厦门大学《应用多元统计分析》习题第02章 多元正态分布的参数估计
第2章多元正态分布的参数估计
第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。
在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。
本章将介绍多元正态分布的参数估计方法。
多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。
在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。
首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。
我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。
均值向量的估计可以通过计算样本向量的平均值来得到。
均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。
协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。
协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。
这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。
修正的常用方法有Ledoit-Wolf修正和修正。
在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。
在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。
参数估计的过程中,还需要考虑到样本量的大小。
当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt
4 3
u1u2
1
2
exp[
1 2
(2u12
u22
2u1u2 )]du1du2
1
2
u12
u1e 2
1
2
u2e
1 2
(
u2
u1
)
2
du2
du1
1
2
u12
u1e 2
1
2
(u2
u1
)e
1 2
(u2
u1
)
2
du2
u1
e
1 2
(
u2
u1
)
2
du2
du1
1
2
u e
2
u12 2
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
X
X X
(1) (2)
~
N
2
p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
第二章 多元正态分布的参数估计
第二章多元正态分布的参数估计1.随机向量:将p个随机变量的整体称作p维随机向量,记为同时对p个指标(变量)进行了n次观测,这p个指标为,常用向量表示对同一个体观测的p个变量注:横看表示为第a个样品的观测值,记为竖看表示为对第j个变量的n次观测值,记为上表可用矩阵表示为(1)离散型随机向量:设是p维随机向量,若存在有限个或可列个p 维数向量,记,,满足,则X为离散型随机向量,为X的概率分布(2)连续型随机变量:设,若存在一个非负函数,使得对一切x均有,则X为连续型随机变量,为分布密度函数其中,应满足条件:i.ii.2.多元分布:设是p维随机向量,它的多元分布函数定义为,记为。
其中表示p维欧氏空间3.边缘(或边际)分布:设是p维随机向量,由它的q(<p)个分量组成的子向量的分布为X的边缘分布假定正好是X的前q个分量,其中p-q个分量为,则,相应的取值也分为了两部分。
当X的分布函数为时,的分布函数即边缘分布函数为;当X有分布密度时,则的边缘密度函数为注:相互独立——p个随机变量的联合分布等于各自的边缘分布的乘积4.随机向量的均值向量/数学期望:设,若存在且有限,则称为X的均值(向量)或数学期望,有时也把分别记为,即,容易得到均值(向量)有以下性质:其中,X和Y为随机向量,A和B为大小适合运算的常数矩阵5.随机变量的方差或协差阵:设,称为X的方差或协差阵,有时候把D(X)简记为,简记为,从而有随机变量X和Y的协差阵为当X=Y时,即为D(X)注:独立一定不相关,不相关不一定独立当A和B为常数矩阵时,协差阵有如下性质:注:对任何随机向量来说,其协差阵都是对称阵,大多情况下是正定的6.相关系数:若的协差阵存在,且每个分量的方差大于0,则称随机向量X的相关阵为,为的相关系数。
