024πϕθϕθπ⎧⎫Ω=≤≤≤≤≤≤⎨⎬⎩⎭r r R则2(,,)(sin cos,sin sin,cos)sinf x y z dv f r r r r d d dϕθϕθϕϕρθϕΩΩ=⎰⎰⎰⎰⎰⎰224000sin(sin cos,sin sin,cos)ππθϕϕϕθϕθϕ=⎰⎰⎰Rd d f r r r r dr『方法技巧』有些三重积分既可用直角坐标计算,也可用柱面坐标和球面坐标计算,甚至直角坐标可以用投影法计算,还可用截痕法计算,但计算的难易程度还是有区别的,需要同学加强这方面的练习,以便在考试中,以最快的速度找出最简单的计算方法.三、交换积分次序交换积分次序的题目,在考试中选择题和填空题居多,且大多数为二重积分,题型可分为以下几类:(1)给出一种次序的二次积分,要求交换成另一种次序的二次积分;(2)给出一种次序的二次积分,要求计算此积分(一般按给定次序不能进行计算);(3)计算一个二重积分(只有一种次序的二次积分可以计算);(4)直角坐标系下的二次积分与极坐标系下的二次积分互相转化.(5)证明一个二次积分等于一个定积分时,需要先交换二次积分的积分次序.例8计算sin=⎰⎰DxI dxdyx,其中积分区域D是由直线=y x及抛物线2=y x围成的闭区域.解积分区域D如图10.38所示.积分区域既是X型又是Y型区域,但被积函数为sin =xy x,若对x 积分时,不能得到原函数,故化为二次积分时,只能先对y 后对x 积分,故21100sin sin (1)sin 1sin1===-=-⎰⎰⎰⎰⎰x x Dxx I dxdy dx dy x xdx x x『方法技巧』 二重积分用任何次序都可转化为二次积分,但并不代表用任何次序的二次积分都可以求出结果,因此,做题时,若一种次序的二次积分计算非常繁琐,就需要考虑换一种积分次序试一试,尤其当被积函数中含有sin xx、2x e 等函数时,要特别注意. 例9 证明211()()=-⎰⎰y x dy f x dx e e dx证 在左边的二次积分中,由于被积函数含有 未知函数()f x ,而积分变量又是x ,因此不能按给 定次序求出定积分,需要交换积分次序. 首先还原成 二重积分的积分区域D ,如图10.39所示.左边=2211111()()()==⎰⎰⎰⎰⎰y y y xxdy f x dx dx e f x dy f x dx e dy221110()()()()==-⎰⎰yx x f x e dx e e f x dx =右边 证毕.四、重积分的几何应用和物理应用在几何上,二重积分可以求平面图形的面积、曲顶柱体的体积及空间曲面的面积等,三重积分可以求空间区域的体积.在物理上,重积分可以求物体的质量、质心(形心)坐标及转动惯量等. 在具体计算时,常用到如下一些结论: (1)()σ=⎰⎰Dd A D 的面积(2)(,)((,))σ=⎰⎰Df x y d V D f x y 以为底,为顶的曲顶柱体的体积(3)()Ω=Ω⎰⎰⎰dv V 的体积(4)()=∑DA 的面积其中D 为曲面:(,)∑=z f x y 在xOy 面的投影区域.(5)(,)()ρσ=⎰⎰Dx y d M xOy D 占平面上区域的物体的质量(,,)()ρΩ=Ω⎰⎰⎰x y z dv M 占空间区域的物体的质量(6) 质心坐标平面物体的质心坐标: (,)(,),(,)(,)ρσρσρσρσ==⎰⎰⎰⎰⎰⎰⎰⎰DDDDx x y d y x y d x y x y d x y d空间物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρΩΩΩΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dvy x y z dvz x y z dvx y z x y z dvx y z dvx y z dv当密度均匀时,质心也称为形心.(7) 转动惯量平面物体的转动惯量:22(,),(,)ρσρσ==⎰⎰⎰⎰x y DDI y x y d I x x y d空间物体的转动惯量:2222()(,,),()(,,)ρρΩΩ=+=+⎰⎰⎰⎰⎰⎰x y I y z x y z dv I z x x y z dv22()(,,)ρΩ=+⎰⎰⎰z I x y x y z dv在(5)—(7)中,(,)ρx y 和(,,)ρx y z 分别表示物体的面密度和体密度.