余弦定理优质课比赛课件
合集下载
余弦定理(55张PPT)
2.在解三角形的过程中,求某一个角有时既可以用余 弦定理,也可以用正弦定理,两种方案有什么利弊呢?
提示:用余弦定理求角时,运算量较大,但角与余弦 值是一一对应的,无须讨论;而用正弦定理求角时,运算 量较小,但由于在区间(0,π)上角与正弦值不是一一对应 的,一般情况下一个正弦值可对应两个角,往往要依据角 的范围讨论解的情况.
新知初探
1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减 去这两边与它们的夹角的余弦的积的两倍.即
2.余弦定理的推论 余弦定理揭示了三角形中两边及其夹角与对边之间的 关系,它的另一种表达形式是 b2+c2-a2 cosA=_____________ , 2bc
a2+c2-b2 2ac cosB=_____________ , a2+b2-c2 2ab cosC=_____________.
类型二 [例2]
判断三角形的形状 在△ABC中,已知(a+b+c)(b+c-a)=3bc且
sinA=2sinBcosC,试确定△ABC的形状. [分析] 首先根据条件(a+b+c)(b+c-a)=3bc,利
用余弦定理求出一个角,再利用另一个条件,得到另外两 个角的关系,即可判断.
[解]
∵(a+b+c)(b+c-a)=3bc,
须知余弦定理是勾股定理的推广,勾股定理是余弦定
2 2 2 a > b + c 理的特例.角A为钝角⇔_____________,角A为直角⇔ 2 2 2 2 2 2 a = b + c a < b + c ____________,角A为锐角⇔____________.
3.利用余弦定理可解决的两类问题 余弦定理的每一个等式中都包含四个不同的量,它们 分别是三角形的三边和一个角,知道其中的三个量,代入 等式,便可求出第四个量来. 利用余弦定理可以解决以下两类解斜三角形的问题:
余弦定理PPT优秀课件
∴ cosA= AB AC = (8)(2)3(4) 2 ,∴ A≈84°.
AB AC
732 5
365
四、课堂练习:
1.在△ABC中,bCosA=acosB,则三角形为( C )
A.直角三角形 B.
C.
D.等边三角形
解法一:利用余弦定理将角化为边.
∵bcosA=acosB ,∴b·b2c2a2aa2c2b2
解:∵ coAs b2 c2 a2 =0.725, ∴ A≈44° 2bc
∵coCs a2 b2 c2=0.8071, 2ab
∴ B=180°-(A+C)≈100.
∴ C≈36°,
(∵sinC=
c
sin a
A
≈0.5954,∴
C ≈ 36°或144°(舍).)
例2在Δ ABC中,已知a=2.730,b=3.696,C=82°28′,解这个
∵0<A,B<π ,∴-π <A-B<π ,∴A-B=0 即A=B
故此三角形是等腰三角形.
2.在△ABC中,若a2>b2+c2,则△ABC为 钝角三角形;若a2=b2+c2,
则△ABC为
直角三;角若形a2<b2+c2且b2<a2+c2且c2<a2+b2,
则△ABC为
锐角Байду номын сангаас三角形
3.在△ABC中,sinA=2cosBsinC,则三角形为 等腰三角形 。
解法一:
B
8
7
∵ |AB| = [6(2)2 ](58)2 73
6
5
A
|BC| = (24)2(81)2 85
4 3
|AC| = (64)2(51)225
7. 正弦定理和余弦定理(优秀经典公开课比赛课件).
A为锐角
A为钝角 或直角
图形
关系式 解的 个数
a bsin A bsin A a b
一解
两解
ab 一解
ab 一解
题型一 正弦定理的应用
【例1】 (1)在△ABC中,a= 3,b= 2 ,B=45°. 求角A、C和边c;
(2)在△ABC中,a=8,B=60°,C=75°.求边b 和c; (3)在△ABC中,a,b,c分别是∠A,∠B,∠C 的对边长,已知a,b,c成等比数列,且a2-c2=
所以a 2sin105 6 2 . 2
题型二 余弦定理的应用
【例2】 在△ABC中,a、b、c分别是角A,B,C 的对边,且 cos B b . cos C 2a c
(1)求角B的大小;
(2)若b= 13,a+c=4,求△ABC的面积.
