人教版上册第22章二次函数单元测试题

合集下载

人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案解析

人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案解析

第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A . y=(x +2)2﹣5 B . y=(x +2)2+5 C . y=(x ﹣2)2﹣5 D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12 D . 14或34 6.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表: x … ,1 0 1 2 2.5 3 4 … y 1 … 0 m 1 ,8 n 1 ,8.75 ,8 ,5 … y 2…5m 2,11n 2,12.5,11,5…则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc <0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数. 2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.5.A【解析】【分析】首先根据题意确定a,b的符号,然后进一步确定a的取值范围,根据a,b为整数确定a,b的值,从而确定答案.【详解】,0,a+b,2=0,依题意知a,0,b2a故b,0,且b=2,a,a,b=a,,2,a,=2a,2,于是0,a,2,∴,2,2a,2,2,又a,b为整数,∴2a,2=,1,0,1, 故a=12,1,32,b=32,1,12,∴ab=34或1,故选A, 【点睛】根据开口和对称轴可以得到b 的范围。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

人教新版九年级上册数学第22章《 二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章《 二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为( )A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是( )A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=( )A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于( )A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是( )A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是( )A.a>b>c B.c>a>b C.c>b>a D.b>a>c 7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是( )A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是( )A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣7 9.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是( )A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为 .12.如果函数是关于x的二次函数,那么k的值是 .13.当m= 时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m= .15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a= .16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是 .17.已知抛物线y=x2+4x+5的对称轴是直线x= .18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1 y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是 .20.抛物线y=(x﹣2)2+3的顶点坐标是 .三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:( , );(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数一、选择题(每题3分,共24分)1.下列各式中,y 是x 的二次函数的是( )A .y =1x 2B .y =x 2+1x +1C .y =2x 2−1D .y =x 2−12.下列抛物线中,与y =−3x 2+1抛物线形状、开口方向完全相同,且顶点坐标为(−1,2)的是( )A .y =−3(x +1)2+2B .y =−3(x−1)2+2C .y =3(x +1)2+2D .y =−3(x +1)2+23.在平面直角坐标系中,将二次函数y =3x 2的图象向下平移3个单位长度,所得函数的解析式为( )A .y =3x 2−1B .y =3x 2+1C .y =3x 2−3D .y =3x 2+34.若A (−1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =−(x−2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 15.二次函数y =−x 2−2x +c 2−2c 在−3≤x ≤2的范围内有最小值为−5,则c 的值( )A .3或−1B .−1C .−3或1D .36.已知二次函数y =x 2−3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2−3x +m =0的两实数根是( )A .x 1=0,x 2=−1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=37.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的解析式是( )A .y =−13x 2B .y =13x 2C .y =−3x 2D .y =3x 28.如图,已知经过原点的抛物线y =a x 2+bx +c(a ≠0)的对称轴是直线x =−1,下列结论中:①ab >0,②a +b +c >0,③当−2<x <0时y <0.正确的个数是( )A.0个B.1个C.2个D.3个二、填空题(每题4分,共20分)9.抛物线y=−3(x−1)2−2的对称轴是直线 .10.若y=(m−2)x m2−2+x−3是关于x的二次函数.则m的值为 .11.抛物线y=a x2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点为(3,0),对称轴为直线x=1,则当y≤0时,x的取值范围是 .12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是 m.13.如图,在平面直角坐标中,抛物线y=a x2+bx(a>0)和直线y=kx(k>0)交于点O和点A,则不等式a x2 +bx<kx的解集为 .三、解答题(共56分)14.如图所示,二次函数y=a x2+bx+c(a≠0)的图保与x轴相交于A,B两点,其中点A的坐标为(−1,0),M(2,9)为抛物线的顶点.(1)求抛物线的函数表达式.(2)求△MCB的面积.15.如图所示,在平面直角坐标系中,二次函数y=a x2+4x−3的图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后的图象所对应的二次函数的表达式. 16.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.17.第十九届亚运会在杭州隆重举办,政府鼓励全民加强体育锻炼,李明在政府的扶持下投资销售一种进价为每件50元的乒乓球拍.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+900.(1)设月利润为W(元),求W关于x的函数表达式.(2)销售单价定为每件多少元时,所得月利润最大?最大月利润为多少元?(3)若物价部门规定这种乒乓球拍的销售单价不得超过75元,李明想使获得的月利润不低于3000元,求销售单价x的取值范围.18.如图,二次函数y=a x2+bx+c的图象交x轴于A(−1,0),B(2,0),交y轴于C(0,−2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值;(3)点P在该二次函数图象的对称轴上,且使|PB−PC|最大,求点P的坐标。

第二十二章 二次函数(单元测试)【解析版】-九年级数学上册同步备课系列(人教版)

第二十二章 二次函数(单元测试)【解析版】-九年级数学上册同步备课系列(人教版)

二十二章二次函数(单元测试)一、单选题(每题3分,共30分)A .0abc <B .【详解】由图知,0a >,对称轴1x =时,0y a b c =++<,故=1x -时,0y a b c =-+>....a>,抛物线与y轴的交点得出【详解】解:A.由直线可知a<0,由抛物线开口向上,0合题意;.由直线可知a<0,由抛物线开口向下,,抛物线与y轴的交点得出0a>,故选项不符合题意;,由抛物线开口向上,A.45米B.10米【详解】解:以O点为坐标原点,AB的垂直平分线为设抛物线的解析式为y=ax2,二、填空题(每题4分,共20分)【详解】解:设p(x,三、解答题(16-18题每题4分,19题6分,20题7分,21、22题每题8分,23题9分,共50分)【详解】解:(1)函数y=2x2+x-15的图象如图:由图象可知x 1≈2.4,x 2≈-3.1;(2)函数y =3x 2-x -1的图象如图:由图象可知x 1≈0.8,x 2≈-0.4;21.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式【详解】解:∵抛物线经过点()1,0A -,()5,0B ,()0,5C ,∴设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,∴()()21545y x x x x =-+-=-++.∴该抛物线的函数关系式为245y x x =-++.22.二次函数y =ax 2+bx +c 的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m ,身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【详解】(1)解:根据题意可知抛物线的顶点为()5,3.2,设抛物线的解析式为()25 3.2y a x =-+,将点()0,0.7代入,得0.725 3.2a =+,解得0.1a =-,∴抛物线的解析式为()20.15 3.2y x =--+,(2)由()20.15 3.2y x =--+,令 1.6y =,得()21.60.15 3.2x =--+,解得121,9x x ==,爸爸站在水柱正下方,且距喷水头P 水平距离3m ,∴当她的头顶恰好接触到水柱时,她与爸爸的水平距离为312-=(m),或936-=(m).24.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得△详解】(1)解:将B (0,-4),C (2,得:4420m a m =-⎧⎨++=⎩,解得:412m a =-⎧⎪⎨=⎪⎩,∴抛物线的函数解析式为:212y x x =+(2)向下平移直线AB ,使平移后的直线与抛物线只有唯一公共点此时△ABD 的面积最大,∵21402x x +-=时,12x =,24x =-,。

人教版初中数学九年级上册第22章《二次函数》章节测试题含答案

人教版初中数学九年级上册第22章《二次函数》章节测试题含答案

y
A DP C
பைடு நூலகம்
BO
x
二、填空题
9. (2019 湖北荆州)二次函数 y=﹣2x2﹣4x+5 的最大值是

10.(2019 四川凉山)当 0≤x≤3 时,直线 y=a 与抛物线 y=(x-l)2-3 有交点,则 a 的取值范
围是

11.(2019 四川达州)如图,抛物线 y x2 2x m 1(m 为常数)交 y 轴于点 A,与 x
m 0 , n 0 ,求 m , n 的值.
17.(2019 湖北荆门)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种 植优质草莓.根据场调查,在草莓上市销售的 30 天中,其销售价格 m(元/公斤)与第 x 天
之间满足 m

