高中数学黄金解题模板专题 立体几何中的探索问题(解析版)
2018年高中数学 黄金100题系列 第68题 立体几何中的探索性问题 理
第68题 立体几何中的探索性问题I .题源探究·黄金母题【例1】【2016年高考北京理数】如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.【答案】(1)见解析;(2)3;(3)存在,14AM AP = 【解析】分析:(1)由面面垂直性质定理知AB⊥平面PAD ;根据线面垂直性质定理可知PD AB ⊥,再由线面垂直判定定理可知⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建立空间直角坐标系O xyz -,利用向量法可求出直线PB 与平面PCD 所成角的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AM λ=,根据//BM 平面PCD ,即0=⋅BM ,求λ的值,即可求出AMAP的值.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x .所以)2,2,1(-=n .又)1,1,1(-=PB ,所以33,cos -=<.所直线PB 与平面PCD 所成角的正弦值为33.2【名师点睛】在解决立体几何探索性问题时,常常先通过空间观察和条件分析假设存在符合条件的点,然后进行推理论证。
II .考场精彩·真题回放【例2】【2016年高考四川理数】如图,在四棱锥P-ABCD中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD ,E 为边AD 的中点,异面直线PA 与CD 所成的角为90°. (Ⅰ)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.EDCBPA【答案】(Ⅰ)详见解析;(Ⅱ)13. 【解析】分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,而这可以利用已知的平行,易得CD ∥EB ;从而知M 为DC 和AB 的交点;(Ⅱ)求线面角,可以先找到这个角,即作出直线在平面内的射影,再在三角形中解出,也可以利用已知图形中的垂直建立空间直角坐标系,用向量法求出线面角(通过平面的法向量与直线的方向向量的夹角来求得).(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(Ⅱ)方法一:由已知,CD ⊥PA ,CD ⊥AD ,PA ⋂AD=A ,所以CD ⊥平面PAD.从而CD ⊥PD. 所以∠PDA 是二面角P-CD-A 的平面角.所以∠PDA=45°.设BC=1,则在Rt △PAD 中,PA=AD=2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH.易知PA ⊥平面ABCD , 从而PA ⊥CE.于是CE ⊥平面PAH.所以平面PCE ⊥平面PAH.过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE.所以∠APH 是PA 与平面PCE 所成的角.在Rt △AEH 中,∠AEH=45°,AE=1, 所以.在Rt △PAH 中,2, 所以sin ∠APH=AH PH =13.方法二:由已知,CD⊥PA,CD⊥AD,PA⋂AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以AD ,AP的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)设平面PCE的法向量为n=(x,y,z),由0,0,PEEC⎧⋅=⎪⎨⋅=⎪⎩nn得20,0,x zx y-=⎧⎨+=⎩设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα=|| |||| n AP nAP⋅⋅13= .所以直线PA与平面PCE所成角的正弦值为13.P【例3】【2014年湖北卷19】如图,在棱长为2的正方体1111DCBAABCD-中,NMFE,,,分别是棱1111,,,DABAADAB的中点,点QP,分别在棱1DD,1BB上移动,且()20<<==λλBQDP.(1)当1=λ时,证明:直线//1BC平面EFPQ;(2)是否存在λ,使平面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)详见解析;(2)221±=λ【解析】分析:(1)由正方体1111DCBAABCD-的性质得11//ADBC,当1=λ时,证明341//AD FP ,由平行于同一条直线的两条直线平行得FP BC //1,根据线面平行的判定定理证明//1BC 平面EFPQ ;(2)解法1,如图2,连结BD ,证明四边形EFPQ 与四边形PQMN 是等腰梯形,分别取EF 、PQ 、MN 的中点为H 、O 、G ,连结OH 、OG ,证明GOH ∠是平面EFPQ 与平面PQMN 所成的二面角的平面角,设存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,求出λ的值;解法2,以D 为原点,射线1,,DD DC DA 分别为z y x ,,轴的正半轴建立如图3的空间直角坐标系xyz D -,用向量法求解. 试题解析:几何法:(2)如图2,连结BD ,因为E 、F 分别是AB 、AD 的中点,所以BD EF //,且BD EF 21=,又BQ DP =,BQ DP //,所以四边形PQBD 是平行四边形,故BD PQ //,且BD PQ =,从而PQ EF //,且PQ EF 21=,在EBQ Rt ∆和FDP Rt ∆中,因为λ==DP BQ ,1==DF BE ,于是,21λ+==FP EQ ,所以四边形EFPQ 是等腰梯形,同理可证四边形PQMN 是等腰梯形,分别取EF 、PQ 、MN 的中点为H 、O 、G ,连结OH 、OG ,则PQ GO ⊥,PQ HO ⊥,而O HO GO = ,故GOH ∠是平面EFPQ 与平面PQMN 所成的二面角的平面角,若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则90=∠GOH ,连结EM 、FN ,则由MN EF //,且MN EF =,知四边形EFNM 是平行四边形,连结GH ,因为H 、G 是EF 、MN 的中点,所以2==ME GH , 在GOH ∆中,42=GH ,21)22(12222+=-+=λλOH , 21)2()22()2(12222+-=--+=λλOG , 由222GH OH OG =+得42121)2(22=+++-λλ,解得221±=λ, 故存在221±=λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.向量法:以D 为原点,射线1,,DD DC DA 分别为z y x ,,轴的正半轴建立如图3的空间直角坐标系xyz D -,5由已知得),0,0(),0,0,1(),2,2,0(),0,2,2(1λP F C B ,所以)2,0,2(1-=BC ,),0,1(λ-=,)0,1,1(=, (1)证明:当1=λ时,)1,0,1(-=FP ,因为)2,0,2(1-=BC ,所以FP BC 21=,即FP BC //1,而⊂FP 平面EFPQ ,且⊄1BC 平面EFPQ , 故直线//1BC 平面EFPQ .(2)设平面EFPQ 的一个法向量),,(z y x =n ,由⎪⎩⎪⎨⎧=∙=∙00n n 可得⎩⎨⎧=+-=+00z x y x λ,于是取)1,,(λλ-=n ,同理可得平面M N P Q 的一个法向量为)1,2,2(λλ--=m ,若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则0)1,,()1,2,2(=-∙--=∙λλλλn m ,即01)2()2(=+---λλλλ,解得221±=λ, 故存在221±=λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.【名师点睛】这是一类探究型习题,重点考查直线与平面平行的判定定理和二面角的求法,其解题思路:第一问通过证明线线平行得出线面平行的结论;第二问正确求解的关键是正确地找出平面EFPQ 与平面PQMN 所成的二面角的平面角.充分体现了探究型学习在高考中的重要性.【例4】【2015湖北理19】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且P D C D =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE(Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.【答案】(Ⅰ)详见解析;(Ⅱ)22.(Ⅱ)如图1,在面PBC 内,延长BC 与FE 交于点G则DG 是平面DEF 与平面ABCD 的交线.由(Ⅰ)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥.6而PD PB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角, 设1PD DC ==,BC λ=,有BD = 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=, 则πtantan 3BD DPF PD =∠==,解得λ=所以1DC BC λ= 故当面DEF 与面ABCD 的大小为π3时,DC BC =(解法2)(Ⅰ)如图2,以D 为原点,射线,,DA DC DP 别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=- 点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =, 于是0PB DE ⋅=,即PB DE ⊥.又已知EF PB ⊥,而DE EF E =,所以PB DEF ⊥平面因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE P B C ⊥平面.由DE ⊥平面PBC ,PB ⊥平DE F ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF DEB DEF ∠∠,,EFB DFB ∠∠,(Ⅱ)由PD ABCD ⊥平面,所以(0,0,1)DP =是平ABCD 的一个法向量;由(Ⅰ)知,PB DEF ⊥平面,所以(,1,1)BP λ=--DEF 的一个法向量. 若面DEF 与面ABCD 12||||BP DP BP DP λ⋅==⋅, 1λ== 所成二面角的大小为π317题 3问具有一定的探索性,考察空间想象能力,猜想能力及推.几何直觉。
高考数学答题模板:解析几何中的探索性问题
高考数学答题模板:解析几何中的探索性问题
高考数学频道为大家提供高考数学答题模板:解析几何中的探索性问题,一起来看看吧!更多高考资讯请关注我们网站的更新!
