圆的知识点总结史上最全的

合集下载

北师大版六年级上册知识点归纳总结整理(全)

北师大版六年级上册知识点归纳总结整理(全)

第一单元 圆圆概念总结1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O 表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d 表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r ; 2r d =用文字表示为:半径=直径÷2 直径=半径×2 9.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母 π 表示。

圆周率是一个无限不循环小数。

在计算时,取3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=d 或C=2r 圆周长=×直径 圆周长=π×半径×212.圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(r )表示,宽相当于圆的半径,用字母(r )表示,因为长方形的面积=长×宽,所以圆的面积= πr ×r 。

圆的面积公式:S=πr ²。

14.圆的面积公式:S=πr ² 或者S=(2d )² 或者S=(2÷÷πC )² 15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R ,内圆的半径是r ,它的面积是S=πR²-πr²或 S=π(R²-r²)。

初中数学知识点最全总结(精选)

初中数学知识点最全总结(精选)

初中数学知识点最全总结(精选)初中数学知识点最全总结(精选)小伙伴们处在中考复习阶段,我们好好梳理知识点是非常重要的一个环节。

数学知识点是很重要的,下面小编给大家整理了关于初中数学知识点最全总结的内容,欢迎阅读,内容仅供参考!初中数学知识点最全总结1圆的基本性质1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。

直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

2平行线的两条判定定理(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

3投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

24、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

九年级_圆_全章知识点总结

九年级_圆_全章知识点总结

九年级_圆_全章知识点总结1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。

2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。

3、弧:圆上任意 叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。

小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。

4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆。

5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内。

6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。

过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。

8、过 的三点确定一个圆。

9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。

三角形的外心是三角形三条边的 例1、有下列七个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧;⑤三角形的三个顶点在同一个圆上;⑥ 三角形的外心在三角形的内部;⑦过圆心的线段叫做圆的直径。

其中正确的有 (填序号)。

例2、⊙O 的半径为5,圆心O 在坐标原点上,点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 例3、已知矩形ABCD 的边AB=3cm ,AD=4cm ,若以A 点为圆心作⊙A ,使B 、C 、D 三点中至少有一个点在圆内且至少有一个点在圆外,则⊙A 的半径r 的取值范围是 . 例4、如果⊙O 所在平面内一点P 到⊙O 上的点的最大距离为7,最小距离为1,那么此圆的半径为 1、圆是轴对称图形, 都是它的对称轴2、垂径定理:垂直于弦的直径 ,并且平分3、垂径定理的推论:平分弦( )的直径垂直于弦,并且平分 例5、如图1,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。

2020冀教版九年级数学上册:圆的知识点总结及典型例题

2020冀教版九年级数学上册:圆的知识点总结及典型例题

【文库独家】圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。

2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。

3. 圆的确定不在同一条直线上的三点确定一个圆。

4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。

5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

圆初中数学知识点总结

圆初中数学知识点总结

圆初中数学知识点总结圆初中数学知识点总结总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,因此,让我们写一份总结吧。

那么总结有什么格式呢?以下是小编为大家整理的圆初中数学知识点总结,仅供参考,大家一起来看看吧。

圆初中数学知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA 叫半径。

由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。

心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角则两个钝角之和>180°与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

九年级 圆的知识点总结

九年级 圆的知识点总结

圆的知识点汇总1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径。

2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

3.圆上任意两点间的部分叫作圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

能够重合的两个圆叫做等圆。

在同圆或等圆中,能够互相重合的弧叫做等弧。

4.圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

5.垂直于弦的直径平分弦,并且平分弦所对的两条弧。

6.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

7.我们把顶点在圆心的角叫做圆心角。

8.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

9.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

10.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

11.顶点在圆上,并且两边都与圆相交的角叫做圆周角。

12.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

13.半圆(或半径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

14.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

15.在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定相等。

16.圆内接四边形的对角互补。

17.点P在圆外——d > r 点P在圆上——d = r 点P在圆内——d < r18.不在同一直线上的三个点确定一个圆。

19.经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心。

20.直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。

21.直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

北师大版数学六年级上册知识点归纳(最新最全)

北师大版数学六年级上册知识点归纳(最新最全)

北师大版六年级上册数学知识点归纳第一单元圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

圆内最长的线段是直径6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×2车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

