湿法脱硫工艺计算书表格
钠湿法脱硫工艺设计计算副本
出
除雾器后烟气携带 明水 烟气带水 石膏结晶水 石膏浆排出水 冲洗水、补充水 除雾器出口携带水滴 小于75mg/Nm3
总水量
9 系统耗水量 其它 需升温的水量 水温升高
热损失约为余热的1/3
三 碳酸钠用量 第 4 页,共 18 页
项目名称 序 号 项 目 1 吸收剂有效成分 2 Na2CO3用量 3 碳酸钠溶液用量 四 1 2 3 4 5 副产品生成量 亚硫酸钠 其他 合计 排浆量 其中结晶水
2*220MW 投标 位 计 算
设计阶段 代 号 单 Q Q' T Sar VS C w1 wv1
η
烟气脱硫工程设计 计算书
公 式 或 依 据
设计任务书给定 设计任务书给定 设计任务书给定 设计任务书给定 设计任务书给定 给定、计算或C=Sar*2500估算 给定或由燃料燃烧计算 结定或计算 给定,>=90% 给定,一般取k=1.5~2 给定或查表,一般取1% 给定 设计任务书给定 设计任务书给定 给定,一般取2~2.4 给定,一般取2.5~4 给定,一般取2~3 给定,一般取8~25 给定,一般取3~8
43.5 173381 173381 195599
风机压缩使温升2~5℃
标态 标态
绝热,压力增加约2802Pa
吸收塔入口的烟气状况 无GGH时
烟气体积流量(干) 干烟气质量流量 水蒸汽质量流量 有GGH时 吸收塔入口烟温 入口水蒸汽分压 干烟气质量流量 烟气中的含水量 水蒸汽质量流量 冷凝水的量
Q3 G W T'1 p1 G' wv' W' CW
201130 237829 221153 5.30
标态,含氧化空气 运行工况 按塔内平均压力、温度
湿法脱硫系统物料平衡计算资料
1湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。
其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。
氧化空气进口温度为20℃,进塔温度为80℃。
3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。
由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。
(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。
石灰石石膏湿法脱硫计算
2S Y *106 = Qs
取
CSO2=
851.0638 mg/m³ 852 mg/m³
SO2浓度的校准
基准氧含量为
CSO2,at4.6% =
CSO2,at4.6% =
C * CC CC SO2 ,at4.6%
O2 ,air O2 ,air
O2 ,4.6% O2 ,6%
931.52 mg/m³ 取
CSO2,at4.6% =
mgypsum=
1466.4 kg/h
取
mgypsum=
1466 kg/h
mwater=mfrom,absorbor-mgypsum=
9814 kg/h
Vfrom,absorbor=
m from,absorbor
=
s
取
Vfrom,absorbor=
10.45412 m³/h 10.45 m³/h
18 石灰石浆液供给
mhydrocyclone,underflow s,hydrocyclone,underflow
=
2400 kg/h 1.721664 m³/h
取
Vhydrocyclone,underflow=
1.72 m³/h
17.5 吸收塔来石膏浆液计算
mfrom,absorbor=mhydrocyclone,underflow+mhydeocyclone,overfloe
0.077
mwater,vapourised=
21200 kg/h
V m water,saturation
water,vapourised water,saturation
=
取
Vwater,saturation=
脱硫工段工艺计算
三厂一、流程图二、各设备热量衡算进半脱冷却塔的气量为: 53000 m 3 气体成分物料衡算(1) H 2S 脱除量---G 1,kg/h 、G 1=G 0(C 1-C 2)=5.3*104*(1.5-0.06)/1.0*103=76.32 kg/h (2)溶液循环量L T ,m 3/h 、 L T =1200 m 3/h(3) 生成Na 2S 2O 3消耗的H 2S 的量 G 2, kg/h 、 取Na 2S 2O 3的生成率为H 2S 脱除量的8%计算 即G 2=76.32*8%=6.11 kg/h (4) Na 2S 2O 3DE 生成量,G 3, kg/hG3=6.11*158/2*32=14.20 kg/h(5) 理论回收硫量G4, kg/hG4=(76.32-6.11)*32/34=66.08 kg/h(6) 硫泡沫生成量G5 m3/hS1--------硫泡沫中的硫含量,kg/ m3此处取S1=30 kg/ m3G5=66.08/30=2.22 m3/h(7) 入熔硫釜硫膏量G6 kg /hG6= G4/S2S2-----硫膏含硫量,此处取S2=20%G6=66.08/0.2=330.4 kg /h1、冷却塔热量衡算(1)冷却塔热负荷,Q1,kJ/h半水煤气进冷凝塔的温度为:70℃,出口的温度为:35℃70℃水蒸汽的压力为31.2 KPa;35℃水蒸汽的压力为5.6KPa即70℃半水煤气含水量31.2*5.3*104/141=1.17*104 m3 35℃半水煤气含水量5.6*5.3*104/138=2.15 *103m3Q1= G0 [C P (t1-t2)+ W1i1- W2i2]C P-----半水煤气平均等压比热容kJ/(kmol.