高考数学答题模板:解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
高考数学立体几何空间几何中的探索性问题
立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。
专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1AC ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC , 又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EFDF F =,1ABA C A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2),1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2), 设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB =1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1AO ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1AO A C O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO A O BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A A C O =,得1AO ⊥底面ABCD , 所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0),(0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-, 由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>=⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1AC ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC ,又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EF DF F =,1ABA C A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2n t=,平面CBF的一个法向量21(,0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a ,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴,OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D x y ⎧=-+=⎪⎨==⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =, 02a a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点,BD CD =,1//AC DE ∴, 又1AC ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=故三棱锥11A A B D - 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC ==所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-,(3,0)AE λ=,1(0,1,1)AD =⋯(7分) 设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M ,G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD=M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又M D⊂平面PDC,可得BD M D⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又M D ⊂平面PDC ,BD M D ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴=在Rt PDC ∆中,由PD =CD =可得PC =MD =则CM =12MCD S ∆∴==.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a . 【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1ACAA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCAC C =, 1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4),1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4), 设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221|||332216n a ==++. 解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得//MC平面PBD?说明理由.【分析】(1)通过证明CD AD⊥,证明CM⊥平面AMD,然后证明平面AMD⊥平面BMC;⊥,CD DM(2)存在P是AM的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD所在平面与半圆弦CD所在平面垂直,所以AD⊥半圆弦CD所在平面,CM⊂半圆弦CD所在平面,∴⊥,CM ADM是CD上异于C,D的点.CM DM∴⊥,DM AD D∴⊥平面AMD,CM⊂平面CMB,=,CM∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得//MC OP,MC⊂/平面BDP,OP⊂平面BDP,所以//MC平面PBD.。
2021年高考数学难点突破(新课标版) 专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1A C ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d =A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE , 如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EFDF F =,1ABAC A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2), 1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2),设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1A O ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1A OAC O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A AC O =,得1A O ⊥底面ABCD ,所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0), (0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-,由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>==⨯解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1A C ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1ABAC A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC .专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2,n t=,平面CBF的一个法向量21(0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=0x=,2y t=,∴1(0,2,n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴, OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(22A D =,0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D y ⎧=-+=⎪⎨=+=⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =02a ,3a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BDAD BD ∴⊥,1AA ⊥平面ABC , 1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点, BD CD =,1//AC DE ∴, 又1A C ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=.故三棱锥11A A B D -. 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC == 所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-, (3,0)AE λ=,1(0,1,1)AD =⋯(7分)设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M , G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF -,此时DE 的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,112AD AB BC ===,PD ⊥平面ABCD ,PD =M 为PC 上的动点.(Ⅰ)当M 为PC 的中点时,在棱PB 上是否存在点N ,使得//MN 平面PDA ?说明理由; (Ⅰ)BDM ∆的面积最小时,求三棱锥M BCD -的体积.【分析】(Ⅰ)当N 为PB 中点时,//MN 平面PDA .取PB 的中点N ,连接MN ,由M ,N 分别为PC ,PB 中点,可得//MN BC ,又//BC AD ,得//MN AD ,再由直线与平面平行的判定对立即可证明//MN 平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥,又BD CD ⊥,CDPD D =,得BD ⊥平面PCD ,又MD ⊂平面PDC ,可得BD MD ⊥,进一步得到DBM ∆为直角三角形,当MD PC ⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD -的体积. 【解答】解:(Ⅰ)当N 为PB 中点时,//MN 平面PDA . 证明如下:取PB 的中点N ,连接MN ,M ,N 分别为PC ,PB 中点,//MN BC ∴,又//BC AD , //MN AD ∴,又DA ⊂平面PDA ,MN ⊂/平面PDA , //MN ∴平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又MD ⊂平面PDC ,BD MD ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴==在Rt PDC ∆中,由PD =CD =可得PC =MD =.则CM =122MCD S ∆∴=⨯=.∴1133M BCD B MCD MCD V V S BD --∆===⨯=8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a .【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1AC AA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCA C C =,1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4), 1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4),设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221||332216n a ==++.解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【分析】(1)通过证明CD AD ⊥,CD DM ⊥,证明CM ⊥平面AMD ,然后证明平面AMD ⊥平面BMC ; (2)存在P 是AM 的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面, CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP , 所以//MC 平面PBD .。
