数学建模 购房问题

合集下载

房屋贷款中的数学建模问题

房屋贷款中的数学建模问题

房屋贷款中的数学建模问题随着房屋价格的不断上涨,越来越多的人为了能够拥有一套自己的房子,选择了贷款这个方法。

在贷款的过程中,相信大家都会发现,有很多的数据需要我们去计算,比如贷款额度、还款期限、月供等等。

这些都涉及到数学建模,今天,我们就来聊一聊房屋贷款中的数学建模问题。

一、贷款额度计算在贷款的过程中,首先需要算出来的就是贷款额度。

贷款额度与房屋价格、首付比例、利率、还款期限等多个因素有关。

如果我们已经知道了房屋价格、首付比例和还款期限,那么我们就可以通过如下的公式来计算贷款额度:贷款额度 = 房屋价格 × (1 - 首付比例)举个例子,如果房屋价格是100万,首付比例是30%,还款期限是25年,利率是4.9%。

那么贷款额度就可以这样计算:贷款额度 = 100万 × (1 - 30%) = 70万二、等额本息还款计算在贷款的过程中,最常见的还款方式就是等额本息还款。

所谓等额本息还款,就是指每月还款金额相同,还款期限相同,并且每月还款分为两部分,一部分是本金,一部分是利息。

那么我们该如何计算每月需要还多少钱呢?首先,我们需要通过利率、还款期限和贷款额度来计算出每月需要还的利息。

而每月需要还的利息,可以通过如下的公式来计算:月利率 = 年利率 ÷ 12每月利息 = 贷款余额 ×月利率贷款余额 = 贷款额度 ÷还款期限 × (期限 - 已还月份)接着,我们就可以通过如下的公式来计算出每月需要还的本金:每月本金 = 贷款额度 ÷还款期限最后,我们就可以通过如下的公式来计算出每月需要还的总额:每月还款额 = 每月本金 + 每月利息如果你觉得这样计算太麻烦了,也可以通过相关的贷款计算器来计算出每月需要还多少钱。

三、提前还款计算在贷款过程中,如果有一天我们有一笔钱,想要提前还清贷款,那么我们该如何计算提前还款所需要的费用呢?这个问题其实也可以通过数学建模来解决。

数学建模论文 最佳购房方案

数学建模论文 最佳购房方案

题目:最佳购房方案组号:姓名:学校:摘要:本文是关于购房优化设计问题,即在以下给出的三种购房方式中,确定最佳的购房方案:(1)首付15万元,其余可办银行按揭。

(2)现房价不稳,同时目前股市看涨,推迟买房,先把购房的15万元去买股票,等股票赚了钱再去买房子。

(3)现在某银行又一种理财产品,除有2.1%保息之外,还有分红。

若运气好,又10%以上的利率。

根据题意,建立了三个数学模型。

模型一:利用银行按揭的相关知识建立银行按揭的数学模型计算出月供金额和供房期限模型二:根据股票相关的知识,以及股市行情走势和收集的相关数据,利用Markowitz模型及二次规划建立一套数学方法,来解决如何通过多元化的组合降低组合资产中的风险问题,并用证券价格的评估模型的固定增长模型计算出预期股利的现在价。

模型三:根据某银行的实际情况,及收集到的相关数据,建立银行理财分红模型。

由于模型二的方法风险较大但有较高的收益作为补偿,而模型一还款期限太长并且没有收益,模型三收益太少且延迟了买房时间,所以满足题目要求的最终方案是模型二。

最后,对设计规范的合理性进行了充分和必要的论证。

关键词:按揭Markowitz模型股利银行利率预期股利的现在价分红风险系数问题分析小李夫妻俩都有一份固定的工作,每个月都有6400元的工资收入,现今租用别人的房子,房租为1000/月,但需要买一套属于自己的住房,面积120平米,价格3600/平米。

现有三种方案可以使小李买到属于自己的住房:方案一、首付15万元,其余可办银行按揭。

对于此方案,小李只要支付首付款,则可立即入住,就不需要再交房租,不过现在又存在一个问题,到底是使用等额本息还款法(即:等额法)还是等额本金还款法(即:递减还款法),鉴于这两种方法还款,由于等额本息还款法(即:等额法)的优点在于借款人可以准确掌握每月的还款额,有计划地安排家庭的收支。

比较方便、易记。

缺点是利息支出总额相对较高,适合收入稳定,预期收入变化不大,购买住房用于自住的客户;而等额本金还款法(即:递减还款法)的优点在于利息支出相对较少,缺点是每月还款额逐步递减,前期还款压力较大。

数学建模选房问题

数学建模选房问题
等级可近似用位置和楼层两个主要的因素来表示。 5.2.1.1 构造判断矩阵
根据 Saaty 的层次分析法本文采取对因子进行两两比较建立成对比较矩阵 的办法。准则层 2 各个因素对于准则层 1 中每一个位置等级的权重和每一个楼层 等级的权重,即每次取准则层 2 两个因子 xi 和 x j ,以 Bij 表示 xi 和 x j 对 Z 的影响
2
2
⎟ ⎟
⎜1/ 7 1/ 5 3 1/ 2 1 1 ⎟
⎜⎜⎝1/ 6 1/ 5 3 1/ 2 1
1
⎟⎟ ⎠
5.1.1.2 一致性检验
我们知道,若有三个物体甲、乙、丙,甲的重量是乙的 2 倍,而乙的重量又
是丙的 3 倍,则甲的重量必是丙的 2×3=6 倍. 根据这个原理,判断矩阵还应满足:
aij = aik akj , ∀i, j, k = 1, 2,⋯, n
5.1.2 模型一的求解
对于问题 1 利用公式(1)和(3),一致性检验数据如表 5 示。
表5
判断矩阵 n λmax
CI
RI
CR
A0
6 6.4714 0.0943 1.24 0.0760
可见,判断矩阵的一致性比率均有 CR<0.10.即均可通过一致性检验。
各个因素的重要因子分别如表 6 示:
表6
重要 因子
(1)
满足(1)的判断矩阵称为一致矩阵. 但在构造判断矩阵时,要做 Cn2 = n(n −1) / 2 次 成对比较, 当 n 较大时,要做到完全一致是十分困难的.另外,在成对比较时,我 们采用了 1~9 的标度,就意味着接受一定程度的误差.因此,不应要求判断矩阵具 有严格的一致性,而是允许判断矩阵在一定程度上非一致. 于是,就要考虑如何 检验判断矩阵是否严重地非一致, 以便确定是否可以接受它.

