绝对值与相反数(提高)知识精讲
初中数学知识点精讲精析 绝对值 (2)
![初中数学知识点精讲精析 绝对值 (2)](https://img.taocdn.com/s3/m/59106532ed630b1c58eeb51e.png)
2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。
2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。
3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。
知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。
相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。
(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。
一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。
2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。
(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。
(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。
用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。
七年级数学专题二:绝对值 相反数 倒数华东师大版知识精讲
![七年级数学专题二:绝对值 相反数 倒数华东师大版知识精讲](https://img.taocdn.com/s3/m/10f50e12cf84b9d529ea7a42.png)
初一数学专题二:绝对值相反数倒数华东师大版【本讲教育信息】一. 教学内容:专题二:绝对值相反数倒数二、知识要点1. 知识点概要⑴了解有理数的绝对值、相反数、倒数的意义;⑵会求一个有理数的相反数、绝对值、倒数;⑶能借助数轴理解一个数的绝对值、相反数、倒数及完成相关计算.2. 重点难点⑴有理数(特别是负数)绝对值、相反数的意义;⑵数形结合的思想方法.三、考点分析(一)借助于数轴学习有理数的概念数轴不但是研究数形结合的典型的思想方法,而且是学习有理数的重要工具.借助于数轴可以加深对有理数的有关概念的理解和运用.1. 借助于数轴理解正负数数轴的建立,可以将所有的有理数在数轴上表示出来.即零可以用原点表示,正数可以用原点右边的点表示,负数可以用原点左边的点表示出来.如,-0.1,-1,-2,-100等等只能在数轴的左边表示出来,0在数轴的原点表示出来,0. 1,1,2,100等等只能在数轴的右边表示出来.2. 借助于数轴理解绝对值⑴数轴上表示一个数的点与原点的距离,叫做这个数的绝对值.绝对值的几何意义可以由数轴直接知道:一个数a的绝对值就是数轴上表示数a的点与原点的距离.a的绝对值记作|a|.⑵由数轴我们同样可以知道绝对值的代数意义:一个正数的绝对值就是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.用数学式子表示为() ()()0, 00,0.a aaa a⎧⎪=⎨⎪-⎩><⑶绝对值的主要性质:①若a为有理数,则|a|≥ 0;②绝对值为某一正数的有理数有两个,它们互为相反数;互为相反数的两个数的绝对值相等;③若|a|=a¸则a≥ 0;④若|a|+|b|=0¸则a=b=0;⑤绝对值没有最大的数,但有绝对值最小的数:0.3. 借助于数轴理解相反数⑴我们知道,只有符号不同的两个数,我们称它们互为相反数.如212与-212互为相反数,即212是-212的相反数,-212是212的相反数.零的相反数是零.由此可知,互为相反数的两个数表示在数轴上分别在原点的两旁,并且这两个数到原点的距离相等.⑵事实上,我们可以借助于数轴来这样理解相反数的概念,在数轴上,位于原点两旁,且到原点的距离相等的两个点表示的两个数即为互为相反数.如3与-2就不是互为相反数.要注意概念中的“只有”这个字眼,就是说在两个数中,只是符号不同,一个是正号,另一个是负号,其余什么都相同.另外,由数轴上原点两旁,且到原点的距离相等的两个数总是成对出现的,单独一个数或三个数等都不能说成是互为相反数.符号不同的两个数也不能说成是互为相反数,⑶相反数的表示方法:一般地,数a 的相反数是-a ,这里a 表示任意的一个数,可以是正数、0、负数,a 还可以代表任意一个代数式.一般地,在一个数前面添加一个“-”号,就成为原数的相反数.⑷相反数的重要性质:①如果a 、b 互为相反数,则a +b =0,反之,若a +b =0,则a 、b 互为相反数;②如果a 、b 互为相反数,则a 、b 在数轴上对应的点到原点的距离相等,即互为相反数的两个数的绝对值相等. 4. 借助于数轴比较有理数的大小 在数轴上表示的两个数,右边的数总比左边的数大.由此,利用数轴比较有理数的大小,采用数形结合的方法,简单、直观,同学们也一定易于掌握.(二)倒数⑴倒数的意义:乘积为1的两个数互为倒数,其中一个数是另一个数的倒数.即当ab=1时,则a 、b 互为倒数;反之,当a 、b 互为倒数时,则ab=1.⑵倒数与相反数的区别:①互为倒数的两个数的积为1,而互为相反数的两个数的和为0;②0的相反数是0,而0没有倒数;③互为倒数的两个数同号,而互为相反数的两个数(0除外)异号.⑶倒数的求解方法:①求一个整数的倒数时,直接写成这个数分之一即可.如- 3的倒数是 -31;②求一个分数的倒数时,就是把这个分数的分子和分母交换一下即可.如 -53的倒数是 -35;③若求小数的倒数时,先将小数化成分数再求.如求-0.5的倒数,由-0.5 = -21,-21的倒数是-2,则-0.5的倒数是-2。
初中数学知识点精讲精析 相反数 绝对值 有理数的大小比较
![初中数学知识点精讲精析 相反数 绝对值 有理数的大小比较](https://img.taocdn.com/s3/m/7f6a25dd4028915f804dc275.png)
第3节 相反数 绝对值 有理数的大小比较要点精讲绝对值1. 绝对值的概念 ⑴绝对值的几何定义:一个数的绝对值就是数轴上表示数点与原点的距离,数的绝对值记作“”。
⑵绝对值的代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
绝对值的代数定义用式子可表示为:=2. 绝对值的主要性质:①若为有理数,则||≥ 0;②绝对值为某一正数的有理数有两个,它们互为相反数;互为相反数的两个数绝对值相等;③ 若||=。
则≥0;④若||+|b |=0,则=b =0;⑤绝对值没有最大的数,但有绝对值最小的数:0。
相反数:1. 相反数的概念 ⑴相反数的几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
⑵相反数的代数定义:只有符号不同的两个数,我们说其中一个是另一个的相反数,0的相反数是0。
2. 相反数的表示方法 一般地,数的相反数是-,这里表示任意的一个数,可以是正数、0、负数,还可以代表任意一个代数式。
3. 相反数有下列一些重要性质:①如果a 、b 互为相反数,则a +b =0,反之,若a +b =0,则a 、b 互为相反数;②如果a 、b 互为相反数,则a 、b 在数轴上对应的点到原点的距离相等,即互为相反数的两个数的绝对值相等。
4. 多重符号的化简在一个数的前面添加一个“+”号,仍然与原数相同,在一个数前面添加一个“-”号,就成为原数的相反数。
有理数的大小比较:1. 两个负数大小的比较 因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的左边,所以,两个负数绝对值大的反而小。
比较两个负数大小的方法是:⑴先分别求出两个负数的绝对值;⑵比较这两个绝对值的大小;⑶根据“两个负数,绝对值大的反而小”作出正确的判断。
2. 有理数大小的比较法则 学习了绝对值以后,有理数大小的比较法则就完整了,也可以不借助于数轴了。
具体的法则是:“正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小”。
初一数学绝对值精讲
![初一数学绝对值精讲](https://img.taocdn.com/s3/m/034a36dfb52acfc788ebc968.png)
第三讲 绝对值【思想方法.知识要点回顾与拓展】1.绝对值的定义正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.,(0)0,(0),(0)a a a a a a >⎧⎪==⎨⎪-<⎩或,(0),(0)a a a a a ≥⎧=⎨-<⎩或,(0),(0)a a a a a >⎧=⎨-≤⎩ 2.绝对值的几何意义a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .3.去绝对值符号的方法:零点分段法(1)化简含绝对值的式子,关键是去绝对值符号.先根据所给的条件,确定绝对值符号内的数a 的正负(即0a >,0a <还是0a =).如果已知条件没有给出其正负,应该进行分类讨论. (2)分类讨论时先假设每个绝对值符号内的数(或式子)等于0,得到相应的未知数的值;再把这些值表示在数轴上,对应的点(零点)将数轴分成了若干段;最后依次在每一段上化简原式.这种方法被称为零点分段法.【例题之 能力提升】例1. a ,b 是有理数,下列各式对吗?若不对,应附加什么条件?(1)||||||;a b a b +=+ (2)||||||;ab a b = (3)||||;a b b a -=-(4)若||a b =则a b = (5)若||||a b <,则a b < (6)若a b >,则||||a b >变式练习:x 是什么样的有理数时,下列等式成立?(1)|(2)(4)||2||4|x x x x -+-=-+- (2)|(76)(35)|(76)(35)x x x x +-=+-例2. 若m 是方程|2000|2000||x x -=+的解,则|2001|m -等于( )A. m −2001B. −m −2001C. m +2001D. –m +200例3. 已知关于x 的方程||(1)a x a x =+-的解是1,则有理数a 的取值范围是______________.例 4. 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac =+++++则321ax bx cx +++的值是多少?例5.如果在数轴上表示a ,b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( )A.2aB.2a -C.0D.2b变式练习:已知有理数a ,b 的和a+b 及差a −b 在数轴上如图所示:化简:227a b a b +---。
相反数、绝对值及比较大小复习知识点
![相反数、绝对值及比较大小复习知识点](https://img.taocdn.com/s3/m/bb5e98a9102de2bd960588b4.png)
绝对值及有理数大小比较和相反数知识点一:数轴上表示数a 的点与原点的 叫数a 的绝对值,记作 。
如-2到原点的距离是 ,所以-2的绝对值是 ,即|-2|= 。
