常见气体的爆炸极限

合集下载

常见气体的爆炸极限完整版

常见气体的爆炸极限完整版

常见气体的爆炸极限Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限 (体积分数) / %下限(V/V) 上限(V/V)乙烷 C2H6乙醇 C2H5OH19乙烯 C2H432氢气 H2 75硫化氢 H2S45甲烷CH415甲醇 CH3OH44丙烷 C3H8甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2乙炔 C2H2100氨气 NH3 15 苯 C6H68丁烷 C4H10一氧化碳 CO74丙烯 C3H6丙酮 CH3COCH313苯乙烯 C6H5CHCH2时,遇到明火或一定的引爆能量立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。

形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。

可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。

可燃物质的爆炸极限受诸多因素的影响。

如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。

可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。

可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。

例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。

可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。

当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在
混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)
此定律一直被证明是有效的。

2.2?理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃
)、
结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。

常见气体的爆炸极限

常见气体的爆炸极限

常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限(体积分数) / %下限(V/V) 上限(V/V)乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度围遇火源才能发生爆炸。

这个遇火源能发生爆炸的可燃气浓度围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。

不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是 4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。

甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。

可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。

爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。

我国目前把爆炸下限小于是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。

2.2 理·查特里公式理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178 Nm3/h 体积分数=2.178/19000=0.012% 甲醛体积分数=25.39 Nm3/h 体积分数=25.39/19000=0.134% 混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。

常见气体爆炸极限表

常见气体爆炸极限表
常见气体爆炸极限表
物质名称
分子式
爆炸浓度 (V%)
毒性
下限 LEL
上限 UEL
甲烷
CH4
5
15
乙烷
C2H6
3
15.5
丙烷
C3H8
2.1
9.5
丁烷
C4H10
1.9
8.5
戊烷(液体)
C5H12
1.4
7.8
己烷(液体)
C6H14
1.1
7.5
庚烷(液体)
CH3(CH2)5CH3
1.1
6.7
辛烷(液体)
C8H18
乙胺
CH3CH2NH2
3.5
14
中等
苯胺
C6H5NH2
1.3
11
高毒
二甲胺
(CH3)2NH
2.8
14.4
中等
乙二胺
H2NCH2CH2NH2
低毒
甲醇(液体)
CH3OH
6.7
36
乙醇(液体)
C2H5OH
3.3
19
正丁醇(液体)
C4H9OH
1.4
11.2
甲醛
HCHO
7
73
乙醛
C2H4O
4
60
丙醛(液体)
C2H5CHO
7.1
中等
甲苯
C6H5CH3
1.2
7.1
低毒
氯乙烷
C2H5Cl
3.8
15.4
中等
氯乙烯
C2H3Cl
3.6
33
氯丙烯
C3H5Cl
2.9
11.2
中等
1.2二氯乙烷
ClCH2CH2Cl

常见气体地爆炸极限

常见气体地爆炸极限

常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限(体积分数) / %下限(V/V) 上限(V/V)乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度围遇火源才能发生爆炸。

这个遇火源能发生爆炸的可燃气浓度围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。

不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是 4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。

甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。

可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。

爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。

我国目前把爆炸下限小于是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式气体的爆炸极限是指气体混合物中可燃气体的浓度范围,在这个浓度范围内,混合物可以发生自燃或爆炸。