住房贷款问题探究(2)———数学建模

住房贷款问题探究(2)———数学建模

6.3 问题(3)的解答:我们通过查阅有关资料了解目前长沙的物价水平[1],得出月收入3500元左右家庭的月开支具体情况如下:单位:元表1在目前收入及月开支波动性不大的情况下,之前我们已约定:E=月总收入—月消费总金额—每月还贷金额,结合表1及问题(2)解得的每月还贷金额(A)值,我们求得E的范围约为:[-300,100].由E的范围可知,如果买房,他们的经济上不能维持正常的运行。

因此,目前的经济情况他们不能考虑买房。

6.4问题(4)的解决1.由问题分析,我们将选出一个总利息较小,而且月还贷额又在客户还贷能力以内的借贷方式,如下表一中,我们将在其中寻找一种最优还贷时限.表2 [2]我们将问题(1)中得到的公式推广为.A i =P(1+ri)Mri/ [(1+ri)M-1] (1)还贷总利息公式为Q i =MAi-P (2)将表2中的数据带入(1)、(2)式中,接下来将得到的一系列Ai植与客户还贷能力范围作比较,将一系列Qi作比较。

最终我们得到总利息较小,且还贷额又在客户还贷能力以内的还贷时限为8年,此时的还贷总额为191135元。

2.但此时的总利息依然很高,且客户的月总收入每年会有8%的增长,还贷能力增强。

我们接下来将考虑是否可以采用提前还贷[3]。

(附件3)(1)除开提前还贷总额,剩余的等额还贷总额的计算公式:X=A·T1+A·T2+A·T3+……………+A·TR(3)(2)随着收入的增长,除去日常支出和正常还贷外,可用提前还贷总额:Y=[G(1+8%)-J-A]T2+[G(1+8%)2-J-A]T3+……+[G(1+8%)R-1-J-A]TR-1(4)(其中T1、T2、、T3……TR-1=12个月份.R=M-Y/A)如果实施提前还贷,则还贷总额可表示为:Z=X+Y=AT1+ATR+G(1+8%)T2[1-(1+8%)R-1]/[1-(1+8%)]-A(T2+T3+……TR-1)(5)由于TR并不一定为12个月,我将其估计如表3:表3(3)将表2中的数据分别代入(5)中,即得Z1、Z2Z3Z4估计值。

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题

住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。

本文依照题中所给出的数据,对3个问题分别建立模型并求解。

针对问题1,首先利用Excel建立图表,绘制出历年房价走势图。

然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。

同时,求出确定性系数R2,依据R2是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。

计算得出的指数型及二阶多项式型拟合方程:x,(i) =678.8le0.1281i、x2(i) =12.59i2 50.274i 716.38,由此预测出2010 年房价分别为4080元/平米、3888元/平米。

为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。

通过比较实际值与预测值的平均偏差值ME的大小,选择出合适的o预测出2010年的房价为3800元/平米。

最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量x1、x2、X3的原始数据,以实际房价P(i)作为因变量,用Matlab软件拟合出多元线性方程:P f1(i) =—0.0202 —0.1389 刘⑴ 1.1319 X2(i) 0.0084 X3(i)。

代入相关数据,求出历年的最终房价预测值为3866元/平米。

针对问题2,通过Excel绘制出历年平均房价与人均GDP的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数R2o R2的值分别为:0.8673; 0.9929 ; 0.9982; 0.9986。

由此判断,因2阶多项式型拟合方程的R2不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:A 2P(i) =(_7E _06) [G(i)] 0.3236 G(i) -177.06 为平均房价与人均GDP 的关系方程。

最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP的关系。

大学生数学建模_房价预测

大学生数学建模_房价预测

西安邮电学院第九届大学生数学建模竞赛参赛作品参赛队编号: 016赛题类型代码: A题2 房价问题摘 要随着我国房地产市场的不断升温,居民买房难愈来愈严重。

定一个合适的房价既照顾到居民的需求也满足方差开发商的盈利需要是十分必要的,要达到这些目的都要用到数学模型来进行量化。

在本文中,我们经研究解决了城市房价模型,找出了影响房价的主要因素,建立预测下一阶段的房产均价的一个模型,同时也对政策对调控房价所起的作用作了详细的分析说明。

在解决房价模型问题时,我们用了多元线性回规模型和蛛网模型同时对相关变量进行分析和处理,最终找出了影响房价的主要因素为生产成本和供需关系。

并对房价的形成、演化机理和房地产投机进行了深入细致的分析。

模型一,我们通过比较西安房价近11年来的变化及城镇居民收入变化情况,找到买房难的根结。

模型二,在房价预测方面,我们选用多元线性回归,蛛网模型同时对相关变量进行分析和处理,最终找出影响房价的主要因素为生产成本和供需关系,求出房价预测的计算表达式。

模型三,我们取定一个时间段内某几个房价新政,结合新政出台时间前后某地房价的变化情况分析了房价新政对房价的调控作用。

我们选取房价新政的标准是根据政策内容对相关经济指标有直接作用效果。

最终我们发现,新政出台后,虽然房价依然是居高不下,但房价上涨速率得到了一定的控制,变化渐缓。

关键字:楼市 预测 蛛网模型 线性回归一、问题重述住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。

2008年受国际金融危机的影响,部分购房需求受到抑制,2009年在国家税收、土地等调控政策作用下,一度受到抑制的需求得到释放,适度宽松的货币政策使信贷规模加大,为房地产开发和商品房购买提供了比较充裕的资金,房地产市场供求大增,带动了整体回升。