思维启迪
由 cos B b , 利用余弦定理 cos C 2a c
2R
2R
2R
解决不同的三角形问题.
2.余弦定理:a2= b2+c2-2bccos A ,b2= a2+c2-2accos B ,
c2= a2+b2-2abcos C .余弦定理可以变形为:cos A
b2 c2 a2
a2 c2 b2
2bc ,cos B=
2ac ,cos C=
a2 b2 c2
ac-bc,求∠A及 bsin B 的值. c
练习1 在△ABC中,若b= 2 ,c=1,B=45°, 求a及C的值. 解 由正弦定理得
2 1 ,所以sin C 1 .
sin 45 sin C
2
因为c<b,所以C<B,故C一定是锐角,
《余弦定理》示范公开课教学PPT课件【高中数学】
•平面向量的应用
•余弦定理
情景引入
问题1:某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山
的长度.工程技术人员先在地面上选一适当的位置C,量出C到山脚A,B的
距离,再利用经纬仪测出C对山脚AB(即线段AB)的张角,最后通过计
算求出山脚AB的长度.
A
B
C
情景引入
问题1:某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山
A
B
三角形的边、角关系,得到了SSS,SAS,ASA,
AAS等判定三角形全等的方法.
现在已知三角形的两边及其夹角,三角形是唯一确定的,BC的长
度也是唯一确定的.
C
课堂探究
问题2:在△ABC中,当∠C=90°时,有c2=a2+b2 若a,b边的长短不变,变
B
换∠C的大小时,c2与a2+b2有什么大小关系呢?请大家思考
B
答:若∠C<90°时,由于AC与BC的长度不变,所
以AB的长度变短,即c2<a2+b2
A
若∠C>90°时,由于AC与BC的长度不变,所以AB的
C
B B
长度变长,即c2>a2+b2.
可以得到∠C≠90°时,c2≠a2+b2.
A
C
课堂探究
问题3:通过前面的研究我们知道,当∠C≠90°时,c2 ≠a2+b2.那么c2 与
从数量化的角度进行了刻画.
课堂探究
追问8:勾股定理指出了直角三角形中三边之间的关系,余弦定理则指出
了三角形的三条边与其中的一个角之间的关系,你能说说这两个定理之间
的关系吗?
答: 如果△ABC中有一个角是直角,例如,C=90°,这时cos C=0,由余弦
•余弦定理
情景引入
问题1:某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山
的长度.工程技术人员先在地面上选一适当的位置C,量出C到山脚A,B的
距离,再利用经纬仪测出C对山脚AB(即线段AB)的张角,最后通过计
算求出山脚AB的长度.
A
B
C
情景引入
问题1:某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山
A
B
三角形的边、角关系,得到了SSS,SAS,ASA,
AAS等判定三角形全等的方法.
现在已知三角形的两边及其夹角,三角形是唯一确定的,BC的长
度也是唯一确定的.
C
课堂探究
问题2:在△ABC中,当∠C=90°时,有c2=a2+b2 若a,b边的长短不变,变
B
换∠C的大小时,c2与a2+b2有什么大小关系呢?请大家思考
B
答:若∠C<90°时,由于AC与BC的长度不变,所
以AB的长度变短,即c2<a2+b2
A
若∠C>90°时,由于AC与BC的长度不变,所以AB的
C
B B
长度变长,即c2>a2+b2.
可以得到∠C≠90°时,c2≠a2+b2.
A
C
课堂探究
问题3:通过前面的研究我们知道,当∠C≠90°时,c2 ≠a2+b2.那么c2 与
从数量化的角度进行了刻画.
课堂探究
追问8:勾股定理指出了直角三角形中三边之间的关系,余弦定理则指出
了三角形的三条边与其中的一个角之间的关系,你能说说这两个定理之间
的关系吗?
答: 如果△ABC中有一个角是直角,例如,C=90°,这时cos C=0,由余弦
余弦定理优质课 ppt课件
∴ C ≈ 36°或144°(舍).