9.圆的周长:围成圆的曲线的长度叫做圆的周长。

或者,圆一周的长度就是圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C圆=πd =2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13、圆所占平面的大小叫圆的面积。

把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。

如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr214.圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

六年级上册数学圆的面积-知识点总结

六年级上册数学圆的面积-知识点总结

圆的面积知识要点1、圆的面积:圆所占平面的大小叫做圆的面积。

用字母S(大写)表示。

上图中阴影部分就是该圆的面积。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

3、圆面积公式圆的面积公式:S圆 = πr2;变形可得到: r 2 = S ÷π1 2圆的面积公式: S =πr2 ÷2或S =12πr21 4圆的面积公式: S =πr2 ÷4 或S =14πr2注:已经圆的面积可以用变形公式求出圆的半径。

4、环形的面积:(环形的面积等于外圆面积与内圆面积的差)一个环形,外圆的半径是R ,内圆的半径是r 。

(R =r +环的宽度.)环形的面积公式:S 环 = πR2-πr2或S 环= π(R2-r2)。

如:上图中大圆的半径R=6cm ,小圆半径r=2cm ,阴影部分(圆环)的面积得:S 环= π(62-22)cm 2=32π(cm 2)注意:求环形的面积,一定要先想法分别求出外圆的半径(R )和内圆的半径(r ),再代入公式计算。

一步一步的来,这样不容易错误。

注意用公式S 环= π(R2-r2)计算时,要先算出2个平方数,再相减。

切忌相减后再平方。

5、扇形的面积计算公式:3602rn S 扇(n 表示扇形圆心角的度数)注:扇形公式其实很好理解的,S=πr2是圆的面积,圆一周是360°,旋转一度得到的面积是:S=πr23601,如果是n 度,自然是S 扇= πr 2×360n 。

注意n 是圆心角,如上图。

6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小的倍数是这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

7、两个圆:半径比 = 直径比 = 周长比;而面积比等于这比的平方。

如:两个圆的半径比即:r1:r2=2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9。

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

第14讲圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。

直径等于半径的两倍。

②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB.(2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如 ACB .小于半圆的弧叫做劣弧,如AB 。

(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。

③弦心距:(1)圆心到弦的距离叫做弦心距。

(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。

四者有一个相等,则其他三个都相等。

圆心到弦的垂线段的长度称为这条弦的弦心距。

④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。

⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

如图一,半径为r1与半径为r2的⊙O叫做同心圆。

(图一)(2)等圆:圆心不同,半径相等的两个圆叫做等圆。

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。

3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90° ,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

知识点全面梳理--04圆和扇形--师

知识点全面梳理--04圆和扇形--师

第四章圆和扇形本章知识结构第一节圆的周长和弧长4.1圆的周长圆的周长除以直径的商总是一个固定的数,这个固定数叫圆周率,用π来表示。

π是一个无限不循环小数:π=3.14159265……到定点的距离等于定长的点的集合,是以定点为圆心、定长为半径的圆,圆的周长是指符合上述条件的动点,从起点又返回到起点的路程的长度。

如果用C表示圆周的长度,d表示这个圆的直径,r表示它的半径。

圆的周长为:C=2πr =πd4.2弧长设圆的半径为r,扇形的圆心角是n度,扇形的弧长用L表示。

弧是圆上任意两点间的距离,圆上A、B两点之间的部分就是弧,记作⋂AB ,读作弧AB。

1802360110r r ππ=⨯=圆心角所对的弧长; 18023600rn r n L n ππ=⨯=圆心角所对的弧长。

第二节 圆和扇形的面积4.3圆的面积2r S π=圆的面积4.4扇形的面积由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。

设组成扇形的半径为r ,圆心角为0n ,弧长为l ,扇形的面积:S =360n ×πr 2=21Lr本章最重点内容本章是圆与扇形,掌握圆的周长的计算公式和弧长的概念,会计算圆的面积及扇形的面积,是我们学习的重点。

1.圆的周长公式:r d C ⋅=⋅=ππ2. 2.弧长公式:180360rdl ⋅=⋅=ππ.3.圆的面积公式:2r S ⋅=π 4.扇形面积公式:lr r n S 213602=⋅=π扇. 5.特别地:360n C l =,360n S S =扇,即:SSC l 扇=. 本章错题集【结合个人平时作业具体情况总结、整理、添加】1.如图,一个半径为1厘米的小圆盘沿着一个半径为4厘米的大圆盘外侧做无滑动的滚动。