知识点二:一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 。
即:如果a > 0,那么|a |= ;如果a =0,那么|a |= ;如果a < 0,那么|a |= 。
(注意:由于0的绝对值是0,既可以看作是0本身,也可以看作是0的相反数,所以绝对值是这个数本身的数包括 和 (即非负数);绝对值是这个数的相反数的数包括 和 (即非正数))例题1:|-6|= ;|7|= ;|0|= .任意有理数的绝对值一定是 数,即|a | 0(即非负性)。
例题2:|-5|= ;|5|= 。
互为相反数的两个数的绝对值 ;一个数的绝对值等于正数,这样的数应该有两个,它们互为相反数。
例题3:已知|a |=4,|b |=2,且a>b ,求a 、b 的值。
解:因为|a |=4,|b |=2,所以a =±4,b=±2,但a > b,所以a=4, b=±2.《绝对值的非负性、双值性都是保证做题全面的关键》知识点三:有理数比较大小:方法一:数轴直观法——数轴左边的数小于数轴右边的数。
方法二:法则——两个负数相比较,绝对值大的反而小。
正数大于0,0大于负数,正数大于负数。
例题6:比较-65和-76的大小: 解:因为|-65|=65=4235,|-76|=76=4236,而4235<4236,所以-65>-76。
(依据“两个负数相比较,绝对值大的反而小”法则)知识点四:只有符号不同的两个数叫互为相反数,它们位于原点 ,且到原点的距离 。
求相反数的方法是在数(正负数均可)前面加个“-”号即可。
多重符号化简的方法:只看“-”号的个数,偶数个结果为正,奇数个结果为负。
正号可以省略。
例题7:化简:-⎥⎦⎤⎢⎣⎡+-)31( 解:原式=+(+31)=31 例题8:-(-3)的相反数是 。
数轴、相反数、绝对值 (讲义及答案)
![数轴、相反数、绝对值 (讲义及答案)](https://img.taocdn.com/s3/m/238a8cee67ec102de3bd89b7.png)
数轴、相反数、绝对值(讲义)➢课前预习1.为了表示相反意义的量,我们可以把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走5 m可记作+5 m,向西走8 m可记作_____m.(2)一种袋装食品标准净重为200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重205 g记为+5 g,那么食品净重197 g就记为_____g.2.正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5等都是负整数,而-1.5,12-都是负分数.请将下列各数进行分类:3,-2.5,3.14,32-,-9,100,0.其中属于整数的有:__________________________________;其中属于分数的有:__________________________________;其中属于正数的有:__________________________________;其中属于负数的有:__________________________________.3.如图,点A表示小明的家,动物园在小明家西边500米,书店在小明家东边500米,车站在书店东边200米,小明从动物园出发向东走1 000米,到达_________;动物园和书店到小明家的距离都是_______米;小明从家出发,走了500米,可以到达_________________;动物园和车站之间的距离为__________米.DCA1. _______与_______统称为有理数.2. 有理数的分类:有理数_________________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎨⎪⎩⎪⎩_________________________________________________有理数⎧⎧⎨⎪⎩⎪⎪⎪⎨⎪⎪⎪⎧⎨⎪⎩⎩ 3. 非正数:_________________;非负数:________________. 非正整数:_______________;非负整数:______________. 4. 数轴的定义:规定了_______、________、_________的一条数轴.任何一个______都可以用数轴上的一个点来表示.5.数轴的作用:__________________、___________________、___________________________.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越____,越往左数越_____,右边的总比左边的______.正数_____0,负数_______0,正数________负数.7. 相反数的定义:__________________的两个数,互为相反数.特别地,____________________. 互为相反数的两个数,和为0.8. 绝对值的定义:在________上,一个数所对应的点与原点的__________叫做这个数的绝对值. 9. 绝对值法则:正数的绝对值是_________;___________________________;___________________________.1. 若上升5 m 记作+5 m ,则-8 m 表示__________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作+5℃,那么零下2℃记作___________;太平洋中的马里亚纳海沟深达11 034 m ,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔___________,比海平面低30 m 的地方,它的高度记作海拔___________. 2. 选出下列不具有相反意义的量( )A .气温升高4℃与气温为12℃B .胜3局与负4局C .转盘逆时针转4圈与顺时针转6圈D .支出5万元与收入3万元3. 有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2B .-3C .+3D .+44. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( ) A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.015. 把下列各数填入它所在的集合里:-2,7,32-,0,2 020,0.618,3.14,-1.732,-5,+3.①正数集合:{__________________________________…};②负数集合:{__________________________________…}; ③整数集合:{__________________________________…}; ④非正数集合:{________________________________…}; ⑤非负整数集合:{______________________________…}; ⑥有理数集合:{________________________________…}.6.7. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b0aA .0<a <bB .a <0<bC .b <0<aD .a <b <08. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.9. 在数轴上大于-4.12的负整数有______________________.10. 到原点的距离等于3的数是____________.11. 数轴上,将表示-2的点向左移动两个单位后得到点A ,与点A 距离为3个单位的点对应的数是_________.12. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米13. 填空: 13+的相反数是_____;-3.5的相反数是_____;(1)--的相反数是_____;(2)+-的相反数是_____;0的相反数是_____. 14. A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A .B AB .B AC .B AD .B A15. 下列各组数中,互为相反数的两个数是( )A .-3和+2B .5和15C .-6和6D .13-和1216. 下列化简不正确的是( )A .( 4.9) 4.9--=+B .( 4.9) 4.9-+=-C .[]( 4.9) 4.9-+-=+D .[]( 4.9) 4.9+-+=+ 17. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数18. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b按照从小到大的顺序排列正确的是( )aA .b a a b -<-<<B .b a b a >->->C .b a a b -<<-<D .b b a a -<<-<19. 填空:5.3-=______;21+=_______;5--=_______;若x <0,则x =_______,x -=_______; 若m <n ,则m n -=________. 20. 下列各数:-2,31+,3-,0,2-+,-(-2),2--,其中是正数的有_______________________________. 21. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数22. 下列说法正确的是( )A .一个数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 23. 下列说法正确的是( )A .所有的有理数都可以用数轴上的点来表示B .绝对值等于它相反数的数是负数C .如果两个数的绝对值相等,那么这两个数相等D .相反数等于它本身的数是非负数24. 请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示 ( )(2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )25. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=____+____=____; (4)22--+=|_____-_____|=_____; (5)3 6.2-⨯=____×____=_____; (6)21433-÷-=____÷____=____×____=_____.【参考答案】 ➢ 课前预习1. (1)-8 (2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14,32-;其中属于正数的有:3,3.14,100;其中属于负数的有:-2.5,32-,-9.3. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数2.⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数正有理数正分数有理数0负整数负有理数负分数3. 负数和0;正数和0;负整数和0;正整数和04. 原点、单位长度、正方向、直线; 有理数.5. 表示数 比较大小 表示距离6. 大,小;大;大于,小于,大于7. 只有符号不同.0的相反数为0.8. 数轴,距离9.它本身;负数的绝对值是它的相反数;0的绝对值是0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩右侧框内答案 框2:图略框3:-a ,a ,-a +b框4:正数和0,负数和0➢ 精讲精练1. 下降8 m 收入50元 -2℃+50 m -30 m2. A3. A4.B5.①7,2 019,0.618,3.14,+3;②-2,23-,-1.732,-5③-2,7,0,2 019,-5,+3;④-2,23-,0,-1.732,-5⑤7,0,2 019,+3;⑥-2,7,23-,0,2 020,0.618,3.14,-1.732,-5,+36.212101332-3.5<-<-<<<+图略;7. B8.999.-4,-3,-2,-110.±311.-7或-112.B13.13-;3.5,-1,2,014.D15.C16.D17.B18.C19.3.5 12-5 -x -x-m +n20.13+,3-,-(-2)21.C22.C23.A24.(1)√(2)×(3)×(4)×(5)√(6)√(7)×(8)×25.(1)113 -;(2)4.2 4.2 0;(3)3 5 8;(4)2 2 0;(5)3 6.2 18.6;(6)231432331417.。