例10 设{}2222(,,)()()()Ω=-+-+-≤x y z x a y b z c R ,则()Ω++⎰⎰⎰x y z dv = .解 利用球的形心坐标公式31(,,)(,,),,,,43πΩΩΩΩΩΩΩΩΩ⎛⎫⎛⎫ ⎪=== ⎪ ⎪⎝⎭ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xdv ydv zdv a b c x y z xdv ydv zdv dv dv dv R 因此 333444,,333πππΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰xdv aR ydv bR zdv cR 故34()()3πΩΩΩΩ++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x y z dv xdv ydv zdv a b c R例11 设{}22(,)2=+≤D x y x y y ,计算(4)σ--⎰⎰Dx y d .解 由于积分区域D 是圆域,关于y 轴对称,且形心(圆心)为(0,1),半径为1,因此,1σσσπ===⎰⎰⎰⎰⎰⎰DDDxd yd d故(4)4403σσσσπππ--=--=--=⎰⎰⎰⎰⎰⎰⎰⎰DDDDx y d d xd yd『方法技巧』 以上两题说明,若积分区域的形状是规则的(如圆形、球形、柱形等),形心坐标很容易看出,在计算被积函数为x 、y 或z 的积分时,可以逆向利用形心坐标公式,使得计算更加简单(此方法非常实用).友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
重积分计算方法
重积分计算方法重积分是微积分中的一个重要概念,它在数学、物理和工程等领域中有广泛的应用。
在本文中,我将介绍重积分的计算方法,包括定限定积分和变限定积分两种方法。
一、定限定积分方法定限定积分是最基本的计算重积分的方法。
它适用于积分区域为矩形或者更一般的有界闭区域的情况。
定限定积分的思想是将积分区域分割成一系列小矩形,然后对每个小矩形进行积分,最后将这些小矩形的积分结果相加得到整个积分的结果。
具体步骤如下:1. 将积分区域划分成n个小矩形,每个小矩形的面积为ΔSi;2. 在每个小矩形中选择一个点(xi, yi)作为代表,并计算函数f(xi, yi)在该点的值;3. 对每个小矩形进行积分,得到ΔSi中的积分结果ΔFi = f(xi, yi) * ΔSi;4. 将所有小矩形的积分结果相加得到定限定积分的近似结果,即ΣΔFi;5. 当划分的小矩形数量趋于无穷大时,ΣΔFi趋于定积分∬R f(x, y) dA,即ΣΔFi → ∬R f(x, y) dA。
定限定积分方法的优点是计算简单直观,适用于大多数情况。
然而,在积分区域较为复杂或者函数形式较为复杂的情况下,定限定积分的计算可能变得困难。
二、变限定积分方法变限定积分是一种更为灵活的重积分计算方法。
它适用于积分区域为曲线所围成的封闭区域的情况,或者积分区域为矩形等简单形状,但函数形式较为复杂的情况。
变限定积分的思想是通过变量代换和累次积分来计算重积分的结果。
具体步骤如下:1. 找到合适的变换,将原积分区域映射到一个新的积分区域上,使得新的积分区域具有简单的形状;2. 对新的积分区域进行积分计算,得到中间结果;3. 反过来根据变换关系将中间结果转换回原来的积分区域上,得到最终的积分结果。
变限定积分方法的优点是能够简化积分区域的形状和函数的形式,使得计算更为便捷。
然而,变限定积分方法的变量选择和变换关系的确定通常需要一定的技巧和经验。
综上所述,重积分的计算方法包括定限积分和变限积分两种方法。
高等数学-重积分的 计算 及应用
D
例如计算: I x2d
D:
D
I y2d
D
I 1
(x2 y2 )d
a4
2D
4
14
x2 y2 a2
例6
d
D (a2 x2 y2 )3/ 2
其中 D : 0 x a ; 0 y a
y yx
a
解:如图D是关于直线 y x 对称。
D2
D1
r a
cos