立体几何中的探索型问题及应用
ʏ山东省阳谷县第一中学 宁广亮探索型问题是指那些题目条件不完备㊁结论不明确,或者答案不唯一,给考生留有较大探索余地的试题㊂而立体几何中的探索性问题,设置新颖,变化多端,不仅可以考查和区分考生的数学素质和创新能力,而且还可以有效地检测和区分考生的学习潜能,因而受到各方面的重视,近年来已成为高考试题的一个新亮点㊂一㊁条件探索型问题立体几何中的条件探索型问题,是针对结论确定而条件未知需探求,或条件增删需确定,或条件正误需判断㊂其解题思路是:先执果索因,再倒推分析,逆向思维探究结论成立的充分条件㊂解决立体几何此类问题时,通常利用空间向量来逆推,目标明确,要注意推理过程是否可逆,不要把必要条件当作充分条件㊂图1例1 如图1,A B 为圆O的直径,点E ,F 在圆O 上,且四边形A B E F 为等腰梯形,矩形A B C D 和圆O 所在的平面互相垂直,已知A B =2,E F =1㊂(1)求证:平面D A F ʅ平面C B F ;(2)求当A D 的长为何值时,二面角D -F C -B 的大小为120ʎ㊂解析:(1)因为平面A B C D ʅ平面A B E F ,且C B ʅA B ,平面A B C D ɘ平面A B E F =A B ,所以C B ʅ平面A B E F ㊂因为A F ⊂平面A B E F ,所以C B ʅA F ㊂又因为A B 为圆O 的直径,所以F B ʅA F ㊂而C B ɘ图2F B =B ,所以A F ʅ平面C F B ㊂又A F ⊂平面AD F ,所以平面A D F ʅ平面C F B ㊂(2)设E F ,C D 的中点分别为G ,H ,以O 为坐标原点,建立空间直角坐标系O -x yz ,如图2所示㊂设A D =t ,则D (1,0,t ),C (-1,0,t ),A (1,0,0),B (-1,0,0),F12,32,0 ,所以C D ң=(2,0,0),F D ң=12,-32,t㊂设平面D C F 的法向量为n 1=(x ,y ,z ),则n 1㊃C D ң=2x =0,n 1㊃F D ң=12x -32y +t z =0,取z =3,得x =0,y =2t ,则n 1=(0,2t ,3)㊂由(1)知A F ʅ平面C F B ,则平面C F B的一个法向量为n 2=A F ң=-12,32,0,故|c o s <n 1,n 2>|=|n 1㊃n 2||n 1||n 2|=|3t |4t 2+3㊂因为二面角D -F C -B 的大小为120ʎ,所以12=|3t |4t 2+3,解得t =64㊂所以当线段A D 的长为64时,二面角D -F C -B 的大小为120ʎ㊂点评:解决立体几何中的条件探索型问题,有三种比较常用的思维方式:(1)先猜后证,即先观察与尝试给出条件再证明㊂(2)先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性㊂(3)把几何问题转化为代数问题,探索命题成立的条件㊂根据具体问题场景,合理选取适合的方法来应用㊂二㊁存在探索型问题立体几何中的存在探索型问题,是以结论不确定的存在性判断的形式来设置问题㊂这类问题常常出现 是否存在 是否有 等形式的疑问句,以示结论有待确定㊂解答此类问题的思路是:先肯定结论,再进行推理,若推出矛盾,则否定假设;若推出合理结果,则假设成立㊂解决此类问题的三个基本步骤是:假设推证 定论㊂11解题篇 创新题追根溯源 高考数学 2024年2月图3例2 如图3,在R t әA B C中,øC =90ʎ,B C =3,A C =6,D ,E 分别是线段A C ,A B 上的点,满足D E ʊB C 且A D =2C D ,如图4,将әA D E 沿D E 折起到әA 1D E的图4位置,使A 1C ʅC D ,M 是A 1D 的中点㊂(1)求C M 与平面A 1B E 所成角的大小㊂(2)在线段A 1B 上是否存在点N (N 不与端点A 1,B 重合),使平面C MN 与平面D E N 垂直若存在,求出A 1NB N的值;若不存在,请说明理由㊂解析:(1)在R t әA B C 中,øC =90ʎ,D E ʊB C ,所以D E ʅA D ,D E ʅC D ㊂因为折叠前后对应角相等,所以D E ʅA 1D ,D E ʅC D ㊂又A 1D ɘC D =D ,A 1D ,C D ⊂平面A 1C D ,所以D E ʅ平面A 1C D ,D E ʅA 1C ㊂又A 1C ʅC D ,C D ɘD E =D ,所以A 1C ʅ平面B C D E ㊂图5以C 为坐标原点,C D ,C B ,C A 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系C -x yz ,如图5所示㊂因为A D =2C D ,故D E =23B C =2,由几何关系知C D =2,A 1D =A D =4,A 1C =23,故C (0,0,0),D (2,0,0),E (2,2,0),B (0,3,0),A 1(0,0,23),M (1,0,3),所以C M ң=(1,0,3),A 1B ң=(0,3,-23),A 1E ң=(2,2,-23)㊂设平面A 1B E 的法向量为n 1=(x ,y ,z ),则n 1㊃A 1B ң=3y -23z =0,n 1㊃A 1E ң=x +y -3z =0,令y =2,得z =3,x =1,则n 1=(1,2,3)㊂设C M 与平面A 1B E 所成角的大小为θ,则s i n θ=|c o s <C M ң,n 1>|=|C M ң㊃n 1||C M ң||n 1|=|4|2ˑ22=22,故θ=π4,即C M 与平面A 1B E所成角的大小为π4㊂(2)假设存在点N ,符合题意㊂设N (x 1,y 1,z 1),B N ң=λB A 1ң(0<λ<1),即(x 1,y 1-3,z 1)=λ(0,-3,23),即x 1=0,y 1=3(1-λ),z 1=23λ,故N (0,3(1-λ),23λ),C M ң=(1,0,3),C N ң=(0,3(1-λ),23λ)㊂设平面C M N 的法向量为n 2=(x 2,y 2,z 2),则n 2㊃C M ң=x 2+3z 2=0,n 2㊃C N ң=3(1-λ)y 2+23z 2=0,令x 2=3,得z 2=-1,y 2=23λ3(1-λ),则n 2=3,23λ3(1-λ),-1㊂同理可求得平面D E N 的一个法向量为n 3=3,0,1λ㊂若平面C MN 与平面D E N 垂直,则满足n 2㊃n 3=0,即3-1λ=0,解得λ=13㊂故存在满足题意的点N ,由B Nң=13B A 1ң,可得A 1N B N =21=2㊂点评:解决立体几何中的存在探索型问题时,首先假设结论存在,然后在这个假设下进行合理的推理论证与数学运算㊂如果通过推理或运算得到了合乎情理或满足条件的结论,就可以肯定假设的存在性;如果得到了矛盾或不满足条件的结论,就否定假设的存在性㊂三、开放探索型问题立体几何中的开放探索型问题,是基于条件或结论结构不良的开放性问题,合理补充条件完整是解题的第一步,基于条件的补充,形成一个完整的题目,与正常试题的解答基本一致㊂图6例3 如图6,在底面A B C D 是菱形的直四棱柱A B C D -A 1B 1C 1D 1中,øD A B =π3,A B =2,A A 1=23,E ,F ,G ,H ,N 分别是棱C C 1,C 1D 1,D D 1,C D ,B C 的中点,点P 在四边形E F G H 内部(包含边界)运动㊂21 解题篇 创新题追根溯源 高考数学 2024年2月(1)现有如下三个条件:①G E ɘF H =P ;②P ɪF H ;③E P ң=P F ң㊂请从上述三个条件中选择一个条件,能使得P N ʊ平面B B 1D 1D 成立,并写出证明过程㊂(注:多次选择分别证明,只按第一次选择计分)(2)求平面F G N 与平面A D D 1A 1的夹角的余弦值㊂解析:(1)选①:G E ɘF H =P ㊂如图7图7所示,连接C D 1,B D 1,P N ,因为四边形C D D 1C 1为矩形,所以四边形E F -G H 为平行四边形,则P 分别是C D 1,G E 的中点,且N 是B C 中点,可得P N ʊB D 1㊂又因为P N ⊄平面B B 1D 1D ,B D 1⊂平面B B 1D 1D ,所以P N ʊ平面B B 1D 1D ㊂图8选②:P ɪF H ㊂如图8所示,连接HN ,P N ㊂由于F ,H ,N 分别是棱C 1D 1,C D ,B C 的中点,所以F H ʊD D 1㊂又F H ⊄平面B B 1D 1D ,D D 1⊂平面B B 1D 1D ,所以F H ʊ平面B B 1D 1D ㊂同理可证,HNʊ平面B B 1D 1D ㊂又F H ⊂平面F HN ,HN⊂平面F HN ,F H ɘHN =H ,所以平面F HN ʊ平面B B 1D 1D ㊂又因为P N ⊂平面F HN ,所以P N ʊ平面B B 1D 1D ㊂选③:E P ң=P F ң㊂由于E P ң=P F ң,所以P 图9是线段E F 的中点㊂如图9所示,设M ,Q 分别是G F ,B D 的中点,由于P ,N 分别是E F ,B C 的中点,则P M ʊG E ,P M =12G E ,Q N ʊC D ,Q N =12C D ㊂因为P M ʊG E ʊC D ,所以P M ʊQ N ,P M =Q N ,所以四边形P M Q N 是平行四边形,所以P N ʊM Q ㊂由于Q ɪ平面B B 1D 1D ,M ∉平面B B 1D 1D ,所以M Q ɘ平面B B 1D 1D=Q ,所以P N 与平面B B 1D 1D 不平行㊂图10(2)由于四边形A B C D 为菱形,且øD A B=π3,则知D N ʅB C ㊂以D 为坐标原点,D A ң,D N ң,D D 1ң分别为x 轴,y 轴,z 轴的正方向,建立如图10所示的空间直角坐标系D -x yz ,则D 1(0,0,23),C 1(-1,3,23),G (0,0,3),N (0,3,0),F -12,32,23,所以G N ң=(0,3,-3),G F ң=-12,32,3㊂设m =(x ,y ,z )为平面F G N 的一个法向量,则m ㊃G N ң=3y -3z =0,m ㊃G F ң=-12x +32y +3z =0,令y =1,得m =(33,1,1)㊂可取n =(0,1,0)为平面A D D 1A 1的一个法向量,则|c o s <m ,n >|=|m ㊃n ||m ||n |=127+1+1ˑ1=2929,所以平面F G N 与平面A D D 1A 1的夹角的余弦值为2929㊂点评:解决立体几何中的开放探索型问题时,结合立体几何应用场景,往往又分为选择条件型与探索条件型,基于不同的开放性条件加以合理选择,进而进行分析与求解,有效考查同学们分析问题与解决问题的能力,对理解能力㊁探究能力㊁创新能力与应用意识等的考查也是积极和深刻的㊂立体几何中的探索型问题,经常以条件探索型㊁存在探索型及开放探索型等不同形式来创新设置,方式新颖,变化多端,不仅能较好地考查考生的空间想象能力与逻辑推理能力,而且能考查考生的数学思维品质与水平,这对考生的综合素质与数学水平的提高起到了积极的作用㊂(责任编辑 王福华)31解题篇 创新题追根溯源 高考数学 2024年2月。
专题10立体几何中的开放性、探索性问题(解析版)-2021年高考数学(理)立体几何突破性讲练
