高中三角形中的常见结论
三角形中的数列经典结论
三角形中的数列经典结论【定理1】在△ABC 中,三内角A 、B 、C 所对的边分别为a 、b 、c .无论sinA 、sinB 、sinC 成等差数列或1sin A 、1sin B 、1sin C成等差数列; 还是a 、b 、c 成等差数列或1a 、1b 、1c 成等差数列.都有B ∈0,3π⎛⎤ ⎥⎝⎦. 【推论】在△ABC 中,三内角A 、B 、C 所对的边分别为a 、b 、c .无论sin 2A 、sin 2B 、sin 2C 成等差数列或A 2sin 1、B 2sin 1、C2sin 1成等差数列或cos 2A 、cos 2B 、cos 2C 成等差数列;还是a 2 、b 2、c 2成等差数列或21a 、21b 、21c 成等差数列.都有B ∈0,3π⎛⎤ ⎥⎝⎦. 【定理2】在△ABC 中,三内角A 、B 、C 所对的边分别为a 、b 、c .无论sinA 、sinB 、sinC 成等比数列或1sin A 、1sin B 、1sin C成等比数列; 还是a 、b 、c 成等比数列或1a 、1b 、1c 成等比数列.都有B ∈0,3π⎛⎤ ⎥⎝⎦. 【推论】在△ABC 中,三内角A 、B 、C 所对的边分别为a 、b 、c .无论sin n A 、sin n B 、sin n C 成等比数列或A n sin 1、B n sin 1、Cn sin 1成等比 数列;还是a n 、b n 、c n 成等比数列或n a 1、n b 1、nc 1()*∈N n 成等比数列.都有B ∈0,3π⎛⎤ ⎥⎝⎦.【定理1证明】1) 由等差中项公式和正弦定理得:2sinB=sinA+sinC ⇔2b =a +c再由余弦定理得: cosB=222222224()()3()2288a c b a c a c a c acac ac ac+-+-++-==∵a 2+c 2≥2ac ∴cosB=223()28a c ac ac+-≥628ac ac ac -=12当且仅当a =c 时,等号成立.又B ∈(0,π)及y =cos x 在(0,π)内单调递减,故B ∈(0,3π]. 2) 由等差中项公式和正弦定理得2112112sin sin sin acb B A C b ac a c=+⇔=+⇔=+ 再由余弦定理得 cosB=2222222()22ac a c a c b a c ac ac +-+-+=∵a 2+c 2≥2ac ⇔(a +c ) 2≥4ac ⇔22()ac a c +≤ac ∴a 2+c 2-22()ac a c+≥2ac -ac =ac ∴ cos B≥2ac ac =12,当且仅当a =c 时等号成立.又B ∈(0,π)及y =cos x 在(0,π)内单调递减,故B ∈0,3π⎛⎤⎥⎝⎦.【推论证明】由a 2 、b 2、c 2成等差数列得2b 2=a 2+c 2,再由余弦定理得cosB=2222a c b ac +-=ac c a ac c a c a 422222222+=+-+≥ac ac 42=12, 当且仅当a =c 时,等号成立.又B ∈(0,π)及y =cos x 在(0,π)内单调递减,故B ∈0,3π⎛⎤⎥⎝⎦.同理可证若21a 、21b 、21c成等差数列或sin 2A 、sin 2B 、sin 2C 成等差数列或cos 2A 、cos 2B 、cos 2C 成等差数列;或A 2sin 1、B 2sin 1、C 2sin 1成等差数列,都有B ∈0,3π⎛⎤⎥⎝⎦.【定理2证明】 由等比中项公式和正弦定理得: sin 2B=sinAsinC ⇔ac b C A B CA B =⇔=⇔=222sin sin sin sin sin 1sin 1 再由余弦定理得:cosB=2222a c b ac +-=222a c acac +- ∵a 2+c 2≥2ac ∴cosB≥22ac ac ac -=2ac ac =12, 当且仅当a=c 时,等号成立.又B ∈(0, π)及y =cos x 在(0, π)内单调递减,故B ∈0,3π⎛⎤⎥⎝⎦.【推论证明】在△ABC 中,若sin n A 、sin n B 、sin n C ()*∈N n 成等比数列, 则b 2n =a n c n , 即b 2=ac.由余弦定理得:cosB=2222a c b ac +-=222a c ac ac+-≥22ac ac ac -=2ac ac =12, 当且仅当a=c 时,等号成立.又B ∈(0, π)及y =cos x 在(0, π)内单调递减,故B ∈0,3π⎛⎤⎥⎝⎦同理可证若n a 1、n b 1、n c1成等比数列或A n sin 1、B n sin 1、C n sin 1()*∈N n 成等比数列,都有B ∈0,3π⎛⎤⎥⎝⎦.【典例1】 在△ABC 中,C 2sin 1、B 2sin 1、A2sin 1成等差数列, 且p =(sinB, 1),q =(1, cosB),证明:(1)函数f (B)= p ·q 的值域为(;(2)函数g (B)= q p q p •+1(2的值域为512⎡⎫⎪⎢⎣⎭;(3)函数h (B)=qp •+12的值域为(1)⎤-⎦.【典例2】 在△ABC 中,C n sin 1、B n sin 1、Ansin 1()*∈N n 成等比数列,且p cosB), q =(sinB ,-1), 证明:(1)函数f (B)= p ·q 的值域为(]1,1-;(2)函数g (B)= q p q p •+1(2的值域为7,2⎡⎫+∞⎪⎢⎣⎭;(3)函数h (B)=qp q p •+1(2)1),⎡+∞⎣.。
高中数学常见结论
高中数学常见结论三角形中的结论 1、三角形中,任意两角的余弦之和大于零,即coscos 0,cos cos 0,cos cos 0A B A C B C +>+>+>2、三角形中,tan tan tan tan tan tan A B C A B C ++=⨯⨯3、三角形中,sin sin A B A B >⇔>,其他同理4、锐角三角形中,任意一个角的正弦值大于另一个角的余弦值,即sincos ,sin cos A B A C >>,其他同理5、钝角三角形中(角C 为钝角),一个锐角的正弦值小于另一个锐角的余弦值。