ᇛh, (x 为正整数),销售量 n(公斤)与第 x 天之间的
A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:
①abc>0,
②3a+c<0,
③a(m﹣1)+2b>0,
④a=﹣1 时,存在点 P 使△PAB 为直角三角形.
其中正确结论的序号为

三、解答题
15. (2019 北京市)在平面直角坐标系 xOy 中,抛物线 y = ax2 + bx - 1 与 y 轴交于点 A,将 a
且 x1 x2 1,则 y1 与 y2 的大小关系是()
A. y1 y2
B. y1 y2
C. y1 y2
D. y1 y2
6. 如图,抛物线 y=ax2+bx+c ( a 0 )过点(1,0)和点(0,-2),且顶点在第三象限,
设 P=a-b+c,则 P 的取值范围是( )

人教版数学九年级上册《第22章二次函数》单元测试卷(含答案)

人教版数学九年级上册《第22章二次函数》单元测试卷(含答案)

第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案)1.下列函数中,属于二次函数的是( )A. y=x ﹣3B. y=x 2﹣(x +1)2C. y=x (x ﹣1)﹣1D.2.抛物线y=﹣x 2不具有的性质是( )A. 对称轴是y 轴B. 开口向下C. 当x <0时,y 随x 的增大而减小D. 顶点坐标是(0,0)3.已知抛物线()20y ax a =>过()12,A y -, ()21,B y 两点,则下列关系式一定正确的( )A. 120y y >>B. 210y y >>C. 120y y >>D. 210y y >>4.对于二次函数 的图像,给出下列结论:①开口向上;②对称轴是直线 ;③顶 点坐标是 ;④与 轴有两个交点.其中正确的结论是( )A. ①②B. ③④C. ②③D. ①④5.如图,二次函数 的图象开口向下,且经过第三象限的点 若点P 的横坐标为 ,则一次函数 的图象大致是A. B. C. D.6.抛物线y=ax 2+bx+c 的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b+c=0;④若点(﹣0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2;⑤5a ﹣2b+c <0.其中正确的个数有( )A. 2B. 3C. 4D. 57.抛物线y=x2+x-1与x轴的交点的个数是()A. 3个B. 2个C. 1个D. 0个8.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.9.若二次函数的x与y的部分对应值如下表:则抛物线的顶点坐标是A. B. C. D.10.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A. -1B. 2C. 0或2D. -1或211.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A. 5个B. 4个C. 3个D. 2个12.小张同学说出了二次函数的两个条件:(1)当x<1时,y随x的增大而增大;(2)函数图象经过点(-2,4).则符合条件的二次函数表达式可以是( )A. y=-(x-1)2-5B. y=2(x-1)2-14C. y=-(x+1)2+5D. y=-(x-2)2+20二、填空题13.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.14.抛物线y=2(x+2)2+4的顶点坐标为_____.15.二次函数y=x2-2x-3,当m-2≤x≤m时函数有最大值5,则m的值可能为___________ 16.若二次函数y=x2+3x-c(c为整数)的图象与x轴没有交点,则c的最大值是________. 17.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是____________________三、解答题18.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.19.传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)20.如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.21.已知抛物线:y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该抛物线与x轴总有两个公共点;(2)设该抛物线与x轴相交于A、B两点,则线段AB的长度是否与a、m的大小有关系?若无关系,求出它的长度;若有关系,请说明理由;(3)在(2)的条件下,若抛物线的顶点为C,当△ABC的面积等于1时,求a的值.22.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.参考答案1.C2.C3.C4.D5.D6.B7.B8.B9.C10.D11.B12.D13.21614.(﹣2,4).15.0或416.-317.64m218.(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.19.(1)李明第10天生产的粽子数量为280只.(2)第13天的利润最大,最大利润是578元. 【解析】分析:(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.详解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,==,解得==,∴p=0.1x+1,①0≤x≤6时,w=(4-2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4-2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,∵a=-3<0,∴当x=-=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.点睛:本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.20.(1)y=x-3;(2)当y1>y2时,x<0和x>3.【解析】分析:(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.详解:(1)抛物线y1=x2-2x-3,当x=0时,y=-3,当y=0时,x=3或1,即A的坐标为(-1,0),B的坐标为(3,0),C的坐标为(0,-3),把B、C的坐标代入直线y2=kx+b得:=,=解得:k=1,b=-3,即直线BC的函数关系式是y=x-3;(2)∵B的坐标为(3,0),C的坐标为(0,-3),如图,∴当y1>y2时,x的取值范围是x<0或x>3.点睛:本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.21.(1)证明见解析;(2)1;(3)±8【解析】分析:(1)通过提公因式法,对函数的解析式变形,然后构成方程求解出交点的坐标即可;(2)根据第一问的交点坐标得到AB的长,判断出AB的长与a、m无关;(3)通过配方法得到函数的顶点式,然后根据三角形的面积公式求解即可.详解:(1)由y=a(x-m)2-a(x-m)=a(x-m)( x-m-1),得抛物线与x轴的交点坐标为(m,0)和(m+1,0).因此不论a与m为何值,该抛物线与x轴总有两个公共点.(也可用判别式Δ做)(2)线段AB的长度与a、m的大小无关。

人教版九年级数学上册 第22章 二次函数 单元测试卷(含解析)

人教版九年级数学上册 第22章 二次函数 单元测试卷(含解析)