高阳县第四中学七年级数学上学期期中考点专题02 绝对值与相反数含解析 新人教版
![高阳县第四中学七年级数学上学期期中考点专题02 绝对值与相反数含解析 新人教版](https://img.taocdn.com/s3/m/dd470f9c7e21af45b307a8f1.png)
专题02 绝对值与相反数重点突破知识点一相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)注意:1、通常a与-a互为相反数;2、a表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.知识点二绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)考查题型考查题型一求一个数的相反数典例1.(2019·鹤壁市期末)﹣25的相反数是()A.﹣25B.25C.﹣52D.52【答案】B 【解析】详解:-25的相反数是:25.故选:B.变式1-1.(2019·石家庄市期末)如果a表示有理数,那么下列说法中正确的是( ) A.+a和一(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【答案】D【解析】试题解析:A.()a a --=,两个数相等,故错误. B.当0a =时,a +与a -相等,故错误.C.a -可以是正数,也可以是负数,还可以是0.故错误. D .正确. 故选D.变式1-2.(2019·邢台市期中)-(-6)的相反数是 ( ) A .|-6| B .-6 C .0.6 D .6【答案】B 【详解】 解:−(−6)=6, ∴6的相反数是−6. 答案为:−6. 故选B.变式1-3(2019·唐山市期中)已知1=a ,b 是2的相反数,则+a b 的值为( ) A .-3 B .-1 C .-1或-3 D .1或-3【答案】C 【详解】∵1=a ,b 是2的相反数, ∴1a =或1a =﹣,2b =﹣, 当1a =时,121a b +==﹣﹣; 当1a =﹣时,123a b +==﹣﹣﹣; 综上,+a b 的值为-1或-3, 故选C .考查题型二 判断两个数是否互为相反数典例2.(2020·廊坊市期末)下列各组数中,互为相反数的是( ) A .-(-1)与1 B .(-1)2与1C .|1|-与1D .-12与1【答案】D 【解析】试题分析:选项A ,-(-1)与1不是相反数,选项A 错误;选项B ,(-1)2与1不是互为相反数,选项B 错误;选项C ,|-1|与1不是相反数,选项C 错误;选项D ,-12与1是相反数,选项正确.故答案选D .变式2-1.(2020·宣城市期末)A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【答案】B【解析】试题分析:根据互为相反数的两个数到原点的距离相等,并且在原点的两侧,可知只有B答案正确.故选B.变式2-2.(2020·沈阳市期末)如图,数轴上有 A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点 B 与点 D B.点 A 与点 C C.点 A 与点 D D.点 B 与点 C【答案】C【解析】试题分析:到原点距离相等的两个点所表示的数互为相反数.变式2-3.(2017·肇庆市期中)下列各对数互为相反数的是()A.+(+3)与-(-3) B.+(-3)与-(+3)C.+|+3|与+|-3| D.+|-3|与-|+3|【答案】D【详解】A、+(+3)=3,-(-3)=3,两者相等,故本选项错误;B、+(-3)=-3,-(+3)=-3,两者相等,故本选项错误;C、+|+3|=3,+|-3|=3,两者相等,故本选项错误;D、+|-3|=3,-|+3|=-3,两者互为相反数,故本选项正确;故选D.考查题型三多重符号化简典例3.(2020·东莞市期中)下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8【答案】B【解析】试题分析:A、-(-3)=3,故错误;B、-[-(-10)]=-10,故正确; C、-(+5)=-5,故错误;D、-[-(+8)]=8,故正确.故选B.变式3-1.(2018·常熟市期末)化简-(+2)的结果是( ) A .-2 B .2C .±2D .0【答案】A 【详解】 -(+2)=-2. 故选A .变式3-2.(2018·南部县期末)下列各数中互为相反数的是( ) A .(5)+- 与 5- B .(5)-+ 与 5- C .(5)-+ 与 |5|-- D .(5)-- 与 (5)+-【答案】D 【详解】解:A 、+(-5)=-5,选项错误; B 、-(+5)=-5,选项错误;C 、-(+5)=-5,-|-5|=-5,选项错误;D 、-(-5)=5,+(-5)=-5,5与-5互为相反数,选项正确. 故选D .变式3-3.(2019·临河区期末)﹣(﹣3)的绝对值是( ) A .﹣3 B .13C .3D .﹣13【答案】C 【详解】解:∵﹣(﹣3)=3,3的绝对值等于3, ∴﹣(﹣3)的绝对值是3, 即|﹣(﹣3)|=3. 故选:C .考查题型四 相反数的应用典例4.(2018·济宁市期末)已知x ﹣4与2﹣3x 互为相反数,则x=( ) A .1 B .﹣1C .32D .﹣32【答案】B 【详解】因为x ﹣4与2﹣3x 互为相反数,所以x ﹣4+2﹣3x =0, 解得:x =-1.故选B.变式4-1.(2019·西安市期末)若37m -和9m -互为相反数,则m 的值是( ) A .4 B .1C .1-D .4-【答案】C 【详解】由题意知3790m m -+-=, 则379m m -=-,22m =-,1m =-,故选:C .变式4-2.(2020·大石桥市期中)如果a 与1互为相反数,则|a+2|等于( ) A .2 B .-2C .1D .-1【答案】C 【详解】由a 与1互为相反数,得a+1=0,即a=-1, 故|a+2|=|-1+2|=1. 故选C考查题型五 求一个数的绝对值典例5.(2019泰兴市期中)2019-=( ) A .2019 B .-2019C .12019D .12019-【答案】A 【详解】20192019-=.故选A .变式5-1.(2018·蚌埠市期末)如图,在数轴上点A 所表示的数的绝对值为( )A .1B .﹣1C .0D .2【答案】A由数轴可得:点A 表示的数是﹣1.∵|﹣1|=1,∴数轴上点A 所表示的数的绝对值为1. 故选A .变式5-2.(2019·阳江市期中)已知a 与1的和是一个负数,则|a |=( ) A .a B .﹣a C .a 或﹣a D .无法确定 【答案】B【解析】试题解析:∵a 与1的和是一个负数, ∴a <-1. ∴|a|=-a . 故选B .变式5-3.(2019·石家庄市期中)在0,1-,2,3-这四个数中,绝对值最小的数是( ) A .0 B .1- C .2 D .3-【答案】A 【详解】解:∵|−1|=1,|0|=0,|2|=2,|−3|=3, ∴这四个数中,绝对值最小的数是0; 故选:A .考查题型六 化简绝对值典例6.(2019·四川宣汉·初一期末)实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于( )A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b【答案】A 【详解】由数轴可知,b <a <0<c , ∴c-a >0,a+b <0,则|c-a|-|a+b|=c-a+a+b=c+b , 故选A .变式6-1.(2019·台儿庄市期中)当1<a<2时,代数式|a -2|+|1-a|的值是( ) A .-1B .1C .3D .-3【详解】解:当1<a <2时,|a ﹣2|+|1﹣a|=2﹣a+a ﹣1=1. 故选B .变式6-2.(2019·齐齐哈尔市期中)已知5,2a b ==,且||a b b a -=-,则a+b 的值为( ) A .3或7 B .-3或-7C .-3D .-7【答案】B 【解析】试题分析:由|a -b |=b -a ,知b >a ,又由|a |=5,|b |=2,知a =-5,b =2或-2,当a =-5,b =2时,a +b =-3,当a =-5,b =-2时,a +b =-7,故a +b =-3或-7.解:∵| a -b |=b −a ,∴b >a ,∵|a |=5,|b |=2, ∴a =−5,b =2或−2, 当a =−5,b =2时,a +b =−3, 当a =−5,b =−2时,a +b =−7, ∴a +b =−3或−7. 故选B.考查题型七 绝对值非负性的应用 典例7.(2019·龙岩市期中)已知,则a+b 的值是( )A .-4B .4C .2D .-2【答案】D 【详解】解:根据题意得,a +3=0,b −1=0, 解得a =−3,b =1, 所以a +b =−3+1=−2. 故选:D .变式7-1.(2018·呼伦贝尔市期中)已知|1|a +与|4|b -互为相反数,则b a 的值是( )。
《绝对值与相反数》 知识清单
![《绝对值与相反数》 知识清单](https://img.taocdn.com/s3/m/bd11ac4d7275a417866fb84ae45c3b3567ecddd6.png)
《绝对值与相反数》知识清单一、绝对值的定义绝对值是指一个数在数轴上所对应点到原点的距离,用“||”来表示。
例如,数字 5 的绝对值写作“|5|”,其值为 5;数字-5 的绝对值写作“|-5|”,其值也为 5。
简单来说,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0 。
可以这样理解:绝对值表示的是一个数离 0 点的距离,距离是没有方向的,所以绝对值一定是非负的。
二、绝对值的性质1、非负性:即任何数的绝对值总是大于或等于 0 ,用数学式子表示为:|a| ≥ 0 。