即sin cos ,sin cos A B B A <>6、直角三角形中的结论都有逆定理7、三角形内切圆的半径:2S r a b c ∆=++,特别地,直角三角形中:2a b cr +-=8、三角形中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…函数中的结论1、函数()y f x =在定义域D 上单调递增⇔对任意的12,,x x D ∈若12x x >,都有12()()f x f x >⇔对任意的12,,x x D ∈1212()(()())0x x f x f x -->⇔对任意的12,,x x D ∈1212()()0f x f x x x ->- ⇔对任意的,x D ∈/()0f x ≥恒成立⇔对任意的,x D ∈总存在t>0,使()()f x t f x +>2、函数()y f x =在定义域D 上单调递减,对应以上结论是什么?3、函数单调递增、递减的运算性质:(加、减、乘、除、开方) (1)增+增=增,减+减=减,增-减=增,减-增=减,(2)()k f x ⨯与()f x 的单调性的关系是 (3)1()f x 与()f x 的单调性的关系是 (4()f x 的单调性的关系是4、对称轴、对称中心、周期之间的结论是:(1)若函数y=f(x)满足:f(x+a)=f(a-x)↔x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x)=f(2a-x) ↔ x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x+a)=f(b-x) ↔ x=2a b+是y=f(x)的一条对称轴.(2)函数y=f(x)满足:f(x+a)=-f(a-x) ↔A (a,0)是y=f(x)的一个对称中心. 函数y=f(x)满足:f(x)=-f(2a-x) ↔A (a,0)是y=f(x)的一个对称中心.函数y=f(x)满足:f(x+a)=-f(b-x) ↔A(2a b+,0)是y=f(x)的一个对称中心 (3)函数y=f(x)满足:f(x+T)=f(x) ↔T 是y=f(x)的一个周期函数y=f(x)满足:f(x+a)=f(x+b) ↔T=a-b 是y=f(x)的一个周期(a >b ) 函数y=f(x)满足:f(x+a)=-f(x) ,则T=2a 是y=f(x)的一个周期(4)若x=a,x=b 是函数y=f(x)的两条对称轴,则T=2(a-b) (a >b ) ,反之也成立若A(a,0),B(b,0)是函数y=f(x)的两个对称中心,则T=2(a-b) (a >b ), 反之也成立 若x=a,B(b,0)分别是函数y=f(x)的对称轴和对称中心,则T=4(a-b) (a >b )5、若两个函数()y f x a =+,()y f b x =-有对称轴,则对称轴是2b a x -=6、函数奇偶性:函数y=f(x)是定义域D 上的偶函数⇔对任意的,x D ∈()()0f x f x --=恒成立⇔对任意的,x D ∈()1()f x f x -=恒成立7、函数y=f(x)是定义域D 上的奇函数⇔对任意的,x D ∈()()0f x f x -+=恒成立⇔对任意的,x D ∈()1()f x f x -=-恒成立8、函数奇偶性的运算性质:加减乘除:偶+偶=偶,偶-偶=偶,偶⨯偶=偶,偶÷偶=偶奇+奇=奇,奇-奇=奇,奇⨯奇=奇,奇÷奇=奇 偶⨯偶=偶,偶⨯奇=奇,奇⨯奇=偶 除法运算结论依然 9、奇偶性与单调性的关系:奇函数在关于原点对称的两区间上的单调性相同 偶函数在关于原点对称的两区间上的单调性相反 10、奇函数定义域中若有0,则(0)0f =11、奇函数定义域中若有最大值M 和最小值N ,则M+N=0 12、奇偶性与导数的关系:奇函数的导函数是偶函数 偶函数的导函数是奇函数 13、若函数y=f(x)是偶函数,则()()f x f x =14、若函数y=f(x)是D 上的上凸函数⇔对12,,x x D ∈有1212()()()22f x f x x x f ++<15、若函数y=f(x)是D 上的上凹函数⇔对12,,x x D ∈有1212()()()22f x f x x xf ++>16、二次函数2y ax bx c =++是偶函数⇔b=0三次函数32y ax bx cx d=+++是奇函数⇔b=d=017、二次函数在限定区间上的最值问题:讨论对称轴与区间的位置关系----大大小小(1)当a>0时,求最小值讨论对称轴在区间的左、内、右,求最大值讨论对称轴与区间中点的位置关系(2)当a<0时,求最大值讨论对称轴在区间的左、内、右,求最小值讨论对称轴与区间中点的位置关系18、二次函数2y ax bx c =++的对称轴是2b x a=-,三次函数32y ax bx cx d =+++的对称中心是,()33b b f aa ⎛⎫--⎪⎝⎭19、若函数y=f(x)在定义域D 上连续可导,且在定义域的任何子区间上导函数不恒为0,则/()0f x ≥⇔y=f(x)在D 上单调递增/()0f x ≤⇔y=f(x)在D 上单调递减20、若函数y=f(x)在定义域D 上连续可导,/0()0f x =不能保证0()f x 为极值,反之成立。
三角形中的常见结论
三角形中的常见结论-CAL-FENGHAI.-(YICAI)-Company One12cAba D D CA三角形中的常见结论(高二理科数学)以下很多结论都是只有在三角形中才成立的,离开三.......................角形.. 这个前提条件就不一定成立!.............在ABC ∆中,内角,,A B C 的对边分别为,,a b c 。
1、内角和定理:A B C π++=。
2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立,即:a b A B >⇔>,a b A B =⇔=,a b A B <⇔<。
3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,即:a b c +>,a c b +>,b c a +> a b c -<,a c b +<,b c a -<4、三角形的四心:外心:外接圆圆心,三边中垂线的交点。
内心:内切圆圆心,三内角角平分线的交点。
垂心:三边高线的交点。
重心:三边中线的交点。
重心G 的性质:(1)重心G 是中线的三等分点;(2)0GA GB GC ++=;(3)若11(,)A x y 、22(,)B x y 、33(,)C x y ,则123123,33x x x y y y G ++++⎛⎫⎪⎝⎭。
等腰三角形中顶角角平分线、底边中线、底边高线三线合一。