2021年高考数学(理)立体几何突破性讲练10立体几何中的开放性、探索性问题一、考点传真:能用向量方法证明立体几何中有关线面位置关系的一些简单定理,并能用向量方法解决线线、线面、面面的夹角的计算问题.二、知识点梳理:解决立体几何中开放性、探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.三、例题:例1.(2020年全国新高考1卷,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬o 40,则晷针与点A 处的水平面所成角为( )A.o 20B.o 40C.o 50D.o 90【答案】B【解析】过球心O 、点A 以及晷针的轴截面如图所示,其中CD 为晷面,GF 为晷针所在直线,EF 为点A 处的水平面,GF CD ⊥,CD OB ,40AOB ∠=︒,90OAE OAF ∠=∠=︒,所以40GFA CAO AOB ∠=∠=∠=︒.故选B.例2.(2020年全国1卷理数,16)如图,在三棱锥–P ABC 的平面展开图中,1AC =,AB AD =AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠=______________.【答案】14-【解析】依题意得,AE AD =AEC 中,1AC =,30CAE ∠=︒,由余弦定理得2222cos 311EC AE AC AE AC EAC =+-⋅∠=-︒+=,所以1EC =,所以1CF EC ==.又2BC ,BF BD ===所以在BCF中,由余弦定理得2221cos 24BC CF BF FCB BC CF +-∠===-⨯.例3. (2019北京卷)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,AD CD ⊥,ADBC ,2PA AD CD BC ====,=(Ⅰ)求证:CD PAD ⊥平面; (Ⅱ)求二面角F AE P --的余弦值; (Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由. 【解析】(I )因为PA ⊥平面ABCD ,所以PA CD ⊥. 又因为AB CD ⊥,所以CD ⊥.平面PAD ,(II )过A 作AD 的垂线交BC 于点M ,因为PA ⊥平面ABCD ,所以,PA AM ⊥PA AD ⊥,如图建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2),因为E 为PD 的中点,所以E (0,1,1).所以()0,1,1AE =,()2,2,2PC =-, ()0,0,2AP =. 所以1222,,3333PF PC ⎛⎫==- ⎪⎝⎭,224,,333AF AP PF ⎛⎫=+= ⎪⎝⎭设平面AEF 的法向量为(),,x y z =n ,则00AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即02240333y z x y z +=⎧⎪⎨++=⎪⎩. 令z =1,则y =-1,x =-1.于是()1,1,1=--n .又因为平面PAD 的法向量为()1,0,0=p ,所以3cos ⋅==⋅n p <n,p >n p .因为二面角F-AE-P为锐角,所以其余弦值为3(III )直线AG 在平面AEF 内,因为点G 在PB 上,且2,3PG PB =()2,1,2,PB =-- 所以2424,,3333PG PB ⎛⎫==-- ⎪⎝⎭,422,,333AG AP PG ⎛⎫=+=- ⎪⎝⎭. 由(II )知,平面AEF 的法向量为()1,1,1=--n , 所以4220333AG ⋅++=n =-,所以直线AG 在平面AEF 内. 例4.(2016年北京) 如图,在四棱锥中,平面PAD ⊥平面,, ,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD , ∵PD ⊂面PAD , ∴AB ⊥PD ,yBP ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 四、巩固练习:1.如图所示,在四边形ABCD中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD ,则在三棱锥A BCD 中,下列结论正确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC【答案】D【解析】∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.2.如图甲所示,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个四面体,使B,C,D三点重合,重合后的点记为H,如图乙所示,那么,在四面体AEFH中必有( )A.AH⊥平面EFH B.AG⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF【答案】A【解析】∵AH⊥HE,AH⊥HF,且EH∩HF=H,∴AH⊥平面EFH,A正确;∵过A只有一条直线与平面EFH垂直,∴B不正确;∵AG⊥EF,EF⊥AH,AG∩AH=A,∴EF⊥平面HAG,∵EF⊂平面AEF,∴平面HAG⊥AEF,∴过H作平面AEF的垂线,一定在平面HAG内,∴C不正确;∵HG不垂直于AG,∴HG⊥平面AEF不正确,∴D不正确.故选A.3.如图,一张A4纸的长、宽分别为22a,2a,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体.下列关于该多面体的命题,正确的是________.(写出所有正确命题的序号)①该多面体是三棱锥;②平面BAD⊥平面BCD;③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2.【答案】①②③④【解析】由题意得该多面体是一个三棱锥,故①正确;∵AP⊥BP,AP⊥CP,BP∩CP=P,∴AP ⊥平面BCD ,又∵AP ⊂平面ABD ,∴平面BAD ⊥平面BCD ,故②正确;同理可证平面BAC ⊥平面ACD ,故③正确;该多面体的外接球半径R =52a ,所以该多面体外接球的表面积为5πa 2,故④正确.综上,正确命题的序号为①②③④.4.如图所示,在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将四边形ABCD 沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是________. ①A ′C ⊥BD ;②∠BA ′C =90°;③四面体A ′BCD 的体积为16.【答案】②③【解析】∵BD ⊥CD ,平面A ′BD ⊥平面BCD ,平面A ′BD ∩平面BCD =BD ,CD ⊂平面BCD ,∴CD ⊥平面A ′BD ,∴CD ⊥A ′D .∵AB =AD =CD =1,BD =2,∴A ′C =2,BC =3,∴A ′B 2+A ′C 2=BC 2,∴A ′B ⊥A ′C ,即∠BA ′C =90°,四面体A ′BCD 的体积V =13×12×12×1=16.5.如图,矩形ABCD 中,E 为边AB 的中点,将△ADE 沿直线DE 翻转成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻转过程中,正确的命题是________. ①MB 是定值; ②点M 在圆上运动;③一定存在某个位置,使DE ⊥A 1C ; ④一定存在某个位置,使MB ∥平面A 1DE . 【答案】①②④【解析】取DC 的中点N ,连接MN ,NB ,则MN ∥A 1D ,NB ∥DE ,∴平面MNB ∥平面A 1DE ,∵MB ⊂平面MNB ,∴MB ∥平面A 1DE ,④正确;∠A 1DE=∠MNB ,MN =12A 1D =定值,NB =DE =定值,根据余弦定理得,MB 2=MN 2+NB 2-2MN ·NB ·cos∠MNB ,所以MB 是定值,①正确;B 是定点,所以M 是在以B 为圆心,MB 为半径的圆上,②正确;当矩形ABCD 满足AC ⊥DE 时存在,其他情况不存在,③不正确.所以①②④正确. 6.如图①,在矩形ABCD 中,AB =6,AD =23,点F 是AC 上的动点.现将矩形ABCD 沿着对角线AC 折成二面角D ′AC B ,如图②,使得D ′B =30.(1)求证:当AF =3时,D ′F ⊥BC ;(2)试求CF 的长,使得二面角A D ′F B 的大小为π4.【解析】(1)证明:在矩形ABCD 中,连接DF ,BF . ∵AD =23,CD =6,∴AC =43,∠CAB =30°,∠DAC =60°. 在△ADF 中,∵AF =3,∴DF 2=DA 2+AF 2-2DA ·AF ·cos∠DAC =9. ∵DF 2+AF 2=9+3=DA 2,∴DF ⊥AC ,即在三棱锥D ′ABC 中,D ′F ⊥AC .又在△ABF 中,BF 2=AB 2+AF 2-2AB ·AF ·cos∠CAB =21, ∴在△D ′FB 中,D ′F 2+FB 2=9+21=D ′B 2, ∴BF ⊥D ′F .又∵AC ∩FB =F ,∴D ′F ⊥平面ABC . 又BC ⊂平面ABC ,∴D ′F ⊥BC .(2)在矩形ABCD 中,过点D 作DO ⊥AC 于点O ,延长DO 交AB 于点E .易求DE =4,AO =3,D ′O =3,OE =1,沿着对角线AC 翻折后,由(1)可知,OE ,OC ,OD ′两两垂直, 以O 为原点,OE ―→,OC ―→,OD ′―→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz , 则O (0,0,0),E (1,0,0),D ′(0,0,3),B (3,23,0).∵EO ⊥平面AD ′F ,∴OE ―→=(1,0,0)为平面AD ′F 的一个法向量. 设平面BD ′F 的一个法向量为n =(x ,y ,z ),F 点坐标为F (0,t,0), 则BD ′―→=(-3,-23,3),BF ―→=(-3,t -23,0).由⎩⎪⎨⎪⎧n ·BD ′―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -23y +3z =0,-3x +t -23y =0.取y =3,得x =t -23,z =t ,∴n =(t -23,3,t ).∴cos π4=|n ·OE ―→||n |·|OE ―→|,即|t -23|t -232+9+t2=22, ∴t =34.∴当CF =OC -OF =1134时,二面角A D ′F B 的大小是π4. 7.如图,在四棱锥P ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =32,PB ⊥AC .(1)求证:平面PAB ⊥平面PAC ;(2)若∠PBA =45°,试判断棱PA 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33?若存在,求出AEAP的值;若不存在,请说明理由. 【解析】(1)证明:因为四边形ABCD 是平行四边形,AD =22,所以BC =AD =2 2.又因为AB =AC =2,所以AB 2+AC 2=BC 2,所以AC ⊥AB .又因为PB ⊥AC ,且AB ∩PB =B ,所以AC ⊥平面PAB .因为AC ⊂平面PAC ,所以平面PAB ⊥平面PAC . (2)由(1)知AC ⊥AB ,平面PAB ⊥平面ABC ,AC ⊥平面PAB .如图,分别以AB ,AC 所在直线为x 轴,y 轴,平面PAB 内过点A 且与直线AB 垂直的直线为z 轴,建立空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),所以AC ―→=(0,2,0),BC ―→=(-2,2,0).由∠PBA =45°,PB =32,可得P (-1,0,3), 所以AP ―→=(-1,0,3),BP ―→=(-3,0,3).假设棱PA 上存在点E ,使得直线CE 与平面PBC 所成角的正弦值为33,设AEAP=λ(0<λ<1),则AE ―→=λAP ―→=(-λ,0,3λ),CE ―→=AE ―→-AC ―→=(-λ,-2,3λ). 设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BC ―→=0,n ·BP ―→=0,即⎩⎪⎨⎪⎧-2x +2y =0,-3x +3z =0.令z =1,可得x =y =1,所以平面PBC 的一个法向量为n =(1,1,1).