2、互为相反数的两个数的绝对值相等。
例如,5 和-5 是相反数,它们的绝对值都是 5 。
3、若|a| =|b| ,则 a = ±b 。
也就是说,如果两个数的绝对值相等,那么这两个数要么相等,要么互为相反数。
三、绝对值的计算1、对于一个正数,它的绝对值就是它本身。
例如,|7| = 7 。
2、对于一个负数,它的绝对值是它的相反数。
例如,|-9| =9 。
3、对于 0 ,|0| = 0 。
计算绝对值时,先判断这个数的正负性,然后根据上述规则进行计算。
四、绝对值的几何意义从几何角度来看,|a| 表示数轴上点 a 到原点的距离。
例如,|3|表示数轴上 3 这个点到原点的距离为 3 个单位长度;|-3| 表示数轴上-3 这个点到原点的距离同样为 3 个单位长度。
两个数的差的绝对值|a b| 表示数轴上点 a 与点 b 之间的距离。
五、相反数的定义相反数是指绝对值相等,正负号相反的两个数。
例如,5 和-5 互为相反数,0 的相反数是 0 。
一般地,a 的相反数是 a 。
六、相反数的性质1、互为相反数的两个数之和为 0 。
即若 a 和 b 互为相反数,则 a+ b = 0 。
2、在数轴上,互为相反数的两个点位于原点两侧,且到原点的距离相等。
七、如何求一个数的相反数1、正数的相反数是在其前面加“ ”号。
例如,正数 8 的相反数是-8 。
绝对值与相反数(提高)__绝对值与相反数(提高)知识讲解
![绝对值与相反数(提高)__绝对值与相反数(提高)知识讲解](https://img.taocdn.com/s3/m/fa9bd102ec630b1c59eef8c75fbfc77da26997f1.png)
绝对值与相反数(提高)责编:康红梅【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4. 通过应用绝对值解决实际问题,体会绝对值的意义和作用.【要点梳理】要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释: (1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:同为正号:绝对值大的数大两数同号同为负号:绝对值大的反而小两数异号正数大于负数正数与0:正数大于0-数为0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若,则;若,则;若,1a b >a b >1a b =a b =1a b <则;反之也成立.若a 、b 为任意负数,则与上述结论相反.a b <5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、相反数的概念1.(2014•常德一模)若m 与n 互为相反数,则|m+n﹣2|= .【答案】2【解析】根据互为相反数的两个数的性质,可知,代入上式可得:|m+n﹣2|=0m n +=|0﹣2|=2.【总结升华】若互为相反数,则或.,m n 0m n +=m n =-举一反三:【变式】(2014秋•监利县期末)若|x﹣2|与(y+3)2互为相反数,则x+y= .【答案】-1.∵|x ﹣2|与(y+3)2互为相反数,∴|x ﹣2|+(y+3)2=0,∴x ﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.类型二、多重符号的化简2.化简下列各数.①; ②; ③ ;④;⑤(6)--(6)-+[(6)]--+{[(6)]}---+{[(6)]}----【答案】①6; ②;③6;④-6;⑤66-【解析】①表示-6的相反数,所以;(6)--(6)6--=②表示+6的相反数,所以;(6)-+(6)6-+=-③ 前面共有2个“-”号,为偶数个,而“+”可以省略,所以;[(6)]--+[(6)]6--+=④中共有3个“-”号,即奇数个,而“+”可以省略,所以=-{[(6)]}---+{[(6)]}---+6;⑤中共有4个“-”号,即偶数个,而 “+”可以省略,所以{[(6)]}----{[(6)]}6----=【总结升华】多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型三、绝对值的概念3.如果|x|=6,|y|=4,且x <y .试求x 、y 的值.【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案与解析】因为|x|=6,所以x =6或x =-6;因为|y|=4,所以y =4或y =-4;由于x <y ,故x 只能是-6,因此x =-6,y =±4.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x =-6,y =±4,就是x =-6,y =4或x =-6,y =-4.举一反三:【变式】如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .【答案】6或-6;1或3;或x>3x<-3类型四、比较大小4. 比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)与;(4)与.45-34--π-| 3.14|--【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】 (1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:.这是两个负数比较大小,因为,3344--=-44165520-==,且.所以.33154420-==16152020>4354-<-- (4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.类型五、含有字母的绝对值的化简5. 把下列各式去掉绝对值的符号.(1)|a-4|(a≥4);(2)|5-b|(b >5).【思路点拨】绝对值的化简问题主要看绝对值里面的数或式子是大于等于0,还是小于0,如果是大于等于0,化简后等于它本身;如果小于0,化简后等于它的相反数.【答案与解析】(1)∵ a≥4,∴a-4≥0,∴ |a-4|=a-4.(2)∵ b >5,∴ 5-b <0,∴ |5-b|=-(5-b)=b-5.【总结升华】由字母的取值范围来判断绝对值里面的符号情况,再根据绝对值的意义去掉绝对值的符号.举一反三:【变式】已知有理数a ,b ,c 在数轴上对应的点的位置如图所示: 化简:【答案】由图所示,可得. ∴ ,,,30a c -> ∵ . ∴ 原式.类型六、绝对值非负性的应用6. 已知a 、b 为有理数,且满足:,则a =_______,12b =________.【答案与解析】由,,,可得 ∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.举一反三:【变式】已知b 为正整数,且a 、b 满足,求的值.【答案】由题意得∴ 所以,2ba 类型七、绝对值的实际应用7.一只可爱的小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm 就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【思路点拨】总路程应该为小虫爬行的距离和,和方向无关.【答案与解析】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)小虫得到的芝麻数为54×2=108(粒)答:小虫一共可以得到108粒芝麻.【总结升华】此题是绝对值的应用问题,当求爬行路程是即为各数的绝对值之和,如果求最后所在的位置时即为各数之和,最后看正负来决定方向.。
1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)
![1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)](https://img.taocdn.com/s3/m/6304f98c77eeaeaad1f34693daef5ef7bb0d1209.png)
|-9|=9, |-3.2|=3.2,
5
2
5
2
7
8
7
8
= ,| |= ,
|-3.14|=3.14.
3.请分别写出下列各数的相反数:
-5, 13, 0,
1
3 ,-(+1.35).
2
-5的相反数是5,
13的相反数是-13,
0的相反数0,
1
2
1
2
3 的相反数- 3 ,
-(+1.35)的相反数是1.35.
分层练习-巩固
利用相反数的定义在数轴上表示相关的数
13.(1)写出下列各数的相反数,并将这些数连同它们的相反
数在数轴上表示出来:
+2,-3,0,-(-1),-3 ,-(+4).
【解】+2的相反数是-2,-3的相反数是3,0的相反数是0,-(-1)的相
反数是-1,-3 的相反数是3 ,-(+4)的相反数是4.如图.
小亮家
小明家
你有什么发现?
西
东
学
校
新知探究
1.绝对值的概念
请以学校为原点画一条数轴,并把小明家和小亮家的位置在数轴上表示出
来.你有什么发现?
小亮家
西
-1500
学
-1000
-500
小明家
校
0
500
1000
1500
东
做一做
请画一条数轴,在数轴上标出表示4,-2,0的点,并写出这些点到原点
的距离.
-6
)2(|-17|=
17
)3(|0|=
;
0
,
=
七年级数学上册专题02_绝对值与相反数(知识点串讲)(解析版)
![七年级数学上册专题02_绝对值与相反数(知识点串讲)(解析版)](https://img.taocdn.com/s3/m/06ab1eb831b765ce0408147e.png)