爆炸极限通常分为上爆炸极限和下爆炸极限。

下面将介绍一些常见气体的爆炸极限及其计算公式。

1.甲烷(CH4)甲烷是最常见的天然气成分之一,它在空气中的爆炸极限为5%~15%。

甲烷的爆炸极限可以通过LFL(Lower Flammability Limit)和UFL (Upper Flammability Limit)来计算。

公式如下:LFL=0.0416×M/VcUFL=0.1621×M/Vc其中,M表示混合物中甲烷的质量分数,Vc表示燃烧容积。

2.乙炔(C2H2)乙炔是一种常用的工业气体,它在空气中的爆炸极限为 2.5%~93.3%。

乙炔的爆炸极限计算公式如下:LFL=4.57×(Vg)^0.63UFL=38×(Vg)^0.63其中,Vg表示乙炔的体积分数。

3.氢气(H2)氢气是一种轻便的气体,在空气中的爆炸极限为4%~75%。

氢气的爆炸极限可以通过下面的公式进行计算:LFL=4.1×(Pg)^0.82UFL=77.7×(Pg)^0.82其中,Pg表示氢气的压力。

4.二氧化碳(CO2)二氧化碳是一种非常稳定的气体,不易燃烧。

它的下爆炸极限为34%~74%。

在常规条件下,二氧化碳不会引发自燃或爆炸反应。

5.氧气(O2)氧气是一种强氧化剂,它本身不可燃。

然而,许多物质在氧气的存在下能够更容易燃烧。

氧气在空气中的爆炸极限为24%~95%。

需要注意的是,不同气体具有不同的爆炸极限计算公式,而且这些公式仅适用于特定条件下的混合气体。

你在实际情况中应该使用与你的气体和条件相匹配的正确公式。

此外,爆炸极限受到许多因素的影响,例如温度、压力、湿度和空气中其他物质的存在等。

这些因素可能会使爆炸极限的数值发生变化。

因此,在实际操作中,我们需要进行实验或模拟来确定具体气体在特定条件下的爆炸极限值。

常见气体的爆炸极限

常见气体的爆炸极限

常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限 (体积分数) / %下限(V/V) 上限(V/V)乙烷 C2H6 3.0 15.5乙醇 C2H5OH 3.4 19乙烯 C2H4 2.8 32氢气 H2 4.0 75硫化氢 H2S 4.3 45甲烷 CH4 5.0 15甲醇 CH3OH 5.5 44丙烷 C3H8 2.2 9.5甲苯 C6H5CH3 1.2 7二甲苯 C6H5(CH3)2 1.0 7.6乙炔 C2H2 1.5 100氨气 NH3 15 30.2苯 C6H6 1.2 8丁烷 C4H10 1.9 8.5一氧化碳 CO 12.5 74丙烯 C3H6 2.4 10.3丙酮 CH3COCH3 2.3 13苯乙烯 C6H5CHCH2 1.1 8.0可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。

这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。

不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。

甲烷的爆炸极限是 5.0%~15%意味着甲烷在空气中体积浓度在 5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。

可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。

爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。

我国目前把爆炸下限小于是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。

常见气体的爆炸极限及爆炸极限计算公式精修订

常见气体的爆炸极限及爆炸极限计算公式精修订

常见气体的爆炸极限及爆炸极限计算公式标准化管理部编码-[99968T-6889628-J68568-1689N]爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。

2.2理·查特里公式理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。

2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已
知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。

常见气体的爆炸极限及爆炸极限计算公式教程文件

常见气体的爆炸极限及爆炸极限计算公式教程文件

常见气体的爆炸极限及爆炸极限计算公式
莱夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根
据莱夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,贝
LEL= ( P1+P2+P3 / (P1/LEL1+P2/LEL2+P3/LEL3 ) (V%)
混合可燃气爆炸上限:
UEL= (P1+P2+P3 / ( P1/UEL1+P2/UEL2+P3/UEL3) (V%)
此定律一直被证明是有效的。

2.2理查特里公式
理查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/( V1/L1+V2/L2+……+Vn/Ln )
式中Lm ——混合气体爆炸极限,%;
L1、L2、L3――混合气体中各组分的爆炸极限,%;
VI、V2、V3――各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80% (L下=5.0%)、乙烷15% (L下
=3.22%)、丙烷4% (L 下=2.37%)、丁烷1% ( L 下=1.86%)求爆炸下限。

Lm=100/ (80/5+15/3.22+4/2.37+1/1.86) =4.369。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律????对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)?此定律一直被证明是有效的。

2.2?理·查特里公式????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)????式中Lm——混合气体爆炸极限,%;????L1、L2、L3——混合气体中各组分的爆炸极限,%;????V1、V2、V3——各组分在混合气体中的体积分数,%。

????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

????Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式
The final revision was on November 23, 2020
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。

理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极
限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。

Lm=100/(80/5+15/+4/+1/)=。

常见的气体地爆炸极限

常见的气体地爆炸极限

常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限(体积分数) / %下限(V/V) 上限(V/V)乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。