人教版九年级数学上册第22章二次函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.抛物线的顶点坐标是A. B. C. D.2.已知二次函数的最小值是,那么m的值等于A. 10B. 4C. 5D. 63.抛物线上两点、,则a、b的大小关系是A. B. C. D. 无法比较大小4.已知a、b、c是的三边长,且关于x的方程的两根相等,则为A. 等腰三角形B. 等边三角形C. 直角三角形D. 任意三角形5.二次函数的图象如图所示,则一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.直线与抛物线在同一平面直角坐标系中的图象大致为A. B.C. D.7.若、为方程的两个实数根,则的值为A. B. 12 C. 14 D. 158.已知二次函数的图象如图,则一次函数的图象大致是A. B. C. D.9.抛物线的对称轴是A. 直线B. 直线C. 直线D. 直线10.将抛物线绕它的顶点旋转,所得抛物线的解析式是.A. B.C. D.二、填空题(本大题共7小题,共21分)11.如果函数是二次函数,那么m的值一定是______.12.已知二次函数的图象的顶点在x轴下方,则实数k的取值范围是.13.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是__________.14.如果抛物线的对称轴是y轴,那么m的值是______ .15.在解一元二次方程时,小明看错了一次项系数b,得到的解为,;小刚看错了常数项c,得到的解为,请你写出正确的一元二次方程______.16.如图,在中,,,AD为BC边上的高,动点P从点A出发,沿方向以的速度向点D运动,过P点作交AC于点E,过E点作于点F,设的面积为,四边形PDFE的面积为,则点P在运动过程中,的最大值为______.17.如图,是二次函数的图象的一部分,给出下列命题:;;的两根分别为和1;.其中正确的命题是________填写正确命题的序号三、解答题(本大题共6小题,共49分)18.已知二次函数的顶点在直线上,并且图象经过点求这个二次函数的解析式.当x满足什么条件时二次函数随x的增大而减小?19.已知抛物线与x轴交于A,B两点点A在点B的左侧,抛物线的顶点记为C.分别求出点A、B、C的坐标;计算的面积.20.二次函数a,b,c为常数图象如图所示,根据图象解答问题.直接写出过程的两个根.直接写出不等式的解集.若方程有两个不相等的实数根,求k的取值范围.21.如图,是某座抛物线型的隧道示意图.已知路面AB宽24米,抛物线最高点C到路面AB的距离为8米,为保护来往车辆的安全,在该抛物线上距路面AB高为6米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.22.某商店经销一种学生用双肩包,成本价为每个30元.市场调查发现,这种双肩包每天的销售量个与销售单价元有如下关系:设这种双肩包每天的销售利润为w元.求w与x之间的函数关系式;这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.如图,抛物线与x轴交于A,B两点,且点A在点B的左侧,直线与抛物线交于A,C两点,其中点C的横坐标为2.求二次函数的解析式;是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值.答案和解析1.【答案】C【解析】解:抛物线的顶点坐标是.故选:C.根据顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.2.【答案】D【解析】【分析】本题考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.将二次函数化为顶点式,即可建立关于m的等式,解方程求出m的值即可.【解答】解:原式可化为:,函数的最小值是,,,故选D.3.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征,属于基础题.由题意,抛物线开口向上,抛物线上的点离对称轴越远,对应的函数值就越大,点在对称轴上,即可得到答案.【解答】解:,抛物线开口向上,对称轴是直线,抛物线上的点离对称轴越远,对应的函数值就越大,点在对称轴上,.故选A.4.【答案】C【解析】【分析】方程的两根相等,即,结合直角三角形的判定和性质确定三角形的形状.总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.的三边长满足,由勾股定理的逆定理可知,此三角形是直角三角形.【解答】解:原方程整理得,因为两根相等,所以,即,所以是直角三角形.故选C.5.【答案】D【解析】解:由图象开口向上可知,对称轴,得.所以一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.6.【答案】C【解析】【分析】本题考查一次函数和二次函数的图象,属于基础题.本题可先由二次函数图象得到字母a的正负,再与一次函数的图象相比较看是否一致.逐一排除.【解答】解:由二次函数的图象可知,此时直线不可能在二、三、四象限,故D可排除;A中,二次函数的对称轴是y轴,可知,此时直线应该经过原点,故A可排除;因为对于,当时,,即抛物线一定经过原点,故B可排除.正确的只有C.故选:C.7.【答案】B【解析】【分析】本题主要考查方程的根与系数的关系,一元二次方程的解,代数式求值的有关知识,属于中档题.根据一元二次方程的解得到,即,则可表示为,根据题意得到,,然后整体代入求值即可.【解答】解:为的实数根,,即,,、为方程的两个实数根,,,.故选B.8.【答案】A【解析】【分析】先由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,再由一次函数的性质解答.本题考查了二次函数图象与系数的关系,一次函数图象与系数的关系.用到的知识点:二次函数,当时,抛物线开口向上;抛物线与y轴交于,当时,与y轴交于正半轴;当,时,一次函数的图象在一、二、三象限.【解答】解:抛物线开口向上,与y轴交于正半轴,,,一次函数的图象经过第一、二、三象限.故选A.9.【答案】D【解析】【分析】本题考查二次函数的对称轴,熟练掌握二次函数的图像与性质是解题的关键.【解答】解:抛物线可以看成是抛物线向上平移3个单位得到的,所以对称轴为y轴,即.故选D.10.【答案】D【解析】【分析】本题考查了二次函数的图象与几何变换,利用了绕定点旋转的规律.根据抛物线解析式间的关系,可得顶点式解析式,根据绕它的顶点旋转,可得顶点相同,开口方向相反,即可得出答案.【解答】解:将y配方得.此抛物线开口向上,顶点为,因为绕的顶点旋转后,新抛物线开口大小,形状不变,开口向下,顶点为,故新抛物线的解析式为,即.故选D.11.【答案】2【解析】解:函数是二次函数,,且,解得:.故答案为:2.直接利用二次函数的定义计算得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.12.【答案】【解析】【分析】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出是解此题的关键先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出,求出即可.【解答】解:二次函数中,图象的开口向上,又二次函数的图象的顶点在x轴下方,1,解得.13.【答案】【解析】【分析】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先确定抛物线的顶点坐标为,再根据点平移的规律,点经过平移后所得对应点的坐标为,然后利用顶点式写出平移后的抛物线的解析式.【解答】解:抛物线的顶点坐标为,把点向左平移2个单位,再向上平移1个单位后所得对应点的坐标为,所以平移后得到的抛物线的解析式为.故答案为.14.【答案】1【解析】解:的对称轴是y轴,,解得,故答案为:1.由对称轴是y轴可知一次项系数为0,可求得m的值.本题主要考查抛物线的对称轴,掌握抛物线的对称轴为y轴其一次项系数为0是解题的关键.15.【答案】【解析】【分析】本题考查了根与系数的关系:若,是一元二次方程的两根时,,.利用根与系数的关系得到,,然后求出b、c即可.【解答】解:根据题意得,,解得,,所以正确的一元二次方程为.故答案为.16.【答案】72【解析】【分析】本题考查了相似三角形的判定及性质,以及等腰直角三角形的性质,正确表示出和是关键.利用三角形的面积公式以及矩形的面积公式,表示出和,然后确定最值即可.【解答】解:中,,,AD为BC边上的高,,又,则,,,∽,,,,.的最大值为72,故答案为:72.17.【答案】【解析】【分析】本题主要考查对二次函数与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键由图象可知过,代入得到;根据,推出;根据图象关于对称轴对称,得出与x轴的交点是,;由,根据结论判断即可.【解答】解:由图象可知:过,代入得:,正确;,,错误;根据图象关于对称轴对称,抛物线与x轴的交点是,,的两根分别为和1,正确;,,,,,错误.故答案为.18.【答案】解:二次函数的顶点在直线上,并且图象经过点二次函数的顶点为,将和分别代入和,得,解得,,二次函数的解析式为;二次函数的解析式为,对称轴为,又,当时,y随x的增大而减小.【解析】二次函数的顶点为,将和分别代入和,求得b、c,从而得出二次函数的解析式;求得对称轴在对称轴的左侧y随x的增大而减小.本题是一道二次函数的综合题,考查了用待定系数法求二次函数的解析式以及二次函数的性质,是中考热点,难度不大.19.【答案】解:当时,,解得,,点坐标为,B点坐标为;,顶点C的坐标为;的面积.【解析】本题考查了抛物线与x轴的交点:把求二次函数b,c是常数,与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.解方程得A点坐标和B点坐标;把一般式配成顶点式得到顶点C的坐标;利用三角形面积公式计算即可.20.【答案】解:由图象得:的两个根为;由图象得:不等式的解集为;设抛物线解析式为;把代入得:;解得:,抛物线解析式为;方程有两个不相等的实数根;二次函数与有两个交点;可得:k的范围为【解析】此题考查了二次函数与不等式组,抛物线与x轴的交点由图象抛物线与x轴的交点横坐标确定出方程的解即可;由图象确定出不等式的解集即可;利用待定系数法确定出抛物线解析式,设设抛物线解析式为,把代入得:,得到解析式,确定出顶点坐标,方程有两个不相等的实数根,二次函数与有两个交点,即可求出所求k的范围.21.【答案】解:如图,以AB所在直线为x轴,线段AB的中垂线为y轴建立直角坐标系,由题意知,,,,设过点A,B,C的抛物线解析式为:,把点的坐标代入,得,解得:,则该抛物线的解析式为:,把代入,得,解得,,所以两盏警示灯之间的水平距离为:.【解析】本题主要考查的是二次函数的应用,注意利用函数对称的性质来解决问题利用待定系数法求得抛物线的解析式,已知抛物线上距水面AB高为6米的E,F两点,可知E,F两点纵坐标为6,把代入抛物线解析式,可求E,F两点的横坐标,根据抛物线的对称性求EF长.22.【答案】解:,w与x之间的函数解析式;根据题意得:,,当时,w有最大值,最大值是225.当时,,解得,,,不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【解析】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.每天的销售利润每天的销售量每件产品的利润;根据配方法,可得答案;根据自变量与函数值的对应关系,可得答案.23.【答案】解:当时,有,解得:,点A的坐标为;当时,,点C的坐标为.将、代入,得:解得:二次函数的解析式为.设点P的坐标为,则点E的坐标为,.,当时,PE取最大值,最大值为.【解析】本题考查了一次函数图象上点的坐标特征、二次函数的性质、二次函数图象上点的坐标特征、二次函数的最值以及待定系数法求二次函数解析式;解题的关键是:利用一次函数图象上点的坐标特征求出点A、C的坐标;用含m的代数式表示出PE的值.根据点C在x轴上求得点A的坐标,再根据点C的横坐标为2求出点C的纵坐标,把,代入二次函数的解析式,利用待定系数法即可求得函数的解析式;设点P的坐标为,则点E的坐标为,进而可得出,再利用二次函数的性质即可解决最值问题.。