专题02 绝对值与相反数知识点一相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)注意:1、通常a与-a互为相反数;2、a表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.知识点二绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)考查题型考查题型一求一个数的相反数典例1.﹣25的相反数是()A.﹣25B.25C.﹣52D.52【答案】B 【解析】详解:-25的相反数是:25.故选:B.变式1-1.如果a表示有理数,那么下列说法中正确的是( )A.+a和一(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【答案】D【解析】试题解析:A.()a a--=,两个数相等,故错误.B.当0a =时,a +与a -相等,故错误.C.a -可以是正数,也可以是负数,还可以是0.故错误.D .正确.故选D.变式1-2.-(-6)的相反数是 ( )A .|-6|B .-6C .0.6D .6【答案】B【详解】解:−(−6)=6,∴6的相反数是−6.答案为:−6.故选B.变式1-3已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-3 【答案】C【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选C .考查题型二 判断两个数是否互为相反数典例2.下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|1|-与1D .-12与1 【答案】D【解析】试题分析:选项A ,-(-1)与1不是相反数,选项A 错误;选项B ,(-1)2与1不是互为相反数,选项B 错误;选项C ,|-1|与1不是相反数,选项C 错误;选项D ,-12与1是相反数,选项正确.故答案选D .变式2-1.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A.B.C.D.【答案】B【解析】试题分析:根据互为相反数的两个数到原点的距离相等,并且在原点的两侧,可知只有B答案正确.故选B.变式2-2.(2020·沈阳市期末)如图,数轴上有A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点B 与点D B.点A 与点C C.点A 与点D D.点B 与点C【答案】C【解析】试题分析:到原点距离相等的两个点所表示的数互为相反数.变式2-3.下列各对数互为相反数的是()A.+(+3)与-(-3) B.+(-3)与-(+3)C.+|+3|与+|-3| D.+|-3|与-|+3|【答案】D【详解】A、+(+3)=3,-(-3)=3,两者相等,故本选项错误;B、+(-3)=-3,-(+3)=-3,两者相等,故本选项错误;C、+|+3|=3,+|-3|=3,两者相等,故本选项错误;D、+|-3|=3,-|+3|=-3,两者互为相反数,故本选项正确;故选D.考查题型三多重符号化简典例3.下列化简,正确的是()A.﹣(﹣3)=﹣3B.﹣[﹣(﹣10)]=﹣10C.﹣(+5)=5D.﹣[﹣(+8)]=﹣8【答案】B【解析】试题分析:A、-(-3)=3,故错误;B、-[-(-10)]=-10,故正确;C、-(+5)=-5,故错误;D、-[-(+8)]=8,故正确.故选B.变式3-1.化简-(+2)的结果是()A .-2B .2C .±2D .0【答案】A【详解】-(+2)=-2.故选A .变式3-2.下列各数中互为相反数的是( )A .(5)+- 与 5-B .(5)-+ 与 5-C .(5)-+ 与 |5|--D .(5)-- 与 (5)+-【答案】D【详解】解:A 、+(-5)=-5,选项错误;B 、-(+5)=-5,选项错误;C 、-(+5)=-5,-|-5|=-5,选项错误;D 、-(-5)=5,+(-5)=-5,5与-5互为相反数,选项正确.故选D .变式3-3.﹣(﹣3)的绝对值是( )A .﹣3B .13 C .3 D .﹣13 【答案】C【详解】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C .考查题型四 相反数的应用典例4.已知x ﹣4与2﹣3x 互为相反数,则x=( )A .1B .﹣1C .32 D .﹣32【答案】B【详解】因为x ﹣4与2﹣3x 互为相反数,所以x ﹣4+2﹣3x =0,解得:x=-1.故选B. 变式4-1.若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-【答案】C【详解】由题意知3790m m -+-=,则379m m -=-, 22m =-,1m =-,故选:C .变式4-2.(2020·大石桥市期中)如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-1 【答案】C【详解】由a 与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C考查题型五 求一个数的绝对值典例5.2019-=( )A .2019B .-2019C .12019D .12019- 【答案】A【详解】 20192019-=.故选A .变式5-1.如图,在数轴上点A 所表示的数的绝对值为( )A .1B .﹣1C .0D .2【答案】A由数轴可得:点A 表示的数是﹣1.∵|﹣1|=1,∴数轴上点A 所表示的数的绝对值为1.故选A .变式5-2.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定【答案】B【解析】试题解析:∵a 与1的和是一个负数,∴a <-1.∴|a|=-a .故选B .变式5-3.在0,1-,2,3-这四个数中,绝对值最小的数是( )A .0B .1-C .2D .3-【答案】A【详解】解:∵|−1|=1,|0|=0,|2|=2,|−3|=3,∴这四个数中,绝对值最小的数是0;故选:A .考查题型六 化简绝对值典例6.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于()A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b【答案】A【详解】由数轴可知,b <a <0<c ,∴c-a >0,a+b <0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .变式6-1.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3【答案】B解:当1<a <2时,|a ﹣2|+|1﹣a |=2﹣a +a ﹣1=1.故选B .变式6-2.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B【解析】试题分析:由|a -b |=b -a ,知b >a ,又由|a |=5,|b |=2,知a =-5,b =2或-2,当a =-5,b =2时,a +b =-3,当a =-5,b =-2时,a +b =-7,故a +b =-3或-7. 解:∵|a -b |=b −a , ∴b >a ,∵|a |=5,|b |=2,∴a =−5,b =2或−2,当a =−5,b =2时,a +b =−3,当a =−5,b =−2时,a +b =−7,∴a +b =−3或−7.故选B.考查题型七 绝对值非负性的应用典例7.已知,则a+b 的值是( ) A .-4B .4C .2D .-2【答案】D【详解】解:根据题意得,a +3=0,b−1=0,解得a =−3,b =1,所以a +b =−3+1=−2.故选:D .变式7-1.已知|1|a +与|4|b -互为相反数,则b a 的值是( )。
第03讲 相反数与绝对值(解析版)新七年级数学暑假精品课(北师大版)
![第03讲 相反数与绝对值(解析版)新七年级数学暑假精品课(北师大版)](https://img.taocdn.com/s3/m/75d4836a82c4bb4cf7ec4afe04a1b0717fd5b385.png)
第03讲相反数与绝对值1.理解相反数的概念,能正确求出一个数的相反数;2.掌握相反数的性质,并能进行多重符号的化简;3.理解绝对值的概念,能掌握绝对值的代数意义和几何意义;4.通过已知绝对值求这个数,初步培养学生逆向思维的数学思想方法。
知识点1:相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数(注意:当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号)知识点2:绝对值1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a>0,|a|=a反之,|a|=a,则a≥0,|a|=﹣a,则a≦0a=0,|a|=0a<0,|a|=‐注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
4.性质:绝对值是a(a>0)的数有2个,他们互为相反数。
即±a。
5.非负性:任意一个有理数的绝对值都大于等于零,即|a|≥0。
几个非负数之和等于0,则每个非负数都等于0。
故若|a|+|b|=0,则a=0,b=01.数轴比较法:在数轴上,右边的数总比左边的数大。
6.比较大小2.代数比较法:正数大于零,负数小于零,正数大于一切负数。
两个负数比较大小时,绝对值大的反而小。
考点1:相反数的概念及表示例1.(2023•本溪一模)2023的相反数是()A.2023B.C.﹣2023D.【答案】C【解答】解:2023的相反数是﹣2023.故选:C.【变式1-1】(2023•唐山一模)如图,能够表示﹣2的相反数的点是()A.M B.N C.P D.Q【答案】D【解答】解:﹣2的相反数是2,故选:D.【变式1-2】(2023•东方模拟)有理数﹣(﹣5)的相反数为()A.B.5C.D.﹣5【答案】D【解答】解:∵﹣(﹣5)=5,∴5的相反数为﹣5,∴﹣(﹣5)的相反数为﹣5,故选:D.【变式1-3】(2023•中山市校级一模)下列各组数中的两个数,互为相反数的是()A.3和B.3和﹣3C.﹣3和D.﹣3和﹣【答案】B【解答】解:A、3和,互为倒数,故A错误;B、3和﹣3,是互为相反数,故B正确;C、﹣3和,绝对值不同,故C错误;D、﹣3和﹣,绝对值不同,不是相反数,故D错误;故选:B.考点二:相反数的性质运用例2.(2022秋•宣城期末)若a、b互为相反数,则a﹣(5﹣b)的值为.【答案】﹣5.【解答】解:∵a、b互为相反数,∴a+b=0,∴a﹣(5﹣b)=a+b﹣5=0﹣5=﹣5.故答案为:﹣5.【变式2-1】(2022秋•市中区期末)已知a、b互为相反数,则=.【答案】﹣.【解答】解:∵a、b互为相反数,∴a+b=0即a=﹣b,∴=2022(a+b)+=0+(﹣)=﹣,故答案为:﹣.【变式2-2】(2021秋•宁远县期末)若a与b互为相反数,则代数式2021a+2021b﹣5=.【答案】﹣5.【解答】解:∵a与b互为相反数,∴a+b=0.∴2021a+2021b﹣5=2021(a+b)﹣5=2021×0﹣5=﹣5.故答案为:﹣5.【变式2-3】(2022秋•天山区校级期末)若(m﹣3n)的相反数是7,则(5﹣m+3n)的值为.【答案】12.【解答】解:由题意得,m﹣3n=﹣7,∴5﹣m+3n=5﹣(m﹣3n)=5﹣(﹣7)=12,故答案为:12.考点三:绝对值的定义例3.(2023•莱芜区二模)﹣7的绝对值是()A.﹣7B.7C.D.±7【答案】B【解答】解:﹣7的绝对值是|﹣7|=7.故选:B.【变式3-1】(2022秋•济南期中)下列各组数中,互为相反数的是()A.2与B.﹣(﹣2)与﹣2C.|﹣3|与3D.﹣|﹣3|与﹣3【答案】B【解答】解:A、这两个数互为倒数,故此选项不符合题意;B、﹣(﹣2)=2,﹣2只有符号不同的数互为相反数,故此选项符合题意;C、这两个数的结果是同一个数3,故此选项不符合题意;D、这两个数的结果是同一个数﹣3,故此选项不符合题意;故选:B.【变式3-2】(2022秋•南宁期末)在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A考点四:绝对值的性质化简例4(2022秋•江都区期末)已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c【答案】A【解答】解:由题意得:b<a<0<c,且|c|>|a|.∴a+c>0,a+b<0.∴原式=a+c﹣(﹣a﹣b)=a+c+a+b=2a+b+c.故选:A.【变式4-1】(2022秋•宛城区校级期末)若m≤0,则m﹣|m|+2等于()A.2m+2B.2C.2﹣2m D.2m﹣2【答案】A【解答】解:∵m≤0,∴|m|=﹣m,原式=m+m+2=2m+2.