原式 2
D1
o 4
D1 D2 D
x
连续, 所以
6
D (x y) d D2 (x y) d D1 (x y) d
4
dy
6
12 y
y2 (x y)d x
2
dy
4
4 y
y2 (x y)d x
2
2
54311 15
9
例2. 计算 x2 y2 4 d , 其中 D : x2 y2 9
F(0) 0
利用洛必达法则与导数定义,得
lim
t0
F
(t ) t4
lim
t 0
4 f (t) 4 t3
t
2
lim
t 0
f (t) t
f
(0)
f (0)
33
f (x, y, z) d v
x
D
z2 (x, y) f (x, y, z)dz dxdy
z1( x, y)
记作 dxdy z2 (x, y) f (x, y, z)dz
D
z1( x, y)
20
y D
dxd y
微元线密度≈
f (x, y, z) dxdy
方法2. 截面法 (“先二后一”)
重积分的计算方法(试题学习)
重积分的计算方法
重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算
1.常用方法
(1)化累次积分计算法
对于常用方法我们先看两个例子
对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:
第一步:画出积分区域D的草图;
第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;
第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法
着重看下面的例子:。
重积分的计算方法
重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
重积分公式
重积分公式重积分是微积分中的一个重要概念,用于计算多元函数在某一区域上的积分。
重积分公式是指在不同坐标系下计算重积分时所使用的相应公式。
一般来说,重积分可以分为二重积分和三重积分,分别用于计算二元函数和三元函数在某一区域上的积分。
下面分别介绍二重积分和三重积分的公式。
1. 二重积分公式:在直角坐标系下,设函数 f(x, y) 在闭区域 D 上连续或者仅有有限个第一类间断点,在 D 上定义二重积分,则有以下公式:Df(x, y)dxdy = ∫∫Df(x, y)dxdy在极坐标系下,设函数 f(r, θ) 在闭区域 D 上连续或者仅有有限个第一类间断点,在 D 上定义二重积分,则有以下公式:Df(r, θ)rdrdθ = ∫∫Df(r, θ)rdrdθ其中,D 表示积分区域,f(x, y) 或 f(r, θ) 是要求积分的函数,dxdy 或 rdrdθ是积分元。
2. 三重积分公式:在直角坐标系下,设函数 f(x, y, z) 在闭区域 V 上连续或者仅有有限个第一类间断点,在 V 上定义三重积分,则有以下公式:Vf(x, y, z)dxdydz = ∫∫∫Vf(x, y, z)dxdydz在柱坐标系下,设函数 f(ρ, θ, z) 在闭区域 V 上连续或者仅有有限个第一类间断点,在 V 上定义三重积分,则有以下公式:Vf(ρ, θ, z)ρdρdθdz = ∫∫∫Vf(ρ, θ, z)ρdρdθdz在球坐标系下,设函数 f(ρ, θ, φ) 在闭区域 V 上连续或者仅有有限个第一类间断点,在 V 上定义三重积分,则有以下公式:Vf(ρ, θ, φ)ρsinφdρdθdφ = ∫∫∫Vf(ρ, θ, φ)ρsinφdρdθdφ其中,V 表示积分区域,f(x, y, z)、f(ρ, θ, z) 或 f(ρ, θ, φ) 是要求积分的函数,dxdydz、ρdρdθdz 或ρsinφdρdθdφ是积分元。
计算重积分的方法
一、求二重积分方法总结(1)利用直角坐标系计算二重积分对于∬f(x,y)dσD这样的二重积分可以分解为∫[∫f(x,y)dy φ1(x)φ2(x)]dx b a , 先把x 看为常数,把f(x,y)只看做y 的函数,并对y 进行φ1(x)φ2(x) 的 定积分,这里a<x<b,φ1(x)<y <φ2(x)在这种方法的题型中,会明确告诉你,区域D 是几条线围城的区域 这种在介绍一下X 型区域和Y 型区域,形如∫[∫f(x,y)dy φ1(x)φ2(x)]dx b a 最后计算dx 的积分的,是X 型区域。