℃)W1. W2------------入.出冷却塔半水煤气含水量C P=43%*10.13*2+31.5%*0.754*28+6.8%*0.653*44+18%*0.745*28+0.7%*0.653*32=21.22 kJ/(kmol.℃)即Q1= G0 [C P (t1-t2)+ W1i1- W2i2]=5.3*104*21.22*(70-35)/22.4+1.17*104*0.1979*2624.3-2.15*103*0.03960*2559=7.62*106 kJ/h(2)冷却水消耗W3 kg /hW3= Q1/C△t △t=8℃即W3=7.62*106/8*4.183=2.28*105kg /h2、清洗热量衡算(1)清洗塔热负荷,Q1,kJ/h半水煤气进清洗的温度为:37℃,34.2KPa出口的温度为:29℃,34.2KPa37℃水蒸汽的压力为6.3 KPa;29℃水蒸汽的压力为4.0KPa即37℃半水煤气含水量6.3*5.3*104/134=2.49*103 m333℃半水煤气含水量4.0*5.3*104/134=1.58*103m3Q1= G0 [C P (t1-t2)+ W1i1- W2i2]C P-----半水煤气平均等压比热容kJ/(kmol.℃)W1. W2------------入.出冷却塔半水煤气含水量C P=43%*10.13*2+31.5%*0.754*28+6.8%*0.653*44+18%*0.745*28+0.7%*0.653*32=21.22 kJ/(kmol.℃)即Q1= G0 [C P (t1-t2)+ W1i1- W2i2]=5.3*104*21.22*(37-29)/22.4 +2.49*103*0.05114*2401.0-1.58*103*0.03036*2423.7=5.91*105 kJ/h(2)冷却水消耗W3 kg /hW3= Q1/C△t △t=8℃即W3=5.91*105/8*4.183=2.32*104kg /h3、熔硫釜热量消耗(1)熔硫釜热负荷,Q3,kJ/h硫的比热容:0.71KJ/(kg.℃)硫的熔融热:1.72*103 kJ/kmol由前面物料衡算知道:硫泡沫生成量G5=2.22m3/h同时硫的理论回收量:G4=66.68 kg/h即硫的体积:V=66.08/(1.96*103)=0.034m3/h即清液的量为:G8=(2.22-0.034)m3/h= 2.19m3/hQ3=Q硫+Q清液Q硫=0.71*(120-40)*66.68+1.72*103*66.68/32=7.47*103 kJ/hQ清液=0.8834*4.1868*(135-40)*2.19*1.04626*103=0.81*106 kJ/h即Q3=Q硫+Q清液=7.47*103+0.812*106=0.819*106 kJ/h(2)蒸汽消耗量,W,kg/h进熔硫釜的蒸汽压力为:0.6MPa,温度为164℃,出口冷凝液的温度为:164℃,,压力为:0.5 MPa。
湿法脱硫设备计算[1]
一、工艺流程二、设计计算定额1.煤气处理量7000Nm3/h2.脱硫塔前煤气硫化氢含量0.8g/Nm33.脱硫塔后煤气硫化氢含量20mg/Nm34.脱硫效率98%5.脱硫塔煤气进口温度35℃6.脱硫塔煤气进口压力11000Pa7.脱硫塔煤气出口压力10000Pa三、设备计算1.脱硫塔:(见图一)进脱硫塔湿煤气体积为V=7000×[(273+35)/273]×[(1.01325×105)/(1.01325×105+11000-5720)]=7506m3/h (式中5720为35℃时饱和水蒸气压力Pa)脱硫塔进口吸收推动力为△p1=*11000/101325+1+×0.8×(22.4/34)×(1/1000)×101325=59.2PαH2S物质的量脱硫塔出口吸收推动力为△p2=*10000/101325+1+×0.02×(22.4/34)×(1/1000)×101325=1.5Pα硫化氢的吸收量为G=7000×[(800-20)/(1000×1000)]=5.46kg/h脱硫塔的传质系数K取为17×10-5kg/(m2·h·Pa),则需用传质面积为F=5.46/(17×10-5×15.7)=2046m2选用多孔组合洗涤环ZHΦ240,比表面90m2/m3,空隙率0.75m3/m3,需填料体积V1=2046/90=22.73m3。
取每层填料层高1.8m,则共需N=22.73/(1.8×0.785×22)=4.02,共设四层。
取脱硫吸收液的硫容量为0.20kg/m3,则溶液循环量(即脱硫塔顶的喷淋量)为L=5.46/0.20=27.3m3/h 喷淋密度校核:脱硫塔的喷淋密度为l=27.3/(0.785×22)=8.69m3/(m2·h);按喷淋密度27.5m3/(m2·h)计算得到的喷淋量为27.5×0.785×22=86.4m3;脱硫塔的液气比为(86.4×1000)/7506=11.5L/m3,符合脱硫塔的液气比要求。