当小圆盘的中心围绕大圆盘中心转动90度后,小圆盘运动过程中扫过的面积是多少平方厘米?(3π=)【答案】:小圆盘运动过程中扫过的面积由两部分组成,即两半圆加四分之一环形。

2221(64)418S πππ=⨯+⨯-⨯÷=平方厘米。

北师大版六年级上册数学期末复习(全册知识点汇总)

北师大版六年级上册数学期末复习(全册知识点汇总)

北师大版六年级上册数学全册知识点汇编第一单元圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

圆内最长的线段是直径6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×2车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

9.圆的周长:围成圆的曲线的长度叫做圆的周长。

或者,圆一周的长度就是圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C圆=πd =2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13、圆所占平面的大小叫圆的面积。

把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。

如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr2 14.圆的面积公式:S=πr²或者S=π(d÷2)² 或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

九年级上册数学《圆》弧长和扇形面积 知识点整理

九年级上册数学《圆》弧长和扇形面积 知识点整理

弧长和扇形面积有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网 整理一、本节学习指导本节中我们巩固几个公式,都比较复杂,我们需要用心记忆。

对于弦切角定理,切割线定理一定要先理解,总结中都有配图说明,希望能借此帮助大家理解。

二、知识要点1、弧长公式n °的圆心角所对的弧长l 的计算公式为180rn l π=2、扇形面积公式lR R n S 213602==π扇,其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。

3、圆锥的侧面积rl r l S ππ=∙=221,其中l 是圆锥的母线长,r 是圆锥的地面半径。

4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。

弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。

如下图,切线AB 和弦AC 的夹角∠2等于弧AC 所对的圆周角,即:∠BAC=∠ADC5、切割线定理PA 为⊙O 切线,PBC 为⊙O 割线, 则PC PB PA ∙=2(2004•宿迁)如图,OA 和OB 是⊙O 的半径,并且OA⊥OB,P 是OA 上任一点,BP 的延长线交⊙O 于点Q ,过点Q 的⊙O 的切线交OA 延长线于点R .(Ⅰ)求证:RP=RQ ; (Ⅱ)若OP=PA=1,试求PQ 的长解:(1)证明:连接OQ∵RQ 是⊙O 的切线,∴∠OQB+∠BQR=90°∵OA ⊥OB , ∴∠OPB+∠B=90°又∵OB=OQ , ∴∠OQB=∠B∴∠PQR=∠BPO=∠RPQ ∴RP=RQ(2)作直径AC ∵OP=PA=1 ∴PC=3 由勾股定理,得BP=22125+=由相交弦定理,得PQ•PB=PA•PC 即PQ×5=1×3∴PQ=355例:三、经验之谈:上面这个例题是对弦切角的运用,也考察了同学们的综合解题能力。

这种题涉及的知识点很广,因此需要我们大量的经验,平时一定要多练习。

圆的知识点总结(史上最全的)

圆的知识点总结(史上最全的)

圆的总结集合:圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线点与圆的位置关系:点在圆内d<r 点C 在圆内Ad点在圆上d=r 点B 在圆上r点在此圆外d>r 点A 在圆外OB直线与圆的位置关系:d直线与圆相离d>r 无交点C直线与圆相切d=r 有一个交点d=r 直线与圆相交d<r 有两个交点r drd圆与圆的位置关系:外离(图1)无交点d>R+r 外切(图2)有一个交点d=R+r dRr drR相交(图3)有两个交点R-r<d<R+r内切(图4)有一个交点d=R-r内含(图5)无交点d<R-r图 4图 5d ddr rR RR r 图 1 图 2图 3垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB 是直径②AB ⊥CD ③CE=DE ④⑤BC BD AC AD推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CDAC DO OA BCED圆心角定理E B圆心角定理:同圆或等圆中,相等的圆心角所对F O 的弦相等,所对的弧相等,弦心距相等D 此定理也称 1 推3 定理,即上述四个结论中,只要知道其中的 1 个相等,则可以推出其它的 3 个AC结论也即:①∠AOB= ∠DOE ②AB=DEB③OC=OF ④BA ED C圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半B O即:∵∠AOB 和∠ACB 是所对的圆心角和圆周角∴∠AOB=2 ∠ACBA圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧D C 即:在⊙O 中,∵∠C、∠D 都是所对的圆周角∴∠C=∠DOBA 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径或∵∠C=90°C ∴∠C=90°∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角 C B AO形即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90°B AO注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线C 等于斜边的一半的逆定理。