形如∫[∫f(x,y)dx φ1(y)φ2(y)]dy d c 最后计算dy 的积分的,是Y 型区域。
从图形上来看,X 型区域往往是D x ={ x =a,x =b y =φ1(x),y =φ2(x)这几条线围成的平面区域。
而Y 型相反 是D y ={ y =c,y =d x =φ1(y),x =φ2(y)这几条线围成的平面区域。
某些二重积分 即使X 型区域也是Y 型区域,在使用其中一种区域不好计算的情况下 可以考虑使用另一种区域,这两个区域的转换如下:∫[∫f(x,y)dy φ1(x)φ2(x)]dx =∫[∫f(x,y)dx φ1(y)φ2(y)]dy d c ba (2)利用极坐标计算二重积分对于某些二重积分∬f(x,y)dσD,积分区域D 的边界曲线,使用极坐标 的方式来表达比较方便。
被积函数使用极坐标变量ρ,θ来表示比较简单这时就可以考虑这个转换:∬f(x,y)dσD =∬f(ρcos θ,ρsin θ)ρdρdθD’在这个转换中,会把直角坐标系变换为极坐标,把被积函数中x,y 分别 换成ρcos θ,ρsin θ,并把dxdy 换成ρdρdθ,在这里区域D’会用φ1(θ)ρ< φ2(θ),α<θ<β,来表示。
因此极坐标计算二重公式如下:∬f(ρcos θ,ρsin θ)ρdρdθD=∫dθ∫f(ρcos θ,ρsin θ)ρdρdθφ1(x)φ2(x)βα(3)二重积分的换元法其实利用极坐标变换求特殊区域的方法是二重积分换元的一种特殊情况。
重积分的计算方法及应用
重积分的计算方法及应用重积分是数学中的一个重要分支,它在科学、工程和社会学中都有广泛应用。
重积分可以用于计算空间中的体积、质心、惯性矩以及流量等问题,其计算方法和应用十分繁多。
本文将深入探讨重积分的计算方法及应用。
一、重积分的概念重积分是对多元函数在一个特定区域内的积分,通常表示为:$I=\iiint_{\Omega}f(x,y,z)dxdydz$其中,$\Omega$为三维空间中的一个区域,$f(x,y,z)$为在该区域内的三元实函数。
计算重积分时,可以将区域$\Omega$分成许多小块,然后用Riemann和或迭代积分的方法将小块内的函数积分起来。
此外,还可以利用极坐标、球坐标等坐标系来简化计算。
二、重积分的计算方法1. 利用Riemann和计算重积分Riemann和法是比较基本的计算重积分的方法,它将积分区域$\Omega$分成若干小块,然后在每个小块上用矩形的面积逼近函数值。
具体来说,可以按照以下步骤计算重积分:(1)将积分区域$\Omega$分成$n$个小块:$\Omega_1,\Omega_2,\cdots,\Omega_n$。
(2)在每个小块$\Omega_i$内选择一个点$(x_i,y_i,z_i)$,作为该小块的代表点。
(3)计算每个小块$\Omega_i$上的函数值$f(x_i,y_i,z_i)$。
(4)计算每个小块$\Omega_i$的体积:$V_i=\Delta x\Deltay\Delta z$。
(5)将每个小块的函数值$f(x_i,y_i,z_i)$与体积$V_i$相乘,得到小块的贡献值:$f(x_i,y_i,z_i)V_i$。
(6)将所有小块的贡献值相加得到积分:$I=\sum\limits_{i=1}^nf(x_i,y_i,z_i)V_i$。
2. 利用迭代积分计算重积分迭代积分是计算重积分的一种方法,它将三维积分转化为一系列二维积分或一维积分。
具体来说,可以按照以下步骤计算重积分:(1)将积分区域$\Omega$用某种方法描述出来,例如:$0\leqslant z\leqslant \sqrt{x^2+y^2},\quad 0\leqslant x\leqslant 1,\quad 0\leqslant y\leqslant 1$(2)选择一个自变量,例如$x$,将积分区域$\Omega$分成若干个垂直于$x$轴的小块,每个小块的底面为一个矩形,顶面为一个曲面。
重积分的计算方法
重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