脱硫(工艺)计算书
工况温度下的烟气量
烟气温度 二氧化硫浓度
净化后二氧化硫浓度
脱硫效率
钙硫比 Ca(OH)2浆液浓度 脱掉的SO2质量 石灰石 石 w% Ca Ca
CaCO3消耗量 CaO含量 CaO消耗量 液气比 循环浆液量 烟气流速 脱硫塔进口温度 脱硫塔出口温度 吸收塔直径 工作温度下烟气量 每秒钟的烟气量 塔的横截面积 塔的直径 浆液塔内停留时间 浆液池体积 浆液池高度 塔体高度 Ca(OH)2浆液消耗量
脱硫计算全集
实际烟气量(标态、干) 标况烟气量(标态、湿)
Q Q1 Q2 T C
η
Nm3/h Nm3/h Nm /h ℃ mg/Nm3 mg/Nm % mol/mol
3 3
250000 161347.5177 387362.6374 150 1800 50 0.972222222 1.03 1.25 30 282.358156 90 408.9781416 0 12 5.6 1936.170213 3.5 150 50
V
燃煤含硫量 烟气中SO2体积含量 烟气中的水的含量 烟气中的水的含量 氧化倍率 空气中水含量 空气密度
Sar VS w1 wv1 k w2
ρ
w% v% w% v% w% kg/m3
全集
石灰石浆含固量为30%
石灰石 石灰
L/G Gx V'g
kg w% kg/h w% kg/h l/Nm3 m3/h m/s ℃ ℃
Nm3/h Nm /s m2 m min m3 m m
3
182975.8713 50.82663092 14.52189455 4.301072974 4.5 145.212766 9.999574468 25.49957447 1363.260472
湿法脱硫系统物料平衡计算
1湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。
其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。
氧化空气进口温度为20℃,进塔温度为80℃。
3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。
由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。
(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。
脱硫物料平衡水平衡计算
石膏结晶水计算
CaSO4· 2O中结晶水量为: 2H G1= [ηMSO2×172.17×69.01÷(69.01+1)]÷172.17×2×18.02kg/h
CaSO3· 2O结晶水量为: 1/2H G2=[ηMSO2×129.15×1÷(69.01+1)]÷129.15×0.5×18.02kg/h
质量流量kg/h
ηMSO2×172.17×69.01÷(69.01+1) ηMSO2×129.15×1÷(69.01+1) ηMSO2×100.09×(Ca/S-1)
W%
CaCO3
杂质
飞灰 合计
ηMSO2×100.09× Ca/S (1-A)
FGD入口灰量×75%
G固体
100
石膏处理系统固平衡
吸 收 塔
之一,它在相当程度上决定着水平衡。热平 衡中的蒸发水是系统的主要水耗。
由于烟气中含有腐蚀性的酸性气体和水蒸
气的存在,烟气温度的高低,对于系统烟道 的防腐有着直接的影响,它决定了防腐材料 及措施的选择。而烟气温度的高低与吸收塔 的热平衡有很大的关系。
系统热平衡示意图
净 烟 气热 (处理后的烟气) 散 热
净 烟 气带走水 (气、液态)
石膏结晶水
工艺补充水
FGD SYSTEM
石膏带走水
废水
制浆
石膏浆液 系统滤液
塔进口原烟气带水 (气态)
G烟气入口带入水+G工艺补充水+G返塔水量=G烟气出口带出 水+G废水+G脱硫产物最终带出结晶水+G石膏浆液中返回液水
要求的工艺补充水量:公式1
Gw=Y+M zf G石膏结晶水 +G石膏带出水 +G烟气带走水
湿法脱硫工艺计算书
120
96606 161426.83 128011.5 -122203.48
90.5 71451
标态 无冷凝水
第 2 页,共 7 页
项目名称
烟台
日
审核
期
烟气脱硫工程设计
日
专 业 工艺
设计阶段
投标
计算书
校核
期日
计算
期
版次
序
项
目 代号 单位
计算公式或依据
计算结果 取 值
备注
2 氧化空气量 二氧化硫的含量 烟气中二氧化硫量
G'
烟气中的含水量
wv'
水蒸汽质量流量
W'
冷凝水的量
CW
℃ Nm3/h Nm3/h m3/h
Nm3/h kg/h kg/h
℃ Pa kg/h Nm3/h kg/h
T'=T+3.5 Q2=Q1 Q2'=Q1' Q2''=Q2*(P0/P2)*(273+T')/273
158.5 80000 71560 123044
101325
71867
71867
第 6 页,共 7 页
日
项目名称
烟台
审核
期
烟气脱硫工程设计
日
设计阶段
投标
计算书
校核
期日
计算
期
序
项
目 代号 单位
计算公式或依据
计算结果 取 值
标态,湿态(Nm3/h)
80000
80000
#REF!