九年上第二十四章圆全章知识点总结

九年上第二十四章圆全章知识点总结

圆圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

其固定的端点O叫做圆心,线段OA叫做半径。

以点O为圆心的圆,记作⊙O,读作“圆O”。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧,半圆既不是优弧,也不是劣弧,它是区分优弧和劣弧的一个界限。

能够重合的两个圆叫做等圆。

半径相等的两个圆是等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫做等弧。

垂直于弦的直径:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

圆是中心对称图形,圆心就是它的对称中心。

圆即是轴对称图形,又是中心对称图形。

圆心角:顶点在圆心的角叫做圆心角。

在同圆或等圆中,弧、弦、圆心角的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等。

圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

同弧或等弧所对的圆周角相等。

半圆(或直径)所对的圆周角是直角,O 90的圆周角所对的弦是直径。

外接圆:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

圆内接四边形的每一个角都是圆周角。

圆内接四边形的对角互补。

点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离d OP =,则有: 点P 在圆外r d >⇔点P 在圆上r d =⇔点P 在圆内r d <⇔不在同一条直线上的三个点确定一个圆。

圆与二次函数知识点

圆与二次函数知识点

圆和二次函数知识点 《圆》一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;A四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:图4图5①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

圆的周长以及面积计算知识点汇总

圆的周长以及面积计算知识点汇总

设数计算1、一个圆的直径扩大2倍,它的半径扩大()倍,它的周长扩大()倍。

面积扩大()2、两个圆的半径的比是2:3,它们直径的比是(),周长的比是()。

面积比是()3、圆的半径增加3倍,周长增加()倍,面积增加()倍。

4、圆的半径增加20%,周长增加()%,面积增加()%运用:1、小圆半径2厘米,大圆半径6厘米,小圆半径是大圆半径的(),小圆直径是大圆直径的(),小圆周长是大圆周长的(),小圆面积是大圆面积的(),2、圆的半径增加2厘米,直径就增加()厘米,周长增加()厘米。

3、大圆半径是小圆半径的3倍,大圆的面积是84.78平方厘米,则小圆的面积是()4、大圆半径是小圆半径的2倍,比小圆面积多12平方厘米,小圆面积是()关于半圆的计算(公式C半圆=∏r+2r=5.14r)1、在一张长6厘米,宽4厘米的长方形纸片上画一个最大的圆,这个圆的半径是()厘米;如果画一个最大的半圆,这个圆的半径是()厘米。

2、在长6分米,宽4分米的长方形中画一个最大的圆,圆的周长多少分米?3、在长6分米,宽4分米的长方形中画一个最大的半圆,半圆的周长多少分米?4、在长10分米,宽8分米的长方形中画一个最大的圆,圆的周长和面积各是多少?5、在长10分米,宽8分米的长方形中画一个最大的半圆,半圆的周长和面积各是多少?6、一个半圆形的花坛,它的周长是56.52米,求它的面积是多少?7、一个半圆的周长是10.28,它的直径是多少?8、一个养鸡场,一面靠墙,里一面用篱笆围成一个半圆,半圆的直径是6米,这个篱笆有多长?关于圆环的计算(算准半径,直径)1、一个池塘的周长是251.2米。