但有的城市房价过高,上涨过快,加大了居民通过市场解决住房问题的难度,另一方面,部分投机者也通过各种融资渠道买入房屋囤积,期望获得高额利润,也是导致房价居高不下的原因之一。

购房贷款数学建模 兰州交通大学

购房贷款数学建模  兰州交通大学

数学建模提出问题:某人购房,需要贷款,等额本息还款法,等额本金还款法,某人贷款40万,还款期为10年,贷款利率为6%。

1、月供金额2、总的支付利息比较两种贷款法,给出你的方案。

一、分析问题解决此问题需要建立数学模型,找出偿还贷款的金额最少时的最优解,这是一个优化问题,这就是说在不同的约束条件下,只要建模合理,答案可以是多种。

建立优化问题的模型最主要的是用数学符号和式子表述决策变量、构造目标函数和确定约束条件。

对于等额本息还款方式和等额本金还款方式,分别建立了与之对应的模型,然后根据题中所给的数据,分别求解出两种方式的还款额,并得到最优解,最后根据自己的实际情况合理选择还款方式。

二、模型假设1、假设贷款人在还款期间有能力支付银行要求的还款费用。

2、还款期间还款人没有任何意外事件。

3、贷款利率在还清前一直为6%。

三、参数说明设贷款总额为A,银行年利率为a,月利率为β,总期数为m(个月),月还款额为X,总支付利息为Y,还款总额为B。

四、模型的建立与求解1、等额本息还款模型的建立与求解。

等额本息还款,也称定期付息,即借款人每月按相等的金额偿还贷款本息,其中每月贷款利息按月初剩余贷款本金计算并逐月结清。

把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中。

作为还款人,每个月还给银行固定金额,但每月还款额中的本金比重逐月递增、利息比重逐月递减。

假设这批贷款是一次性到帐的,为使模型便于运算,也假设这批贷款是某一年的第一天就到帐的,利息也是从那一天开始产生。

等额本息还款公式的推导如下,个个月所欠银行的贷款为:第一个月:A(1+β)-X第二个月:[A(1+β)-X](1+β)-X=A(1+β)^2 -X[1+(1+β)]第三个月:{[A(1+β)-X](1+β)-X}(1+β)-X= {[A(1+β)-X](1+β)-X}(1+β)-X由此可得第n月后的所欠银行数额为:A(1+β)^n-X[1+(1+β)+(1+β)^2+…+(1+β)^(n-1)] =A(1+β)^n-X[(1+β)^n-1]/β由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有:A(1+β)^m-X[(1+β)^m-1]/β = 0 由此求得:X = Aβ(1+β)^m/[(1+β)^m-1]带入数值得:X=4417总支付利息为:总利息=月还款额×贷款月数-本金,带入数值得:Y=4417×120-400000=130040还款总额为:B=400000+130040=530040元讨论:如果按等额本息还款法,还款人的月供金额为4417元人民币,这种还款方法所要求金额较大,对于一般收入者来说可无力承受,按一般城市的消费来说,还款人的月收入应在6000元以上就可承受等额本息还款法。

数学建模题

数学建模题

借贷买房问题(数学建模)曾有一家报纸刊登一则广告称:对于大多数工薪阶层的人士来说,想买房,简直是天方夜谭。

现在有这样一栋住宅楼,每套只需自备款七万元,其余由公司贷款,可分期付款,每月只需付八百元,十年还清,那么,这对您还有什么问题呢?现在的问题是:这房子究竟值多少钱,即如果一次付款要付多少钱?如果没有能力一次付款,实际上,相当于借了多少钱?为什么要每月付八百元?试根据广告所提供的信息和银行的贷款利率,对上述问题进行研究,供购房者参考。

1.假设房子的总价为M元,买者需借A0元,月利率为R,借期为n个月,每月付X元,到第n个月欠款An元,则第n+1个月(含利息)欠款。

An=(1+R)An-x, n=0,1,2,.....于是可得n n-1 n-2An=A0(1+R) –x[(1+R) +(1+R) +....+(1+R)+1]n=A0(1+R) -X[(1+R) -1/R], n=0,1,2,.....即得AN,A0,X ,R,N之间的关系。

2.就广告而言,已知N=10年=120个月,X=800元,A0=(M-70000)元,则要求10年还清,即A120=0,从而得120 1200=A0(1+R) -800/R[(1+R) -1],于是120 120A0=800[(1+R) -1]/R(1+R)不妨设月利率R=0.01,则由上式可算出A0=55760元,于是房子的总价为M=70000+55760=125760元,由此可知,一次性付款额不应大于M,否则,就应该自己去贷款,不要借公司的钱了。

3.某高校青年教师张某为买房向公司借贷A0=60000元,月利率R=0.01,若要每月还一次钱,需25年=300月还清,张老师希望知道平均每月还多少钱?根据前面的讨论,要25年=300个月还清,即要300 300A300=A0(1+R) -X(1+R) -1/R=0可以解得X=632元,即平均每月还632元,25年可还清。

大学生数学建模_房价预测

大学生数学建模_房价预测

大学生数学建模_房价预测
一、问题的提出房地产问题一直是人们的热议话题,尤其是近几年更是成为人们关注的问题。

不错,房地产作为一个行业,不仅关系国家经济命脉,它还是影响民生问题的主要因素,所以搞好房产建设不仅是国家与房产商的任务,我们也应了解其中的一些运作原理来帮助我们更好的适应社会环境。