#REF!
运行工况(m3/h,湿)
含水量(%) SO2浓度(mg/Nm3)
湿法脱硫管道计算
89.00
4
4
φ 89×4
2.21
A3
GB
1 50
1160.000 1.2~2.5 2.5 0.00
108.00
4
4
φ 108×4 0.00
1 50
1160.000 1.2~2.5 2.5 0.00
159.00
4.5
4
φ 159×4.5 0.00
1 50
125.000 1.2~2.5 2.5 0.00
133.00
2.5
0
φ 133×2.5 3.46
A3
GB
1
25 80.00 1000.000 1.2~2.5 2.5 106.41
108.00
2.5
0
φ 108×2.5 2.67
A3
GB
1
25 48.38 1000.000 1.2~2.5 2.5 82.75
108.00
4
0
φ 108×4 1.71
A3
1 50 2414
1.980 12~20 20 206.65
1 50
1120.000 0.5~1.0 1
0.00
1 50
1120.000 0.5~1.0 1
0.00
1
33 185.00 பைடு நூலகம்000.000 2~3
3 147.71
1
33 12.00 1000.000 2~3
3 37.62
1
33 24.00 1000.000 2~3
GB
1
25 12.84 1000.000 1.2~2.5 2.5 42.63
57.00
2.5
0
φ 57×2.5 1.68
湿法脱硫工艺计算书
8 水平衡
项目名称
烟台
设计阶段
投标
代号 单位
日
审核
期
烟气脱硫工程设计
日
计算书
校核
期日
计算
期
计算公式或依据
计算结果 取 值
w3
kg/h
w4
kg/h
w3=wv2*ρ水蒸气,ρ水蒸汽取0.793 w4=w3-W
9242.91 3434.91
DSW DSM
Qr
kg/h mol/h kJ/h
DSM=DSW*1000/64 按SO2计算生成石膏的反应热为339KJ/mol
9 其它
需升温的水量
w12 Kg/h
w12=w6+w7+w11
#REF!
水温升高
△T
℃
△T=Qs*2/3/(c3*w12),c3查表给定
#REF!
热损失约为余热的1/3
三 石灰石用量 1 吸收剂有效成分 2 石灰石粉用量 3 石灰石浆用量
ECa WCa w13
w% Kg/h Kg/h
ECa=Ca WCa=DSW*100/64*(Ca/s)/*100/ECa
80000 76000 155
0.6 0.03 2500 5.5 10.55 96
2 1 1.285 95 1.638 1.03 4 2.5 12 3.5
二 烟温和水平衡计算 1 原烟气(风机前)
专 业 工艺 版次
备注 11%O2 11%O2 收到基 干态 干态
设计值
标态 MET取3.5~5.3
第 1 页,共 7 页
CW=W-W'
120
96606 161426.83 128011.5 -122203.48
脱硫计算
净 烟 气带走水 (气、液态)
石膏结晶水
工艺补充水
FGD SYSTEM
石膏带走水
废水
制浆
石膏浆液 系统滤液
塔进口原烟气带水 (气态)
G烟气入口带入水+G工艺补充水+G返塔水量=G烟气出口带出 水+G废水+G脱硫产物最终带出结晶水+G石膏浆液中返回液水
要求的工艺补充水量:公式1
Gw=Y+M zf G石膏结晶水 +G石膏带出水 +G烟气带走水
气的存在,烟气温度的高低,对于系统烟道 的防腐有着直接的影响,它决定了防腐材料 及措施的选择。而烟气温度的高低与吸收塔 的热平衡有很大的关系。
由于FGD系统的传质传热过程主要是在吸收塔中完成的, 所以选定吸收塔为热平衡的研究对象:
净 烟 气热 (处理后的烟气)
工艺水热
氧化空气热
吸收剂热
FGD SYSTEM 反应热
X (t ) 15% X ( s)
(1 25.5%) X (t ) (1 25.5%) X 3%(s)
一级旋流器
25.5% X (t ) 25.5% X 50%(s)
(1 25.5%) X 0.1778X 0.93X (t ) (1 25.5%) X 3% 25.5% X 50%1% 0.02363 X ( s)
吸收塔
石膏处理系统
G制浆水
Y废水
P滤液返回 氧化风
Qy1原烟气
冲洗水
制浆系统
1、烟气平衡