池塘周围是一条5米宽的水泥路,在路的外侧围着栏杆,水泥路的面积是多少?栏杆长多少米?2、在圆形喷水池的周长是62.8米,在离水池边2米的地方围着栏杆,栏杆长多少米?其他题1、一个直角三角形的面积是12平方厘米,一条直角边长3厘米,以另一条直角边为直径所画圆的面积是多少?2、一种压路机前轮直径1.5米,宽2米,如果每分钟滚5圈,他每分钟前进多少米,每分钟压路多少平方米?3、把一个圆平均分成1000个完全相同的小扇形,拼成一个近似的长方形,这个长方形的周长比原来多10厘米,这个长方形的面积是多少平方厘米?,4、在半径是3厘米的圆中画一个最大的正方形,这个正方形的面积是多少?5、一只大钟的分针长80厘米,它的针尖一昼夜能走多少米?6、挂钟分针的针尖在41小时内,正好走了25.12厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A图4图5圆的总结集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系:点在圆内 d<r 点C 在圆内点在圆上 d=r 点B 在圆上点在此圆外 d>r 点A 在圆外 直线与圆的位置关系:直线与圆相离 d>r 无交点直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 有两个交点圆与圆的位置关系:外离(图1) 无交点 d>R+r 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r<d<R+r 内切(图4) 有一个交点 d=R-r内含(图5) 无交点 d<R-r垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤BC BD =AC AD =DBBABAO推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD圆心角定理圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在△ABC 中,∵OC=OA=OB ∴△ABC 是直角三角形或∠C=90°注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

弦切角定理:弦切角等于所夹弧所对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

即:∵MN 是切线,AB 是弦 ∴∠BAM=∠BCA圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中,∵四边形ABCD 是内接四边形∴∠C+∠BAD=180° B+∠D=180° ∠DAE=∠CPD BA切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN ⊥OA 且MN 过半径OA 外端 ∴MN 是⊙O 的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点推论2:过切点垂直于切线的直线必过圆心 以上三个定理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件∵MN 是切线 ∴MN ⊥OA切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线∴PA=PBPO 平分∠BPA圆内相交弦定理及其推论: (1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等即:在⊙O 中,∵弦AB 、CD 相交于点P ∴PA ·PB=PC ·PA(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB ⊥CD∴ (3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 即:在⊙O 中,∵PA 是切线,PB 是割线∴(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)即:在⊙O 中,∵PB 、PE 是割线 ∴ 圆公共弦定理:连心线垂直平分公共弦即:∵⊙O1、⊙O2相交于A 、B 两点 ∴O1O2垂直平分AB 两圆公切线长的计算公式:(1)公切线长:在Rt △O1O2C 中,(2)外公切线长:CO2是半径之差;内公切线长:CO2是半径之和22CE DE EA EB==2PA PC PB =PC PB PD PE =221AB CO ==lAO圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算在Rt△OAE中进行,OE :AE:OA=(3)正六边形同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA=弧长、扇形面积公式(1)弧长公式:(2)扇形面积公式:总结归纳:《圆》的知识考点圆与三角形、四边形一样都是研究相关图形中的线、角、周长、面积等知识。

包括性质定理....与判.定定理...及公式..。

一、圆的有关概念1、圆。

⎩⎨⎧••••••••••••••••••••••••••••••••••••••••静(集合)动→封闭曲线围成的图形2、弦、直径、切线。

→直线3、弧、半圆。

→曲线4、圆心角、圆周角。

5、三角形的外接圆、外心。

→用到:线段的垂直平分线及性质6、三角形的内切圆、内心。

→用到:角的平分线及性质二、圆的有关性质(涉及线段相等、角相等,求线、角)1、圆的对称性。

→⎩⎨⎧中心对称轴对称2、垂径定理及其推论。

3、弧、弦、圆心角之间的关系定理1::21:1:1::2180n Rlπ=213602n RS lRπ==4、圆周角定理及推论。

→同圆、等圆,同弧、等弧,圆周角5、切线的性质定理。

6、切线长定理。

三、判定定理切线的判定→两种思路:①连半径,证垂直;②作垂直,证半径 四、点、直线、圆与圆的位置关系 123五、正多边形和圆 1、有关概念正多边形的中心、半径、中心角及其度数、边心距2、方法思路:构造等腰..(等边..)三角形、直角..三角形,在三角形中求线、角、面积。

六、圆的有关线的长和面积。

1、圆的周长、弧长 C=2πr, l=180rn π 2、圆的面积、扇形面积、圆锥的侧面积和全面积S 圆=πr 2,S 扇形=3602r n π ,或 S 扇形=lr 21 (即S 扇形=3602r n π=lr 21)S 圆锥= 母线底面圆l r π 3、求面积的方法直接法→由面积公式直接得到间接法→即:割补法(和差法)→进行等量代换与 圆 有 关 的 计 算一、周长:设圆的周长为C ,半径为r ,扇形的弧长为l ,扇形的圆心角为n . ① 圆的周长:C =2πR ;②扇形的弧长:180n rl π=。