等边三角形四心合一。
5、正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径)。
正弦定理的变形:(1)sin sin a b A B =,sin sin b c B C =,sin sin a cA C=; (2)sin sin a B b A =,sin sin b A a B =,sin sin a BA b=;(3)2sin a R A =,2sin b R B =,2sin c R C =;(4)sin 2a A R =,sin 2b B R =,sin 2cC R=;(5)::sin :sin :sin a b c A B C =;(6)2sin sin sin sin a b c aR A B C A++==++。
高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
抛物线阿基米德三角形常用结论高中
抛物线、阿基米德三角形常用结论一、抛物线1. 抛物线的定义抛物线是一种特殊的曲线,其定义可以由平面上的点P到给定直线上一点F的距离等于P到另一固定点D的距离的平方的约束条件定义。
2. 抛物线的常用方程抛物线的常用方程形式为y = ax^2 + bx + c 或者 x = ay^2 + by + c。
其中a、b、c为常数,a≠0。
3. 抛物线的性质(1)抛物线的对称轴与顶点抛物线的对称轴是其顶点处的垂直平分线。
(2)抛物线的焦点和直线抛物线的焦点是与其对称轴上的一个定点F,直线是与抛物线平行于其对称轴的直线。
二、阿基米德三角形1. 阿基米德三角形的定义阿基米德三角形是一种特殊的三角形,其三边分别由三个与三个同一直线上的点相连而得到。
这三个点一般是由同一圆的直径上得到。
2. 阿基米德三角形的常用结论(1)阿基米德三角形的边长关系公式设阿基米德三角形的边长分别为a、b、c,其边长关系可由公式a^2 = b^2 + c^2得到。
(2)阿基米德三角形的面积公式设阿基米德三角形的三角形边分别为a、b、c,其面积S可由公式S = 1/2 * b * c * sinA得到。
其中A为a对应的角度。
三、高中数学中抛物线和阿基米德三角形的应用1. 抛物线在物理学中的应用在物理学中,抛物线常常用来描述抛体运动的轨迹。
抛出的物体在水平方向上的运动可以用抛物线方程描述。
2. 阿基米德三角形在几何学中的应用在几何学中,阿基米德三角形经常用于解决三角函数相关问题。
在求解三角函数值时,可以利用阿基米德三角形的边长关系进行变换,从而简化计算。
四、结语抛物线和阿基米德三角形作为数学中的重要内容,在高中数学教学中被广泛应用。
通过对其定义、性质以及应用的深入了解,不仅可以增加数学知识的广度和深度,还能够帮助学生更好地理解数学的应用价值。
希望学生们能够加强对抛物线和阿基米德三角形的学习,不断提升数学思维能力和解决问题的能力。
抛物线和阿基米德三角形作为数学中重要的内容,不仅在高中数学教学中被广泛应用,而且在科学研究和工程技术中也发挥着重要作用。
关于三角形中平面向量的两个结论
因 为 D点 在 三 角 形 ABC的 内 部 。所 以在 线 段 BC上 .K 点
之 间 的关 系 。 而 三角 形 相 似 可 以提 供 线 段 之 间 的 比 例 关 系 。 必定在 厶点 的左边 ,即 BK<BL,再 由① 和② 可得 : AF < B E =
ABDE ̄ABCA@ BE=器
:m (m为正实数,且小于1),贝f Jl 『:mI l,并且有
:, 十 ① 接 下 来 我 们 期 望 得 出 与 之 间 的关 系 :
求 与 之 间 的关 系 的 方法 也 和 上题 类 似 :
△ ,JE △曰
=
③
△c △ 曰 =_AF_ ④
由于 与 是共线向量,所以只需找到J J与j f
实 践 讲 堂
近些 年来 .平 面 向 量 与 解 三 角 形 相 结 合 的 题 目经 常 出 现 在 取 值 范 围为 O<m+n<l。 各 类 考 试 题 中 .并 且 通 常 是 以选 择 或 填 空 的 形 式 出 现 .下 面 是 与 之 相关 的 两个 简单 结 论 。
· = +AT : +(1一m) ,
.
显 然 ,n=l—m,即 m+n=I。
<1-m ,.‘.O<m +n<l。
【其 他 形 式 】若百 =m百 +n ,则 m+n的范 围 是 o<m+n 1;若 =m +nc --f,则 m+n的范围是 0<m+n<1;若 D点是三  ̄ f ̄ABC的 中 心 ,此 时 m=n=丁1
结 论 2:如 图 (3),在 三 角 形 ABC 中 ,D 是 AABC 内 的 任 意
:m +n (m, E R),则 m2+n2—2m一2n+3的 取 值 范 围 是
三角形五心(外心内心重心旁心)相关结论与应用汇总(精品)
(h
a)
b
(h
b)
a
h
(b
a)
0.
(h b) a 0
AH BC.
垂心
又∵点D在AH的延长线上,∴AD、BE、CF相交于一点.
例2.已知O为⊿ABC所在平面内一点,且满足:
证明外心定理
证明: 设AB、BC的中垂线交于点O,
则有OA=OB=OC,
A
故O也在AC的中垂线上, 因为O到三顶点的距离相等,
A
故点O是ΔABC外接圆的圆心.
O
因而称为外心.
O
B
C
B
C
若 O 为 ABC内一点,OA OB OC
则 O 是 ABC 的( B )
A.内心 B.外心 C.垂心 D.重心
可以大显神通了.
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB.
3答案
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB. 分析:延长 EP 到 K,使 PK=PE,连 KF、AE、EF、BF, 直线 PQ 交 AB 于 H.因∠EQF=∠AQB =( 90 -∠1)+( 90 +∠2) =∠ABF+∠BAE=∠QFP+∠QEP, 又由 PK=PE=PF 知∠K=∠PFK, ∴∠EQF+∠K=∠QFK+∠QEK= 180 , 从而 E、Q、F、K 四点共圆. 由 PK=PF=PE 知,P 为△EFK 的外心,显然 PQ=PE=PF.于 是∠1+∠AQH=∠1+PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ ABF=90º .由此知 QH⊥AH,即 PQ⊥AB.