烟气的平衡与整个系统烟道的布置有很大的关系 , 由于钢烟道会有漏风现象的存在 , 从而伴随着一 定的温降。烟气中酸性物质的存在对系统会有腐 蚀,因此烟气温度的高低对于系统烟道的防腐设 计会有很大影响。如在原烟气侧,经GGH前,温 度较高 120 ℃以上,所以不设防腐设计,而在进 塔烟气管道中由于 SO2 浓度高,温度低;塔出口 烟道中由于温度在系统中最低,水蒸气含量很高, 还有液态水的存在,所以环境条件极恶劣,必须 加强防腐设计。还有烟气中的灰尘物的浓度的高 低,直接影响到烟道和系统设备的磨蚀和防堵的 设计,由于原烟气管路中烟气的粉尘含量大于净 烟气中的粉尘含量,考虑到磨损,其设计的原烟 气气体流速比净烟气的要低。
脱硫设计计算方法
清华同方股份有限公司
工艺数据表
能源环境公司
专业
工艺
山西古交电厂烟气脱硫项目
设备位号 T201
T301
数 量 2套
阶段
初设
版 次 A / 2001.09.30
图 号 M0102-PR01.03.30-0
张 数 共3 张第 1 张
名称型号 脱硫塔
制造厂
运行方式
连续运行
物料名称
石膏浆液
烟气
温度
操 密度 作 参 粘度 数 pH
氧化曝气装置
• 循环氧化槽的容量 • 氧化空气的停留时间 • 氧化空气的过量系数 • 氧化空气的压力、温度 • 循环浆液的pH值 • CaSO3的结晶与CaSO4结晶 • 氧化曝气装置的防堵塞 • 氧化曝气装置的防腐蚀
浆液喷射装置
• 浆液流量的调节 • 喷嘴的特殊结构 • 浆液管道的防腐蚀 • 浆液管道的防堵、防垢
烟气出口 循环浆液入口 除雾器冲洗水入口 人孔
h1-3 DN100 PN1.6 突面 HG20593-97 浆液回流口
j1-2 DN100 PN1.6 突面 HG20593-97 出料口
k1-n DN100 PN1.6 突面 HG20593-97 氧化风进口
m1-3 DN80 PN1.6 突面 HG20593-97 仪表接口
0,803[kg / Nm砞
m water 77.800 [Nm³/ h] 0,803[kg / Nm砞 62.500 [kg / h]
燃煤烟气成分
• 烟气密度
assumed data
• Density flue gas → 1,35 [kg/Nm³] • 质量流量
m flue gas,dry Vdry,inlet flue gas,dry
脱硫计算书
计算结果 5.02 5.49 3.97 0.91 0.62 8.70 8.04 0.67 0.66 8.26 7.62 13.00 10.29 11.14 0.14 0.15 74.27 80.45 303759 264270 224492
备注
烟气带水按13%考虑
一台炉 一台炉 一台炉 359.1866
% %9;/Vy' VH20'/Vy' 0.01866Car/Vy' 0.01866Car/Vgy' 0.01866*0.375Sar/Vy' 0.01866*0.375Sar/Vgy' (0.79alfa'V0+0.008Nar)/Vy' (0.79alfa'V0+0.008Nar)/Vgy'
kcal/Nm3.℃
200℃ 插值法: tpy 插值法求85℃比热 t=126-i2*(85-50)/i1 插值法: t V ' * i3*4.18*(t-50) Q1/msh msh1+msh2
i1 i2 t i3 塔内烟气放热量 塔内烟气放热蒸发水量 3) 单塔蒸发水量 单塔蒸发水汽体积 2 脱硫耗水量 1) 脱硫结晶水 2) 石膏表面水 3) FGD废水 4) 脱硫蒸发水量 Q1 msh2 Mwe Vwe Mgyc Mgys Mww Mwe
2677.20 6.31
0.3300 0.3350 0.3313 0.3293 91.22 0.3296 68987833 25.77 32.08 39922.17 10.75 0.015 4.10 32.08
10.00 2.00 58.95 58.95 四台炉
797.53 24.92 2659.61
石灰湿法脱硫烟气量及露点计算表
锅炉燃煤数据
输入完后
黄色区域为输入数据取
请不要改动蓝色区域点击"露点计算"表中计算按钮完成计算
数
-来自《化学
气体比热
-来自《化学
气体比热
-来自《化学
硫和石灰脱硫计算有区别)
参数
气体比热
-来自《化学
气体比热
-来自《化学
体比热用-来自《化学化工物性数据手册》(无机卷)
体比热用-来自《化学化工物性数据手册》(无机卷)
体比热用-来自《化学化工物性数据手册》(无机卷)
体比热用-来自《化学化工物性数据手册》(无机卷)
体比热用-来自《化学化工物性数据手册》(无机卷)。
烟气脱硫设计计算表格
20.51
烧碱费用
万元
5.96
150.00
180000.00
65.00
脱硫塔蒸发水量(Kg/h) 除雾器冲洗水量(Kg/h) 钠碱含水量(Kg/h)
4500.00
3391.20
5.76
二氧化硫含量计算
耗煤量(t/h)
标况烟气量(Nm3/h)
燃煤含硫率(%)
5.00
50000.00