例3、已知△ABC中,a=8,b=7,B=600,
求c及S△ABC
解 b 2 : c 2 a 2 2 accB os 7 2 c 2 8 2 2 8 c c6 o 00 s
整理得:c2-8c+15=0
解得:c1=13, c2=5
SABC
a 2
c1s
inB
解:方法一: 根据余弦定理,
a²=b²+c²-2bccosA =60²+34²-2×60×34×cos41o
≈1 676.82, ∴a≈41(cm).
余弦定理优质课
例1 在△ABC中,已知b=60 cm,c=34 cm, A=41° ,解三角形(角度精确到1°,边长精 确到1 cm). {接上页} 由正弦定理得,
隧道工程设计经常要测算山脚的长度工程技术人员先在地面上选一适当的位置a量出a到山脚bc的距离再利用经纬仪测出a对山脚bc即线段bc的张角最后通过计算求出山脚的长度bc已知
余弦定理优质课
1.1.2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
三边(a,b,c)
正弦定理 余弦定理
由正弦定理求出角B,再求角C,最后 求出c边.可有两解,一解或无解.
先由余弦定理求出其中两个角,再利用内 角和为180°求出第三个角.
余弦定理优质课
练习 C A
1 20
练习
练习
ABC中,
(1)a=4,b=3,C=60°,则c=__1_3__;
(2)a = 2, b = 3, c = 4, 则C = _1_0_4_._5_°. (3)a=2,b=4,C=135°,则A=_1_4_._6_°_.
【精品】余弦定理全国优秀21页PPT
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
【精品】余弦定理不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
【精品】余弦定理不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
余弦定理(优秀课件)
北师大版必修5· 新课标· 数学
第二章 解三角形
人 教 3.余弦定理与勾股定理 版 必 (1)勾股定理是余弦定理的特殊情况,在余弦定理表达 修 2 2 2 2 2 2 一 式中令A=90°,则a =b +c ;令B=90°,则b =a +c ; 2=a2+b2. 令 C = 90 °,则 c 新 课 (2) 在△ ABC 中,若 a2<b2 + c2 ,则 A 为⑧ ________ 角, 标 反之亦成立;若 a2 = b2 + c2 ,则 A为⑨________ 角,反之亦 地 2>b2+c2,则A为⑩________角,反之亦成立. 成立;若 a 理
由正弦定理知,AC=2rsinB, AC ∴r= ≈2.5(km). 2sinB r2+BC2-r2 由余弦定理知,cos∠OBC= =0.74, 2rBC ∴∠OBC≈42° . 故医院应建在△ABC 的内部的点 O 处, 使 OB 约 为 2.5 km,且∠OBC 约为 42° .
北师大版必修5· 新课标· 数学
人 教 版 必 修 一 · ·
6+ 2 解析:cos15° =cos(45° -30° )= 4 . 由余弦定理知 c2=a2+b2-2abcosC=4+8-2 2×( 6+ 2)=
新 课 8-4 3, 标 2 ∴ c = 8 - 4 3 = 6 - 2 = 6- 2. 地 理 a c 由正弦定理得sinA=sinC,
· ·
北师大版必修5· 新课标· 数学
第二章 解三角形
人 教 解析:在△ABC中,由余弦定理: 版 必 BC2 = AB2 + AC2 - 2AB·AC·cos∠BAC = 32 + 52 - 修 一 2×3×5·cos120°=49, ∴BC=7, 新 课 设BD=x,则DC=7-x,由内角平分线定理: 标 地 理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
a2b2c22 bcco As b2a2c22acco Bs b
a
c2a2b22 acbo Cs
推论:coAs b2
c2 a2 2bc
Ac
利用余弦定理可
B
a2 c2 b2 coBs
以解决什么类型 的三角形问题?
2ac
coCsa2 b2 c2 2ab
解决实际问题
在△ABC中,已知AB=6km,BC=3.4km,
C 1 8 0 A B 1 8 0 6 0 4 5 7 5
题型三、判断三角形的形状
例1、在△ABC中,若a=4、b=5、c=6 (1)试判断角C是什么角? (2)判断△ABC的形状
题型三、判断三角形的形状
例2、在△ABC中,若a2 b2c2,
则△ABC的形状为( )
A、钝角三角形 C、锐角三角形
例 3、 在△ABC 中,已知(a+b+c)(b+c-a)=3bc 且 sinA=2sinBcosC,试确定△ABC 的形状.