设直线CE 与平面PBC 所成的角为θ,则sin θ=|cos 〈n ,CE ―→〉|=|-λ-2+3λ|3×-λ2+-22+3λ2=|2λ-2|3×10λ2+4=33,整理得3λ2+4λ=0, 因为0<λ<1,所以3λ2+4λ>0,故3λ2+4λ=0无解,所以棱PA 上不存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33. 8.如图①,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图②所示的几何体.(1)求证:AB ⊥平面ADC ;(2)若AD =1,二面角C AB D 的平面角的正切值为6,求二面角B AD E 的余弦值. 【解析】(1)证明:因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BD ⊥DC , 所以DC ⊥平面ABD . 因为AB ⊂平面ABD , 所以DC ⊥AB .又因为折叠前后均有AD ⊥AB ,DC ∩AD =D , 所以AB ⊥平面ADC . (2)由(1)知AB ⊥平面ADC ,所以二面角C AB D 的平面角为∠CAD . 又DC ⊥平面ABD ,AD ⊂平面ABD , 所以DC ⊥AD .依题意tan ∠CAD =CD AD= 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意△ABD ∽△DCB ,所以AB AD =CD BD ,即x 1=6x 2+1.解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3. 法一:如图所示,建立空间直角坐标系D xyz , 则D (0,0,0),B (3,0,0),C (0,6,0),E ⎝ ⎛⎭⎪⎫32,62,0,A ⎝ ⎛⎭⎪⎫33,0,63. 所以DE ―→=⎝ ⎛⎭⎪⎫32,62,0,DA ―→=⎝ ⎛⎭⎪⎫33,0,63. 由(1)知平面BAD 的一个法向量n =(0,1,0).设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧ m ·DE ―→=0,m ·DA ―→=0,得⎩⎪⎨⎪⎧ 32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量.所以cos 〈n ,m 〉=n ·m |n |·|m|=-12. 由图可知二面角B AD E 的平面角为锐角,所以二面角B AD E 的余弦值为12. 法二:因为DC ⊥平面ABD ,所以过点E 作EF ∥DC 交BD 于点F ,则EF ⊥平面ABD .因为AD ⊂平面ABD ,所以EF ⊥AD .过点F 作FG ⊥AD 于点G ,连接GE ,所以AD ⊥平面EFG ,因此AD ⊥GE ,所以二面角B AD E 的平面角为∠EGF .由平面几何的知识求得EF =12CD =62,FG =12AB =22, 所以EG =EF 2+FG 2=2, 所以cos ∠EGF =FG EG =12. 所以二面角B AD E 的余弦值为12. 9.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ⊥CD ,BF⊥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由. 【解析】(1)证明:由已知得四边形ABFE 是正方形,且边长为2,∴AF ⊥BE .∵AF ⊥BD ,BE ∩BD =B ,∴AF ⊥平面BDE .又DE ⊂平面BDE ,∴AF ⊥DE .∵AE ⊥DE ,AE ∩AF =A ,∴DE ⊥平面ABFE .又BE ⊂平面ABFE ,∴DE ⊥BE .(2)当P 为AB 的中点时满足条件.理由如下:∵AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,∴AE ⊥平面DEFC .如图,过E 作EG ⊥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝⎛⎭⎪⎫0,-12,32,AC ―→=(-2,1,3),AD ―→=⎝⎛⎭⎪⎫-2,-12,32. 设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎪⎨⎪⎧ -2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P ⎝ ⎛⎭⎪⎫2,2λ1+λ,0,λ∈(0,+∞), 可得CP ―→=⎝ ⎛⎭⎪⎫2,λ-11+λ,-3. 设CP 与平面ACD 所成的角为θ,则sin θ=|cos CP ―→,n |=⎪⎪⎪⎪⎪⎪-1-λ-11+λ7+⎝ ⎛⎭⎪⎫λ-11+λ2×5=3535, 解得λ=1或λ=-25(舍去), ∴P 为A。
高考专题立体几何中的探索性问题-精品之高中数学(文)---精校解析Word版
第68题立体几何中的探索性问题I .题源探究·黄金母题【例1】【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F , 使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析; (III )存在.理由见解析.【解析】分析:(Ⅰ)利用线面垂直判定定理证明;(Ⅱ)利用面面垂直判定定理证明;(III )取PB 中点F ,连结F E ,则F//E PA ,根据线面平行定理则//PA 平面C F E .解析:(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA .(II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A . 因为C P ⊥平面CD AB ,所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下:取PB 中点F ,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA . 又因为PA ⊄平面C F E ,所以//PA 平面C F E .【名师点睛】在解决立体几何探索性问题时,常常先通过空间观察和条件分析(中点)假设存在符合条件的点,然后进行推理论证。
II .考场精彩·真题回放【例2】【2015高考安徽文19】如图,三棱锥P -ABC 中,PA ⊥平面ABC ,1,1,PA AB ==2,60AC BAC =∠=o .(Ⅰ)求三棱锥P -ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.【答案】(Ⅱ)13PM MC = 【解析】(Ⅰ)解:由题设AB =1,,2=AC60=∠BAC可得ABC S ∆︒⋅⋅⋅=60sin 21AC AB 23=.由⊥PA 面ABC ,可知PA 是三棱锥ABC P -的高,又1=PA所以三棱锥ABC P -的体积6331=⋅⋅∆PA S V ABC = (Ⅱ)证:在平面ABC 内,过点B 作AC BN ⊥, 垂足为N ,过N 作PA MN //交PC 于M ,连接BM.由⊥PA 面ABC 知AC PA ⊥,所以AC MN ⊥.由于N MN BN =⋂,故⊥AC 面MBN ,又⊂BM 面MBN ,所以BM AC ⊥.在直角BAN ∆中,21cos =∠⋅=BAC AB AN ,从而23=-=AN AC NC .由PA MN //,得31=NC AN MC PM =. 【名师点睛】本题将正弦定理求三角形的面积巧妙地结合到求锥体的体积之中,本题的第(Ⅱ)问需要学生构造出线面垂直,进而利用性质定理证明出面面垂直,本题考查了考生的空间想象能力、构造能力和运算能力.【例3】【2016高考四川文科】如图,在四棱锥P-ABCD 中,PA⊥CD ,AD∥BC ,∠ADC=∠PAB=90°,12BC CD AD ==. DCB AP(I )在平面PAD 内找一点M ,使得直线CM∥平面PAB ,并说明理由; (II )证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD 的中点M ,证明详见解析;(Ⅱ)证明详见解析.【解析】分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,只要在平面ABCD 上作//CM AB 交AD 于M 即得;(Ⅱ)要证面面垂直,先证线面垂直,也就要证线线垂直,本题中有PA BD ⊥(由线面垂直的性质或定义得),另外可以由平面几何知识证明BD AB ⊥,从而有线面垂直,再有面面垂直. 试题解析:MDCB AP(I )取棱AD 的中点M (M∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD‖BC,BC =12AD ,所以BC‖AM , 且BC =AM . 所以四边形AMCB 是平行四边形,从而CM‖AB . 又AB ⊂ 平面PAB ,CM ⊄ 平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(II )由已知,PA ⊥AB , PA ⊥CD ,因为AD ∥BC,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD . 从而PA ⊥ BD .因为AD ∥BC,BC =12AD , 所以BC ∥MD,且BC =MD. 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A,所以BD ⊥平面PAB .又BD ⊂ 平面PBD,所以平面PAB ⊥平面PBD . 【例4】【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P A B C D -中,侧棱PD ⊥底面A B C D ,且P D C D =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是 否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.【答案】(Ⅰ)四面体EBCD 是一个鳖臑; (Ⅱ)124.V V = 【解析】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠ (Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE是鳖臑D B C E -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PDV CE DE BC CE DE ⋅⋅⋅===⋅⋅⋅【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力.【例5】【2014四川文18】在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形。
专题3.1 以立体几何中探索性问题为背景的解答题(解析版)
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒,过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED ,EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB ,即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x ,由(1)知GM ∥DF , G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=, 当且仅当4﹣x =x 时等号成立,此时x =DE =2.故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;。
高中数学 考前归纳总结 立体几何中的探索问题