计算重积分的方法
计算重积分的方法
1、重积分分为二重积分和三重积分;
2、重积分的计算方法(总体思路):
直接用定义来计算重积分是行不通的,它们的计算比定积分复杂的多,原因在于二重积分与三重积分的被积函数分别为二元函数和三元函数,而积分域又为平面域与空间域,它们的计算,总的说来是化为累次积分去计算。
一个二重积分可以化为双重单积分的累次积分,它既可以在直角坐标系下进行,也可以在极坐标系下进行;同样,一个三重积分可以化为三重单积分的累次积分,它既可以在直角坐标系下进行,也可以在柱面坐标系或球面坐标系下进行。
3、二重积分的具体计算方法:
把二重积分化为累次积分的关键是在于正确定出累次积分的上下限,而在定上下限时,主要又在于正确定出第一次积分的上下限。
为了有利于定限,先画出积分域的草图是有帮助的,然后从积分域和被积函数两个方面去考虑:一是根据积分域的正规性及边界曲线来考虑定限是否方便,二是从被积函数的结构来考虑求原函数是否方便,再权衡利弊,决定采用哪种积分次序为宜。
如果积分域不是正规域,可把它分成若干个正规子域,然后在每个子域上计算,再把结果相加。
利用极坐标求积分时,注意两点:
一是被积函数f(x,y)中的x与y分别用ρ*cos(θ)和ρ*sin(θ)替代;
二是面积元素dσ用ρ*dρ*dθ替代。
4、三重积分与二重积分计算类似。
重积分的几种计算方法
柱面
y
x及平面y=0,
z=0x,
y
所围闭区域
2
z x 2
z 解: D: 0≤ y ≤ x , 0 ≤ x ≤
2
y cos( x z)dxdydz,
x
0
y y y x
dxdy
2
0
x
y
cos( x
z)dz
D
2
0
dx0
x dy
x 2
0
y cos( x
z)dz
Dx
0
2
2 1
16 2
y=y1(x, z) z 0 y=y2(x, z) Dxz y x
z x2 y 2 z =r
x
y
z
x2
y 2 dxdydz
zr 2drddz
*
2 1 r 2 (1 r 2 )dr
0
2
2 d
1 r 2 dr
1 zdz
0
0
r
2 15
z
z=r
z=1
r 2drd
1
zdz
D
r
D
例2. 计算
zdxdydz,
zdxdydz zrdrddz
*
r =常数 =常数 =常数 dxdydz= r2sin z x y
drd d
例5. 计算 zdxdydz,
其中 ={(x, y, z) | x2+y2+z2≤1, z≥0}.
解:x2+y2+z2=1
z
r=1 用 = 截 得 D()
而 0≤ ≤2 故
0
x
y
原积分
r cos r 2sindrdd
重积分的数值计算和积分算法
重积分的数值计算和积分算法重积分是高等数学中的一个重要概念,其表示对于二元函数在某一区域内的积分。
而相对于一元函数积分,重积分涉及到更为广泛的应用,例如经济学、力学、物理学等诸多领域。
对于重积分的数值计算和积分算法,我们需要进行深入研究。
1. 数值计算重积分的数值计算是将二元函数的积分转化为数值计算的一种方法。
其主要思路是通过将被积函数在区域内分割成多个小矩形,然后对于每个小矩形进行面积和函数值之积的近似计算,最后将每个小矩形的计算结果加和得到总的数值积分结果。
在计算重积分时,我们需要通过一些数值方法来实现积分值的精确计算,一些经典的数值计算方法包括:中心矩形法、梯形法、辛普森法、高斯-勒让德法等。
中心矩形法是一种初步的数值计算方法,其核心思想是将积分区间的每一小段区间等分为一定数量的小区间,然后通过每个小区间中心点的函数值和小区间的长度相乘得到每个小区间的积分估计值,最后将所有小区间的积分值加和即为总的积分估计值。
梯形法是另一种常用的数值计算方法,其基本思路是通过将积分区间的每一小段区间作为梯形的底边,然后通过连接所有相邻点并形成的“梯形”来近似计算每个小区间的面积,最后将所有小区间的积分值加和得到总的积分估计值。
2. 积分算法除了数值计算以外,积分算法也是重积分领域的核心研究内容。
其中常用的积分算法包括:线性积分、带权积分、定积分等。
线性积分是针对一元函数积分的一种常用算法,在计算时需要对于每个小区间进行数值计算,并将其所有的值相加得到总的积分结果。