7.指标的标准化处理:,令,有,则即标准化数据的协差阵=原指标的相关阵8.多元正态分布:X服从p元正态分布,也称X为p维正态随机分布,简称9.多元样本的数字特征样本资料可以用矩阵表示为(1)样本均值向量:(2)样本离差阵:(3)样本协差阵:(4)样本相关阵:其中,10.①②③④11.的性质①②③12.维希特(Wishart)分布设且相互独立,则由组成的随机矩阵:的分布称为非中心Wishart分布,记为。
第二章多元正态分布的参数估计
就是剔除了 X2 Xk1, , X p 得(线性)影响之后,Xi和
Xj之间得协方差。
给定X2时Xi 和Xj得偏相关系数(partial correlation
coefficient)定义为: ij k1, , p
ij k1, , p
,
ii k1, , p jj k1, , p
其中 Σ11 2 ij k1, , p 。
μ12
μ1
Σ12
Σ
1 22
x2 μ2
Σ112
Σ11
Σ12
Σ
1 22
Σ
21
μ1·2和Σ11·2分别就是条件数学期望和条件协方差矩
阵,Σ11·2通常称为偏协方差矩阵。
这一性质表明,对于多元正态变量,其子向量得条件分布仍
就是(多元)正态得。
例5 设X~N3(μ, Σ),其中
1
16 4 2
μ
0 2
μ(1) μ(2)
11 Σ 21
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22
则
X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 , , X p ) 服从 p
aX
(0,1,
0)
X
2
X2
~
N (aμ, aΣa)
X3
1
aμ
(0,1,
0)
2
2
3
11 12 aΣa (0,1, 0) 21 22
应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料
1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
应用多元统计分析 第二章正态分布的参数估计答案
练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
厦门大学《应用多元统计分析》第02章_多元正态分布的参数估计
厦门大学《应用多元统计分析》第02章_多元正态分布的参数估计第一节引言多元统计分析涉及到的都是随机向量或多个随机向量放在一起组成的随机矩阵。
例如在研究公司的运营情况时,要考虑公司的获利能力、资金周转能力、竞争能力以及偿债能力等财务指标;又如在研究国家财政收入时,税收收入、企业收入、债务收入、国家能源交通重点建设基金收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等都是需要同时考察的指标。
显然,如果我们只研究一个指标或是将这些指标割裂开分别研究,是不能从整体上把握研究问题的实质的,解决这些问题就需要多元统计分析方法。
为了更好的探讨这些问题,本章我们首先论述有关随机向量的基本概念和性质。
在实用中遇到的随机向量常常是服从正态分布或近似正态分布,或虽本身不是正态分布,但它的样本均值近似于正态分布。
因此现实世界中许多实际问题的解决办法都是以总体服从正态分布或近似正态分布为前提的。
在多元统计分析中,多元正态分布占有很重要地位,本书所介绍的方法大都假定数据来之多元正态分布。
为此,本章将要介绍多元正态分布的定义和有关性质。
然而在实际问题中,多元正态分布中均值向量和协差阵通常是未知的,一般的做法是由样本来估计。
这是本章讨论的重要内容之一,在此我们介绍最常见的最大似然估计法对参数进行估计,并讨论其有关的性质。
第二节基本概念一、随机向量我们所讨论的是多个变量的总体,所研究的数据是同时p个指标(变量),又进行了n次观测得到的,我们把这个p指标表示为X1,X2,…,Xp,常用向量X=(X1,X2,…,XP)''表示对同一个体观测的p个变量。
这里我们应该强调,在多元统计分析中,仍然将所研究对象的全体称为总体,它是由许多(有限和无限)的个体构成的集合,如果构成总体的个体是具有p个需要观测指标的个体,我们称这样的总体为p维总体(或p元总体)。
上面的表示便于人们用数学方法去研究p维总体的特性。
这里“维”(或“元”)的概念,表示共有几个分量。
第2章多元正态分布参数估计
第2章多元正态分布参数估计多元正态分布是多元随机变量的一种常见模型。
在实际问题中,我们常常需要通过已有的数据对多元正态分布的参数进行估计,便于进行后续的统计分析和预测。
多元正态分布的参数估计主要包括均值向量和协方差矩阵的估计。
对于均值向量的估计,最简单的方法是直接计算样本均值。
假设我们有一个包含n个样本的数据集,其中每个样本有d个维度的观测值,我们可以将样本数据表示为一个n×d的矩阵X。
则样本均值向量的估计值μ可以通过以下公式得到:μ = (1/n) * Σxi其中,xi表示第i个样本观测值。