为此,对房产业的了解就显得颇为紧急,而房价问题一直是人们关注的首要问题,下面我们将用数学模型来解决房产中的以下实际问题,仔细分析影响房价的因素以及它们之间的关系。

问题一:通过分析找出影响房价的主要原因并且通过建立一个城市房价的数学模型对其进行细致的分析。

问题二:分析影响房价主要因素随时间的变化关系,并且预测其下一阶段的变化和走势。

问题三:选择某一地区(以西安为例),通过分析____年至____年房价变化与影响因素之间的关系,预测下一阶段该地区房价的走势。

问题四:通过分析结果,给出房产商和购房者的一些合理建议。

二、模型假设和符号说明假设假设
一、房地产产品具有一定的生产周期假设
二、房价的计算只考虑人均可支配收入和生产成本假设
三、理想房价是仅基于成本得到的房价,不考虑供求假设
四、成本的花费包括地价(地面地价)、建筑费用和各种税收假设
五、不考虑其他影响如(地理位置,环境等)符号说明:_1代表人均可支配收入,_2代表建造成本,y为房产均价,其中a和
三、模型建立与求解我们主要用到的是数学模型是用最小二乘法对影响房价的各个因素进行拟合,从而解除出性方程组,其中用到的主要数学软件是matla。

关于房价问题数学建模分析

关于房价问题数学建模分析

关于房价问题数学建模分析摘要:近几年,我国出台了一系列事关民生国情的利民政策,但房价的持续增高仍让很多人把买房当成了一种奢望。

本文根据题目要求,进行了合理假设,主要从影响房价的因素方面考虑,建立相应数学模型,根据数据分析了我国当前房价的合理性,预测房价未来走势,提出具体措施使房价回归合理,并进行定量分析。

关键词:房价升高数学模型正态分布模型一、问题重述房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。

我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,从国家领导人、地方政府官员,到开发商、专家学者、普通百姓通过各种媒体表达各种观点,但对于房价是否合理、未来房价的走势等关键问题,至今尚未形成统一的认识。

请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据,选取我国具有代表性的几类城市对房价的合理性及房价的未来走势等问题进行定量分析;根据分析结果,进一步探讨使得房价合理的具体措施。

二、问题分析考虑评判房价的合理性,我们首先想到与房价密切相关的各种因素,认为房屋的合理定价应该由房屋所在城市的经济发达程度、环境优美度、居民归属感等生活标准来反应,而这些项目又有很多是难以量化的指标,因此我们采用了城市居民年人均收入刻画生活标准。

房屋的价格应该满足本市居民的居住需要,于是这部分我们没有引入投资等市场因素。

三、数学模型的建立及求解(一)模型假设:引起房地产市场波动的因素有很多,居民收入、供求比例、空置率、货币政策、建设成本、国家政策和人口结构及变化趋势等众多因素。

我们从中提取重要因素对次要因素作出如下假设:1、城市消费状况用人均收入来代替。

2、忽略消费成本如交通费用、物业费用、停车费用等对住房价格的影响。

3、在同一地区房价为销售均价,没有街道区域差异。

4、根据经济发展状况分别对部分城市来概括全国城市的房屋均价,排除特殊情况。

(二)城市房价合理性模型建立及分析符号说明:Mes:单位面积商品房售价Sqr:当地人均住房居住面积Te:预期使用当年全年收入归还房贷所需年数Mr:购买商品房支付的总价Se:当地人均年收入Mr=Mes*Sqr模型建立 :若以当地人均年收入Se作为人口收入正态分布模型的x=0,人均年收入的n2倍定为x=n,则x~N(0,1),函数图象如图3-1(a)所示。

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题在当今社会,住房问题一直是人们关注的焦点,而住房的合理定价更是关系到广大民众的切身利益。

无论是购房者希望买到性价比高的房子,还是开发商想要制定出有竞争力又能盈利的价格策略,都离不开对住房合理定价的深入研究。

要探讨住房的合理定价,首先得明确影响住房价格的诸多因素。

地理位置毫无疑问是其中最为关键的一点。

位于市中心繁华地段、交通便利、周边配套设施完善(如学校、医院、商场等)的房子,价格往往较高。

比如,在一线城市的核心区域,由于土地资源稀缺,交通、商业、教育等资源高度集中,住房价格可能会达到令人咋舌的水平。

相反,地处偏远郊区,交通不便,周边设施匮乏的房子,价格则相对较低。

房屋的品质和建筑结构也对价格有着显著影响。

房屋的面积大小、户型设计是否合理、朝向采光如何、建筑质量高低等方面,都会在价格上有所体现。

一般来说,面积宽敞、户型方正通透、采光良好、建筑质量过硬的房子,价格会偏高。

而那些面积狭小、户型不合理、采光差、建筑存在质量问题的房子,价格自然会大打折扣。

市场供需关系也是决定住房价格的重要因素。

当市场上购房需求旺盛,而房屋供应相对不足时,价格往往会上涨。

反之,如果市场上房屋供应过剩,而购房需求疲软,价格则可能下跌。

例如,在一些经济发展迅速、人口流入量大的城市,由于对住房的需求持续增加,房价呈现上涨趋势。

而在一些经济发展缓慢、人口流出的地区,住房市场可能会出现供大于求的情况,房价也就难以维持高位。

政策法规对住房价格的影响也不容小觑。

政府出台的房地产调控政策,如限购、限贷、限售等,都会直接或间接地影响住房价格。

税收政策的调整,如房产税的征收,也会对住房的持有成本和交易成本产生影响,从而对房价起到调节作用。

在进行数学建模来确定住房的合理定价时,我们可以将上述因素量化为具体的变量和参数。

以地理位置为例,可以根据距离市中心的距离、周边配套设施的完善程度等因素赋予不同的分值,并将这些分值转化为相应的权重。

数学建模 购房问题

数学建模 购房问题

A题:购房贷款问题蒋萍(08(3)班 08211337)【摘要】随着人们生活水平的不断提高,越来越多的人正在购置房产用于居住或进行置业投资。

但是购房投资是一项金额较大的投资,要人们一次性支付比较困难。

但随着市场经济的发展,向银行贷款购房成了我们买房的主要方式。

我们知道,如果向银行贷款就需要直接面对提供担保、偿还借贷的问题,现实生活中人们选择贷款的期数、月还款额时,却往往因为缺乏这方面的知识,而带来一定的盲目性,给自己带来或多或少的经济损失。