三角形中的常见结论
c CBAba三角形中的常见结论(高二理科数学)以下很多结论都是只有在三角形中才成立的,离开三角形......................... 这个前提条件就不一定成立!.............在ABC ∆中,内角,,A B C 的对边分别为,,a b c 。
1、内角和定理:A B C π++=。
2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立, 即:a b A B >⇔>,a b A B =⇔=,a b A B <⇔<。
3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,即:a b c +>,a c b +>,b c a +> a b c -<,a c b +<,b c a -<4、三角形的四心:外心:外接圆圆心,三边中垂线的交点。
内心:内切圆圆心,三内角角平分线的交点。
垂心:三边高线的交点。
重心:三边中线的交点。
重心G 的性质:(1)重心G 是中线的三等分点; (2)0GA GB GC ++=;(3)若11(,)A x y 、22(,)B x y 、33(,)C x y ,则123123,33x x x y y y G ++++⎛⎫⎪⎝⎭。
等腰三角形中顶角角平分线、底边中线、底边高线三线合一。
等边三角形四心合一。
5、正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径)。
正弦定理的变形:(1)sin sin a b A B =,sin sin b c B C =,sin sin a cA C=; (2)sin sin a B b A =,sin sin b A a B =,sin sin a BA b=;(3)2sin a R A =,2sin b R B =,2sin c R C =; (4)sin 2a A R =,sin 2b B R =,sin 2cC R=; (5)::sin :sin :sin a b c A B C =; (6)2sin sin sin sin a b c aR A B C A++==++。
三角形中角平分线的结论
三角形中角平分线的结论
定理:三角形任意两边之比等于它们夹角的平分线分对边之比。
三角形一个角的平分线与其对边所成的两条线段与这个角的两边对
应成比例。
角平分线定理
从一个角的顶点引出的把这个角分成两个相等的角的射线,叫做这个角的角平分线。
三角形的一个角(内角)的角平分线交其对边的点所连成的线段,叫做这个三角形的一条角平分线。
定理1
角平分线上的点到这个角两边的距离相等。
逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。
定理2
三角形一个角的平分线与其对边所成的两条线段与这个角的两
边对应成比例。
逆定理:
如果三角形一边上的某个点与这条边所成的两条线段与这条边
的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。
三角形内角平分线定理
三角形内角平分线性质定理:在ΔABC中,若AD是∠A的平分线,
则BD/DC=AB/AC。
应用:不用计算即可将一条线段按要求分成任意比例。
三角形内角平分线内分对边,所得的两条线段与这个角的两边对应成比例。
三角形外角平分线的性质定理:三角形外角平分线外分对边,所得的两条线段与其内角的两边对应成比例。
高中数学二级结论(经典实用)
高中数学二级结论(经典实用)1、余弦定理:在任何三角形中,$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。
2、正弦定理:在任何三角形中,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中$R$为该三角形的外接圆半径。
3、勾股定理:对于任意直角三角形,斜边的平方等于两条直角边平方和。
4、解二元一次方程组:当方程组$ax+by=c$,$dx+ey=f$的系数矩阵的行列式不为零时,解得$x=\frac{ce-bf}{ae-bd}$,$y=\frac{af-cd}{ae-bd}$。
5、解二次方程:对于方程$ax^2+bx+c=0$,当$\Delta=b^2-4ac>0$时,有两个不同实根$x_1=\frac{-b+\sqrt{\Delta}}{2a}$,$x_2=\frac{-b-\sqrt{\Delta}}{2a}$;当$\Delta=0$时,有一个实根$x=-\frac{b}{2a}$;当$\Delta<0$时,有两个虚根$x_1=\frac{-b+\sqrt{-\Delta}}{2a}i$,$x_2=\frac{-b-\sqrt{-\Delta}}{2a}i$。
6、二次函数的解析式:对于二次函数$y=ax^2+bx+c$,它的顶点坐标为$\left(-\frac{b}{2a},-\frac{\Delta}{4a}\right)$,其中$\Delta=b^2-4ac$;当$a>0$时,开口向上,当$a<0$时,开口向下。
7、解一元高次方程:对于方程$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$,如果存在有理根$p/q$,则必有$p\mid a_0$,$q\mid a_n$,且$p,q$互质。
高中数学:向量中的三角形“四心”
高中数学:向量中的三角形“四心”
向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,你知道它们的向量表示吗?
结论1:若点O为△ABC所在的平面内一点,满足
,则点O为△ABC的垂心。
证明:由,得,即,所以。
同理可证。
故O为
△ABC的垂心。
结论2:若点O为△ABC所在的平面内一点,满足
,则点O为△ABC的垂心。
证明:由,得
,所以。
同理可证。
容易得到由结论1知O为△ABC的垂心。
结论3:若点G为△ABC所在的平面内一点,满足
,则点G为△ABC的重心。
证明:由,得。
设BC边中点为M,则,所以,即点G在中线AM 上。
设AB边中点为N,同理可证G在中线CN上,故点G为△ABC的重心。
结论4:若点G为△ABC所在的平面内一点,满足
,则点G为△ABC的重心。
证明:由,得
,得。
由结论3知点G为△ABC的重心。
结论5:若点P为△ABC所在的平面内一点,并且满足
,则点P为
△ABC的内心。
证明:由于,可得。
设与同方向的单位向量为,与同方向的单位向量为,则。
因为为单位向量,所以向量在∠A的平分线上。
由,知点P在∠A的平分线上。
同理可证点P在∠B的平分线上。
故点G为△ABC的内心。
结论6:若点O为△ABC所在的平面内一点,满足
,则点O为△ABC的外心。
证明:因为,所以
同理得由题意得,所以
,得。
故点O为△ABC的外心。
高中数学正余弦定理和解三角形
正余弦定理和解三角形的实际应用要求层次重难点正余弦定理 C 使学生掌握正、余弦定理及其变形;能够灵活运用正、余弦定理解题解三角形C(一) 知识内容1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a . (1)三边之间的关系:a 2+b 2=c 2.(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =a c,cos A =sin B =b c,tan A =a b. 2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边. (1)三角形内角和:A +B +C =π.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.2sin sin sin a b cR A B C===.(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨⎪⎪=+-⎩+-⎪=⎪⎩3.三角形的面积公式:(1)S △=12ah a =12bh b =12ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); 例题精讲高考要求板块一:正弦定理和余弦定理正余弦定理和解三角形(2) S △=12ab sin C =12bc sin A =12ac sin B ;(3) S △=2sin sin 2sin()a B C B C +=2sin sin 2sin()b C A C A +=2sin sin 2sin()c A BA B +;(4) S △=2R 2sin A sin B sin C .