对于协方差矩阵的估计,最常用的方法是样本协方差矩阵的估计。
样本协方差矩阵S的估计值可以通过以下公式得到:S = (1/n) * Σ(xi - μ)(xi - μ)T其中,T表示矩阵的转置。
需要注意的是,样本协方差矩阵的估计是基于样本的二阶矩估计,因此在数据量较小的情况下,估计结果可能存在偏差。
为了减小估计结果的偏差,可以使用修正样本协方差矩阵的估计。
修正样本协方差矩阵的估计值可以通过以下公式得到:S = ((n-1)/n) * Σ(xi - μ)(xi - μ)T其中,n-1是修正系数。
除了样本协方差矩阵,也可以使用样本相关系数矩阵来估计多元正态分布的协方差矩阵。
样本相关系数矩阵R的估计值可以通过以下公式得到:rij = sij / (si * sj)其中,sij表示样本协方差矩阵的元素,si和sj分别表示样本标准差。
需要注意的是,当样本量较小或者存在样本相关系数为1的情况时,样本相关系数矩阵的估计结果可能不可靠,此时推荐使用样本协方差矩阵来估计。
在实际问题中,参数估计是多元正态分布分析的重要步骤。
通过对样本数据进行参数估计,我们可以对多元正态分布的均值和协方差矩阵有一个初步的认识,从而便于进行后续的模型建立、参数推断和预测。
同时,合理的参数估计方法也有助于提高分析结果的精度和可靠性。
总之,多元正态分布参数估计是一个对多元随机变量的观测数据进行统计分析的重要任务。
应用多元统计(第二章习题解答)
Ip 因D(Y ) CD( X )C I p 1 2 1 2
则 Y ~ N2 p (C, CC)
1 2 I p 2 1 Ip
Ip Ip
O 2(1 2 ) O 2(1 2 )
所以
X X
(1) (1)
( 2) ( 2)
~ N p ( ,2(1 2 ));
(1) ( 2)
X X
~ N p ( ,2(1 2 )).
(1) ( 2)
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
(1) X (1) X ( 2) ~ N 2 p ( 2) , X
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立. (2) 试求X(1) +X(2) 和X(1) -X(2) 的分布. 解 :(1) 令
1 1 2 1 1 1 因ΣY CC 1 1 1 1 1 0 2 1 1 1 1 2 2(1 ) 2(1 ) 1 11 1 0
Y2= X1 -X2 = (1,-1)X , 利用性质2可知Y1 , Y2 为正态随机变量。又 1 1 2 Cov(Y1 , Y2 ) 1 1 1 1 0 1 1
解: (1) 记Y1= X1 +X2 =(1,1)X,
解:利用性质2,即得二维随机向量分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中 1 2 1 , 1 . 2 (1)试证明X1 +X2 和X1 - X2相互独立. (2)试求X1 +X2 和X1 -X2的分布.
第二章多元正态分布的参数估计
第二章多元正态分布的参数估计多元正态分布是在多个随机变量之间存在相互依赖关系时使用的一种概率分布。
它在许多统计分析和机器学习领域中都有广泛的应用。
在实际应用中,我们通常需要使用样本数据对多元正态分布的参数进行估计。
多元正态分布由均值向量和协方差矩阵两个参数来描述。
均值向量表示各个随机变量的平均值,而协方差矩阵表示各个随机变量之间的协方差。
参数估计的目标就是通过样本数据来估计这两个参数。
首先,我们需要收集一个具有充分样本量的数据集。
对于一个具有n个样本的多元正态分布,我们可以将样本数据表示为一个n行d列的矩阵X,其中每一行是一个d维的样本向量。
其中n表示样本数量,d表示随机变量的个数。
接下来,我们可以根据样本数据来估计多元正态分布的均值向量和协方差矩阵。
1.均值向量的估计:多元正态分布的均值向量可以通过样本均值向量来估计。
样本均值向量的计算公式如下:μ = (1/n) * Σxi其中μ是估计得到的均值向量,xi表示样本矩阵X的第i行。
2.协方差矩阵的估计:多元正态分布的协方差矩阵可以通过样本协方差矩阵来估计。
Σ=(1/(n-1))*(X-μ)'*(X-μ)其中Σ是估计得到的协方差矩阵,X是样本矩阵,μ是估计得到的均值向量。
需要注意的是,在计算协方差矩阵时,我们使用的是样本协方差矩阵而不是总体协方差矩阵。
这是因为样本协方差矩阵能更好地反映样本数据的真实情况。
以上就是多元正态分布的参数估计方法。
通过样本数据,我们可以使用样本均值向量和样本协方差矩阵来估计多元正态分布的参数。
这些参数估计能为我们提供关于多元正态分布的统计属性和特征,进而用于进一步的分析和应用。
应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1