所以在这个市场经济时代,面对不同的决策方案,正确的决策意味着经济资源的最优配置。

本文就购房贷款问题,展开一系列的讨论。

针对购房问题进行全面分析,利用递推数列将实际问题数学化,建立了一个数学模型。

利用计算机程序算出结果,不仅求出了各种还款方式的还款金额和利息,而且还指出了等额还款是最优的还款方式。

【关键词】递推数列贷款额利息贷款期限还款额1.问题重述小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。

目前,银行的利率是0.6%/月。

他们采用等额还款的方式(即每月的还款额相同)偿还贷款。

1. 在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息?2. 在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清?3. 如果在第6年初,银行的贷款利`率由0.6%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少?4. 小王夫妇认为,随着他们工作经历的增长,家庭收入也会随着增长,因此,打算采用逐步增加还款额的还款方式来偿还贷款,具体的办法是:如果第1年的每月还款额是1000元的话,那么第2年的每月还款额就是1500元,第3年的每月还款额是2000元,第4年的每月还款额是2500元,以此类推。

在此情况下,如果贷款利率还是0.6%/月,那么,第1年的每月还款额是多少?以后各年的每月还款额又是多少?共计付了多少利息?5. 在4提出的还款方式下,在贷款满5年后,打算在第6年初一次还清全部余款,那么,一次的还款额是多少?如果第6年初,银行的贷款利率由0.6%/月调到0.8%/月,从第6年起,以后各年的每月还款额是多少?6. 综合上述问题,为小王夫妇(实际上是打算贷款购房的人)写一份报告,帮助他们分析各种方法的利弊,和偿还贷款的计划。

数学建模房地产问题

数学建模房地产问题

数学建模优秀论文二抑制房地产泡沫问题摘要:房价作为一种价格杠杆,在引导房地产可持续发展和抑制房地产泡沫将起到积极的作用。

科学合理地制定房价,对房地产的发展具有重要意义.本文先从产生房地产泡沫的原因谈起,找出影响房产的相关因素,然后从房地产开发商和消费者两个方面展开讨论,得出两个不同的模型。

模型一从开发商的角度建立模型,运用定性的分析方法,分析一个商场中只有一个房地产开发商,两个开个商和多个开发商的情况,运用博弈论的方法给出不同的模型,给出一个从特殊到一般的数学模型,并运用相关的经济理论进行解释;模型二从消费者的角度建立模型,运用有效需求价格,动态地确定消费者的房价的范围。

在此基础上,采用一元线性回归,通过推导出的模型和运用大量的数据对模型的进行验证和分析,得出房价与其中几个主要因素的关系:主要因素回归方程复相关系数RGDP与房价0.98135人口密度与房价0.55250人均可支配收入与房价0.93943影响当前房价的主要因素,如社会因素包括国民经济的发展水平、相关税费、居民的收入、政策导向、社区位置等,自然因素包括地价、建安成本和开发商利润等;并在分析影响房价的诸多因素之后,提出了八点政策性建议.综上所述,运用我们的模型得出相应的房价,然后利用我们相应的政策作为指导,我国的房地产不但会抑制房地产泡沫问题,而且我国的房地产市场将得到持续健康地发展。

一问题重述近几年来,我国各大城市的房价出现了普遍持续上涨、高居不下的情况。

房价的上涨使生活成本大幅增加,导致许多中低收入人群买房难。

因此如何有效地抑制房地产价格上扬,是一个备受关注的社会问题.现在请你就以下几个方面的问题进行讨论:1.建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致的分析;2.通过分析找出影响房价的主要因素;3.给出抑制房地产价格的政策建议;4.对你的建议可能产生的效果进行科学预测和评价.二合理假设1、在某个城市中有多个房地产开发商,不存在完全垄断的现象2、某一城市的商品房的定价是经过综合分析之后的出来的3、我们在求房价的过程中不考虑套利的情况4、所在的城市物价和其他情况相对比较稳定,全局内没有大起大落的现象三符号说明--———---——————-———-—-——其它消费品——-——-————--—---—-—————房地产——----—----—-—-———-————其它消费品的价格————-———--——-—-----—--—房地产的价格—--—-—---———-—-————消费函数——--—-—--—----—--———--——居民支配消费总额四问题分析所谓房地产泡沫就是指房地产商品的预期价格被大大的高估,从而导致各类投机资本的纷纷进入,通过恶性炒作将现期房地产价格大大抬高。

数学建模:房贷中的数学问题

数学建模:房贷中的数学问题

房贷中的数学问题摘要:随着物价的上涨,购房难已成为广大工薪阶层面临的首要问题,为解决这一问题,房贷已成为人们的首要选择。

然而房贷是否合算呢?接下来,我们将以等额本息贷款的方式予以说明。

关键词:工资与物价的上涨比例、等比数列、模型设计一、提出问题***高中一名数学教师为购房贷款27万元,分15年等额还清。

据银行账单,他需每月偿还2065.48元,那么这个数字由何而来呢?二、分析问题设某人贷款金额为T元,月利率为P,还款时间为m个月,每月还款金额为x元,则有如下关系:由表格得,每月还款金额构成以x为首项,(1+P)为公比的等比数列,前m项和即为所需偿还的本息和。