立体几何中的探索问题一、探索点的位置例1.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD=DC=4,AD=2,E 为PC 的中点, 在线段AC 上是否存在一点 M ,使得PA//平面EDM ,若存在,求出AM 的长;若 不存在,请说明理由.解:取AC 中点M ,连结EM 、DM , 因为E 为PC 的中点,M 是AC 的中点,所以EM//PA ,又因为EM ⊂平面EDM ,PA ⊄平面EDM , 所以PA//平面EDM 所以.521==AC AM 即在AC 边上存在一点M ,使得PA//平面EDM ,AM 的长为5.例2.如图,三棱柱111C B A ABC -中,1AA ⊥面ABC ,2,==⊥AC BC AC BC ,13AA =,D 为AC 的中点,(2)求二面角C BD C --1的余弦值; (3)在侧棱1AA 上是否存在点P ,使得 1BDC CP 面⊥?请证明你的结论. 解:(1)解:如图,建立空间直角坐标系, 则C 1(0,0,0),B (0,3,2),C (0,3,0),A (2,3,0),D (1,3,0),11(0,3,2),(1,3,0)C B C D ∴==u u u r u u u u r设111(,,)n x y z =r是面BDC 1的一个法向量,则110,0n C B n C D ⎧=⎪⎨=⎪⎩u u u r r g u u u u r r g 即1111320,30y z x y +=⎧⎨+=⎩,C 1A1C B 1ABDAACzxyCB1BD取11(1,,)32n =-r ,易知1(0,3,0)C C =u u u u r 是面ABC 的一个法向量.1112cos ,7n C C n C C n C C==-⨯u u u u r r u u u u r g r u u u u r r . ∴二面角C 1—BD —C 的余弦值为27.(2)假设侧棱AA 1上存在一点P 使得CP ⊥面BDC 1.设P (2,y ,0)(0≤y ≤3),则 (2,3,0)CP y =-u u u r,则110,0CP C B CP C D ⎧=⎪⎨=⎪⎩u u u r u u u rg u u u r u u u u r g ,即3(3)0,23(3)0y y -=⎧⎨+-=⎩. 解之3,73y y =⎧⎪⎨=⎪⎩∴方程组无解.∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1.二、探索结论的存在性例3.如图,已知三棱锥P ABC -中,PA PC ⊥,D 为AB 中点,M 为PB 的中点,且2AB PD =. (1)求证:DM ∥PAC 面;(2)找出三棱锥P ABC -中一组面与面垂直的位 置关系,并给出证明(只需找到一组即可) (1)证明:依题意 D 为AB 的中点,M 为PB 的中点 ∴ DM // PA又, ∴(2)平面PAC平面PBC (或平面PAB平面PBC)证明:由已知AB=2PD,又D为AB的中点所以PD=BD 又知M为PB的中点∴,由(1)知 DM // PA∴又由已知,且故∴平面PAC 平面PBC 。
【高考数学大题精做】专题04 立体几何的探索性问题(第三篇)(解析版)
【高考数学大题精做】第三篇 立体几何专题04 立体几何的探索性问题【典例1】【2020届江苏巅峰冲刺卷】如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点.(1)求异面直线AP ,BM 所成角的余弦值;(2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为45,求λ的值. 【思路引导】(1)先根据题意建立空间直角坐标系,求得向量BM u u u u r和向量AP u u u r 的坐标,再利用线线角的向量方法求解.(2)由AN =λ,设N (0,λ,0)(0≤λ≤4),则MN u u u u r=(-1,λ-1,-2),再求得平面PBC 的一个法向量,利用直线MN 与平面PBC 所成角的正弦值为45,由|cos 〈MN u u u u r ,m u r 〉|=||||||⋅u ru r u u u u r u u u u r MN MN m m 45求解. 【详解】(1) 因为P A ⊥平面ABCD ,且AB ,AD ⊂平面ABCD ,所以P A ⊥AB ,P A ⊥AD . 又因为∠BAD =90°,所以P A ,AB ,AD 两两互相垂直. 分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系, 则由AD =2AB =2BC =4,P A =4可得A (0,0,0),B (2,0,0),C (2,2,0),D (0,4,0),P (0,0,4). 又因为M 为PC 的中点,所以M (1,1,2).所以BM u u u u r=(-1,1,2),AP u u u r =(0,0,4),所以cos 〈AP u u u r ,BM u u u u r 〉=||||⋅u u u r u u u u ru u u ur u u u u u r AP BMAP BM所以异面直线AP ,BM.(2) 因为AN =λ,所以N (0,λ,0)(0≤λ≤4),则MN u u u u r =(-1,λ-1,-2),BC uuu r =(0,2,0),PB u u u r=(2,0,-4).设平面PBC 的法向量为m u r=(x,y,z ),则00m BC m PB ⎧⋅=⎨⋅=⎩u u u v v u u u v v 即20240y x z =⎧⎨-=⎩ 令x =2,解得y =0,z =1,所以m u r=(2,0,1)是平面PBC 的一个法向量. 因为直线MN 与平面PBC 所成角的正弦值为45, 所以|cos 〈MN u u u u r ,m u r 〉|=||||||⋅u ru r u u u u r u u u u r MN MN m m45, 解得λ=1∈[0,4],所以λ的值为1.【典例2】【2020届江西省赣州市高三上学期期末考试】如图,在平行四边形ABCD 中,2,4,60AB AD BAD ︒==∠=,平面EBD ⊥平面ABD ,且,EB CB ED CD ==.(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【思路引导】(1)容易判断出点F 为EA 的中点,根据中位线定理得到//OF EC ,再根据线面平行的判定定理证明即可; (2)根据题目给出的数据,找出两两垂直的关系,建立空间直角坐标系,利用向量法求出二面角A EC D --的余弦值. 【详解】(1)存在点F ,点F 为EA 的中点证明:当点F 为EA 的中点时,连结AC 交BD 于O , ∵平行四边形ABCD ,∴O 为AC 的中点, 连结OF ,则//OF EC ,∵FO ⊂平面BDF ,EC ⊂/平面BDF ,∴//EC 平面FBD . (2)∵4,2EB CB AD ED CD AB ======,60BAD ∠=︒∴BD =222BE BD ED =+,222BC BD DC =+,∴BD ED ⊥,BD DC ⊥ 又∵平面EBD ⊥平面ABD ,∴ED ⊥平面ABCD ,BD ⊥平面ECD , 以DB 为x 轴,DC 为y 轴,DE 为z 轴,如图建系:D xyz -则(0,0,0)D,2,0)A -,(0,2,0)C ,(0,0,2)E,B∴(4,0)AC =-u u u r,(2,2)AE =-u u u r∴DB =u u u r为平面ECD 的一个法向量, 令平面ACD 的一个法向量为(,,)n x y z =r,∴40220n AC y n AE y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩u u u v v u u u v v 取2x =,y =z =∴平面ACD的一个法向量为(n =r,令二面角A EC D --为θ,由题意可知θ为锐角,则||cos |cos ,|5||||n DB n DB n DB θ⋅=<>===⋅r u u u rr u u u r ru u u r . 【典例3】【北京市昌平区2020届高三期末】如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ;(Ⅰ)求证:BD ⊥平面P AB ;(Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【思路引导】(Ⅰ)由题意可得CD ⊥平面P AD ,从而易得CD ⊥PD ; (Ⅰ)要证BD ⊥平面P AB ,关键是证明BD AB ⊥;(Ⅰ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 【详解】(Ⅰ)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD , 所以CD ⊥P A .因为CD ⊥AD ,PA AD A ⋂=, 所以CD ⊥平面P AD . 因为PD ⊂平面P AD , 所以CD ⊥PD .(II )因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥P A .在直角梯形ABCD 中,12BC CD AD ==,由题意可得AB BD ==,所以222AD AB BD =+, 所以BD AB ⊥. 因为PA AB A =I , 所以BD ⊥平面P AB .(Ⅰ)解:在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 证明:取P A 的中点N ,连接MN ,BN ,因为M 是PD 的中点,所以12MN AD P . 因为12BC AD P,所以MN BC P . 所以MNBC 是平行四边形, 所以CM ∥BN .因为CM ⊄平面P AB , BN ⊂平面P AB . 所以//CM 平面P AB .【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BCE 、G 分别为PC 、P A 的中点.(1)求证:平面BCG ⊥平面P AC ;(2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求ANNC的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【思路引导】(1)由BC PA ⊥,BG PA ⊥,得PA ⊥平面BCG ,即可得到本题的结论;(2)由N 为线段AC 一点,可设为(2,,0)AN AC λλ==-u u u r u u u r,得(22,,2)PN λ=--u u u r,又由,PN BE ⊥可确定λ的取值,从而可得到本题答案;(3)求出平面PBN 的法向量(,,)n x y z =r ,然后套入公式||sin ||||BE n BE n θ⋅=⋅u u u r ru u ur r ,即可得到本题答案. 【详解】(1) 因为PB ⊥平面ABC ,BC ⊂平面ABC ,所以PB BC ⊥, 又AB BC ⊥,AB BP B =I ,所以BC ⊥平面PAB ,则BC PA ⊥①,又2AB PB ==,PAB ∆为等腰直角三角形,G 为斜边PA 的中点,所以BG PA ⊥②,又BG BC B ⋂=,所以PA ⊥平面BCG ,因PA ⊂平面PAC , 则有平面BCG ⊥平面 PAC ;(2)分别以,,BA BC BP u u u r u u u r u u u r为,,x y z 轴,建立空间直角坐标系,那么(2,0,0),(0,(0,0,2),A C P BE =u u u r,因此(2,AC =-u u u r ,(2,0,2)PA =-u u u r,设(2,,0)AN AC λλ==-u u u r u u u r,那么(22,,2)PN λ=--u u u r,由PN BE ⊥,得0PN BE ⋅=u u u r u u u r,解得13λ=. 因此13AN AC =u u u r u u u r ,因此12AN NC =; (3)由(2)知4(2)3PN =-u u u r ,设平面PBN 的法向量为(,,)n x y z =r ,则0,0n PN n BP ⋅=⋅=r u u u r r u u u r,即204203z x y z =⎧⎪⎨-=⎪⎩,令x =2y =-,0,z =因此2,0)n =-r,设直线BE 与平面PBN 所成角为θ,那么sin BE n BE nθ⋅===⋅u u u r r u u u r r . 【典例5】【浙江省丽水市2020届模拟】如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=︒,1AB BC ==,2PA AD ==.(1)求证:CD ⊥平面PAC ;(2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【思路引导】(1)由题意,利用勾股定理可得DC AC ==222AC DC AD +=,可得AC DC ⊥,利用线面垂直的性质可得PA CD ⊥,利用线面垂直的判定定理即可证明DC ⊥平面P AC ;(2)过点A 作AH ⊥PC ,垂足为H ,由(1)利用线面垂直的判定定理可证明AH ⊥平面PCD ,在RT △PAC中,由P A =2,AC =23PH PC =,即在棱PC 上存在点H ,且23PH PC =,使得AH ⊥平面PCD . 