1.00
二氧化硫浓度(mg/Nm3) 二氧化硫总量(Kg/h) 二氧化硫脱除量(Kg/h)
44.51
21.262Leabharlann 47反应池中的钠、钙、硫平衡
进反应池的Na2SO3
155.63
进反应池的Ca(OH)2
91.40
出反应池的CaSO3
148.22
出反应池的Na(OH)
98.81
输入值
计算值
锅炉数量
1.00
脱硫塔计算公式
设计参数 塔高 塔径
85%生石灰价格 烧碱价格 脱硫效率 年运行时间
脱硫塔截面积 烟气流速
1700.00
85.00
79.05
物料计算(小时耗量)
排放浓度(mg/Nm3)
脱硫效率(%)
纯生石灰的量(Kg/h)
400.00
76.47
72.63
需要烧碱的量(Kg)
石膏产生量(Kg/h) 氧化空气用量(m3/h)
98.81
212.64
79.05
石膏结晶水(Kg/h)
脱硫渣含水(Kg/h)
烧碱耗量(Kg/h)
年脱出SO2总量 纯生石灰的量
烧碱的量
单位 m m
元/吨 元/吨
% h m2 m/s t t/年 t/年
干湿法脱硫运行经济成本对比(自动计算)演示教学
备注:1、湿法指的是石灰石--石膏湿法脱硫。
2、我们地区硫含量平均值基本在4.5%。
3、
法脱硫设计必须满足100%脱硫标准进行(若超净排放建议炉内脱硫效率也不能超过30%)。
4、通过自己大致核算结比,在硫含量低于0.8时,认为办干法脱硫运行比较经济,但随着硫含量增加,湿法运行经济性逐步比干法好,硫优势越明显。
5、若有不足之处望各位同仁多批评指正。
6、干法脱硫没考虑水质提高和蒸汽费用。
)。
3、湿法脱硫不考虑炉内脱硫部分,即是湿过30%)。
4、通过自己大致核算结合我公司运行情况对法运行经济性逐步比干法好,硫含量越高,湿法比干法提高和蒸汽费用。
湿法脱硫系统物料平衡计算
1M MMMM3MMMM湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:组分分子量V ol% mg/Nm3SO264.06 0.113 3600(6%O2)O232 7.56(dry)H2O 18.02 4.66CO244.01 12.28(dry)N228.02 80.01(dry)飞灰200 石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算组分V ol%(wet) mg/Nm3kg/h Kmol/hSO20.1083226(7.56%O2)3797 59.33O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235合计1638416 55091.67平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×28.02)/100=29.74平均密度 1.327kg/m3(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
组分V ol%(wet) mg/Nm3kg/h Kmol/hSO20.1083226(7.56%O2)3778 59.03O27.208 126480 3952.52H2O 4.66 45983 2551.78CO211.708 282489 6420.22N276.283 1171259 41832.68飞灰200 234合计1630224 54816.212、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
脱硫计算书
t/h t/h t/h t/h t/h t/h
℃ KJ/Kmol ℃ KJ/Kmol KJ/h ℃ KJ/Kg KJ/Kg KJ/(Kg℃) t/h t/h t/h t/h t/h %
16 出塔温度水蒸气饱和蒸汽压
17 出口烟气绝对压力 18 出塔水蒸气饱和蒸气含量
校Байду номын сангаас计算
1 浆液自氧化率 2 氧气过剩系数 3 O2的纯消耗量(标况下) 4 空气的消耗量 (标况下) 5 空气消耗量(20℃) 6 未反应的空气为 (标况) 7 出塔实际烟气量(标况) 8 出塔实际烟气量(工况) 9 校核SO2脱硫效率
9 石灰杂质量 10 粉尘夹带质量 11 硫酸镁的生成质量 12 带结晶水的硫酸镁质量 13 生成CaSO4*2H2O的质量 14 石膏的产量
热平衡计算 1 进塔温度值 2 进塔温度下,烟气比热 3 假定出塔温度 4 出塔温度下,烟气比热 5 脱硫塔烟气放热量 6 工艺水进水温度 7 工艺水进塔温度汽化潜热 8 工艺水出塔温度汽化潜热 9 水的比热 10 水的蒸发量 11 脱硫副产物分子水 12 脱硫副产物夹带水 13 脱硫总耗水量 14 出塔带出的液态水 15 出塔水蒸气含量