故选:A.【变式4-2】(2022秋•新市区校级期末)已知a、b、c的大致位置如图所示:化简|a﹣c|﹣|b﹣c|+|a+b|的结果是()A.﹣2a B.2a C.2a+2b﹣2c D.﹣2a+2b﹣2c 【答案】A【解答】解:由数轴可得:a﹣c<0,b﹣c<0,a+b<0,则原式=﹣(a﹣c)+(b﹣c)﹣(a+b)=﹣a+c+b﹣c﹣a﹣b=﹣2a.故选:A.【变式4-3】(2021秋•梅县区校级期末)若3<a<5,则化简|3﹣a|﹣|5+a|结果为()A.2a+2B.﹣2a﹣2C.﹣8D.8【答案】C【解答】解:∵3<a<5,∴3﹣a<0,5+a>0,∴|3﹣a|﹣|5+a|=a﹣3﹣5﹣a=﹣8.故选:C.考点五:绝对值的非负性例5.(2022秋•正定县期末)若|x﹣1|+(y−3)2=0,则y﹣x=2.【答案】2.【解答】解:由题意得,x﹣1=0,y﹣3=0,解得x=1,y=3,所以,y﹣x=3﹣1=2.故答案为:2.【变式5-1】(2023•浠水县一模)若|a+2|与|b﹣3|互为相反数,则2a+b=.【答案】﹣1.【解答】解:根据题意得:|a+2|+|b﹣3|=0,∴a+2=0,b﹣3=0,解得:a=﹣2,b=3,∴2a+b=2×(﹣2)+3=﹣1,故答案为:﹣1.【变式5-2】(2023春•东丽区期中)已知实数x、y满足|x﹣1|+|y+3|=0,则x+y的值为.【答案】﹣2.【解答】解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.【变式5-3】(2022秋•绥宁县期末)若|a+3|+|b﹣2|=0,则(a+b)2022=.【答案】1.【解答】解:∵|a+3|+|b﹣2|=0,∴a=﹣3,b=2,则(a+b)2022=(﹣3+2)2022=(﹣1)2022=1.故答案为:1.考点六:绝对值的几何意义例6.(2022秋•琼中县校级月考)绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A.6,﹣6B.0,6C.0,﹣6D.3,﹣3【答案】D【解答】解:∵绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和﹣3.故选:D.【变式6-1】(2022秋•仁怀市期中)数轴上点M到原点的距离是5,则点M表示的数是()A.5B.﹣5C.5或﹣5D.不能确定【答案】C【解答】解:数轴上到原点的距离是5的点有2个,分别表示5和﹣5,则M表示5或﹣5.故选:C.【变式6-2】(2022秋•海林市期末)已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10B.﹣2C.﹣2或﹣10D.2【答案】C【解答】解:∵m+n=|m+n|,|m|=4,|n|=6,∴m=4,n=6或m=﹣4,n=6,∴m﹣n=4﹣6=﹣2或m﹣n=﹣4﹣6=﹣10.故选:C.【变式6-3】(2022秋•余庆县期末)若|3﹣x|=7,则x的值为()A.﹣4B.4C.10D.﹣4或10【答案】D【解答】解:∵|3﹣x|=7,∴3﹣x=±7,∴x=10或x=﹣4.故选:D.考点七:利用法则比较有理数大小例7.(2023春•南岗区期中)比较大小:﹣0.2﹣0.02(填“>”、“=”或“<”).【答案】<.【解答】解:|﹣0.2|=0.2,|﹣0.02|=0.02,∵0.2>0.02,∴﹣0.2<﹣0.02.故答案为:<.【变式7-1】(2022秋•焦作期末)比较大小:﹣|﹣2.7|﹣(﹣3.3)(填“<”、“>”、“=”).【答案】<.【解答】解:∵﹣|﹣2.7|=﹣2.7,﹣(﹣3.3)=3.3,∴﹣|﹣2.7|<﹣(﹣3.3).故答案为:<.【变式7-2】(2023•温州二模)在4,﹣2,0,四个数中,最小的为()A.4B.﹣2C.0D.【答案】B【解答】解:∵,∴在4,﹣2,0,四个数中,最小的为﹣2.故选:B.【变式7-3】(2023春•新荣区期中)下列各组有理数比较大小,正确的是()A.﹣5>﹣4B.2<﹣(﹣3)C.﹣1>0D.﹣2>1【答案】B【解答】解:A.因为|﹣5|=5,|﹣4|=4,5>4,所以﹣5<﹣4,故本选项不符合题意;B.因为﹣(﹣3)=3,所以2<﹣(﹣3),故本选项符合题意;C.﹣1<0,故本选项不符合题意;D.﹣2<1,故本选项不符合题意.故选:B.考点八:利用特殊值法比较有理数大小例8.(2022秋•建邺区校级月考)若0<a<1,则a,﹣a,的大小关系是.【答案】>a>﹣a.【解答】解:∵0<a<1,∴a=,则﹣a=﹣,=10,∵10>>﹣,∴>a>﹣a.故答案为:>a>﹣a.【变式8-1】(2022秋•隆安县期中)若0<a<1,则a,a2,按从小到大排列是.【答案】a2<a<.【解答】解:∵0<a<1,∴取a=,∴a2=,=2,∴a2<a<,故答案为:a2<a<.【变式8-2】(2020秋•新抚区校级期中)若:﹣1>a>0,则a2,a3,a4,a5的大小关系是()A.a2>a3>a4>a5B.a2>a4>a5>a3C.a2<a3<a4<a5D.a4>a2>a5>a3【答案】B【解答】解:∵﹣1>a>0,∴a²>a4>a5>a3,故选:B.考点九:利用数轴比较有理数大小例9.(2022秋•武汉期末)a,b是有理数,它们在数轴上对应点的位置如图所示.把a,﹣a,b,﹣b按照从小到大的顺序排列应是﹣a<b<﹣b<a(用“<”号连接).【答案】﹣a<b<﹣b<a.【解答】解:观察数轴得:b<0<a,且|b|<|a|,∴﹣a<b<﹣b<a.故答案为:﹣a<b<﹣b<a.【变式9-1】(2022秋•攸县期末)已知有理数a,b在数轴上的位置如图所示,则将有理数|a|,1,b按从小到大的顺序用“<”连接起来是.【答案】1<|a|<b.【解答】解:观察数轴得:a<﹣1,b>1,|a|<|b|,∴1<|a|<b.故答案为:1<|a|<b.【变式9-2】(2022秋•洛川县校级期末)A、B、C三点在数轴上的位置如图所示,则﹣a、b、﹣c的大小关系.【答案】﹣c<﹣a<b.【解答】解:如图,﹣a、b、﹣c在数轴上表示如下:∵数轴左边的数总是小于右边的数,∴由数轴可知:﹣c<﹣a<b,故答案为:﹣c<﹣a<b.1.(2022•钢城区)﹣7的相反数是()A.﹣7B.﹣C.7D.【答案】C【解答】解:﹣7的相反数为7,故选:C.2.(2022•陕西)﹣21的绝对值为()A.21B.﹣21C.D.﹣【答案】A【解答】解:﹣21的绝对值为21,故选:A.3.(2022•阜新)在有理数﹣1,﹣2,0,2中,最小的是()A.﹣1B.﹣2C.0D.2【答案】B【解答】解:有理数﹣1,﹣2,0,2中,最小的是﹣2,故选:B.4.(2022•荆门)如果|x|=2,那么x=()A.2B.﹣2C.2或﹣2D.2或【答案】C【解答】解:∵|±2|=2,∴x=±2.故选:C.5.(2022•南充)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【答案】C【解答】解:A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.6.(2021•淄博)下表是几种液体在标准大气压下的沸点,则沸点最高的液体是()液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9 A.液态氧B.液态氢C.液态氮D.液态氦【答案】A【解答】解:∵|﹣268.9|>|﹣253|>|﹣196|>|﹣183|,∴﹣268.9<﹣253<﹣196<﹣183,∴沸点最高的液体是液态氧.故选:A.7.(2021•大庆)下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣1【答案】D【解答】解:A、当x=0时,|x|=x,故此选项错误,不符合题意;B、∵|x﹣1|≥0,∴当x=1时,|x﹣1|+2取最小值,故此选项错误,不符合题意;C、∵x>1>y>﹣1,∴|x|>1,|y|<1,∴|x|>|y|,故此选项错误,不符合题意;D、∵|x+1|≤0,|x+1|≥0,∴x+1=0,∴x=﹣1,故此选项正确,符合题意.故选:D.8.(2021•永州)﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.【答案】B【解答】解:∵﹣|﹣2021|=﹣2021,∴﹣2021的相反数为2021.故选:B.9.(2021•南充)数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:D.1.(2022春•四平期中)π﹣3.14的相反数是()A.0B.﹣π﹣3.14C.π+3.14D.3.14﹣π【答案】D【解答】解:π﹣3.14的相反数是3.14﹣π.故选:D.2.(2023•金牛区模拟)在﹣1.5,﹣3,﹣1,﹣5四个数中,最大的数是()A.﹣1.5B.﹣3C.﹣1D.﹣5【答案】C【解答】解:∵|﹣1.5|=1.5,|﹣3|=3,|﹣1|=1,|﹣5|=5,且5>3>1.5>1,即|﹣5|>|﹣3|>|﹣1.5|>|﹣1|,∴﹣5<﹣3<﹣1.5<﹣1,即最大的数是﹣1.故选:C.3.(2022秋•惠山区校级期末)已知a、b、c的大致位置如图所示:化简|a+b|的结果是()A.﹣a﹣b B.a+b C.﹣a+b D.a﹣b【答案】B【解答】解:因为a+b>0,所以|a+b|=a+b.故选:B.4.(2023•涪城区模拟)若|5﹣x|=x﹣5,则x的取值范围为()A.x>5B.x≥5C.x<5D.x≤5【答案】B【解答】解:∵|5﹣x|=x﹣5,∴5﹣x≤0,即x≥5,故选:B.5.(2023•济阳区二模)如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中一定成立的是()A.ab<2a B.1﹣3a<1﹣3b C.|a|﹣|b|>0D.ab>﹣b【答案】A【解答】解;由数轴可得,﹣2<a<﹣1,2<b<3,a<b,|a|<|b|若ab<2a,则b>2,故选项A正确;若1﹣3a<1﹣3b,则a>b,故选项B错误;若|a|﹣|b|>0,则|a|>|b|,故选项C错误;若ab>﹣b,则a>﹣1,故选项D错误;故选:A.6.(2022秋•市北区校级期末)当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2【答案】B【解答】解:∵|a|=5,|b|=7,∴a=±5,b=±7∵|a+b|=a+b,∴a+b≥0,∴a=±5.b=7,当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣12;故a﹣b的值为﹣2或﹣12.故选:B.7.(2022秋•永康市期中)当3<a<4时,化简|a﹣3|+|a﹣4|=()A.1B.2a﹣7C.﹣1D.1﹣2a 【答案】A【解答】解:∵3<a<4时,∴|a﹣3|+|a﹣4|=a﹣3+(4﹣a)=a﹣3+4﹣a=1,故选:A.8.(2022秋•岫岩县期中)已知|a|+a=0,则化简|a﹣1|+|2a﹣3|的结果是()A.3a﹣4B.4﹣3a C.﹣2D.2【答案】B【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,∴a﹣1<0,2a﹣3<0,故原式=1﹣a+3﹣2a=4﹣3a.故选:B.9.(2022秋•河池期末)若x>0,|x﹣2|+|x+4|=8,则x=.【答案】3.【解答】解:当x>2时,∵|x﹣2|+|x+4|=8,∴x﹣2+x+4=8,解得:x=3,当0<x≤2是时,∵|x﹣2|+|x+4|=8,∴2﹣x+x+4=8,此时方程无解,综上,x=3.故答案为:3.10.(2022秋•汾阳市期末)已知|x﹣2|+|y+3|=0,则y x=.【答案】9.【解答】解:∵|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴y x=(﹣3)2=9.故答案为:9.11.(2022秋•滕州市校级期末)已知|x﹣2|与|y+4|互为相反数,则x+y=.【答案】﹣2.【解答】解:∵|x﹣2|与|y+4|互为相反数,∴|x﹣2|+|y+4|=0,∴x﹣2=0,y+4=0,∴x=2,y=﹣4∴x+y=2﹣4=﹣2,故答案为:﹣2.12.(2022秋•达川区校级期末)已知|x|=4,|y|=5,且x>0>y,则7x﹣2y的值是【答案】见试题解答内容【解答】解:∵|x|=4,|y|=5,∴x=±4,y=±5,∵x>0>y,∴当x=4,y=﹣5,则7x﹣2y=38;故答案为38.13.(2022秋•路北区校级月考)有理数a<0,b>0,且|a|<|b|,把a,﹣a,b,﹣b按由小到大的顺序排列是.【答案】﹣b<a<﹣a<b.【解答】解:∵a<0,b>0,且|a|<|b|,∴把a,﹣a,b,﹣b按由小到大的顺序排列是﹣b<a<﹣a<b,故答案为:﹣b<a<﹣a<b.。