例题1.(05崇文练习一)某小区建有如图所示的绿地,图中4个半圆,邻近的两个半圆相切。

两位老人同时出发,以相同的速度由A 处到B 处散步,甲老人沿1122ADA A EA A FB 、、的线路行走,乙老人沿ACB 的线路行走,则下列结论正确的是( )(A )甲老人先到达B 处 (B )乙老人先到达B 处(C )甲、乙两老人同时到达B 处(D )无法确定例题2.如图,△ABC 是正三角形,曲线CDEF…叫做正三角形的“渐开线”,其中CD 、DE 、EF …的圆心依次按A 、B 、C 循环,将它们依次平滑相连接。

如果AB=1,试求曲线CDEF 的长。

例题3.(06芜湖)已知如图,线段AB ∥CD ,∠CBE=600,且AB=60cm,BC=40cm,CD=40cm ,⊙O 的半径为10cm,从A 到D 的表面很粗糙,求⊙O 从A 滚动到D ,圆心O 所经过的距离。

例题4.如图,一个等边三角形的边长和与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边作无滑动旋转直至回到原出发位置时,则这个圆共转了( )圈。

A 4 B 3 C 5 D 3.56.例题5.(08大兴二模)如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B (直线与圆柱的横截面的切点)与手握板子处的点C 间的距离BC 的长为L m ,当手握板子处的点C 随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了_________m .例题6.(08房山二模)如图,∠ACB =60,半径为2的⊙0切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为.二、面积:设圆的面积为S ,半径为r,扇形的面积为S 扇形,弧长为l . ①圆的面积:2S r π= ②扇形的面积:213602n r S lr π==扇形③弓形面积:S S S =±弓形扇形例题1.(05丰台练习二)如图,△ABC 内接于⊙O ,BD 是⊙O 的直径,如果∠A =120°,CD =2,则扇形OBAC 的面积是____________。

例题2.(江西省)如图,⊙A 、⊙B 、⊙C 两不相交,且半径半径都是0.5cm.图中的三个扇形(即三个阴影部分)的面积之和为( ) A12πcm 2 B 8πcm 2 C6πcm 2 D 4πcm 2例题3.(08大兴)北京市一居民小区为了迎接2008年奥运会,计划将小区内的一块平行四边形ABCD 场地进行绿化,如图阴影部分为绿化地,以A 、B 、C 、D 为圆心且半径均为3m 的四个扇形的半径等于图中⊙O 的直径,已测得6AB m =,则绿化地的面积为( )2mA.18π B. 36π C.454π D. 92π 例题4.如图,⊙O 的半径为20,B 、C 为半圆的两个三等分点,A 为半圆的直径的一个端点,求阴影部分的面积。

例题5.(08房山)如图1是一种边长为60cm 的正方形地砖图案,其图案设计是:①三等分AD (AB=BC=CD )②以点A 为圆心,以AB 长为半径画弧,交AD 于B 、交AG 于E ;③再分别以B 、E 为圆心,AB 长为半径画弧,交AD 于C 、交AG 于F 两弧交于H ;④用同样的方法作出右上角的三段弧.图2是用图1所示的四块地砖铺在一起拼成的大地砖,则图2中的阴影部分的面积是_______cm 2(结果保留π). 例题6.(08西城)如图,在Rt ABC∆中,90BAC ︒∠=,AB=AC=2,若以AB 为直径的圆交BC 于点D,则阴影部分的面积是 .例题7. (08朝阳)已知:如图,三个半径均为1 m 的铁管叠放在一起,两两相外切,切点分别为C 、D 、E ,直线MN (地面)分别与⊙O 2、⊙O 3相切于点A 、B .(1)求图中阴影部分的面积;(2)请你直接写出图中最上面的铁管(⊙O 1)的最低点P 到地面MN 的距离是______________m .例题8.(08海淀)如图,一种底面直径为8厘米,高15厘米的茶叶罐,现要设计一种可以放三罐的包装盒,请你估算包装用的材料为多少(边缝忽略不计)。

相关文档
最新文档