m/s
8 烟道进口截面积限值 9 进口宽限值
10 进口高度
11 校核截面流速
12 湿烟囱流速限值 13 烟囱直径限值
二
浆液制备系统计算
1 石灰的消耗量
2 粉仓储存用量
3 石灰粉的堆积密度
4 石灰粉仓的最小有效容积
5 锥斗型容器的容积系数
6 石灰粉仓的容积计算值
7 石灰浆液的浓度(石灰浆液浓度) 8 石灰浆液存储时间 9 石灰浆液的密度 10 石灰浆液泵的计算流量 11 石灰浆液泵的流量为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化硫浓度 烟气中的水的含量 烟气中的水的含量 脱硫效率 氧化倍率 空气中水含量 空气密度 CaCO3含量 MgCO3含量 钙硫比 塔内烟气流速 吸收区接触反应时间
氧化喷枪到液面的最 小距离
烟气脱硫工程设计 计算书
算 公 式 或 依 据 R=(2/3~0.8)*A S=Z+E+F+G+J+M+N+O+P+Q U=0.6*A 一般取10~15 x=atan(2*Q/(A-R))*180/3.14 取(0.75~0.9)*Z h=Z+E+F+G+J
审核 日期 校核 日期 计算 日期 计算结果 取 值
1842700 1635028 147 1 0.08 2500 6.97 11.27 96 2 1 1.285 95 1.638 1.02 4 2.5 12 3.5
专 业 版 次 备
工艺
注
Nm3/h Nm3/h ℃ w% v% mg/Nm3 w% v% % w% kg/m3 w% w% mol/mol m/s s l/Nm min
2*220MW 投标 计
设计阶段 代 号 单 位 l/Nm3 L/G' L/G' Vtan Z A E F G H I J K L M N O P Q l/m m m m m m m m m m m m m m m m
3 3
烟气脱硫工程设计 计算书
算 公 式 或 依 L/G'=Wsus*1000/Q2 L/G'=Wsus*1000/Q2'' Vtan=Wsus/60*T2 Z=4*V/(3.14*D'*D') 据
烟气脱硫工程设计 计算书
公 式 或 依 据
审核 日期 校核 日期 计算 日期 计算结果 取 值 95 6583.14 21943.79
专 业 版 次 备
工艺
注
w% Kg/h Kg/h
ECa=Ca WCa=DSW*100/64*(Ca/s)/*100/ECa w13=WCa/(1-0.7)
石灰石浆含固量为30%
Q1''=Q1*(273+T)/273
标态,计算或给定
原烟气(风机后)
烟气温度 烟气体积流量(湿) 烟气体积流量(干) 实际烟气量(湿)
T' Q2 Q2' Q2''
℃ Nm /h Nm /h
m /h
3
3 3
T'=T+3.5 Q2=Q1 Q2'=Q1' Q2''=Q2*(P0/P2)*(273+T')/273
审核 日期 校核 日期 计算 日期 计算结果 取 值
12.00 7.95 1289.89 8.27
专 业 版 次 备 标态
工艺
注
实际状态
氧化槽直径等于吸收塔直径
3
14.10 1.22 0.94 G=duct area/H,烟气流速取15.3~18.3 m/s H=(2/3~0.8)*A I=F+G 一般取1.83~2.74m 一般取1.52~2m M=K*L 一般取1.52~2m 一般取1.83~2m 一般取1m Q=duct area/R,烟气流速取15.3~18.3 m/s 4.22 4.57 11.28 5.50 2.13 2 1.93 3.86 1.98 2.37 1.00
热损失约为余热的1/3
第 4 页,共 9 页
项目名称 序 号 项 目 三 石灰石用量 1 吸收剂有效成分 2 石灰石粉用量 3 石灰石浆用量 四 1 2 3 4 5 副产品生成量 二水石膏 其他 合计 排浆量 其中结晶水 设计阶段 代 号 单 ECa WCa w13
2*220MW 投标 位 计 算
2*220MW 投标 位 计 算
设计阶段 代 号 单 Q Q' T Sar VS C w1 wv1η烟气脱硫工程设计 计算书
公 式 或 依 据
设计任务书给定 设计任务书给定 设计任务书给定 设计任务书给定 设计任务书给定 给定、计算或C=Sar*2500估算 给定或由燃料燃烧计算 结定或计算 给定,>=90% 给定,一般取k=1.5~2 给定或查表,一般取1% 给定 设计任务书给定 设计任务书给定 给定,一般取1~1.2 给定,一般取2.5~4 给定,一般取2~3 给定,一般取8~25 给定,一般取3~8