这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。

不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。

甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。

可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。

爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。

我国目前把爆炸下限小于是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。

常见气体地爆炸极限

常见气体地爆炸极限

常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限(体积分数) / %下限(V/V) 上限(V/V)乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。

这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。

不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。

甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。

可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。

爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。

我国目前把爆炸下限小于是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。

各常见气体爆炸极限

各常见气体爆炸极限

常见可燃性气体爆炸极限三氯氢硅SiHCl31.别名•英文名硅氯仿、硅仿、三氯硅烷;Trichlorosilane、Silicochloroform.2.用途单晶硅原料、外延成长、硅液、硅油、化学气相淀积、硅酮化合物制造、电子气。

3.制法(1)在高温下Si和HCl反应。

(2)用氢还原四氯化硅(采用含铝化合物的催化剂)。

4.理化性质分子量: 135.43熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):13 50kg/m3;相对密度(气体,空气=1): 4.7;蒸气压(-16.4℃):13.3kPa;(14. 5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸下限:9.8%;毒性级别:3;易燃性级别:4;易爆性级别:2三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无色透明液体。

在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl和Cl2:SiHCl3 O2→SiO2 HCl Cl2;三氯硅烷的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。

它的热稳定性比二氯硅烷好,在900℃时分解产生氯化物有毒烟雾(HCl),还生成Cl2和Si。

遇潮气时发烟,与水激烈反应:2SiHCl3 3H2O—→ (HSiO)2O 6HCl;在碱液中分解放出氢气:SiHCl3 3NaOH H2O—→Si (OH)4 3NaCl H2;与氧化性物质接触时产生爆炸性反应。

与乙炔、烃等碳氢化合物反应产生有机氯硅烷:SiHCl3 CH≡CH一→CH2CHSiCl3 、SiHCl3 CH2=CH2—→CH3CH2SiCl3在氢化铝锂、氢化硼锂存在条件下,SiHCl3可被还原为硅烷。

容器中的液态Si HCl3当容器受到强烈撞击时会着火。

可溶解于苯、醚等。

无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。

常见易燃易爆气体爆炸极限

常见易燃易爆气体爆炸极限

常见易燃易爆气体爆炸极限气体爆炸是一类危险性极高的事故,在工业、建筑、化学等领域都有发生过。

在氧气、氢气、乙炔、甲醛、氨气等常见易燃易爆气体中,究竟存在着哪些危险的爆炸极限呢?什么是爆炸极限?爆炸极限是指气体与空气形成混合气体时的浓度范围,如果混合气浓度在这个范围内,那么一旦点燃就会发生爆炸。