即X+X(1+P)+X(1+P)^2+…+X(1+P)^(m-1)=T(1+P)^m (1)即为X[1-(1+p)^m]/[1-(1+p)]=T(1+p)^m≈≈化简得X=T*P*(1+P)^m/[(1+P)^m-1] (2)不妨引入一中问题还款贷款金额为T=27万,分15年还清时月利率为P=3.75‰,月数m=15*12=180。

把数据代入(2)中公式得:x=270000*3.75‰*(1+3.75‰)^180/[(1+3.75‰)^180-1]≈2065.4852元与银行给出的数据吻合的很好!三、再次提出问题那么,当贷款金额一定时,究竟将还款期限定为多少时才划算呢?四、再次分析问题(以一个例子说明)甲从银行贷款20万元,若分别以10年,15年,20年为还款期限时,三者究竟何种方式更合算呢?(已知甲为工薪阶层,月收入2500元,其妻月收入1500元,家庭月收入达4000元)(一)、以10年为还款期限时:T=20万 m=120 P=3.75‰把这些数据代入公式(2)得x=200000*3.75‰*(1+3.75‰)^120/[(1+3.75)^120-1]≈2072.8元(二)、以十五年为还款期限时:T=20万 m=180 P=3.75‰把这些数据代入公式(2)得 x=200000*3.75‰*(1+3.75‰)^180/[(1+3.75‰)^180-1]≈1530.0元(三)、以二十年为还款期限时:T=20万 m=240 P=3.75‰把这些数据代入公式(2)得x=200000*3.75‰*(1+3.75‰)^240/[(1+3.75‰)^240-1]≈1265.元综合分析以上三种还款方式:1、以(一)种方式还款时,需多支付2072.8*120-200000=48736元2、以(二)种方式还款时,需多支付1530.0*180-200000=75400元3、以(三)种方式还款时,需多支付1265.3*240-200000=103672元根据银行规定,每月还款金额x<【总收入/2】在本例中,甲的总收入为2500+1500=4000元,x<“4000/2=2000元”故方式(一)中的2072.8〉2000,不符合要求。

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题

住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。

本文依照题中所给出的数据,对3个问题分别建立模型并求解。

针对问题1,首先利用Excel 建立图表,绘制出历年房价走势图。

然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。

同时,求出确定性系数2R ,依据2R 是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。

计算得出的指数型及二阶多项式型拟合方程:0.12811()678.81i x i e =、22()12.5950.274716.38x i i i =++,由此预测出2010年房价分别为4080元/平米、3888元/平米。

为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。

通过比较实际值与预测值的平均偏差值ME 的大小,选择出合适的α。

预测出2010年的房价为3800元/平米。

最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量1x 、2x 、3x 的原始数据,以实际房价()P i 作为因变量,用Matlab 软件拟合出多元线性方程:1123()0.02020.1389() 1.1319()0.0084()f P i x i x i x i ∧=--⨯+⨯+⨯。

代入相关数据,求出历年的最终房价预测值为3866元/平米。

针对问题2,通过Excel 绘制出历年平均房价与人均GDP 的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数2R 。

2R 的值分别为:0.8673;0.9929;0.9982;0.9986。

由此判断,因2阶多项式型拟合方程的2R 不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:2()(706)[()]0.3236()177.06P i E G i G i ∧=--⨯+⨯-为平均房价与人均GDP 的关系方程。

最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP 的关系。

数模案例集.doc

数模案例集.doc

案例一: 买房问题— Buying a House背景资料:张丽和王跃夫妻俩工作时间不太长,在这座繁华的大都市里,他们还没拥有属于自己的房子。

近年城市中心的房地产价格上涨迅猛,所以他们改变了最初买新房子的计划,而准备买一所合适的二手房。

经过一段时间多方寻找,终于在城南了解到一处房产。

今天是星期六,他俩早早地如约去看了房子和环境。

房产中介人小李告诉他们,房屋标价是¥400,000,而有超过10个买主都有购买的意向。

如果他俩看好此房,应该在近一两天拍板,因为据他了解的情况,另外有一个买主可能今天下午会提出其买价。

所以小李给他俩建议,如有意买此房,则他们所提出的买价应该要很接近¥400,000。

中介人小李还告诉他们,根据他的中介交易经验,如果有另外的买主的报价也接近这个标价时,在有这种竞争报价时,一般情况下房主会通知中介人,要求买主在第二天提出他们的最终报价。

小张和小王为了作出这次重大的决策,他俩又再次详细考察了该房的所有情况。

小王决定采用决策树的方法来分析他的这次重大决策。

夫妻俩都认为¥400000的价格是比较公平合理的,同时,如果他们能最终买得此房的话,他们还为此房添加了¥10000的“情感价值”,也就是说,在他们夫妻俩的心中,该房值¥410000。

这样,假如最终他们能以¥390000成功地买到此房就相当于他们额外赚了¥20000。

当然,假如最终他们没能买到此房,那么这额外的附加值就为¥0。

最后,小王经过分析认为,他们是此房的唯一报价人的可能性很小,其概率估计只有0.3。

反复考虑之后,小王决定今天下午就给中介人小李回话。

接下来他准备分析三种报价:¥390000,¥400000或¥405000。

他估计,如果他是唯一的报价买主的话,那么¥390000能成交的概率是0.4,¥400000能成交的概率是0.6,而¥405000能成交的概率是0.9。

然而,不管怎么说,有很大的可能性是买主不只他一人。

这样,中介人小李就会告诉他:“房主要求第二天提出其最终报价”。

住房贷款问题探究(1)———数学建模

住房贷款问题探究(1)———数学建模

住房贷款问题探究一、摘要随着人们的生活水平的提高,人们对住宅的要求越来越高,朝着大面积、豪华型的标准发展。

为此,住房贷款问题也成为众多购房者关心问题。

本文针对银行等额还贷及相关问题进行探究。

问题(1)实际是一个数学问题,我们通过不完全归纳法得出等额还贷公式:A= P(1+r)12n r/[(1+r)12n-1]针对问题(2),将有关数据代入问题(1)所得出的公式即得到解决;问题(3),我们查阅了有关资料,得出了这对年轻夫妇的月支出情况(见表1),进而得到他们每月的开支范围。