相反数与绝对值
![相反数与绝对值](https://img.taocdn.com/s3/m/53018ef081c758f5f61f67ea.png)
相反数与绝对值一、知识精讲1、相反数(1)只有不同的两个数叫互为相反数的数;特别的,0的相反数是。
(2)数a 的相反数是,a >0时,-a ;当a <0时,-a ;当a=0时,a.(3)a 、b 互为相反数,那么;反之,若a+b=0,则。
(4)互为相反数的两个数在数轴上位于原点两旁,且到原点的距离。
2、绝对值(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。
a =(2)绝对值的几何意义:b a -在数轴上表示:(3)互为相反数的两个数绝对值相等,即a b b a a a 22,-=--=。
(4)任意一个数的绝对值是非负数,即a 0.注:(1)222a a a ==(2)b a b a ⋅=⋅;)0(,≠=b ba b a (2)0是绝对值最小的有理数。
当0=a 时,a 取得最小值0,反过来成立。
二、典例剖析类型1:相反数例1、已知b a -=1,b 的相反数是1,则a=。
变式:下列说法:①有理数的绝对值一定是正数;②一个数的绝对值的相反数一定是负数;③互为相反数的两个数,必然一个是正数,一个是负数;④互为相反数的两个数绝对值相等;⑤π的相反数是-3.14;⑥任何一个数都有它的相反数。
其中正确的有(填序号)1、n m ,互为相反数,则下列结论错误的是( )A.022=+n mB.2m mn -=C.n m =D.1-=nm 例2、如图所示,已知A ,B ,C ,D 四个点在一条没有原点的数轴上(1)若点A 和点C 表示的两个数互为相反数,则原点为;(2)若点B 和点D 表示的两个数互为相反数,则原点为;(3)若点A 和点D 表示的两个数互为相反数,请在数轴上表示出原点的位置。
变式:如图,四个数q p n m ,,,在数轴上对应的点分别为Q P N M ,,,,若0=+q n ,则q p n m ,,,四个实数中,绝对值最大的一个是( )例3、已知数m 小于它的相反数且数轴上表示数m 的A 点与原点相距3个单位长度,将点A 向右移动5个单位长度后,点A 对应的数是。
绝对值及有理数的大小比较(提高)知识讲解
![绝对值及有理数的大小比较(提高)知识讲解](https://img.taocdn.com/s3/m/982359420b1c59eef8c7b435.png)
绝对值及有理数的大小比较(提高)【学习目标】1.借助数轴理解绝对值的概念,知道|a|的绝对值的含义;2.会求一个数的绝对值,并会用绝对值比较有理数的大小;3.理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩【典型例题】类型一、绝对值的概念1.如果|x|=6,|y|=4,且x <y .试求x 、y 的值.【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案与解析】解:因为|x|=6,所以x =6或x =-6;因为|y|=4,所以y =4或y =-4;由于x <y ,故x 只能是-6,因此x =-6,y =±4.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x =-6,y =±4,就是x =-6,y =4或x =-6,y =-4.举一反三:【变式】如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .【答案】6或-6;1或3;x>3或x<-3类型二、含有字母的绝对值的化简2. 把下列各式去掉绝对值的符号.(1)|a-4|(a≥4);(2)|5-b|(b >5).【答案与解析】解:(1)∵ a≥4,∴a -4≥0,∴ |a -4|=a-4.(2)∵ b>5,∴ 5-b <0,∴ |5-b|=-(5-b)=b-5.【总结升华】由字母的取值范围来判断绝对值里面的符号情况,再根据绝对值的意义去掉绝对值的符号.举一反三:【变式】已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:【答案】解:由图所示,可得. ∴ 30a c ->,,,∵.∴ 原式. 类型三、绝对值非负性的应用3. 已知a 、b 为有理数,且满足:12,则a=_______,b=________.【答案与解析】 由,,,可得 ∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.举一反三:【变式】已知b 为正整数,且a 、b 满足,求的值.【答案】解:由题意得∴ 所以,2b a =类型四、有理数的大小 比较4. 比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)45-与34--;(4)π-与| 3.14|--. 【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】解:(1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:3344--=-.这是两个负数比较大小,因为44165520-==,33154420-==,且16152020>.所以4354-<--. (4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.。
实数的倒数相反数和绝对值知识点
![实数的倒数相反数和绝对值知识点](https://img.taocdn.com/s3/m/f3b1960a0a4e767f5acfa1c7aa00b52acec79c48.png)
实数的倒数相反数和绝对值知识点实数的倒数相反数和绝对值知识点数轴、倒数、相反数、绝对值是实数的有关概念,那么它们的倒数相反数和绝对值是什么呢?本文是店铺整理实数的倒数相反数和绝对值的资料,仅供参考。
实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
实数一定有倒数吗不一定,以为实数0是没有倒数的,因为1/0是没有意义的,分式的分母不能为0我们知道,倒数的概念是:乘积为1的两个数是互为倒数的两个数。
根据定义,我们可以知道,“1”的倒数是它的本身,而“0”乘以任何实数,都等于0,也就是说没有实数与“0”相乘等于1。
那么,我们就可以知道,“0”没有倒数。
或者可以这样理解:把实数写成分数形式(例如:2可以写成2/1),然后把分子和分母颠倒位置(例如:把2/1分子、分母颠倒,则为1/2),就可以得出原数的倒数(例如:1/2就是2的倒数)。
然后,我们根据分数定义和除法法则可以知道:“0”不可以作为分母和除数。
所以,可以得出结论:“0”没有倒数。
实数定义实数由有理数和无理数组成,其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”--意义是“实在的数”。
实数的定义分析:1.实数可以分为有理数(如31)和无理数(如π、)两类,或代数数和超越数两类,或正数,负数和零三类。
相反数、倒数与绝对值专题提高
![相反数、倒数与绝对值专题提高](https://img.taocdn.com/s3/m/73c9216333d4b14e852468f6.png)
相反数、倒数与绝对值专题提高1、【相反数】:【代数定义】:只有符号不同的两个数叫做互为相反数,规定:零的相反数是零。
相反数是成对出现的,指两个数字之间的关系,一个数与它的相反数时一对数字。
【几何意义】:从数轴上看,互为相反数的两个数所对应的点关于原点对称,即这两个数分居在原点两侧,并且到原点距离相等。
【解题技巧】:①表示一个数的相反数,只要在这个数的前面添一个“-”号。
如:a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
②多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
【重要结论】:如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
【知识应用】:Eg1:【相反数的理解】:相反数反应的是两个数字之间的关系:①运算关系:和为0;②数字特征关系:只有符号不同。
而不体现大小关系1.有理数的相反数是,它们之间的大小关系().A.> B.< C.> 或= D.不能确定2.如果,那么- =______ ;如果-x=-(-12),那么x= __________Eg2:【相反数结论】:若a与b互为相反数,则a+b=0【例】:若a+5与—1互为相反数,则a=________Eg3:【多重符号的化简】:下列各式中,化简正确的是().A. -[+(-7)]=-7 B. +[-(+7)]=7 C. -[-(+7)]=7 D. -[-(-7)]=7★ Eg4 :【相反数的几何意义】:1.数轴上,若A.B表示互为相反数,A在B的右侧,并且这两点的距离为8,则这两点所表示的数分别是_______【跟踪练习1】:一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( ).A .-2B .2C .D .【跟踪练习2】:有理数a,b 在数轴上的位置如图所示,试比较a,b,-a,-b 的大小,并用“<”把它们连接起来。
数轴、相反数、绝对值(讲义)
![数轴、相反数、绝对值(讲义)](https://img.taocdn.com/s3/m/fe7a0646ad51f01dc281f1b9.png)