人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案

人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案

人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。

人教版九年级数学上册第22章《二次函数》单元检测题(含答案)

人教版九年级数学上册第22章《二次函数》单元检测题(含答案)

人教版九年级数学上册第22章《二次函数》单元检测题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.32.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)3.抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.44.下列对二次函数y=﹣(x+1)2﹣3的图象描述不正确的是()A.开口向下B.顶点坐标为(﹣1,﹣3)C.与y轴相交于点(0,﹣3)D.当x>−1时,函数值y随x的增大而减小5.抛物线y=2x2﹣4x+c经过三点(﹣3,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2 6.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.7.若将双曲线y=向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是()A.0<a<B.<a<1C.1<a<2D.2<a<38.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m9.在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴只有一个交点,且经过点A(2﹣m,c),B(m+2,c),则△AOB的面积为()A.8B.12C.16D.410.已知经过点(﹣1,0)的二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0;②a﹣b+c<0;③4a+2b+c>0;④2a=b;⑤3a+c<0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.函数y=x2m﹣1+x﹣3是二次函数,则m=.12.已知抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线.13.在函数y=(x﹣1)2+1中,当x>1时,y随x的增大而.(填“增大”或“减小”)14.将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是.15.抛物线y=x2+bx+c的图象上有两点A(1,m),B(5,m),则b的值为.16.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…123456…y…0﹣3﹣4﹣305…则当x=0时,y的值为.17.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c≤n的解集是.18.若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为.三.解答题(共7小题,满分58分)19.(6分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.20.(6分)已知抛物线L:y=(m﹣2)x2+x﹣2m(m是常数且m≠2).(1)若抛物线L有最高点,求m的取值范围;(2)若抛物线L与抛物线y=x2的形状相同、开口方向相反,求m的值.21.(8分)已知抛物线y=ax2﹣4ax+3(a≠0)的图象经过点A(﹣2,0),过点A作直线l 交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.22.(8分)已知二次函数y=x2+2x﹣3.(1)用配方法把这个二次函数化成y=a(x﹣h)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当﹣4≤x≤0时,结合图象直接写出y的取值范围.23.(8分)如图,学校要用一段长为32米的篱笆围成一个一边靠墙的矩形花圃,墙长为14米.(1)若矩形ABCD的面积为96平方米,求矩形的边AB的长.(2)要想使花圃的面积最大,AB边的长应为多少米?最大面积为多少平方米?24.(10分)已知关于x的二次函数y=x2﹣2ax+a2+2a.(1)当a=1时,求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时,直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2﹣2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.25.(12分)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l 与抛物线交于A、C两点,其中点C的横坐标是2.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;(3)在平面直角坐标系中,是否存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:二次函数y=x2﹣2x+3的一次项系数是﹣2,故选:C.2.【解答】解:∵y=﹣(x﹣1)2+3,∴抛物线顶点坐标为(1,3),故选:B.3.【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,∴方程x2+x+c=0有两个相等的实数根,∴Δ=b2﹣4ac=12﹣4×1•c=0,∴c=.故选:B.4.【解答】解:A、∵a=﹣1<0,∴抛物线的开口向下,正确,不合题意;B、抛物线的顶点坐标是(﹣1,﹣3),故本小题正确,不合题意;C、令x=0,则y=﹣1﹣3=﹣4,所以抛物线与y轴的交点坐标是(0,﹣4),故不正确,符合题意;D、抛物线的开口向下,对称轴为直线x=﹣1,∴当x>−1时,函数值y随x的增大而减小,故本小题正确,不合题意;故选:C.5.【解答】解:∵y=2x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴x≤2时,y随x增大而减小,∴y1>y2>y3.故选:B.6.【解答】解:由函数y=ax+1与抛物线y=ax2+ax+1可知两函数图象交y轴上同一点(0,1),抛物线的对称轴为直线x=﹣=﹣,在y轴的左侧,A、抛物线的对称轴在y轴的右侧,故选项不合题意;B、抛物线的对称轴在y轴的右侧,故选项不合题意;C、由一次函数的图象可知a>0,由二次函数的图象知道a>0,且交于y轴上同一点,故选项符合题意;D、由一次函数的图象可知a>0,由二次函数的图象知道a<0,故选项不合题意;故选:C.7.【解答】解:双曲线y=向下平移3个单位后的函数为y′=﹣3,∵y′=﹣3交抛物线y=x2于点P(a,b),∴﹣3=a2,整理得,a3+3a﹣2=0,令y=a3+3a﹣2,且y随a的增大而增大.当a=0时,y=﹣2<0,当a=时,y=+﹣2=﹣<0,当a=1时,y=1+3﹣2=2>0,∴若a3+3a﹣2=0,则a的取值范围为:<a<1.故选:B.8.【解答】解:把A代入得:=﹣×9+k,∴k=,∴y=﹣(x﹣3)2+,令y=0得﹣(x﹣3)2+=0,解得x=﹣2(舍去)或x=8,∴实心球飞行的水平距离OB的长度为8m,故选:C.9.【解答】解:∵二次函数y=x2+bx+c的图象经过点A(2﹣m,c),B(m+2,c),∴对称轴为直线x==2,∴﹣=2,∴b=﹣4,∵点A或点B在y轴上,∴AB=4,∵二次函数y=x2+bx+c的图象与x轴只有一个交点,∴b2﹣4c=0,即16﹣4c=0,∴c=4,∴△AOB的面积为:=8.故选:A.10.【解答】解:由图可知,抛物线对称轴是直线x=1,∴﹣=1,即b=﹣2a,∵抛物线开口向下,∴a<0,b=﹣2a>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;由图可得,抛物线上的点(﹣1,a﹣b+c)在x轴下方,∴a﹣b+c<0,故②正确;∵抛物线对称轴是直线x=1,∴x=0和x=2时,函数值相等,而x=0时c>0,∴4a+2b+c>0,故③正确;∵b=﹣2a,∴④错误;∵a﹣b+c<0,b=﹣2a,∴a﹣(﹣2a)+c<0,即3a+c<0,故⑤正确;∴正确的有②③⑤,共3个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:∵函数y=x2m﹣1+x﹣3是关于x的二次函数,∴2m﹣1=2,∴m=.故答案为:.12.【解答】解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故答案为:x=2.13.【解答】解:∵函数y=(x﹣1)2+1,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.14.【解答】解:∵y=x2+x﹣1=(x+)2﹣,∴将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是y=(x++2)2﹣+3,即y=x2+5x+8,故答案为:y=x2+5x+8.15.【解答】解:∵抛物线经过A(1,m),B(5,m),∴抛物线对称轴为直线x=3,∴﹣=3,解得b=﹣6,故答案为:﹣6.16.【解答】解:依据表格可知抛物线的对称轴为x=3,∴当x=0时与x=6时函数值相同,∴当x=0时,y=5.故答案为:5.17.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.18.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,﹣4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.20.【解答】解:(1)∵抛物线L有最高点,∴m﹣2<0,∴m<2;(2)∵抛物线L与抛物线y=x2的性状相同,开口方向相反,∴m﹣2=﹣1,∴m=1.21.【解答】解:(1)将A(﹣2,0)代入y=ax2﹣4ax+3得:0=4a+8a+3,解得,∴抛物线为,∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴顶点坐标为(2,4);(2)把B(4,m)代入得,m=﹣4+4+3=3,将A(﹣2,0),B(4,3)代入y=kx+b得,解得,∴直线AB的解析式为,∵顶点的横坐标为2,把x=2代入得:y=2,∴n=4﹣2=2.22.【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4,即y=(x+1)2﹣4;(2)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴抛物线与x轴的交点坐标为(﹣3,0),(1,0),当x=0时,y=﹣3,∴抛物线与y轴的交点坐标为(0,﹣3),二次函数的图象如图所示:(3)观察图象得,当x=﹣1时,y取最小值﹣4,当x=﹣4时,y取最大值,代入函数得,y=(﹣4)2+2×(﹣4)﹣3=16﹣8﹣3=5.∴当﹣4≤x≤0时,﹣4≤y≤5.23.【解答】解:(1)设AB为x米,则BC=(36﹣2x)米,由题意得:x(32﹣2x)=96,解得:x1=4,x2=12,∵墙长为14米,32米的篱笆,∴32﹣2x≤14,2x<32,∴9≤x<16,∴x=12,∴AB=12,答:矩形的边AB的长为12米;(2)设AB为x米,矩形的面积为y平方米,则BC=(32﹣2x)米,∴y=x(32﹣2x)=﹣2x2+32x=﹣2(x﹣8)2+128,∵9≤x<16,且﹣2<0,故抛物线开口向下,∴当x=9时,y有最大值是126,答:AB边的长应为9米时,有最大面积,且最大面积为126平方米.24.【解答】解:(1)∵a=1,∴y=x2﹣2ax+a2+2a=x2﹣2x+3=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),对称轴为直线x=1.(2)把a=2代入y=x2﹣2ax+a2+2a得y=x2﹣4x+8,令x2﹣4x+8=2x,解得x1=2,x2=4,把x=2代入y=2x得y=4,把x=4代入y=2x得y=8,∴直线与抛物线交点坐标为(2,4),(4,8),∴线段长度为=2.(3)把x=4代入y=x2﹣2ax+a2+2a得y=16﹣8a+a2+2a=(a﹣3)2+7,∴点A纵坐标为(a﹣3)2+7,∵(a﹣3)2+7≥7,∴点A到x轴最小距离为7.25.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,解得:,∴抛物线的函数表达式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1,∵A、B关于直线x=1对称,所以AC与对称轴的交点为点P,此时C△PBC=PB+PC+BC=AC+BC,此时△BPC的周长最短,∵点C的横坐标是2,y C=22﹣2×2﹣3=﹣3,∴C(2,﹣3),设直线AC的解析式为y=mx+n(m≠0),∴,解得:,∴直线AC的解析式为y=﹣x﹣1,当x=1时,y=﹣1﹣1=﹣2,∴P(1,﹣2);(3)存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形.∵A(﹣1,0),B(3,0),C(2,﹣3),设E(x,y),①当AB为对角线时,则,解得:,∴E(0,3);②当AC为对角线时,解得:,∴E(﹣2,﹣3);③当BC为对角线时,则,解得:,∴E(6,﹣3).综上所述,E点坐标为(0,3)或(﹣2,﹣3)或(6,﹣3)。