为了更方便的说明问题,我们约定月余额(D)=月总收入—月正常开支。

判断他们能否买房只需比较定月余额(D)与月还贷额(A)的大小情况;对于问题(4)我们首先根据目前的消费水平及他们的收入情况,计算出他们能够买房。

并且随着时间的推移,他们的工资每年都有8%的增长,就考虑可以提前还贷的问题。

对此,我们首先假设他们一直按照等额还贷方式进行还贷,得出还贷年限;然后假设进行提前还贷。

再比较这两种情况实际所还的本利之和,得出最优还贷方案。

关键词:等额还贷贷款年限月利率提前还贷二、问题重述住房贷款问题是众多购房者关心问题。

在购房贷款过程中,现在一般银行现在一般都采用等额还贷的方法。

在这一还贷方式的基础之上,请解决如下几个问题:(1)若贷款总额为P,月利率为r,贷款年限为n,每月还贷金额为A,请推导出等额还贷公式.(2)有一对年轻夫妇,计划贷款15万元,贷款年限为15年,月利率为0.01,则每月需还款多少元?(3)如果现在他们的年收入为3500元,在当前长沙的物价水平下,除去生活开支,他们能否买房?(4)预计将来收入每年会有8%的增长,在目前的物价水平和贷款利率保持不变的情况下,你对他们的投资及贷款买房有什么样的建议?(请参考银行各期贷款利率)三、问题分析根据题中购房贷款出现的等额还贷这一概念,我们从消费者的角度考虑着。

如何让买房者受益更多?由该问题我们从所给的四个分问题入手,先由给出的参数通过构建等量关系得到了我们所需要的目标等式方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A题:购房贷款问题蒋萍(08(3)班 08211337)【摘要】随着人们生活水平的不断提高,越来越多的人正在购置房产用于居住或进行置业投资。

但是购房投资是一项金额较大的投资,要人们一次性支付比较困难。

但随着市场经济的发展,向银行贷款购房成了我们买房的主要方式。

我们知道,如果向银行贷款就需要直接面对提供担保、偿还借贷的问题,现实生活中人们选择贷款的期数、月还款额时,却往往因为缺乏这方面的知识,而带来一定的盲目性,给自己带来或多或少的经济损失。

所以在这个市场经济时代,面对不同的决策方案,正确的决策意味着经济资源的最优配置。

本文就购房贷款问题,展开一系列的讨论。

针对购房问题进行全面分析,利用递推数列将实际问题数学化,建立了一个数学模型。

利用计算机程序算出结果,不仅求出了各种还款方式的还款金额和利息,而且还指出了等额还款是最优的还款方式。

【关键词】递推数列贷款额利息贷款期限还款额1.问题重述小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。

目前,银行的利率是0.6%/月。

他们采用等额还款的方式(即每月的还款额相同)偿还贷款。

1. 在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息?2. 在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清?3. 如果在第6年初,银行的贷款利`率由0.6%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少?4. 小王夫妇认为,随着他们工作经历的增长,家庭收入也会随着增长,因此,打算采用逐步增加还款额的还款方式来偿还贷款,具体的办法是:如果第1年的每月还款额是1000元的话,那么第2年的每月还款额就是1500元,第3年的每月还款额是2000元,第4年的每月还款额是2500元,以此类推。

在此情况下,如果贷款利率还是0.6%/月,那么,第1年的每月还款额是多少?以后各年的每月还款额又是多少?共计付了多少利息?5. 在4提出的还款方式下,在贷款满5年后,打算在第6年初一次还清全部余款,那么,一次的还款额是多少?如果第6年初,银行的贷款利率由0.6%/月调到0.8%/月,从第6年起,以后各年的每月还款额是多少?6. 综合上述问题,为小王夫妇(实际上是打算贷款购房的人)写一份报告,帮助他们分析各种方法的利弊,和偿还贷款的计划。

2.问题的提出及分析从数学角度看,本课题是等比数列知识的一个实际运用,因此在解决这一问题时首先应弄清以下方面的问题;(1)在银行按揭分期付款中,每月的利息按复利计算;(2)付款中每期付款金额相等(3)付款时,本金和每期所付款额在贷款全部付清前随时间推移而不断增值(4)各期所付款额连同到最后一次付款时所产生的利息之和等于本金从购买到最后一次付款时的利息之和。

本文以计算贷款在分期付款时每期应付款决策,并说明数列在分期付款的应用。

有些人认为购房付款一次性付清较好,有些认为分期付款比较好,因为有很多人一次支付较高的款额有一定的困难,还有不少开发商在不断改进营销策略,方便人们消费和付款,所以我认为采取分期付款容易被不同阶层的人接受,现对购房分期付款作以下分析,并作出最优的决策方案。

3.模型假设(1)除去一定的政策原因(2)在还款过程中,月收入稳定(3)银行利率保持稳定4.模型建立与求解(1)按分期付款中的规定,各期所付的金额连同到最后一次付贷款的利息之和,等于房子售价及从购买到最后一次付款时的利息之和,所以我们得到如下关系式:设每月还x元,一共还了n个月,本金为a,利率为b,利息为m元x+(1+b)x+x(1+b)^2+x(1+b)^3+…+x(1+b)^(n-1)=a*(1+b)^n即x[1+(1+b)+(1+b)^2+(1+b)^3+…+(1+b)^(n-1)]=a*1.006^n观察上式中括号内,是一个首项为1,公比为(1+b)的等比数列的前n项和。