爆炸极限确定的因素有气体种类、压力、温度等。

常见易燃易爆气体的爆炸极限氧气氧气是支持燃烧的气体,当空气中氧气浓度超过23.5%时就会导致其它可燃气体的燃烧速度加快,从而引起爆炸。

而氧气本身也有爆炸极限。

根据实验数据,氧气在常温常压下的最小爆炸浓度为5.2%,最大爆炸浓度为95.2%。

因此,氧气要避免超预定浓度范围内使用和储存。

氢气氢气是一种极易燃烧、极易爆炸的气体,在常温常压下,氢气的最小爆炸浓度为4%,最大爆炸浓度为75%。

乙炔乙炔是一种常用的工业燃气,它的燃烧温度极高、爆炸性极强。

在20℃以下的温度下,乙炔的最小爆炸浓度为2.5%,最大爆炸浓度为82%。

但是,当温度超过585℃时,乙炔的最小爆炸浓度下降到0.9%。

甲醛甲醛是一种有毒、有害,易燃的有机物。

在常温常压下,甲醛的最小爆炸浓度为7%,最大爆炸浓度为73%。

氨气氨气有刺激性气味,有毒,易燃。

在常温下,氨气的最小爆炸浓度为16%,最大爆炸浓度为25%。

如何避免爆炸事故?针对常见易燃易爆气体,我们可以采用以下措施来避免危险的爆炸事故的发生。

•保持空气流通,减少混合气体的浓度。

•维护设备和管道,避免泄漏。

•使用防爆电器,避免火花引发爆炸。

•储存易燃易爆气体时,要使用封闭式容器,并禁止与其它物质混放。

•提高工作人员的安全意识,定期开展安全培训和演练。

以上措施虽然不能完全避免爆炸事故的发生,但是可以最大限度地减少危险。

结论了解常见易燃易爆气体的爆炸极限,有助于我们更好地识别危险,并且采取相应的措施来预防事故的发生。

安全永远第一,我们应该时刻保持警觉,从自身做起,责任共担,确保每一个工作场所都是安全的。

常见气体的爆炸极限完整版

常见气体的爆炸极限完整版

常见气体的爆炸极限44常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限(体积分数) / %下限(V/V) 上限(V/V)乙烷 C2H6乙醇 C2H50H19乙烯 C2H432氢气H275硫化氢H2S45甲烷CH415甲醇CH30H丙烷 C3H8甲苯C6H5CH3二甲苯C6H5 (CH3) 2乙烘 C2H210015氨气NH3苯C6H68丁烷C4H10一氧化碳C074丙烯C3H6丙酮CH3C0CH313苯乙烯C6H5CHCH213可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。

这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。

不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是%〜%(体积浓度),意思是如果氢气在空气中的体积浓度在%〜%之间时,遇火源就会爆炸,而当氢气浓度小于%或大于%时,即使遇到火源,也不会爆炸。

甲烷的爆炸极限是%〜15%意味着甲烷在空气中体积浓度在%〜15%之间时,遇火源会爆炸,否则就不会爆炸。

可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。

爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。

我国目前把爆炸下限小于是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。

(2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。

(3)它可以作为制定安全生产操作规程的依据。

在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见气体的爆炸极限气体名称化学分子式/在空气中的爆炸极限(体积分数) / %下限(V/V) 上限(V/V)乙烷C2H6 3.0 15.5乙醇C2H5OH 3.4 19乙烯C2H4 2.8 32氢气H2 4.0 75硫化氢H2S 4.3 45甲烷CH4 5.0 15甲醇CH3OH 5.5 44丙烷C3H8 2.2 9.5甲苯C6H5CH3 1.2 7二甲苯C6H5(CH3)2 1.0 7.6乙炔C2H2 1.5 100氨气NH3 15 30.2苯C6H6 1.2 8丁烷C4H10 1.9 8.5一氧化碳CO 12.5 74丙烯C3H6 2.4 10.3丙酮CH3COCH3 2.3 13苯乙烯C6H5CHCH2 1.1 8.0空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。

可可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。

爆炸极限是一个气体分级和确定其火灾危险性类别的依据。

我国目前把爆炸下限小于是10%的可燃气体等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。

(将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。

为保证这一点,在制定安全生产警等。

空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。

可可燃物质的爆炸极限受诸多因素的影响。

如可燃气体的爆炸极限受温度、压力、合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少,爆炸所产生的压力不大,温度不高,爆炸威力也小。

当可燃物的浓度大致相当于反应当宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。

爆炸下限炸条件。

生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。

反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如果可燃物质在混合物中的全燃烧时在混合物中该可燃物质的含量。

根据化学反应计算可燃气体或蒸2C0+02+3.76N2=2C02+3.76N2 根据反应式得知,参加反应0%=29.6%(三)爆炸极限的影响因素爆炸极限通常是在常含氧量、惰性气体含量、火源强度等因素的变化而变化。