(R 为外接圆半径) (5) S △=4abcR; (6) S △=()()()s s a s b s c ---;1()2s a b c ⎛⎫=++ ⎪⎝⎭;(海伦公式)(7) S △=r ·s . 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . (1)角与角关系:A +B +C = π;(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)边与角关系:正余弦定理. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点. 6.推论:正余弦定理的边角互换功能①2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2cC R= ③sin sin sin a b c A B C ===sin sin sin a b cA B C++++=2R ④::sin :sin :sin a b c A B C =⑤222sin sin sin 2sin sin cos A B C B C A =+- 222sin sin sin 2sin sin cos B C A C A B =+-222sin sin sin 2sin sin cos C A B A B C =+-7.三角形中的基本关系式:sin()sin ,cos()cos B C A B C A +=+=-, sincos ,cos sin 2222B C A B C A++== (二)主要方法:1.通过对题目的分析找到相应的边角互换功能的式子进行转换.2.利用正余弦定理可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系 .(三)典例分析:【例1】 已知△ABC 中,AB a =,AC b =,0a b ⋅<,154ABC S ∆=, 3,5a b ==,则BAC ∠=( )A .30B .150-C .150°D . 30或150°【变式】 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos2A =,3AB AC ⋅=. (1)求ABC ∆的面积;(2)若6b c +=,求a 的值.【变式】 ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos2B CA ++取得最大值,并求出 这个最大值.【变式】 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc , 求∠A 的大小及sin b Bc的值.【变式】 已知在ABC ∆中,a =45o B =,c =.【变式】 已知:,3,5,7ABC a b c ∆===中求:ABC ∆中的最大角.【变式】 已知△ABC 中,AB =1,BC =2,则求角C 的取值范围.【例2】 在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形【变式】 在△ABC 中,若cos cos a A b B =,试判断此三角形的形状.【变式】 在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,则判断△ABC 的形状.【例3】 若△ABC 的三条长分别是3,4,6,求它的较大的锐角的平分线分三角形所成的两个三角形的面积比.【例4】 已知三角形的三边长为三个连续自然数, 且最大角是钝角.求这个三角形三边的长.【例5】 在△ABC 中,BC =a ,AC =b ,a,b 是方程02322=+-x x 的两个根,且2cos(A +B )=1求:(1)角C 的度数;(2)AB 的长度; (3)△ABC 的面积.【变式】 在C A a c B b ABC ,,1,60,30和求中,===∆【变式】C B b a A c ABC ,,2,45,60和求中,===∆【教师选做】证明海伦公式<教师备案>1.海伦公式的变形形式:①②③④⑤2.海伦公式的其他证明方法证一 勾股定理分析:先从三角形最基本的计算公式S △ABC =12aha 入手,运用勾股定理推导出海伦公式.证明:如图ha ⊥BC ,根据勾股定理,得: 222222a a x a y hb y hc x =-⎧⎪=-⎨⎪=-⎩x =2222a c b a +-, y =2222a c b a-+∴ S △ABC =12aha=12a此时S △ABC 为变形④,故得证.证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha. 斯氏定理:△ABC 边BC 上任取一点D , 若BD=u ,DC=v,AD=t.则t 2 = 22b u cv uv a+-证明:由证一可知, u =2222a b c a -+,v =2222a b c a+-∴2ah = t 2 =224222222422b a b b c c a c b c a -+++--42222()4a b c a --∴ S △ABC =12aha =12a= 此时为S △ABC 的变形⑤,故得证.证三:余弦定理 即本题所采用证法. 证四:恒等式分析:考虑运用S △ABC =r p ,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式.恒等式:若∠A+∠B+∠C =180○那么tan 2A · tan 2B + tan 2A · tan 2C + tan 2B · tan 2C = 1证明:如图,tan 2A = r y ① tan 2B = rz ②tan 2C = rx ③根据恒等式,得:1111tan tan tan tan tan .tan222222A B C A B C ++=⋅ ①②③代入,得: 3x y z xyzr r++=∴r2(x+y+z) = xyz ④如图可知:a +b-c = (x+z)+(x+y)-(z+y) = 2x∴x =2a b c +-,同理:y =2b c a +- z =2a cb +-zy BC代入④,得: r 2 ·2a b c ++=()()()8a b c b c a a c b +-+-+-两边同乘以2a b c++,得:r 2·2()4a b c ++=()()()()16a b c a b c b c a a c b +++-+-+-两边开方,得: r ·2a b c ++左边r ·2a b c++= r ·p= S △ABC 右边为海伦公式变形①,故得证.证五:半角定理半角定理:tan2Atan 2Btan 2C证明:根据tan 2A=r y ,∴y ①同理z ②× x ③①×②×③,得:xyz∵由证一,x =2b a c +-=2b a c++-c = p-c y =2b a c -+=2b a c ++-a = p-az =2a b c -+=2b ac ++-b = p-b∴∴∴S △ABC = r ·故得证. 3.海伦公式的推广由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广.由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD 中,设p=2a b c d+++,则S 四边形=现根据猜想进行证明.证明:如图,延长DA ,CB 交于点E. 设EA = e EB = f∵∠1+∠2 =180○ ∠2+∠3 =180○ ∴∠1 =∠3,∴△EAB ~△ECDCzy B∴f a e +=e f c +=bdEAB ABCD S S ∆四边形=222b d b -解得: e =22()b ab cd d b +- ①f =22()b ad bcd b+- ②由于S 四边形ABCD =222d b b -S △EAB将①,②跟b =2222()b d b d b +-代入公式变形④,得:∴S 四边形ABCD =2224d b b -2222224()e b e b f -+-=2224d b b -42222222222222224222222222()()()()()4[()]()()()()b ab cd d b b ab cd b d b b ad bc d b d b d b d b +-+-+-+-----=2224d b b -{}422222222222244()()[()()()]()b ab cd d b ab cd d b ad bcd b +--++--+- =2214()d b -22222222224()()[{}{}{}]ab cd d b ab cd d b ad bc +--++--+=2214()d b -22222222442222224()()(2)ab cd d b a b c d d b d b a d b c +--+++--- =2214()d b -222222222222224()()[()()ab cd d b b a b d c d d b a c +--+--+--+ =2214()d b -222222222()[4()()]d b ab cd c d b a -+-+--=1422222222(22)(22)ab cd c d b a ab cd d b a c +++--+-++- =22221[()()][()()]4a c b d b d a c +--+-- =1()()()()4a b c d a b d c a d c b b d c a ++-++-++-++- =()()()()p a p b p c p d ----所以,海伦公式的推广得证.4.