[解] ∵(a+b+c)(b+c-a)=3bc, ∴a2=b2+c2-bc. 又∵a2=b2+c2-2bccosA,则2cosA=1,∴A=60°. 又∵sinA=sin(B+C)=sinBcosC+cosBsinC= 2sinBcosC,∴sin(B-C)=0,∴B=C. 又∵B+C=120°,∴△ABC是等边三角形.
题型二、已知三角函数的三边解三角形
例1、在△ABC中,已知a= 6 ,b=2,c= 3 ,1
解三角形(依次求解A、B、C). 解:由余弦定理得
cosAb2c2a222( 31)2( 6)21
2bc
22(31) 2
A60
coBsa2c2b2 ( 6)2( 31)222
2ac
2 6( 31)
2 2
B45
的夹角为∠C, 求边c.
设 CB a ,Cb A ,A B c
由向量减法的三角形法则得
c ab
c 2cc(ab)(ab)
﹚
aa2abb2b22aabbcoCs
a2b22ac bo C s
c2a2 b 22 acbo Cs
探 究: 若△ABC为任意三角形,已知角C,
BC=a,CA=b,求AB 边 c.
由向量减法的三角形法则得
c 2 c c acb(ab)(ab)
﹚
aa2ab b2b22aab bcoCs
a2b22ac bo C s
余弦定理
c2a2 b 22 acbo Cs a2b2c22 bcco As b2a2c22acco Bs
余弦定理
角对边的平方等于两边平方的和减去这两边
与它们夹角的余弦的积的两倍。
复习回顾
a
b
c
正弦定理:
=
=
=2R
sin A sin B sin C
(其中2R为△ABC外接圆直径)
正弦定理能解哪两类三角形呢?
① 已知两边和其中一边的对角,求其他角和边.
② 已知两角和一边,求其他角和边.
思考:你能求出下图中岛屿A和岛屿B
120°
?
岛屿C
探 究: 在△ABC中,已知CB=a,CA=b,CB与CA
∠B=120o,求 AC
A
B
120°
解:由余弦定理得
A 2 C A 2 B B 2 C 2 A B B cC B os
623.42263.4co1s2o0
C
6.796
AC8.24
答:岛屿A与岛屿C的距离为8.24 km.
题型一、已知三角形的两边及夹角求解三角形
例 1 、 A 在 中 BC , b 3 ,已 c23 知 , A 3 ,0
B、直角三角形 D、不能确定
那a2b2c2呢?
知识提炼:
由推论我们能判断三角形的角的情况吗?
C
推论: coAsb2c2a2 2bc
b
a
提炼:设a是最长的边,则
Ac
B
△ABC是钝角三角形 b2c2a20
△ABC是锐角三角形 b2c2a20 △ABC是直角三角形 b 2c2a 20
题型三、判断三角形的形状
设 CB a ,Cb A ,A B c
由向量减法的三角形法则得
c ab
c 2cc(ab)(ab)
﹚
aa2ab b2b22aab bcoCs
a2b22ac bo C s
c2a2 b 22 acbo Cs a2b2c22 bcco As
探 究: 若△ABC为任意三角形,已知角C,
设BC C= a,B a C,AC =b ,b A 求,A AB 边B c c.
3、判断三角形的形状
课外作业: P10 A组 3、4
小结:
余弦定理:
推论:
a2b2c22bcco As
cosAb2
c2 a2 2bc
b2a2c22acco Bs
c2 a2 b2
c2a2b22acbo CscosB 2ca
cosCa2 b2 c2 2ab
余弦定理可以解决的有关三角形的问题:
1、已知两边及其夹角,求第三边和其他两个角。
2、已知三边求三个角;
求 B 、 角 C 和 a 的 边值
C
解:由余弦定理知, a2 b2 c2 2bccosA
a
b
3 2 2 3 2 2 3 2 3 c3 o 3 0 s B c
A
a 3 由正弦a定 理 b 得
s
inBbs
inA312
sin A sin B
3 bc,B60
a
32
C 18 A 0B90