数轴、相反数、绝对值(讲义)一、知识点睛1. 去绝对值:①看整体,定符号;②依法则,留括号;③化简,验证.2. 分类讨论:①画树状图,分类;②根据限制条件筛选、排除.3. 绝对值的几何意义:a b -表示在数轴上数a 与数b 对应点之间的距离.二、精讲精练1. 设有理数a ,b ,c 在数轴上的对应点如图所示,则b -a ____0,a +c ________0,所以2b a c a c a -+-+-化简后的结果为____________. c a2. 设有理数a ,b 在数轴上的对应点如图所示,化简1a b a b b +---+-. b a103. 设有理数a ,b 在数轴上的对应点如图所示,化简11a b a b ---+--. a 01b4. 已知m m =-,化简12m m ---.5. 已知a +b <0,化简13a b a b +----.6. 已知a <0<c ,ab >0,b c a >>,化简b a b c a b c -++-++.7. 已知a <0<c ,ab <0,>>a c b ,化简a a c b c b -+----.8. 若15x -=,1y =,则x y -的值为__________________.9. 若24x +=,3y =,则x y +的值为__________________.10. 若4a =,2b =,且a b a b +=+,则a b -的值是多少?11. 若3x =,2y =,且x y y x -=-,则x y +的值是多少?12. 若ab ≠0,则a b a b+的值为______________. 13. 若abc ≠0,则cc b b a a ++的值为_______________. 14. 已知x 为有理数,则12x x -+-的最小值为______.210-215. 已知x 为有理数,则12x x ++-的最小值为______.210-216. 已知x 为有理数,则123x x x -+-+-的最小值为______.17. 已知x 为有理数,若123x x -+-=,则x =________.18. ∵____0a∴当a =____时,a 取值最小我们称a 有最小值____;∴当a =_____时,2a +取得最____值是______. ∵____0a -∴当a =_____时,a -取值最大我们称a -有最大值______;∴当a =____时,10a -+取得最____值是_____. 同理可知,23a --+有最____值是_____,此时a =_____.类似地,∵2____0a∴2a 有最____值是_____,22a -有最____值是_____.练:若ab ≠0,则a b ab a b ab++的值为___________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值与相反数(提高)
【学习目标】
1.借助数轴理解绝对值和相反数的概念;
2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;
3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;
4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.
【要点梳理】
要点一、相反数
1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.
要点诠释:
(1)“只”字是说仅仅是符号不同,其它部分完全相同.
(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.
(3)相反数是成对出现的,单独一个数不能说是相反数.
(4)求一个数的相反数,只要在它的前面添上“-”号即可.
2.性质:
(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).
(2)互为相反数的两数和为0.
要点二、多重符号的化简
多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .
要点诠释:
(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.
要点三、绝对值
1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.
要点诠释:
(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:
(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:
(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.
(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点四、有理数的大小比较
1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b . 2.法则比较法:
两个数比较大小,按数的性质符号分类,情况如下:
两数同号
同为正号:绝对值大的数大
同为负号:绝对值大的反而小
两数异号 正数大于负数 -数为0
正数与0:正数大于0
负数与0:负数小于0
要点诠释:
利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:
(3)判定两数的大小.
3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.
(0)||0
(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩
4. 求商法:设a 、b 为任意正数,若
1a b >,则a b >;若1a b =,则a b =;若1a
b
<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.
5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小. 【典型例题】 类型一、相反数的概念
1.若m 与n 互为相反数,则|m+n ﹣2|= . 【答案】2
【解析】根据互为相反数的两个数的性质,可知0m n +=,代入上式可得:|m+n ﹣2|=|0﹣2|=2.
【总结升华】若,m n 互为相反数,则0m n +=或m n =-. 举一反三:
【变式】若|x ﹣2|与(y+3)2
互为相反数,则x+y= . 【答案】-1.
∵|x ﹣2|与(y+3)2
互为相反数, ∴|x ﹣2|+(y+3)2=0, ∴x ﹣2=0,y+3=0, 解得x=2,y=﹣3, ∴x+y=2+(﹣3)=﹣1. 故答案为:﹣1.
类型二、多重符号的化简
2.化简下列各数.
①(6)--; ②(6)-+; ③ [(6)]--+;④{[(6)]}---+;⑤{[(6)]}---- 【答案】①6; ②6-;③6;④-6;⑤6
【解析】①(6)--表示-6的相反数,所以(6)6--=; ②(6)-+表示+6的相反数,所以(6)6-+=-;
③ [(6)]--+前面共有2个“-”号,为偶数个,而“+”可以省略,所以[(6)]6--+=; ④{[(6)]}---+中共有3个“-”号,即奇数个,而“+”可以省略,所以{[(6)]}---+=-6;
⑤{[(6)]}----中共有4个“-”号,即偶数个,而 “+”可以省略,所以{[(6)]}6----= 【总结升华】多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负. 类型三、绝对值的概念
3.如果|x|=6,|y|=4,且x <y .试求x 、y 的值.
【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论. 【答案与解析】因为|x|=6,所以x =6或x =-6; 因为|y|=4,所以y =4或y =-4;
由于x <y ,故x 只能是-6,因此x =-6,y =±4.
【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x =-6,y =±4,就是x =-6,y =4或x =-6,y =-4. 举一反三:
【变式】如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .
如果|x -2|=1,那么x = ;
如果|x |>3,那么x 的范围是 . 【答案】6或-6;1或3;x>3或x<-3 类型四、比较大小
4. 比较下列每组数的大小: (1)-(-5)与-|-5|;(2)-(+3)与0;(3)4
5
-
与34--;(4)π-与| 3.14|--.
【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.
【答案与解析】 (1)化简得:-(-5)=5,-|-5|=-5. 因为正数大于一切负数,所以-(-5)>-|-5|.
(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0. (3)化简得:3344--
=-.这是两个负数比较大小,因为4416
5520
-==
,
33154420-
==,且1615
2020
>.所以4354-<--.
(4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.
【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 类型五、含有字母的绝对值的化简
5.若﹣1<x <4,则|x+1|﹣|x ﹣4|= .
【思路点拨】根据绝对值的性质:当a 是正有理数时,a 的绝对值是它本身a ; 当a 是负有理数时,a 的绝对值是它的相反数﹣a,可得|x+1|=x+1,|x ﹣4|=﹣x+4,然后再合并同类项即可.
【答案】2x ﹣3. 【解析】
解:原式=x+1﹣(﹣x+4), =x+1+x ﹣4, =2x ﹣3.
【总结升华】此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x ﹣4的正负性. 举一反三:
【变式】已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:
化简:
【答案】由图所示,可得.
∴ 30a c ->,,
,
∵
.
∴ 原式
.
类型六、绝对值非负性的应用
6. 已知a 、b 为有理数,且满足:1
2
,则a =_______,b =________.
【答案与解析】由
,
,
,
可得 ∴
【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0. 举一反三:
【变式】已知b 为正整数,且a 、b 满足,求
的值.
【答案】 由题意得 ∴
所以,2b a
类型七、绝对值的实际应用
7.一只可爱的小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm 就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?
【思路点拨】总路程应该为小虫爬行的距离和,和方向无关. 【答案与解析】小虫爬行的总路程为:
|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) 小虫得到的芝麻数为54×2=108(粒) 答:小虫一共可以得到108粒芝麻.
【总结升华】此题是绝对值的应用问题,当求爬行路程是即为各数的绝对值之和,如果求最后所在的位置时即为各数之和,最后看正负来决定方向.。