人教版九年级数学上册《第22章二次函数》单元测试卷(含答案)

人教版九年级数学上册《第22章二次函数》单元测试卷(含答案)

人教版九年级上册第22章二次函数单元测试卷一、选择题(共8题;共24分)1.二次函数y=x2-2x+3顶点坐标是()A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2)2.已知抛物线y=(x−4)2-3与y轴交点的坐标是()A. (0,3)B. (0,-3)C. (0,)D. (0,-)3.二次函数y= -的图象如何移动就得到-的图象()A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位4.在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A. y=2(x-1)2-3B. y=2(x-1)2+3C. y=2(x+1)2-3D. y=2(x+1)2+35.已知二次函数的图象如下图所示,则四个代数式,,,中,值为正数的有()A. 4个B. 3个C. 2个D. 1个6.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A. ①③B. ②③C. ②④D. ③④7.已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1B. 2C. 3D. 48.如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A. b2>4acB. ax2+bx+c≥-6C. 若点(-2,m),(-5,n)在抛物线上,则m>nD. 关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(共10题;共30分)9.若抛物线的开口向上,则的取值范围是________.10.抛物线的顶点坐标是________.11.若A(,),B(,),C(1,)为二次函数y= +4x﹣5的图象上的三点,则、、的大小关系是________.12.抛物线与x轴交于点(1,0),(﹣3,0),则该抛物线可设为:________.13.把二次函数y=﹣2x2+4x+3化成y=a(x﹣m)2+k的形式是________.14.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.15.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为________16.二次函数y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,则m=________.17.若二次函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是________.18.抛物线y=ax2+bx+c满足下列条件:(1)4a﹣b=0;(2)a﹣b+c>0;(3)与x轴有两个交点,且两交点的距离小于2.以下有四个结论:①a<0;②c>0;③ac= b2;④ <a<.则其中正确结论的序号是________.三、解答题(共9题;共66分)19.如图,一块矩形草地的长为100m,宽为80m,欲在中间修筑两条互相垂直的宽为x(m)的小路,这时草坪的面积为y(m2).求y与x的函数关系式,并求出x的取值范围.20.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.21.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图像指出当m的函数值大于0的函数值时x的取值范围.22.如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),B两点,交y轴于点D.(1)求点B、点D的坐标,(2)判断△ACD的形状,并求出△ACD的面积.23.某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元.(1)求y与x之间的函数关系式;(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?24.已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F 的坐标;若不存在,请说明理由.25.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 DQ,求点F的坐标.26.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.已知如图,在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在AB上(不同于A、B),将△ANM 绕点M逆时针旋转90°得△A1PM(1)画出△A1PM(2)设AN=x,四边形NMCP的面积为y,直接写出y关于x的函数关系式,并求y的最大或最小值.参考答案一、单选题1.B2.C3.C4.C5.A6.D7.C8.C二、填空题9.a>2 10.(0,-1)11.<<12.y=a(x﹣1)(x+3)(a≠0)13.y=﹣2(x﹣1)2+5 14.直线x=2 15.16.17.1 18.①三、解答题19.解:设中间修筑两条互相垂直的宽为x(m)的小路,草坪的面积为y(m2),根据题意得出:y=100﹣80﹣80x﹣100x+x2=x2﹣180x+8000(0<x<80)20.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.21.解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a= ,∴抛物线m的解析式为y= (x﹣3)(x﹣8),即y= x2﹣x+6;函数图像如下:当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.22.解:(1)∵抛物线的顶点坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵与x轴交于点A(3,0),∴0=4a+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3,令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,令x=0,可得y=3∴B点坐标为(﹣1,0),D点坐标为(0,3);(2)∵A(3,0),D(0,3),C(1,4),∴AD==3,CD==,AC==2,∴AD2+CD2=(3)2+()2=20=(2)2=AC2,∴△ACD是以AC为斜边的直角三角形,∴S△ACD=AD•CD=×3×=3.23.解:(1)当30<x≤40时,设此段的函数解析式为:y=kx+b,解得,k=﹣3,b=156∴当30<x≤40时,函数的解析式为:y=﹣3x+156;当40<x≤80时,设此段函数的解析式为:y=mx+n,解得,m=,n=56,∴当40<x≤80时,函数的解析式为:y=;当80<x≤83时,y=16;由上可得,y与x之间的函数关系式是:y=;(2)当30<x≤40时,w=(x﹣28)y=(x﹣28)(﹣3x+156)=﹣3x2+240x﹣4368=﹣3(x﹣40)2+432∴当x=40时取得最大值,最大值为w=432元;当40<x≤80时,w=(x﹣28)y=(x﹣28)()==,∴当x=70时,取得最大值,最大值为w=882元;当80<x≤83时,w=(x﹣28)×16∴当x=83时,取得最大值,最大值为w=880元;由上可得,当x=70时,每日点的销售利润最大,最大为882元,即要使每日的销售利润w最大,每件产品的日销售价应定为70元,此时每日销售利润是882元.24.(1)由A(-3,0)和B(2,0),得:即= ax²+bx+4∴∴∴.(2)易得C(0,4),则BC= .由可对称轴为x= ,则可设点G的坐标为(,,∵点D是BC的中点∴点D的坐标为(,,由旋转可得,DG=DB∴……………∴………∴点G的坐标为(,或(,(3)①当BE为对角线时,因为菱形的对角线互相垂直平分,所以此时D即为对称轴与AC的交点或对称轴对BC的交点,F为点D关于x轴的对称点,设,∵C(,,A(,,∴,∴,∴,∴当时,,∴D(,,∴F(,;易得∴当时,y=5,∴D(,,∴F(,;②当BE为菱形的边时,有DF∥BEI)当点D在直线BC上时设D(,,则点F(,∵四边形BDFE是菱形∴FD=DB根据勾股定理得,(整理得:=0,解得:,∴F(,或(,II)当点D在直线AC上时设D(,,则点F(,∵四边形BFDE是菱形,∴FD=FB ,根据勾股定理得,整理得:,。