海伦公式的推广的应用海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍.【例6】 如图,四边形ABCD 内接于圆O 中,S ABCD =433,AD = 1,AB = 1, CD = 2. 求:四边形可能为等腰梯形.(一) 知识内容解斜三角形和证明三角形全等或相似类似,已知条件必须能确定这个三角形,才能求出唯一的其他未知条件的解.如果板块二:正余弦定理的实际应用dcbaOCA已知条件不能确定一个三角形,则可能无解或有两解,如两边和一个非两边夹角.大致可以把解斜三角形用下面的表格来概括:(二)典例分析【例7】 如图所示,已知在梯形ABCD 中(//AB CD ),CD =2,AC 60o BAD ∠=,求梯形的高DE .【变式】 在△ABC 中,已知4=AB ,7=AC ,BC 边上的中线27=AD ,那么求BC 为多少.【变式】 在△ABC 中,已知AC B AB ,66cos ,364==边上的中线BD =5,求sin A 的值.【变式】 已知△ABC 中,a 、b 、c 为角A 、B 、C 的对边,且a +c =2b ,A –B =60o ,求sin B 的值.【例8】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC =0.1km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km≈1.414≈2.449)【变式】 已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.D【变式】 某观测站C 在A 城的南偏西20°方向,由A 城出发有一条公路定向是南偏东40°,由C 处测得距C 为31km 的公路上B 处有1人沿公路向A 城以v =5km/h 的速度走了4h 后到达D 处,此时测得C 、D 间距离为21km.问这人以v 的速度至少还要走多少h 才能到达A 城.【教师选做】利用正余弦定理证明三角恒等式【例9】 在△ABC 中, 求证:22cos cos a b A B -+ +22cos cos b c B C -+ +22cos cos c a C A-+=0.【例10】 在△ABC 中,角A ,B ,C 的对边分别为a , b , c , 证明:222sin()sin a b A B C c --=.【例11】 在△ABC 中,记BC =a , CA =b , AB =c , 若22299190a b c +-=,则cot cot cot C A B +为多少.<教师备案>规律方法总结:1.要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解.2.两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式.3.记住一些结论:π,,,A B C A B C ++=均为正角,1sin 2S ab C =等.4.余弦定理的数量积表示式:cos ||||BA CA A BA CA ⋅=.5.余弦定理中,涉及到四个量,利用方程思想,知道其中的任意三个量可求出第四个量.。
三角形中角平分线形成的角的三个小结论
三角形中角平分线形成的角的三个小结论湖北省黄石市下陆中学802班成昌力(14岁)指导教师:陈勇学习三角形角平分线的知识时,我发现了三个有趣的结论,让大家一起来看看吧!例1 如图1,已知△ABC的∠B和∠C的平分线BD、CE相交于点O,求证:∠BOC= 90°+∠A。
解:∵BD平分∠ABC∴∠ABC=2∠ABD=2∠DBC同理:∠ACB=2∠ACE=2∠ECB.在△BOC中,∠BOC+∠DBC+∠ECB= 180°,∴∠BOC=180°-(∠DBC+∠ECB)∵在△ABC中, ∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB =180°-∠A∴2∠DBC+2∠ECB =180°-∠A∴∠DBC+∠ECB =90°-∠A∴∠BOC=180°-(90°-∠A)即∠BOC= 90°+∠A。
结论1:在一个三角形中,任意两个内角的角平分线相交形成的钝角等于90°加上第三个角的一半。
例2 如图2,已知BO平分∠EBC,CO平分∠FCB,BO、CO相交于点O,探究∠BOC与∠A的关系。
解:∵BO平分∠EBC∴∠EBC=2∠CBO=2∠EBO同理:∠FCB=2∠BCO=2∠FCO又∵∠ABC+∠EBC=180°∴∠ABC=180°-∠EBC=180°-2∠CBO同理:∠ACB=180°-∠FCB=180°-2∠BCO∵∠A+∠ABC+∠ACB=180°∴∠A+180°-2∠CBO+180°-2∠BCO =180°∴∠CBO+∠BCO= 90°+∠A又∠BOC+∠CBO+∠BCO =180°∴∠BOC =180°-(∠CBO+∠BCO)=180°-(90°+∠A)=90°-∠A结论2:三角形两个外角的角平分线相交形成的角等于90°减去第三个外角对应的内角的一半。
高一下学期数学专题:解三角形中的基本结论与应用
8.解三角形中的基本结论与应用一.基本结论1.正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b cR C===A B (R 为C ∆AB 的外接圆的半径).2.正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;④RSinC SinB SinA cb a 2=++++.3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =;变形:A bc a c b cos 2222=-+.5.解三角形所涉及的其它知识(1)三角形内角和定理(2)三角形边角不等关系:B A B A B A b a cos cos sin sin <⇔>⇔∠>∠⇔>.6.诱导公式在ABC ∆中的应用(1)()()C B A C B A C B A tan )tan(;cos cos ;sin sin -=+-=+=+;(2)2sin 2cos ,2cos 2sinCB AC B A =+=+二.典例分析例1.在ABC sin cos B c b A =-,则B =()A.12πB.6πC.4πD.3π解析:根据正弦定理,可知2sin a R A =,2sin b R B =,2sin c R C =,代入原式可得sin sin sin cos A B C B A =-,又A B C π++= ,()sin sin sin cos cos sin C A B A B A B ∴=+=+sin sin cos A B A B =,sin 0A ≠ ,sin 3tan cos 3B B B ∴==,得6B π=.故选:B 例2.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,sin sin 02c A C π⎛⎫+= ⎪⎝⎭,6c =.(1)求ABC 外接圆的面积;(2)若=c ,13AM AB =,求ACM △的周长.解析:(1)∵sin sin 02c A C π⎛⎫+= ⎪⎝⎭,∴sin cos 0c A C =,由正弦定理得:sin sin cos 0C A A C +=,因为sin 0A ≠,所以sin 0C C +=,得tan C =,又0C π<<,故23C π=,∴ABC外接圆的半径112sin 22c R C =⋅==∴ABC 外接圆的面积为12π.(2)由6c =及=c得:b =12s n 2i B ===,∵23C π=,则B 为锐角,∴6B π=,故6A B C ππ=--=.如图所示,在ACM △中,由余弦定理得,(222222cos 22242CM AM AC AM AC A =+-⋅⋅=+-⨯⨯=,解得2CM =,则ACM △的周长为4+.例3(2020新课标Ⅲ卷)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()A.B.C.4 D.解析:设,,AB c BC a CA b===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=222145cos sin tan 299a cb B B B ac +-==∴==∴=。