1.初始温度爆炸危险性。

2.初始压力增加混合气体的初始压力,通常在高压下的气体分子比较密集,浓度较大,这样分子间传热和发生化学反应比较容易,混合气在减压的情况下,爆炸范围会随之减小。

压力降到某一数值,上限与下限往采用在临界压力以下的条件进行,如环氧乙烷的生产和贮运。

3.含氧量不足,所以增加氧含量使上限显著增高,爆炸范围扩大,增加了发生火灾爆炸的危险性甲烷的极限氧含量为12%,若低于极限氧含量,可燃气就不能燃烧爆炸了。

子隔离,在它们之间形成一层不燃烧的屏障。

这层屏障可以吸收能量,使游离基消失,,会使爆炸上限显著降低,爆炸范围缩小。

惰性气体增到一定浓度时,可使爆炸范围为全燃烧,若增加惰性气体含量,会使氧量更加不足,燃烧更不完全,由此导致爆炸上限爆炸范围扩大,增加燃烧、爆炸的危险性。

最小点火能量是指能引起一定火能量为最小。

若点火源的能量小于最小能量,可燃物就不能着火。

所以最小点火能量也量,是判定其能否作为火源引发火灾爆炸事故的重要条件。

6.消焰距离时,通道的表面要散失热量,通道越窄,比表面积越大(通道表面积和通道容积的比值),率,这时燃烧过程就会在通道内停止进行,火焰也就停止蔓延,因此把火焰蔓延不下去力的影响。

所以,消焰距离是可燃物火焰蔓延能力的一个度量参数,也是一、燃烧过程可以产生爆炸,燃烧导致的爆炸可以按照燃烧速度分为两类:烧过程称为爆轰。

(注:声速的绝对数值取决于介质,例如空气中的声速和氢气中的声速压力骤变形成压缩波,按照爆炸传播速度分为三类: 1 轻爆爆炸传播。

这里的“爆轰”定义包涵了燃烧过程中的爆轰。

化,在变化过程中,伴有物质所含能量的快速转变,即变为该物质本身、变化产物或周聚造成高温高压等非寻常状态,对邻近介质形成急剧的压力突跃和随后的复杂运动,显示会带来非常严重的后果,造成巨大的经济损失和人员伤害,譬如泵房垮塌、油罐爆炸着火一个正确的理解。

爆炸与防爆——爆炸极限的定义(2)可燃性气体或蒸气与助燃性气的爆炸极限是指可燃气体或蒸气在空气中的浓度极限,能够引起爆炸的可燃气体的最—影响爆炸极限的因素(3)1 可燃气体 1.1 混合系的组分不同,爆炸极限使爆炸极限发生变化。

a.温度影响因为化学反应与温度有很大的关系则爆炸极限范围增大即下限降低,上限增高。

但是,目前,还没有大量的系统实验结果。

表1 初如温度对混合物爆炸极限的影响示例见表 b.压力影响使燃烧反应更容易进行,爆炸极限范围扩大,特别是爆炸上限明显提高。

压力减小,则爆为例说明压力对爆炸极限的影响(见表2)。

表2 压力对爆炸极限的影响(以一数值时,混合系就不能爆炸。

惰性气体种类不同,对爆炸极限的影响也不同影响容器、管子直径越小,则爆炸范围越小,当管径小到一定程度时,单位体容器材料也有很大影响,如氢和氟在玻璃器皿中混合,即使在液态空气温度下,置于黑的浓度范围也就越宽。

尤其是爆炸上限向可燃气含量较高的方向移动。

如甲烷在100V电炸极限为5.85%-14.8%。

f.干湿度影响通常可燃气与空气混合物的相,点火源与混合物的接触时间长等都会使爆炸极限扩大。

h.除此之外,混合系气中的比例几乎无关。

因为氧和氮的比热相近,燃烧热传递到这两种气体都会导致相同很大的关系。

这是由于可燃气或可燃蒸气过剩,也就是氧气不足所致 2 可燃下限温度,爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。