人教版数学第22章 二次函数 单元检测(附答案与解析)

人教版数学第22章  二次函数 单元检测(附答案与解析)

人教版数学第22 章二次函数单元检测学校:__________班级:__________姓名:__________考号:__________卷I(选择题)一、选择题(本题共计12小题,每题3分,共计36分。

)1.若关于的二次函数的图象与轴仅有一个公共点,则的取值范围是()A. B.C. D.且2.如图是二次函数=的图象,对于下列说法:①,②,③,④,⑤当时,随的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤3.两个二次函数=与=的图象只可能是下图中的()A.B.C.D. 4.判断方程(,、、为常数)的一个解的范围是A.B.C. D.5.已知二次函数有最大值,则,的大小关系是()A. B. C. D.不能确定6.观察下列各式:,,,…计算:()A. B.C. D.7.把抛物线向右平移个单位,再向上平移个单位,得到抛物线()A.B.C.D.8.如图已知二次函数的图象与轴正半轴相交,对称轴为直线,顶点坐标.则下列结论中:①;②;③;④当时,方程有两个不相等的实数根.正确的结论有()A.①②③B.①②④C.①③④D.①②③④9.某产品进货单价为元,按一件售出时,能售件,如果这种商品每涨价元,其销售量就减少件,设每件产品涨元,所获利润为元,可得函数关系式为()A.B.C.D.10.把二次函数的图象向左平移个单位或向右平移个单位后都会经过原点,则二次函数图象的对称轴与轴的交点是()A. B. C. D.11.有一座抛物线形拱桥,正常水位桥下面宽度为米,拱顶距离水平面米,如图建立直角坐标系,若正常水位时,桥下水深米,为保证过往船只顺利航行,桥下水面宽度不得小于米,则当水深超过多少米时,就会影响过往船只的顺利航行()A.米B.米C.米D.米12.直角三角形两直角边之和为定值,其面积与一直角边之间的函数关系大致图象是下列中的()A.B.C.D.卷II(非选择题)二、填空题(本题共计4小题,每题3分,共计12分。

新人教版数学九年级上册《第22章二次函数》单元测试(含答案)

新人教版数学九年级上册《第22章二次函数》单元测试(含答案)

第22章 二次函数 单元测试班级___________姓名___________学号_____ 一、选择题(每小题3分,共36分)1. 抛物线2(+23y x =--)的对称轴和顶点坐标是( ). A. x =2 , (2,3) B. x = —2 , (2,—3) C. x =2 , (—2,—3) D. x = —2 , (—2,—3)2. 已知二次函数26y x x m =-+的最小值为1,那么m 的值等于( ). A. 1 B. 10 C. 4 D.63. 已知二次函数y = ax 2 +bx+c 的图象如图所示,对称轴 为x =1,下列结论中正确的是( ). A.ac >0 B. b < 0 C. 24b ac -<0 D. 2a +b =04.抛物线2)1(2++=x y 上两点(0,a )、(-1,b ),则a 、b 的大小关系是( ) A .a >b B . b >a C . a=b D 5.如右图, 抛物线顶点坐标是P(1,3),则函数y 随自变量的增大而减小的x 的取值范围是 A. x ≥3 B. x ≤3C. x ≥1D. x ≤16. 函数y=ax 2 +bx+c (a ≠0)的解析式满足右图所示,那么直线y = acx+b 的图象不经过( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7..已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )xyMOyxOA .B .C .D . 8.关于二次函数y =ax 2 +bx+c 的图象有下列命题:① 当C=0时,函数图象经过原点.② 当C>0且函数的图象开口向下时,图象必与x 轴有两个交点.③ 函数图象最高点的纵坐标是244ac b a-.④ 当b =0时,函数的图象关于y 轴对称. 其中正确命题的个数是( ).A. 1个B. 2个C. 3个D. 4个9. 已知如右图,直线y = x 与二次函数y= ax 2 —2x —1 的图象的一个交点M 的横坐标为1,则a 的值为( ).A. —2B. 1C. 3D. 4 10. 如图,在平面直角坐标系中,抛物线221x y =经过平移得到抛物线x x y 2212-=,其对称轴与两段抛物线所围成的阴影部分的面积是( )A .2 B. 4C. 8D. 1611.将抛物线221216y x x =-+绕它的顶点旋转180︒,所得抛物线函数表达式是( ).2.212+16A y x x =-- 2.2+1216B y x x =--2.2+1219C y x x =-- 2.2+1220D y x x =--12.如图,矩形ABCD 中,AB =2,BC=1,O 是AB 的中点,PDC动点P 从B 点开始沿着边BC ,CD 运动到点D 结束.设BP=x ,OP=y ,则y 关于x 的函数图象大致为( )A BC D二、填空题:(每小题3分,共24分)13.已知(2)2my m x =-+是y 关于x 的二次函数,那么m 的值为__________. 14. 请写出一个开口向下,对称轴是直线1x =的抛物线的解析式 ________. 15. 已知抛物线y = ax 2 +bx+c 的图象与x 轴有两个交点,那么一元二次方程ax 2 +bx+c=0的根的情况是____________________.16. 如果将二次函数y=2x 2 的图象沿x 轴向左平移1个单位,再沿y 轴向上平移2个单位,那么所得图象的函数解析式是_______ ___.17.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为(—1,0),则与x 轴的另一个交点为 .18.二次函数y =ax 2 +4x+a 的最大值为3,求a =________.19.如图,是二次函数 y =ax 2+bx +c(a≠0)的图象的一部 分, 给出下列命题 :①a +b+c=0; ②b >2a ; ③ax 2+bx+c =0的两根分别为-3和1; ④a -2b +c >0其中正确的命题是 . (填写正确命题的序号)2020已知圆的半径为10m ,当半径减小x (m)时,圆的面积就减小y (m 2 ),y 是x 的函数解析式为___ __________,定义域为______ ______.三、解答题:(共40分)21.已知抛物线的顶点(3,—1)且过点(4,1),求二次函数的解析式.22.已知抛物线y = 2x 2 —3x+m (m 为常数)与x 轴交于A,B 两点,且线段AB 的长为12 .(1) 求m 的值;(2) 若该抛物线的顶点为P ,若⊿ABP 的面积为2.求m 的值23. 已知函数22y x mx =-的顶点为点D .(1)求点D 的坐标(用含m 的代数式表示);(2)求函数22y x mx =-的图象与x 轴的交点坐标;(3)若函数22y x mx =-的图象在直线y=m 的上方,求m 的取值范围.24.已知二次函数y = 2x 2 -4x -6.(1)用配方法将y = 2x 2 -4x-6化成y = a (x -h) 2 + k 的形式; (2)在所给的平面直角坐标系中,画出这个二次函数的图象; (3)当x 取何值时,y 随x 的增大而减少?(4)当- 2﹤x ﹤3时,观察图象直接写出函数y 的取值范围.25.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为2020,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.26阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x ≤m ,求二次函数267y x x =-+的最大值.他画图研究后发现,1x =和5x =时的函数值相等,于是他认为需要对m 进行分类讨论.他的解答过程如下:∵二次函数267y x x =-+的对称轴为直线3x =, ∴由对称性可知,1x =和5x =时的函数值相等. ∴若1≤m <5,则1x =时,y 的最大值为2; 若m ≥5,则m x =时,y 的最大值为267m m -+. 请你参考小明的思路,解答下列问题:(1)当2-≤x ≤4时,二次函数1422++=x x y (2)若p ≤x ≤2,求二次函数1422++=x x y(3)若t ≤x ≤t +2时,二次函数1422++=x x y 的最大值为31,求t 的值.27. 已知二次函数21:2L y x bx c =-++与x 轴交于A (1,0)、B (3,0)两点;二次函数22:43L y kx kx k =-+(k ≠0)的顶点为P.15x =3O xy(1)请直接写出:b=_______,c=___________; (2)当90APB ∠=,求实数k 的值;(3)若直线15y k =与抛物线2L 交于E ,F 两点,问线段EF 的长度是否发生变化?如果不发生变化,请求出EF 的长度;如果发生变化,请说明理由.28.在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.解:参考答案:一、选择题:(每小题3分,共36分)三、解答题:(共40分)21:解:设解析式为2()y a x h k =-+ 将顶点(3,—1)代入得2(3)1y a x =--将点(4,1)代入求得a =2………………………….2’解析式为221217y x x =-+………………………………………..2’22.解: (1)m=1…………………2’(2)192()28ABP S m ∆=⨯⨯-=98m -………………………………………….1’m= 258………………………………………………….1’23.解:(1)顶点坐标2(,)m m -…………………………1’(2)120,2x x m ==,所以与x 轴的交点坐标是(0,0)(2,0)m ……………………2’ (3)10m -<<………………………………………1’24.解:(1)22(1)8y x =--………………….1’ (2)画图…………………….1’ (3)1x <……………………………….1’(4) 810y -≤≤…………………………………..1’25.以CD 中点为原点,建立平面直角坐标系………………….1’ C(-100,0)D(100,0)A(-50,150)B(50,150)2y ax c =+0100001502500a ca c=+=+ ……………………………………………..1’由此得到150a =-,C=2020…………………………………..2’ 答:拱门最大高度为2020……………………………………….1’26.(1)49.………………….1’(2)当 4p <-时,最大值为17;…………………………………………..1’当42p -≤<时,最大值为2241p p ++………………………………………………1’ (3) t =—5,1……………………………………………..2’27.解:(1)b=8,c=-6………………………………2分(2)在二次函数1L 中,对称轴为822(2)x =-=⨯-在二次函数2L 中,对称轴为422kx k-=-= ∴点P 也在1L 的对称轴上∴AP=BP ………………………………3分 ∵∠APB=90°∴△APB 为等腰直角三角形,且点P 为直角顶点 ∴11(31)122P y AB ==-= ∴1P y =±………………………………4分11∵点P 为2L 的顶点∴243(4)4P k k k y k k--==- ∴1k -= ∴1k =±………………………5分 (3) 判断:线段EF 的长度不变化(填“变化”或“不变化”)。