【详解】解(1)由题意,可得DC AC ==,∴222AC DC AD +=,即AC DC ⊥, 又PA ⊥底面ABCD , ∴PA CD ⊥, 且PA AC A =I , ∴DC ⊥平面PAC ;(2)过点A 作AH PC ⊥,垂足为H , 由(1)可得CD AH ⊥, 又PC CD C =I , ∴AH ⊥平面PCD .在Rt PAC △中,∵2PA =,AC =,PH PAPA PC=∴23PH PC =. 即在棱PC 上存在点H ,且23PH PC =,使得AH ⊥平面PCD .【典例6】【江苏省苏州市实验中学2020届高三月考】直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【思路引导】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+u u u r u u u r u u u u r,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解. 【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-u u u r ,1(0,0,)A A a =u u u r ,11(2,2,0)AC =u u u u r , 因为11113EF A A AC =-+u u u r u u u r u u u u r ,所以EF u u u r ,1A A u u u r ,11AC u u u u r 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且AG =证明如下:在三角形AGE 中,由余弦定理得EG ==3==, 所以222AG EG AE +=,即EG AG ⊥, 又1A A ⊥平面ABCD ,EG ⊂平面ABCD , 、所以1A A EG ⊥,而1AG A A A ⋂=, 所以EG ⊥平面11AAC C , 因为EG ⊂平面EFG , 所以EFG ⊥面11AAC C ,【典例7】【山东省临沂市2019年普通高考模拟】如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =(1)求直线CA 与平面BEF 所成角的正弦值;(2)在线段AF 上是否存在点M ,使得二面角M BE D 的大小为60°?若存在,求出AMAF的值;若不存在,说明理由. 【思路引导】(1)以D 为坐标原点,射线DA ,DC ,DE 分别为x 轴,y 轴,z 轴的正半轴,建立空间坐标系,求出,,,,A C B E F坐标,进而求出,,CA BE EF u u u r u u u r u u u r坐标,求出平面BEF 的法向量坐标,按空间向量线面角公式,即可求解;(2)设M (3,0,t ),0≤t ≤MBE 的法向量坐标,利用CA u u u r是平面BED 的一个法向量,按空间向量面面角公式,即可求出结论. 【详解】(1)因为DA ,DC ,DE 两两垂直,所以以D 为坐标原点,射线DA ,DC ,DE 分别为x 轴,y 轴,z 轴的正半轴, 建立空间直角坐标系D xyz ,如图所示.则A (3,0,0), F (3,0,,E (0,0,,B (3,3,0),C (0,3,0),CA u u u r =(3,-3,0),BE u u u r=(-3,-3,),EF u u u r=(3,0,.设平面BEF 的法向量为n r=(x 1,y 1,z 1),1111133030n BE x y n EF x ⎧⋅=--+=⎪⎨⋅==⎪⎩u u u v v u u uv v 取x 1,得n r,,3).所以|||cos ,|||||CA n CA n CA n ⋅<>===u u u r ru u u r r u uu r r 所以直线CA 与平面BEF所成角的正弦值为13. (2)假设存在点M 在线段AF 上满足条件, 设M (3,0,t ),0≤t≤则BM u u u u r=(0,-3,t ),BE u u u r =(-3,-3,.设平面MBE 的法向量为m u r=(x 2,y 2,z 2),2222230330m BM y tz m BE x y ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩u u u u v v u u uv v 令y 2=t ,得m=(t ,t ,3).易知CA u u u r=(3,-3,0)是平面BED 的一个法向量,所以|cos ,|m CA <>u r u u u r|12=, 整理得2t 2-t +15=0,解得t=2t=2(舍去),故在线段AF 上存在点M ,使得二面角M BE D 的大小为60°,此时14AM AF =.1.【2020届盐城市高三年级模拟考试】如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,A 1A =AB =2,∠ABC =3π,E ,F 分别是BC ,A 1C 的中点.(1)求异面直线EF ,AD 所成角的余弦值; (2)点M 在线段A 1D 上,11A MA Dλ= .若CM ∥平面AEF ,求实数λ的值. 【思路引导】(1)由四棱柱1111ABCD A B C D -,证得11,A A AE A A AD ⊥⊥,进而得到AE AD ⊥,以{}1,,AE AD A Au u u r u u u r u u u r为正交基底建立空间直角坐标系,利用向量坐标运算,即可求解,EF AD 所成角的余弦值; (2)设(,,)M x y z ,由点M 在线段1A D 上,得到11A M A Dλ=,得出向量CM u u u u r则坐标表示,再求得平面AEF 的一个法向量,利用向量的数量积的运算,即可得到λ的值。
专题25 立体几何中的最值,探索性问题(解析版)
③存在点 E ,使得 B1 D 平面 BED1 F ;
④对于任意的点 E ,四棱锥 B1 BED1 F 的体积均不变.
【答案】①②④
【解析】①当 E 为棱 CC1 上的一中点时,此时 F 也为棱 AA1 上的一个中点,此时 A1C1 // EF ,满足 A1C1 //
平面 BED1 F ,故①正确;
3
=
2 2
,cos∠1
3
=
3
2
3
,
2
=
1
,所以cos∠11
2
=
1
+2―3
2×
3
=―
3
3
,sin∠1 =
6
3
.
2
6
又直线与平面所成的角小于等于90 ∘ ,而∠1为钝角,所以sin的范围为[ 3 ,1],选 B.
5.
(展开图中距离和的最值)如图,棱长为 1 的正方体 ABCD-A1B1C1D1 中, P 为线段 A1B 上的动点,则
设 DM x ,则 0 x DE 1 ,
∴ DN
1 x2 .
由 DM MN DN MH 可得 x
∴
x
MH
1 x
2
1
1
1
x2
1 x 2 MH ,
2
2 ,当 x 1 时等号成立,此时 DE 平面 ABCE ,
综上可得点 C 到平面 ABD 距离的最大值为
2
.
2
故选 B.
3.(线段长度取值范围)在棱长为 2 的正方体 ABCD A1 B1C1 D1 中, P 是 BDC1 内(不含边界)的一个
立体几何中探索性问题(解析版)
专题4.5 立体几何中探索性问题一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥, 且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则12216232232A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
专题03 立体几何大题解题模板(解析版)
专题03 立体几何大题解题模板一、证明平行或垂直的主要方法:1、证明线线平行的方法:(1)利用直线平行的传递性:31//l l ,32//l l ⇒21//l l ;(2)利用垂直于同一平面的两条直线平行:α⊥1l ,α⊥2l ⇒21//l l ;(3)中位线法:选中点,连接形成中位线;(4)平行四边形法:构造平行四边形;(5)利用线面平行推线线平行:2l =βα ,β⊂1l ,α//1l ⇒21//l l ;(6)建系:),,(1111z y x l =,),,(2222z y x l =,21l l λ=⇒21//l l 。
2、证明线面平行的方法:(1)利用线面平行的判定定理(主要方法):α⊄1l ,α⊂2l ,21//l l ⇒α//1l ;(2)利用面面平行的性质定理:βα//,β⊂1l ⇒α//1l ;(3)利用面面平行的性质:βα//,α⊄1l ,β//1l ⇒α//1l 。
(4)建系:),,(1111z y x l =,平面α的法向量),,(222z y x n =,01=⋅n l ⇒α//1l 。
3、证明面面平行的方法:(1)利用面面平行的判定定理(主要方法:证明两个平面内的两组相交直线相互平行):31//l l ,42//l l ,A l l =21 ,B l l =43 ,α⊂21l l 、,β⊂43l l 、⇒βα//;(2)利用垂直于同一条直线的两平面平行(客观题可用):α⊥1l ,β⊥1l ⇒βα//;(3)利用平面平行的传递性:γα//,γβ//⇒βα//。
(4)建系:平面α的法向量),,(1111z y x n =,平面α的法向量),,(2222z y x n =,21n n λ=⇒βα//。
4、证明线线垂直的方法:(1)利用平行直线的性质:31l l ⊥,32//l l ⇒21l l ⊥;(2)利用直面垂直的推理:α⊥1l ,α⊂2l ⇒21l l ⊥;(3)中线法:等腰三角形中选中点,三线合一;(4)利用勾股定理的逆定理:若222c b a +=,则ABC ∆是直角三角形;(5)建系:),,(1111z y x l =,),,(2222z y x l =,021=⋅l l ⇒21l l ⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考地位】探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.【方法点评】方法一 直接法使用情景:立体几何中的探索问题解题模板:第一步 首先假设求解的结果存在,寻找使这个结论成立的充分条件;第二步 然后运用方程的思想或向量的方法转化为代数的问题解决;第三步 得出结论,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在..例1.如图甲, O e 的直径2AB =,圆上两点C 、D 在直径AB 的两侧,使C 4π∠AB =,D 3π∠AB =.沿直径AB 折起,使两个半圆所在的平面互相垂直(如图乙),F 为C B 的中点,E 为AO 的中点.根据图乙解答下列各题:(1)求证:C D B ⊥E ;(2)在BD 弧上是否存在一点G ,使得FG//平面CD A ?若存在,试确定点G 的位置;若不存在,请说明理由.思路分析:(1)利用等边三角形的性质可得DE ⊥AO ,再利用面面垂直的性质定理即可得到DE ⊥平面ABC ,进而得出结论.(2)要满足FG ∥平面ACD ,可过直线FG 做一平面使其与平面ACD 平行,找到所做平面与BD 弧的交点.点评:本题考查了直线与平面垂直的判定和直线与平面平行的判定. 这类探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明充分性.【变式演练1】如图,在四棱锥E ABCD -中,AE DE ⊥,CD ⊥平面ADE ,AB ⊥平面ADE ,6CD DA ==,2AB =,3DE =.(Ⅰ)求棱锥C ADE -的体积; (Ⅱ)求证:平面ACE ⊥平面CDE ;(Ⅲ)在线段DE 上是否存在一点F ,使//AF 平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.(Ⅲ)结论:在线段DE上存在一点F,且13 EFED=,使//AF平面BCE.解:设F为线段DE上一点,且13EFED=,过点F作//FM CD交CE于M,则1=3FM CD.因为CD⊥平面ADE,AB⊥平面ADE,所以//CD AB.又因为3CD AB=所以MF AB=,//FM AB,所以四边形ABMF是平行四边形,则//AF BM.又因为AF⊄平面BCE,BM⊂平面BCE,所以//AF平面BCE.【变式演练2】如图,在四棱锥P ABCD-中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.FDCPE(1)求证://AB EF;(2)若PA AD=,且平面PAD⊥平面ABCD,试证明AF⊥平面PCD;(3)在(2)的条件下,线段PB上是否存在点M,使得EM⊥平面PCD?