《应用多元统计分析》各章作业题及部分参考答案
60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1
⎜
R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦
15统计第02章_多元正态分布的参数估计
和
Σ
1 2
9 3
253
令y1=2x1−x2+4x3,y2=x2−x3,y3=x1+3x2−2x3,试求y=(y1,y2,y3)′的数学 期望和协方差矩阵。
若 X ( X1, X 2 , , X p ) 的协差阵存在,且每个分量的方差大
于零,则称随机向量 X 的相关阵为 R Corr( X ) (ij ) p p ,
表示对第 j 个变量 X j 的 n 次观测数值。
因此,表 2.1 所反映出的样本资料可用矩阵表示为
X11 X12
X
X
21
X 22
X1p
X(1)
X2
p
(
X1,
X
,
2
,X
p
)
X (2)
X
n1
Xn2
X
np
X
(n)
(2.1)
简记为 X。
定义 2.1 将 p 个随机变量 X1, X 2 , , X p 的整体称为 p 维随
E(X AX ) tr(AΣ) μAμ
这里我们应该注意到,对于任何的随机向量
X ( X1, X 2 , , X p ) 来说,其协差阵 Σ 都是对称阵,同
时总是非负定(半正定)的。大多数情况是正定的。
例 设随机向量x=(x1,x2,x3)′的数学期望和协方差矩阵分别为
5
4 1 2
μ
2 7
进行标准化!
标 “ 标 准 化 ”, 即 进 行 如 下 变 换
X
* j
X
j
E(X j) D(X j )
,
j 1, , p (2.7)
那么由(2.7)构成的随机向量 X* (X1*, X2*,
多元统计期末复习题
多元数据分析练习题第二章多元正态的参数估计一. 判断题(1)若∑∑=),,(~),,,(21μp Tp N X X X X 是对角矩阵,则p X X X ,,,21 相互独立。
( )(2)多元正态分布的任何边缘分布为正态分布,反之也成立。
( )(3)对任意的随机向量Tp X X X X ),,,(21 =来说,其协方差矩阵∑是对称矩阵,并且总是半正定的。
( )(4)对标准化的随机向量来说,它的协方差矩阵与原来变量的相关系数阵相同。
( ) (5)若),,(~),,,(21∑=μp Tp N X X X X S X ,分别为样本均值和样本协差阵,则S nX 1,分别为∑,μ的无偏估计。
( )二.计算题1. 假设随机向量T X X X X ),,(321=的协方差矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∑9232443416,试求相关系数矩阵R 。
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=131413112141211R 2. 假设随机向量T x x x ),(21=的协方差矩阵为⎥⎦⎤⎢⎣⎡=∑20119,令212211,2x x y x x y -=+=,试求T y y y ),(21=的协方差矩阵。
⎥⎦⎤⎢⎣⎡--=∑2733603.假设⎥⎦⎤⎢⎣⎡---=∑5.005.05.015.0),,(~3A N X μ,其中T)1,2,1(-=μ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411121112,试求Ax y =的分布。
)2224,02(2⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-N 三.证明题1.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,X 为样本均值。
试证明:μ=)(X E ,∑=nX D 1)(。
2.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,S n 11-为样本协差阵。
试证明:∑=-)11(S n E 。
3.证明:若p 维正态随机向量),,,(21'=p X X X X 的协差阵为对角矩阵,则X 的各分量是相互独立的随机变量。
多元统计分析:第二章 多元正态分布及
9
第二章 多元正态分布及参数的估计
§2.1 随机向量—
若Σ≥0(非负定),必有p×q矩阵A1使得
Σ=A1A1′
1 O 其中A1 1 (q p). O q 这里记Γ=(Γ1 | Γ2) , Γ1为p×q列正交阵(p ≥ q).
如例2.1.1,证明了X1,X2均为一元正态 分布,但由(X1,X2) 联合密度函数的形式易见 它不是二元正态.