人教版九年级上册数学第二十二章二次函数(单元测试)(含答案)

人教版九年级上册数学第二十二章二次函数(单元测试)(含答案)

人教版九年级上册数学第二十二章二次函数(单元测试)一、单选题1.二次函数222=++y x x 的图象的对称轴是( )A .=1x -B .2x =-C .1x =D .2x =2.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( )A .有最大值4B .有最小值4C .有最大值6D .有最小值63.已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大4.已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2 5.已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( )A .5-或2B .5-C .2D .2-6.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )A .第7秒B .第9秒C .第11秒D .第13秒7.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D .8.王刚在练习投篮,篮球脱手后的运动轨迹近似为如图所示的抛物线20.2 2.25y x x =-++,已知篮圈高3.05米,王刚投篮时出手高度OB 为2.25米,若要使篮球刚好投进篮圈C ,则投篮时王刚离篮圈中心的水平距离为( )A .2米B .3米C .4米D .5米二、填空题 9.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.10.已知抛物线(1)(5)y x x =--与x 轴的公共点坐标是12(,0),(,0)A x B x ,则12x x +=_______.11.如图,王先生在一次高尔夫球的练习中,在O 处击球,其飞行路线满足抛物线211655y x x =-+,其中()m y 是球的飞行高度,()m x 是球飞出的水平距离,结果球离球洞的水平距离还有4m .(1)球飞行的最大水平距离为_____________m ;(2)若王先生再一次从O 处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线满足的抛物线解析式为_____________.12.如图是二次函数2y x bx c =++的图像,该函数的最小值是__________.13.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣3,6),B (1,3),则方程ax 2﹣bx ﹣c =0的解是_________.三、解答题(1)求抛物线的解析式;(2)抛物线上是否存在点P,使PBC的面积是BCD△面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由.15.如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,53).(1)求该抛物线的解析式;(2)若直线y=kx23(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值43m,求m的值.16.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.17.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.18.某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;m>),公司为回馈消费者,规定该商品售价x不得超过55(元(3)因疫情期间,该商品进价提高了m(元/件)(0/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m 的值.19.如图,在平面直角坐标系中,抛物线2y ax x m=++(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.参考答案:1.A2.D3.D4.A5.B6.B7.C8.C9.38或3-10.611. 16 2166412525y x x =-+ 12.4-13.x 1=﹣3,x 2=114.(1)2=23y x x --(2)存在,()115,1P ,()215,1P15.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 16.(1)260(5080)4203(80140)x x y x x -<⎧=⎨-<⎩;(2)2230010400(5080)354016800(80140)x x x W x x x ⎧-+-<=⎨-+-<⎩17.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元18.(1)3300y x =-+;(2)售价60元时,周销售利润最大为4800元;(3)5m = 19.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(127--,,(127--,。

人教版九年级上册数学第22章 二次函数 单元测试卷(含答案解析)

人教版九年级上册数学第22章 二次函数 单元测试卷(含答案解析)

人教版九年级上册数学第22章 二次函数 单元测试卷一.选择题(30分)1.在同一平面直角坐标系中,函数2y ax bx =+与y ax b =+的图象不可能是( )A .B .C .D .2.已知函数212(13)(5)8(38)x y x x <⎧=⎨-+⎩的图象如图所示,若直线3y kx =-与该图象有公共点,则k 的最大值与最小值的和为( )A .11B .14C .17D .203.抛物线23y x =+上有两点1(A x ,1)y ,2(B x ,2)y ,若12y y <,则下列结论正确的是()A .120x x <B .210x x <C .210x x <或120x x <D .以上都不对4.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是( )A .y =(200﹣5x )(40﹣20+x )B .y =(200+5x )(40﹣20﹣x )C .y =200(40﹣20﹣x )D .y =200﹣5x5.下列对二次函数2(1)3y x =-+-的图像描述不正确的是( ) A .开口向下 B .顶点坐标为(1,3)-- C .与y 轴相交于点(0,3)-D .当?1x >时,函数值y 随x 的增大而减小6.抛物线2y x x c =++与x 轴只有一个公共点,则c 的值为( ) A .14-B .14C .4-D .47.已知二次函数2y x bx c =++的图象与x 轴的两个交点分别是(,0)n 和(4,0)n -+,且抛物线还经过点1(4,)y -和2(4,)y ,则下列关于1y 、2y 的大小关系判断正确的是( ) A .21y y =B .21y y <C .12y y <D .12y y8.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h =at 2+bt ,其图象如图所示,若小球发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A .第3秒B .第3.5秒C .第4秒D .第4.5秒9.已知23(0)y ax bx a =++≠的对称轴为直线2x =,与x 轴的其中一个交点为(1,0),该函数在14x 的取值范围,下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值1-,有最大值3 C .有最小值3-,有最大值4D .有最小值1-,有最大值410.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A的坐标为16(0,)9,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m二、填空题(每题4分,共24分) 11.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小12.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.13.如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴正半轴交于点A,其顶点为P,将点P绕点O旋转180°后得到点C,连结PA、PC、AC,则△PAC的面积为.。