带权积分则是针对二元函数积分的一种算法,在计算时需要将小区间的面积乘以相应的权重,并将其加和得到总的积分结果。
定积分则是一种基本的积分算法,其核心思路是将积分区间分割成多个小区间,并通过区间长度和函数值之积的积分计算得到每个小区间的积分值,最后将所有小区间的积分值加和得到总的积分结果。
总结重积分作为高等数学中的一个基本概念,其数值计算和积分算法也是重要的研究方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重积分的计算方法
重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算
1.常用方法
(1)化累次积分计算法
对于常用方法我们先看两个例子
对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:
第一步:画出积分区域D的草图;
第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;
第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法
着重看下面的例子:
在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)
下面看一个例子:
计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能
采用适当的坐标系,往往可以收到事半功倍的效果。
从积分域来考虑,一般情况下,圆形、扇形或者环形可以选用极坐标。
(4)对称法
第四种对称法为轮换对称,它在应用中十分重要,下面详细介绍:
首先所谓轮换对称性就是,如果把f(x,y)中的x换成y,y换成x后,f(x,y)的形式没有变化,就说f(x,y)具有轮换对称性。
例如x^2+y^2有轮换对称性,而2x+3y没有轮换对称性(因为换完后是2y+3x,和原来的不一样)。
下面说明轮换对称性在二重积分中的应用,我们知道二重积分的积分区域的边界可以用方程f(x,y)=0表示,如果这里的f(x,y)具有轮换对称性,那么被积函数中的x和y互换后积分结果不变。
例如∫∫x^2dxdy,积分区域为圆周x^2+y^2=1,由于轮换对称性可知∫∫x^2dxdy=∫∫y^2dxdy(这就是把被积函数中的x换成
了y),因此积分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用极坐标计算就简单多了。
下面举几个例子:
对称法就是利用区域和被积函数的对称性简化积分。
在做题时,先考虑区域和被积函数有无对称性,有时一看就知道积分为零,有时可使积分化简。
否则的话,就会把时间花在无谓的计算上,有时不仅仅“得不偿失”,而且往往是“有失无得”。
利用区域和被积函数对称性简化积分的方法可以总结为:
①设域D关于x轴对称,x轴上方部分为D1,下方为D2,
②设域D关于y轴对称,y轴右边的部分为D1,左边的部分为D2,
(4)特例
当积分区域是一矩形,被积函数可以分离成只含x 的函数和只含y的函数相乘时二重积分可作两个定积分相乘。
二.三重积分
三重积分概念可以看作是二重积分概念的直接推广,它的计算也是化为累次积分,适当地选择变量代换可使三重积分容易计算。
与前面二重积分情况相同,三重积分也可以应用对称法计算,即一般地,若区域D关于yoz平面对称,被积函数关于x 是奇函数,则三重积分必为零,类似地还可推出其它各种对称情况的三重积分。
计算三重积分的一般步骤为:
1.画出空间域D的草图;
2.根据被积函数和积分域D选择适当的坐标和累次积分的次序,并将域 D用相应的双边不
等式组表示;3.完成累次积分的计算。
这里,画好图形是计算的关键,因为积分变量变化的围就是从图形上看出来的,于是也就顺利地写出了积分限。
其中柱坐标系中的定限化为平面直角坐标系的定限,球坐标中定限化为平面极坐标系的定限。
可以说,三重积分的计算方法可由二重积分推广过来,不再累述。
三.结语
综上所述,重积分的计算的方法是有规律可循的。
总体上,重积分的主要计算思路是先化重积分为累次积分,难点是积分区域的分块、积分上下限的确定、积分次序的互换以及利用变量代换是重积分简化。