24
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
1 2 2 ( x1 x2 ) 2 1 2 2 ( x1 x2 ) 2
例2.1.1 (X1,X2)的联合密度函数为
12
第二章 多元正态分布及参数的估计
多元正态分布的性质1 在一元统计中,若X~N(μ,σ2),则X的特征函数为 §2.2
φ(t)=E(eitX)=exp[itμ-t 2σ2 /2]
(t ) E (e )
itX
1 2
e
( x )2 itx 2 2
e
dx
u ( x ) /
性质1的证明
根据随机向量特征函数的定义和性质,经计算即可 得出X的特征函数为 ΦX(t)= E(eitX)= E(eit (AU+μ) ) it AU 令t′A=s′=(s ,…s ) q 1
exp(it ) E(e ) i ( s1U1 s qU q ) exp( it ) E (e ) isqU q is1U1 exp( it ) E (e e )
是对称非负定阵. 即 =´ , ´ ≥0 (为任给的p维常量).
第2章 多元正态分布的参数估计
【例 2.3】
问例 2.2 中的 X 1 与 X 2 是否相互独立?
e ( x1 , x2 ) , x1 0, x 2 0 解: f ( x1 , x 2 )= 其它 0, e x1 , x1 0 f x1 ( x1 )= 其它 0, e x2 , x 2 0 f x2 ( x 2 )= 其它 0, 由于 f ( x1 , x2 )=f x1 ( x1 ) f x2 ( x2 ) ,故 X 1 与 X 2 相互独立。
限 个 或 可 列 个 p 维 数 向 量 x1 , x2 ,, , 记 P( X xk ) pk ,
(k 1, 2,) 且满足 p1 p2 1 ,则称 X 为离散型随机向 量,称 P( X xk ) pk , (k 1, 2,) 为 X 的概率分布。
设 X ~ F ( x)F ( x , x ,, x ) , 若 存 在 一 个 非 负 函 数 1 2 p
定义 2.7
设 X ( X 1 , X 2 ,, X p ) , Y (Y1 , Y2 ,, Yp ) ,
称 D( X )E ( X E ( X ))( X E ( X ))
Cov( X 1 , X 1 ) Cov( X 1 , X 2 ) Cov( X 1 , X p ) Cov( X , X ) Cov( X , X ) Cov( X , X ) 2 1 2 2 2 p (2.4) Cov( X p , X 1 ) Cov( X p , X 2 ) Cov( X p , X p ) Cov( X i , X j ) 为 X 的方差或协差阵, 有时把 D( X ) 简记为 Σ , 简记为 ij ,从而有 Σ ( ij ) p p ;称随机向量 X 和 Y 的协差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考与练习
2.1 试述多元联合分布和边缘分布之间的关系。
2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。
2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为:
()()()()()()()()()
121122
2
22,d c x a b a x c x a x c f x x b a d c −−+−−−−−2⎡⎤⎣⎦
=
−−
其中,。
求:
12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。
⑵ 随机变量1X 和2X 的协方差和相关系数。
⑶ 判断1X 和2X 是否相互独立。
2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。
2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号
目前工资 (美元)
受教育年限(年)
初始工资 (美元)
工作经验(月)
1
1 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26
设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。
2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1
~(,
p N n
X μΣ)。
2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。
2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。
(,)p N μΣS 2.10 设()i i X n p ×是来自(),p i i N μΣ的数据阵,1,,i k =L , ⑴ 已知1k ===μμμL 且1k ===ΣΣL Σ,求μ和的估计。
Σ⑵ 已知1k ===ΣΣL Σ,求1,,k μμL 和Σ的估计。
2。