c.爆炸上爆炸机理粉尘爆炸是因其粒子表面氧化而发生的。

其爆炸过程如下:合气体,发火产生火焰;这种火焰产生的热,进一步促进粉末的分解不断成为气相,放出,粒度越高(粒径越小)爆炸下限越低。

(2)水分含尘空气有水分存在时,中,氧气浓度增加将导致爆炸下限降低。

(4)点燃源粉尘爆炸下限受点燃源明,决不可把爆炸特性值看作是物理常数。

而在实际工作中,却有很多人把其当作一个极限数值在国内、国外权威部门发布的数据也是有所不同。

但是,这些数值由但是,作为一个管理者而言,应该知道这个数值的来源,并根据自己的实际情况予以科如果一成不变,死搬教条,就易引发事故,影响生产的正常运行。

爆炸与防爆——爆炸,公式如下:L下≈0.55c0式中0.55——常数;c0——中n0——可燃气体完全燃烧时所需氧分子数。

如甲烷燃烧时,其反应式为相差不超过10%。

2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.间。

碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒——常数。

爆炸与防爆——超过爆炸极限的危险性(5)超过爆炸极限可能产生的危险,气体受热、发生燃烧并在特殊情形下发生爆炸。

由此来看,上述将爆炸极限与燃烧极限混但仍可能发生燃烧。

只是这个爆炸极限与燃烧极限的差值一般很小,在很多情况下可以视况下进行带压不置换动火,从而省时省力。

爆炸与防爆——爆炸控制(6)由于爆炸造亡。

因此,科学防爆是非常重要的一项工作。

防止爆炸的一般原则是:一是控,或防止空气进入可燃气体中;控制、监视混合气体组分浓度;装设气体组分接近危险和氧气,以及一定的点火能量。

利用惰性气体取代空气中的氧气,就消除了引发爆炸的固体物质的粉碎、筛选处理及其粉末输送时,采用惰性气体进行覆盖保护。

1.性气体通过管线与有火灾爆炸危险的设备、贮槽等连接起来,在万一发生危险时使用。

压保护。

1.6 易燃易爆系统检修动火前,使用惰性气体进行吹扫置换。

作 2.1 为防止易燃气体、蒸气或可燃性粉尘与空气形成爆炸性混合物,应设法爆炸性危险气体向器外逸散,可以采用负压操作系统。

对于在负压操作下生产的设备,风系统,应采用不产生火花的除尘器。

含有爆炸性粉尘的空气,在进入风机前,应进行净构要求的前提下,即使容器和设备没有附加防护措施,也能承受一定的爆炸压力。

如果的防护目的。

由于这一方法的成本很高,而且,与相关设备的安全可靠性判别开口及时进行卸压,则容器内部就不会产生不可容纳的高爆炸压力,因而也就不必使用压装置可分为一次性(如爆破膜)和重复使用的装置(如安全阀)。

4.3 房间间里的人。

这种情况下,房间里的设备必须是遥控的,并在运行期间严禁人员进入房间。

灭火剂罐组成,灭火剂罐通过传感装置动作。

在尽可能短的时间里,把灭火剂均匀地喷作。

爆炸遏制系统示意图爆炸遏制系统的重要作用,就是的或对环境有害的可燃气、蒸气或粉尘散发,那么,爆炸遏制是很重要的措施。

阻火器,但由于其工作面上的狭窄孔隙易附着污物,阻火器必须定期清扫,所以这类阻火以探测管道里的爆炸的原理而制造的。

信号器发出的脉冲经过放大器后很快打开由雷管启膜。

管道发生的爆炸压力使爆破膜破裂,从而使管道卸压。

为了能使管道在最恰当的压装置。

当爆炸或爆轰发生时,防爆瓣阀能够打开管端的排气口,接着再重新关闭,并置的功能和机械强度的要求是很高的。

使用管端卸压装置要防止管端随时遭到破坏(终端阀门。

它可以阻止与管道连接的容器出现超高压力上升,并能防止爆炸从防护部位往没有其数据的由来及影响因素有一个全面正确的认识,从而准确把握,特别是对一些特殊情况炸事故的发生。

到一定浓度时,遇到火源就会发生爆炸。

这些可燃物质与空气所形成的爆炸混合物能够物质若干克来表示。

爆炸极限说明可燃气体(蒸气)或粉尘与空气的混合物并不是在任炸的危险。

如果可燃物质在混合物中的浓度低于爆炸下限,由于空气所占的比例很大,可空气不足,缺少助燃的氧气,遇到明火,虽然不会爆炸,但接触空气却能燃烧。

爆炸性气体(如氢气、一氧化碳、甲烷等)或蒸气(如乙醇蒸气、汽油蒸气等)时,在一定体下限);最高体积分数称为高限(或上限)。

体积分数低于这个限度时,遇空气和明火也不限一般用可燃性气体或蒸气在爆炸混合物中的体积分数来表示。

在可燃物的生产、储存、空气中可燃气体爆炸极限测定方法GB/T 12474—90国家技术监督局1990-09-10批准 1991-09-01实施设备内允许可燃气体的浓度,爆炸性气体环境的通风和供热系统的计算,动火作业时安。

相关文档
最新文档