标态
经GGH后烟气入塔温度为105℃~110℃ 查表
G=Q3*ρ
干烟气,ρ 干烟气取1.35kg/Nm
3
wv2=p1*Q3/(101325+1800-p1) W'=0.793*wv' CW=W-W' 第 2 页,共 9 页
无冷凝水
项目名称 序 号 2 项 氧化空气量
二氧化硫的含量 烟气中二氧化硫量 需脱除的二氧化硫量 需氧气的量 需氧化空气量(干) 需氧化空气量(湿) 氧化空气的量(湿)
1901126 2248023 2350419 14.10
标态,含氧化空气 运行工况 按塔内平均压力、温度
14.10
4.18 3.87
根据具体情况取值
2
氧化槽 计算循环量
22112.40
项目名称 序 号 项 目 实际液气比 实际液气比 氧化槽体积 氧化槽高度 吸收塔尺寸(如图)
吸收塔直径 液面到进口烟道底高 烟气进口烟道斜坡高 进口烟道高 进口烟道宽 烟气进口塔内段高 进口烟道顶到底层喷 淋层高 喷淋层数系数
空气中氧含量为23.15%
3
蒸发水量 设出口烟温 出口水蒸气分压 出口烟气中含水量 出口烟气中含水量 需蒸发水量 脱硫反应热 二氧化硫脱除量 二氧化硫脱除量 反应放热 吸收塔内放热 干烟气比热 水蒸气比热
塔内压力损失为1.1KPa
w4=w3-W
4
DSM=DSW*1000/64 按SO2计算生成石膏的反应热为339KJ/mol 给定,查表 给定,查表
150.5 1842700 1635027.7 2781626
风机压缩使温升2~5℃
标态 标态
绝热,压力增加约2802Pa
吸收塔入口的烟气状况 无GGH时
烟气体积流量(干) 干烟气质量流量 水蒸汽质量流量 有GGH时 吸收塔入口烟温 入口水蒸汽分压 干烟气质量流量 烟气中的含水量 水蒸汽质量流量 冷凝水的量
水蒸气,ρ 水蒸汽取0.793
2500.00 4087.57 3924.07 1962.03 8475.31 8560.91 6662.19 53 14293 266244.65 211132.01 41596.24 3924.0665 61313.539 20785290 1.035 1.993
干态
Q3 G W T'1 p1 G' wv' W' CW
Nm3/h kg/h kg/h ℃ Pa kg/h Nm /h kg/h
3
Q3=Q2' G=Q3*ρ W=Q2*ρ
干烟气,ρ 干烟气取1.35kg/Nm 3 3 湿烟气*w1,ρ 湿烟气取1.32kg/Nm
1635028 2207287 169536 90.5 71451 2207287.4 3688336.3 2924850.7 -2755314.9
w14 w15 w16 w17 w18
Kg/h Kg/h Kg/h Kg/h Kg/h
w14=DSW*172/64 w15=w14/90%*10%,按10%计 w16=w14+w15 w17=w16/(12%~18%) w18=w14*2*18/172
10545.93 1171.77 11717.70 78117.99 2207.29
烟气流速取15m/s 取三层 三层 烟气流速取15m/s
考虑因强制氧化引起的液 面升高
喷淋层间距 喷淋段高
顶层喷淋层到一级除 雾器底高 除雾器段高(含两级 除务器间距离) 二级除雾器到出口烟 道底面高
出口烟道高
第 6 页,共 9 页
项目名称
2*220MW 投标 计
设计阶段 序 号 项 目 代 号 单 位 R m 出口烟道宽 S m 吸收塔总高 T m 吸收塔入口段侧面长 U m 吸收塔出口段长 W 进口斜坡角度 ° X 塔顶倾斜角度 °
粉尘、杂质、未反应的石灰石等
排浆含固量12%~18%
五 主要设备 1 吸收塔 出口总烟气量(湿) 出口总烟气量(湿) 进口总烟气量(湿) 计算直径 实际直径 烟气流速
烟气在吸收塔中停留 时间
Q4 Q5 Q6 D D' V'g t Wsus
Nm3/h m3/h m3/h m m m/s s m3/h
Q4=Q2+AW+w4/18*22.4 Q5=(P0/T0)*((273+T'')/(P0+1000))*Q4 Q6=Q2*(P0/P2')*(273+T''')/273 d=2*sqrt(Q5/3600/(Vg*3.14)) V'g=4*Q6/(3600*3.14*D'*D') t=(0.5I+J+M+N+O+P+0.5Q)/V'g Wsus=L/G*Q/1000 第 5 页,共 9 页
3
6%O2 6%O2 收到基 干态 干态
设计值
k w2
ρ
Ca Mg Ca/S Vg T1 L/G T2
18 液气比 19 浆池内浆液停留时间 二 烟温和水平衡计算 1 原烟气(风机前)