高中数学重要二级结论
高中数学重要二级结论高中数学重要的二级结论有很多,涉及各个数学领域的知识点。
下面将对其中一些重要的二级结论进行详细介绍。
1.平行线的性质:平行线的性质是几何学中的基础内容之一。
平行线具有以下重要的二级结论:-平行线与直线交角为180度:如果两条直线分别与一条第三条直线平行,那么这两条直线与第三条直线的交角为180度。
-平行线的夹角相等:如果两条直线分别与一条第三条直线平行,并且与第三条直线分别都有一条共同的交线,那么这两条线之间的夹角相等。
2.相似三角形的性质:相似三角形的性质在几何学中也是非常重要的。
相似三角形具有以下重要的二级结论:-三角形的对应角相等:如果两个三角形的对应角分别相等,那么它们是相似的。
-边的比例:在两个相似三角形中,对应边的比例相等。
3.圆的性质:圆是几何学中的重要概念,它具有以下二级结论:-切线垂直于半径:圆上切线与半径的连线垂直。
-弧与圆心角的关系:同一个圆上的任意两个弧所对应的圆心角相等。
4.三角函数和三角恒等式的性质:三角函数和三角恒等式是高中数学重要的内容,其中一些重要的二级结论如下:-同角三角函数的大小关系:对于给定角度,正弦函数的值不超过1,余弦函数的值不超过1,而正切函数的绝对值没有上限。
-三角函数的周期性:正弦函数和余弦函数的周期为360度(或2π弧度),而正切函数的周期为180度(或π弧度)。
5.常用数列的特征:数列是数学中重要的内容之一,一些常用数列的特征如下:-等差数列等差:一个数列如果满足每一相邻两项之差相等,那么这个数列是等差数列。
-等比数列等比:一个数列如果满足每一相邻两项之比相等,那么这个数列是等比数列。
-斐波那契数列的特征:斐波那契数列是一个递归数列,其中每一项是前两项之和。
6.二次函数的性质:二次函数是高中数学中重要的内容,其中一些重要的二级结论如下:-二次函数的对称轴:二次函数的对称轴是一个垂直于x轴的直线。
-二次函数的顶点:二次函数的顶点是对称轴上的一个点,是函数的极值点。
由平行线分线段成比例定理引出三角形中的八个结论
BC ’A B
’
所以 +丽 =面 1 1
Байду номын сангаас
.
则 丽= , A=E 寺 ND
即 N :C = 1 :2 N .
作者简介 杨再发 , 贵 州省沿河县人 , 6 男, 1 8年 l 9 0月出
生, 中学一级教师. 发表 2 余篇文章 . 0 多次 被评为优秀教师 .
3 5
5 如 图 5M 是 AA C中 B . , B C边 的 中点 , P是 点
BF’
B c边上的任意一点 , 过点 P作 艘 ∥A M交 B A的延
长线 于 Q, c 交 A于 R
则 +P = 丽 R B C
证明 : 过点 D作 D G∥ C F交 A B于点 G ,
因为 A D是 AA C的 中线 , B 所 以点 G是 F的中点 , G = 则 F 1
E D = E D。 D =B . B B 即 E E
6如 图 6 在 AA C中 , D是 B , B 点 C边上 的 中点 , 点 是 A D的 中点 ,M 的延 长线 交 A B C于 点 N, A 则 Ⅳ
: CN = 1 :2.
因为 D E∥ B , 以A =丽 c所 , E D E
所 以 C =B M M.
C B 则 () 2侍 R +eQ = P +P 1 +() P
A
=
C
R =丽 所 以 + P = 蔚 B C B C
,
图7
图8
8 如图7 B . ,D为 A B A C的角平分线 , E∥ B D C
交A B于点 E, 则
Ⅳ
一
1
+ 一
1
= 一
三角形中的一些重要结论在空间中的推广
三角形中的一些重要结论在空间中的推广作者:刘文沐来源:《理科爱好者·教育教学版》2010年第02期摘要:本文介绍了三角形中的一些重要结论在空间中的推广。
关键词:三角形空间推广【中图分类号】 G633.6【文献标识码】 C 【文章编号】1671-8437(2010)02-0170-011、在平面Rt△ABC中,∠C=Rt∠,AB=c,AC=b,BC=a,有勾股定理:c2=a2+b2在平面上作一推广就有:若Rt△ABC斜边AB上的高为d,则:=+。
把此结论推广到空间,则有:在直三棱锥OABC中,OA=a,OB=b,OC=c,且OA⊥OB,OA⊥OC,OB⊥OC,作OD⊥BC于D,OD=d,连结AD,则有:=+。
证明:∵S△AOB=ab,S△AOC=ac,S△AOD=ad,又=+∴=+;即:=+;即:=+。
2、在平面Rt△ABC中,∠C=Rt∠,斜边AB上的高CD=h,有射影定理:AC2=AD•AB把此定理推广到空间就有:如图1,在四面体ABCD中,过顶点A的三条侧棱AB、AC、AD两两互相垂直,O是顶点A在底面上的射影,则S2△ABC=S△BOC•S△BDC。
图1证:如图1,连结DO并延长交BC于E,连结AE;∵三条侧棱AB、AC、AD两两互相垂直,∴O是△BCD的垂心,则DE⊥BC,AE⊥BC。
又AD⊥AB,AD⊥AC,∴AD⊥面ABC,则AD⊥AE。
在Rt△DAE中,根据射影定理有:AE2=EO•ED,S2△ABD=S△BOD•S△BDC于是(BC•AE)2=(BC•EO)•(BC•ED)即:S2△ABC=S△BOC•S△BDC 。
同理:S2△ACD=S△COD•S△CBD 。
3、在任意△ABC中,BC=a、CA=b、AB=c,则有:⑴正弦定理:= ==2R⑵余弦定理: c2=a2+b2-2abcosC在平面中作一推广就有:设在任意△ABC中,BC=a、CA=b、AB=c,BC、CA、AB边上的高分别为ha,hb,hc,则有:(1)==(2)hc-2=ha-2+hb-2-2ha-1hb-1cosC证明:利用三角形面积公式得:a=2S△ha-1,b=2S△hb-1,c=2S△hc-1(S△为△ABC的面积),分别代入正弦定理,余弦定理即可。
高中三角形中的常见结论
c CBA ba 高中三角形中的常见结论以下很多结论都是只有在三角形中才成立的,离开三角形.........................这个前提条件就不一定成立!.............在ABC ∆中,内角,,A B C 的对边分别为,,a b c 。
1、内角和定理:A B C π++=。
2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立,即:a b A B >⇔>,a b A B =⇔=,a b A B <⇔<。
3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,即:a b c +>,a c b +>,b c a +>a b c -<,a c b +<,b c a -<4、三角形的四心:外心:外接圆圆心,三边中垂线的交点。
内心:内切圆圆心,三内角角平分线的交点。
垂心:三边高线的交点。
重心:三边中线的交点。
重心G 的性质:(1)重心G 是中线的三等分点; (2)0GA GB GC ++=u u u r u u u r u u u r ;(3)若11(,)A x y 、22(,)B x y 、33(,)C x y ,则123123,33x x x y y y G ++++⎛⎫⎪⎝⎭。
等腰三角形中顶角角平分线、底边中线、底边高线三线合一。
等边三角形四心合一。
5、正弦定理:2sin sin sin a b c R A B C===(R 为ABC ∆外接圆的半径)。
正弦定理的变形:(1)sin sin a b A B =,sin sin b c B C =,sin sin a c A C=; (2)sin sin a B b A =,sin sin b A a B =,sin sin a B A b=; (3)2sin a R A =,2sin b R B =,2sin c R C =;(4)sin 2a A R =,sin 2b B R =,sin 2c C R=; (5)::sin :sin :sin a b c A B C =;(6)2sin sin sin sin a b c a R A B C A ++==++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c C
B
A
b
a D
高中三角形中的常见结论
以下很多结论都是只有在三角形中才成立的,离开三角形这个前提条件就不一定成立!