根据:Sn=a1(1-q^n)/(1-q)得:x[(1-(1+b)^n)]/[1-(1+b)]=a*(1+b)^n则x=a*(1+b)^n*[(1+b)-1]/[(1+b)^n-1]利息:m=n*x-a此时n=240 a=200000 b=0.006应用计算机程序算出结果:程序如下:Option ExplicitPrivate Sub Command1_Click()Dim n As Integer, a As Double, b As Single, x As Single, m As Singlen = Val(Text1.Text)a = Val(Text2.Text)b = Val(Text3.Text)x = a * (1 + b) ^ n * ((1 + b) - 1) / ((1 + b) ^ n - 1)m = n * x - aText4.Text = CStr(x)Text5.Text = CStr(m)End Sub所以由运行结果得:x=1574.699元m=177927.7元所以小王夫妇每月的还款额是1574.699元共计付了利息177927.7元(2)设第n个月还完x元后还欠银行r元r=a*(1+b)^n-[1+(1+b)+(1+b)^2+…+(1+b)^(n-1)]xr=a*(1+b)^n-[(1-(1+b)^n)]/[1-(1+b)]x此时n=60 x=1574.699 a=200000 b=0.006应用计算机程序算出结果:程序如下:Option ExplicitPrivate Sub Command1_Click()Dim n As Integer, a As Double, b As Single, r As Single, x As Singlen = Val(Text1.Text)a = Val(Text2.Text)b = Val(Text3.Text)x = Val(Text4.Text)r = a * (1 + b) ^ n - ((1 - (1 + b) ^ n)) / (1 - (1 + b)) * xText5.Text = CStr(r)End Sub所以由运行结果得:r=173034.9元故他们在第6年初,应一次付给银行173034.9元,才能将余下全部的贷款还清(3)由(1)知:x=a*(1+b)^n*[(1+b)-1]/[(1+b)^n-1]此时b=0.008 n=180 a=173034.9应用计算机程序算出结果:程序如下:Option ExplicitPrivate Sub Command1_Click()Dim n As Integer, a As Double, b As Single, x As Singlen = Val(Text1.Text)a = Val(Text2.Text)b = Val(Text3.Text)x = a * (1 + b) ^ n * ((1 + b) - 1) / ((1 + b) ^ n - 1)Text4.Text = CStr(x)End Sub所以由运行结果得:x=1817.329元那么第六年后,每月的还款额应是1817.329元(4)设第一年每月还Y1元,以后每年依次为Y2,Y3,…Y20假设:还款总额为a;月利率为r;总期数为n;递增间隔为m;递增金额为t;开始递增期数为k;余数w=(n-k+1)mod m,取整v=int[(n-k+1)/m]等额递增还款法每月还款金额=YZ1=t/[(1+r)^n-1]Z2=(1+r)^w*[(1+r)^((v+1)*m)-1]/[(1+r)^(m-1)]Y=x-Z1*[Z2-(v+1)]此时a=200000 r=0.006 n=240 m=1 k=20 t=500将数据分别代入上式得:w=221Z1=156.1244Z2=462.2607Y1=200000-156.1244*[462.2607-222]=1624.9…….第二十个月应付Y20=1624.9+500*20=172490元总利息:(1624.9+172490)*20/2-200000=314980元故第一个月应该还款1624.9元共计利息为314980元(5)设贷款总额为a第一个月还x元,月利率b,还款间隔为m,每月递增y元,还款的总期数为n,剩余的钱为rx+(1+b)x+(1+b)^2x+(1+b)^3x+…+(1+b)^11x=x[1-(1+b)^12]/[1-(1+b)](x+y)+(1+b)(x+y)+(1+b)^2(x+y)+(1+b)^3(x+y)+…+(1+b)^11(x+y)=[(x+y)(1-(1+b)^12)]/[1-(1+b)](x+my)+(1+b)(x+my)+(1+b)^2(x+my)+(1+b)^3(x+my)+…+(1+b)^11(x+my)=(x+my)*(1-(1+b)^12)/[1-(1+b)](1-(1+b)^12) [x+(x+y)+…+(x+my)]=a*(1+b)^n/[1-(1+b)]此时b=0.006 a=200000 n=60 m=5 y=500x*(m+1)+((1+m)*m/2)*y=(a*(1+b)^n)(1-(1+b))/(1-(1+b)^12)x=[(a*(1+b)^n)(1-(1+b))/((1-(1+b)^12)-((1+m)*m/2)*y)]/(m+1)r=a(1+b)^n-x*(m+1)+((1+m)*m/2)*yr=200000(1+0.006)^60-(500*6+15)*500=122110所以,一次的还款额是122110元(6)综合上述分析,相比较而言等额还款是一种比较好的还款方式。

特点:每月还款金额相等。

每月贷款利息按月初剩余贷款本金计算并逐月结清。

由于每月的还款额相等,因此,在贷款初期每月的还款中,剔除按月结清的利息后,所还的贷款本金就较少;而在贷款后期因贷款本金不断减少、每月的还款额中贷款利息也不断减少,每月所还的贷款本金就较多。

适合月收入比较固定,额外支出较小的家庭由上述计算我们可以知道等额递增还款法,与等额本金还款法想反,每月还款额逐月递增,适合目前还款能力较弱,但是已经预期到未来会逐步增加的人群缺点就是还款压力逐步变大。

1、分期付款一般情况下多是在购买期房是采用,此种情况也称为建筑期付款。

购房人交付首期是与开发商签订正式的房屋买卖契约,房屋交付使用时,交齐全部房款,办理产权过户。

2、也有购买现房分期付款的情况。

房屋的交付与房价款支付不同时进行,房屋交付款前,现金支付完毕在后。

3分期付款与一次性付款比较慢,其短处是,由于分期付款的利息是付款时间越长,利率越高,因此放款额加在一起会高于一次性付款金额。

相关文档
最新文档