(直接给出结论,不需要说明理由)【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】方法二 空间向量法使用情景:立体几何中的探索问题解题模板:第一步 首先根据已知条件建立适当的空间直角坐标系并假设求解的结果存在,寻找使这个结论成立的充分条件;第二步 然后运用空间向量将立体几何问题转化为空间向量问题并进行计算、求解;第三步 得出结论,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在..例2. 如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面于直线AB ,且2,1AB BP AD AE ====,,AE AB ⊥且AE ∥BP .(Ⅰ)设点M 为棱PD 中点,求证:EM ∥平面ABCD ;(Ⅱ)线段PD 上是否存在一点N ,使得直线BN 与平面PCD 所成角的正弦值等于25?若存在,试确定点N 的位置;若不存在,请说明理由.思路分析:(Ⅰ)方法一:以B 为原点,,,BA BP BC u u u v u u u vu u u u v分别为x 轴,y 轴,z 轴建立空间直角坐标系,求出平面ABCD 的一个法向量,由此证得结果;方法二:连结,AC BD ,其交点记为O ,连结MO ,EM ,由中位线定理可得12OM PB P ,从而证得四边形AEMO 是平行四边形,进而由平行四边形的性质可使问题得证;(Ⅱ)先求出平面PCD 的一个法向量,然后由此利用向量法求出线段PD 上存在一点N ,当N 点与D 点重合时,直线BN 与平面PCD 所成角的正弦值为25.(方法二)由三视图知,,,BA BP BC 两两垂直.连结,AC BD ,其交点记为O ,连结MO ,EM . 因为四边形ABCD 为矩形,所以O 为BD 中点.因为M 为PD 中点,所以OM ∥PB ,且12OM PB =. 又因为AE ∥PB ,且12AE PB =,所以AE ∥OM ,且AE =OM .所以四边形AEMO 是平行四边形,所以EM ∥AO ,因为EM ⊄平面ABCD ,AO ⊂平面ABCD ,所以EM ∥平面ABCD .点评:利用空间直角坐标系求解空间角的关键是建立空直角坐标系,而建立空间直角坐标系主要途径:(1)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系;(2)如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂直相交直线为基本出发点;(3)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关系时要通过其他已知条件得到垂直关系.【变式演练3】如图,在多面体ABCDEF 中,四边形ABCD 为正方形,//EF AB ,EF EA ⊥,22AB EF ==,90AED ∠=o ,AE ED =,H 为AD 的中点.(1)求证:EH ⊥平面ABCD ;(2)在线段BC 上是否存在一点P ,使得二面角B FD P --的大小为3π?若存在,求出BP的长;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点P 的坐标为(1,2,0)-,使2BP BC ==. 【解析】试题分析:(1)借助题设条件运用线面垂直的判定定理推证;(2)借助题设构建空间坐标系运用空间向量求解探求.(2)因为AD OH HE ,,两两垂直,如图,建立空间直角坐标系H xyz -,则(1,0,0)A (1,0,0)D -,(0,1,1)F ,(0,1,0)O ,(1,2,0)C -.设点(,2,0)(02)P m m <≤,于是有(1,1,1)DF =u u u r ,(1,2,0)DP m =+u u u r.考点:空间线面的位置关系及空间向量的有关知识的综合运用.【变式演练4】如图,ABCD 是边长为3的正方形,ABCD 面⊥DE ,AF DE DE AF 3,//=,BE 与平面ABCD 所成的角为060.(1)求二面角D BE F --的的余弦值;(2)设点M 是线段BD 上一动点,试确定M 的位置,使得BEF AM 面//,并证明你的结论.解:【变式演练4】如图,平面ABDE ⊥平面ABC , ABC ∆是等腰直角三角形,4AB BC ==,四边形ABDE 是直角梯形,//BD AE ,BD BA ⊥,122BD AE ==,点O 、M 分别为CE 、AB 的中点.(1)求证://OD 平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找到一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由 .【高考再现】1. 【20XX 年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥, 1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.【答案】(1)见解析;(2)33;(3)存在,14AM AP =试题解析:(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥, 所以⊥AB 平面PAD ,所以PD AB ⊥, 又因为PD PA ⊥,所以⊥PD 平面PAB ; (2)取AD 的中点O ,连结PO ,CO , 因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD , 所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO . 因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.所以直线PB 与平面PCD 所成角的正弦值为33.(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=. 因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅, 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2.【20XX年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD,E为边AD 的中点,异面直线PA与CD所成的角为90°.(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.E D CB PA【答案】(Ⅰ)详见解析;(Ⅱ)1 3 .【解析】试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.,所以CD∥EB从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:易知PA ⊥平面ABCD , 从而PA ⊥CE. 于是CE ⊥平面PAH. 所以平面PCE ⊥平面PAH.过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE. 所以∠APH 是PA 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH=45°,AE=1, 所以AH=22. 在Rt △PAH 中,PH=22PA AH =322, 所以sin ∠APH=AH PH =13.方法二:作Ay ⊥AD ,以A 为原点,以AD u u u r ,AP u u u r的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),P (0,0,2),C(2,1,0),E(1,0,0),所以PE u u u r =(1,0,-2),EC u u u r =(1,1,0),AP u u u r =(0,0,2)设平面PCE 的法向量为n=(x,y,z),由0,0,PE EC ⎧⋅=⎪⎨⋅=⎪⎩u u u u u u u u r u u u rn n 得20,0,x z x y -=⎧⎨+=⎩ 设x=2,解得n=(2,-2,1). 设直线PA 与平面PCE 所成角为α,则sin α=||||||n AP n AP ⋅⋅u u u u r u u u r 2221322(2)1=⨯+-+ . 所以直线PA 与平面PCE 所成角的正弦值为13.z yxMEDCBPA考点:线线平行、线面平行、向量法.3. 【2016高考北京文数】(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析. 【解析】P⊥AB.所以CPA.所以AB⊥平面CPA.所以平面PAB⊥平面C考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.【反馈练习】1.【江苏省淮安市20XX 届高三第五次模拟考试】(本题满分14分)如图,边长为2的正方形ABCD 是圆柱的中截面,点E 为线段BC 的中点,点S 为圆柱的下底面圆周上异于A ,B 的一个动点.(1)在圆柱的下底面上确定一定点F ,使得//EF 平面ASC ;(2)求证:平面ASC ⊥平面BSC .【答案】(1)点F 为线段AB 的中点;(2)详见解析;【解析】2.【20XX 年高考模拟(南通市数学学科基地命题)(2)】(本小题满分14分)已知直三棱柱111ABC A B C -中,,D E 分别为11,AA CC 的中点,AC BE ⊥,点F 在线段AB 上,且4AB AF =.⑴求证:1BC C D ⊥;⑵若M 为线段BE 上一点,试确定M 在线段BE 上的位置, 使得1//C D 平面1B FM .ABCE(第16题)【答案】(1)见解析;(2)BE=4ME 【解析】⑵连结AE ,在BE 上取点M ,使BE=4ME, 连结FM ,1B M ,F 1B ,在BEA 中,由BE=4ME ,AB=4AF第16题A BC1B1A1CD E F g ABC1B1A1CD E F M所以MF//AE , 又在面AA 1C 1C 中,易证C 1D//AE ,所以1//C D 平面1B FM .3.【扬州市2014—2015学年度第四次调研测试试题高三数学】如图,三棱锥A BCD -中,侧面ABC 是等边三角形,M 是ABC ∆的中心.⑴若DM BC ⊥,求证AD BC ⊥;⑵若AD 上存在点N ,使//MN 平面BCD ,求ANND的值.MDBA【答案】⑴见试题分析;⑵12【解析】⑵,M AE AE ∈⊂平面ADE ,所以M ∈平面ADE ,因为AD 上存在点N ,所以N ∈平面ADE ,所以MN ⊂平面ADE , 又//MN 平面BCD ,平面ADE I 平面BCD DE =,所以//MN DE , 在ADE ∆中,因为12AM ME =,所以12AN ND =.4.【20XX 届福建省福州市第八中学高三上学期第三次质检】在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,3AC =,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(2)求四面体FBCD 的体积;(2)线段AC 上是否存在点M ,使EA //平面FDM ?证明你的结论.【答案】(1)祥见解析;(2)123;(2)祥见解析. 【解析】5.【20XX届辽宁省大连市第二十高级中学高三上学期期中考试】如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF ⊥平面EFDC.(1)当1BE=,是否在折叠后的AD上存在一点P,使得CP∥平面ABEF?若存在,求出P 点位置,若不存在,说明理由;(2)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.【解析】(1)存在P使得满足条件CP∥平面ABEF,且此时.35 AP AD=下面证明:35APAD=,过点P作MP∥FD,与AF交于点M,则有35MPFD=,又FD=5,故MP=3,又因为EC=3,MP∥FD∥EC,故有MP//=EC,故四边形MPCE为平行四边形,所以PC∥ME,又CP⊄平面ABEF,ME⊂平面ABEF,故有CP∥平面ABEF成立.(2)因为平面ABEF ⊥平面EFDC ,平面ABEF I 平面EFDC =EF ,又AF ⊥EF ,所以AF ⊥平面EFDC 由已知BE =x ,,所以AF =x (0<x …4),FD =6-x . 故222111112(6)(6)[(3)9](3)332333A CDF V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x =3时,A CDF V -有最大值,最大值为3.。