在中,内角的对边分别为。
ABC ∆,,A B C ,,a b c 1、内角和定理:。
A B C π++=2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立,
即:,,。
a b A B >⇔>a b A B =⇔=a b A B <⇔<3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,即:,,a b c +>a c b +>b c a +> ,,a b c -<a c b +<b c a
-<4、三角形的四心:
外心:外接圆圆心,三边中垂线的交点。
内心:内切圆圆心,三内角角平分线的交点。
垂心:三边高线的交点。
重心:三边中线的交点。
重心的性质:(1)重心是中线的三等分点;G G (2);
0GA GB GC ++=
(3)若、、,则。
11(,)A x y 22(,)B x y 33(,)C x y 123123,33x x x y y y G ++++⎛⎫
⎪⎝⎭
等腰三角形中顶角角平分线、底边中线、底边高线三线合一。
等边三角形四心合一。
5、正弦定理:
(为外接圆的半径)。
2sin sin sin a b c
R A B C
===R ABC ∆正弦定理的变形:(1),,;sin sin a b A B =sin sin b c B C =sin sin a c
A C
= (2),,;
sin sin a B b A =sin sin b A a B =sin sin a B
A b
= (3),,;
2sin a R A =2sin b R B =2sin c R C = (4),,;
sin 2a A R =sin 2b B R =sin 2c
C R
= (5);
::sin :sin :sin a b c A B C = (6)。
2sin sin sin sin a b c a
R A B C A
++==++正弦定理的用途:(1)已知两角和任一边,求其他两边和一角; (2)已知两边及其中一边的对角,求另一边和另两角;(此种情况一定要注意如何
取舍角,利用内角和定理、边角关系进行取舍!)
6、余弦定理:,,2222cos a b c bc A =+-2222cos b a c ac B =+-222
2cos c a b ab C
=+-或,,。
222cos 2b c a A bc +-=222cos 2a c b B ac +-=222
cos 2a b c C ab
+-=余弦定理的用途:(1)已知三边,求三角;
(2)已知两边及其夹角,求另一边和另两角; (3)判断三角形的形状。
余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
为锐角cos 0C >⇔C ∠⇔222c a b <+为直角cos 0C =⇔C ∠⇔222c a b =+为钝角cos 0C <⇔C ∠⇔222
c a b >+7、三角形内的诱导公式:
sin()sin A B C +=cos()cos A B C +=-tan()tan A B C
+=- sin
cos 22A B C +=cos sin 22
A B C
+=tan
cot 22
A B C
+=8、对任意三角形,都有。
ABC sin 0A >9、,
sin sin A B A B a b >⇔>⇔>,sin sin A B A B a b =⇔=⇔=。
sin sin A B A B a b <⇔<⇔<10、若,则或。
sin 2sin 2A B =A B =2
A B π
+=11、sin()0A B A B
-=⇔=12、在中,给定、的正弦或余弦值,则的正弦或余弦有解(即存在)的充要条件是
ABC ∆A B C 。
(也可以用9中的结论来判断)cos cos 0A B +>13、在中,。
ABC ∆tan tan tan tan tan tan A B C A B C ++=⋅⋅14、在中,、、成等差数列。
ABC ∆A B C ⇔60B =
15、为正三角形、、成等差数列且、、成等比数列。
ABC ∆⇔A B C a b c 16、的面积公式:(1)(,,分别为边上的高)ABC ∆111
222a b c S ah bh ch =
==a h b h c h ,,a b c (2)111
sin sin sin 222
S ab C bc A ac B
===
D C
B
A
17、正余弦定理综合:222
sin sin sin2sin sin cos
A B C B C A
=+-
222
sin sin sin2sin sin cos
B A
C A C B
=+-
222
sin sin sin2sin sin cos
C A B A B C
=+-
18、射影定理:cos cos
a b C c B
=+
cos cos
b a C
c A
=+
cos cos
c a B b A
=+
19、角平分线定理:为的角平分线,则
AD ABC
∆
AB BD
AC CD
=
20、的面积公式:(1)(,,分别为边上的高)
ABC
∆
111
222
a b c
S ah bh ch
===
a
h
b
h
c
h,,
a b c
(2)
111
sin sin sin
222
S ab C bc A ac B
===
(3)(为外接圆的半径)
2
2sin sin sin
S R A B C
=R ABC
∆
(4)
4
abc
S
R
=
(5)(其中)
S=
2
a b c
p
++
=
(6)(为内切圆的半径)
1
()
2
S rp r a b c
==++r ABC
∆
21、直角三角形中的结论:(1)两锐角互余,即。
90
A B
+=
(2)角所对的直角边等于斜边的一半。
30
(3)勾股定理:。
222
a b c
+=
(4)斜边上的中线等于斜边的一半,外接圆的圆心为斜边的中点,垂心为直角
顶点。
(5)如图可得:Rt ABC Rt ACD Rt CBD
∆∆∆
∽∽
(6)由(2
2
AC AD AB
=⋅
2
BC BD BA
=⋅
2
CD DA DB
=⋅。