人教新版九年级数学上册第22章《 二次函数》单元测试卷【含答案】

人教新版九年级数学上册第22章《 二次函数》单元测试卷【含答案】

人教新版九年级数学上册第22章《二次函数》单元测试卷一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?答案与试题解析一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。

人教版九年级数学上册《第二十二章 二次函数》单元测试卷(附答案)

人教版九年级数学上册《第二十二章 二次函数》单元测试卷(附答案)

人教版九年级数学上册《第二十二章二次函数》单元测试卷(附答案)一、选择题1.下列函数中是二次函数的是( )A. y=3x−1B. y=3x2−1C. y=(x+1)2−x2D. y=x3+2x−32.已知点A(−3,y1),B(2,y2),C(3,y3)在抛物线y=2x2−4x+c上,则y1、y2、y3的大小关系是( )A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y2>y3>y13.在同一直角坐标系中,一次函数y=−kx+1与二次函数y=x2+k的大致图象可以是( )A. B. C. D.4.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. y=3(x−1)2−2B. y=3(x+1)2−2C. y=3(x+1)2+2D. y=3(x−1)2+25.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )A. (72,0) B. (3,0) C. (52,0) D. (2,0)6.如图,在△ABC中∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )A. 19cm2B. 16cm2C. 15cm2D. 12cm27.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度ℎ(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…ℎ08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是( )A. 1B. 2C. 3D. 48.小飞研究二次函数y=−(x−m)2−m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=−x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当−1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是( )A. ①B. ②C. ③D. ④9.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为( )A. −1B. −3C. −5D. −710.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1−m,−1−m]的函数的一些结论,其中不正确的是( )A. 当m=−3时,函数图象的顶点坐标是(13,8 3 )B. 当m>0时,函数图象截x轴所得的线段长度大于32C. 当m≠0时,函数图象经过同一个点D. 当m<0时,函数在x>1时,y随x的增大而减小4二、填空题11.请写出一个二次函数表达式,使其图象的对称轴为y轴:______.12.某个函数具有性质:当x<0时,y随x的增大而增大,这个函数的表达式可以是________(只要写出一个符合题意的答案即可).13.若关于x的方程x2−2ax+a−2=0的一个实数根为x1≥1,另一个实数根x2≤−1,则抛物线y=−x2+ 2ax+2−a的顶点到x轴距离的最小值是______.14.若二次函数y=ax2+bx+c的x与y的部分对应值如表,则当x=−1时,y的值为______.x−7−6−5−4−3−2y−27−13−335315.抛物线y=−x2+bx+c的部分图象如图所示,则关于x的一元二次方程−x2+bx+c=0的解为______.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n> ax2+bx+c的解集是________.17.如图,在平面直角坐标系中,二次函数y=−12x2+2x+2的图象与x轴、y轴分别交于A、B、C三点,点D是其顶点,若点P是x轴上一个动点,则CP+DP的最小值为.18.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=−12x2的图象,则阴影部分的面积是________.19.如图,拋物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在抛物线上,则4a−2b+c的值为________.20.当a≤x≤a+1时,函数y=x2−2x+1的最小值为1,则a的值为________.三、解答题21.由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=−2x+1000.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22.在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(−1,0),(2,0).(1)求这个二次函数的表达式;(2)求当−2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2−m)x+2−m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.23.如图,在平面直角坐标系中,二次函数y=ax2+4x−3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.24.已知抛物线y=ax2+bx+1经过点(1,−2),(−2,13).(1)求a,b的值;(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12−y1,求m的值.25.如图,二次函数y=ax2+bx+2的图像与x轴相交于点A(−1,0),B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图像上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P、C、Q顶点的三角形与▵ABC相似,求点P的坐标.答案和解析1.【答案】B【解析】【分析】此题主要考查了一次函数以及二次函数的定义,正确把握相关定义是解题关键.直接利用一次函数以及二次函数的定义分别分析得出答案.【解答】解:A.y=3x−1是一次函数,故此选项错误;B.y=3x2−1是二次函数,故此选项正确;C.y=(x+1)2−x2化简为y=2x+1,故此选项错误; D.y=x3+2x−3不是二次函数,故此选项错误;故选B.2.【答案】B【解析】【分析】本题考查二次函数的性质,根据二次函数的增减性即可解答.关键是确定抛物线的对称轴为直线x=1,根据点到对称轴的距离的大小即可解答.【解答】解:y=2x2−4x+c=2(x−1)2+c−2,则抛物线的对称轴为直线x=1∵抛物线开口向上,−3<1<2<3且点A(−3,y1)到对称轴的距离比C(3,y3)远∴y1>y3>y2.故选B.3.【答案】A【解析】解:由y=x2+k可知抛物线的开口向上,故B不合题意;若二次函数y=x2+k与y轴交于负半轴,则k<0∴−k>0∴一次函数y=−kx+1的图象经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.根据二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=−kx+1经过的象限,对比后即可得出结论.本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键.4.【答案】A【解析】【分析】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先确定抛物线y=3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(1,−2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2的顶点坐标为(0,0)把点(0,0)先向右平移1个单位,再向下平移2个单位后所得对应点的坐标为(1,−2)所以新抛物线的表达式为y=3(x−1)2−2.故选A.5.【答案】B【解析】【分析】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2根据两个交点关于对称轴直线x=1对称可知:x1+x2=2即x2−1=2,得x2=3∴抛物线与x轴的另一个交点为(3,0)故选:B.6.【答案】C【解析】解:在Rt△ABC中∠C=90°,AB=10cm,BC=8cm∴AC=√ AB2−BC2=6cm.设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm∴S四边形PABQ =S△ABC−S△CPQ=12AC⋅BC−12PC⋅CQ=12×6×8−12(6−t)×2t=t2−6t+24=(t−3)2+15.∵1>0∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选:C.在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm 利用分割图形求面积法可得出S四边形PABQ=t2−6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解;本题考查了二次函数的最值以及勾股定理,解题的关键是:利用分割图形求面积法找出S四边形PABQ=t2−6t+24.7.【答案】B【解析】【分析】本题考查二次函数的应用.由题意,抛物线经过(0,0),(9,0)所以可以假设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1,可得ℎ=−t2+9t=−(t−4.5)2+20.25,由此即可一一判断.【解答】解:根据抛物线的对称性可得抛物线经过(9,0),设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1∴ℎ=−t2+9t=−(t−4.5)2+20.25∴足球距离地面的最大高度为20.25m,故①错误∴抛物线的对称轴t=4.5,故②正确∵t=9时ℎ=0∴足球被踢出9s时落地,故③正确∵t=1.5时ℎ=11.25,故④错误.∴正确的有②③.8.【答案】C【解析】解:二次函数y=−(x−m)2−m+1(m为常数)①∵顶点坐标为(m,−m+1)且当x=m时∴这个函数图象的顶点始终在直线y=−x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得−(x−m)2−m+1=0其中m≤1解得:x1=m−√ −m+1∵顶点坐标为(m,−m+1)且顶点与x轴的两个交点构成等腰直角三角形∴|−m+1|=|m−(m−√ −m+1)|解得:m=0或1当m=1时,二次函数y=−(x−1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴x1+x22>m∵二次函数y=−(x−m)2−m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=−1<0∴y1>y2故结论③错误;④当−1<x<2时,y随x的增大而增大,且a=−1<0∴m的取值范围为m≥2.故结论④正确.故选:C.根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.9.【答案】C【解析】解:根据题意知点N的横坐标的最大值为4,此时对称轴过B点,点N的横坐标最大,此时的M点坐标为(−2,0)当对称轴过A点时,点M的横坐标最小,此时的N点坐标为(1,0),M点的坐标为(−5,0)故点M的横坐标的最小值为−5故选:C.根据顶点P在线段AB上移动,又知点A、B的坐标分别为(−2,3)、(1,3),分别求出对称轴过点A和B时的情况,即可判断出M 点横坐标的最小值.本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.10.【答案】D【解析】【分析】此题考查二次函数的性质,二次函数与一元二次方程以及二次函数图象上点的坐标特征,熟悉相关知识点是解题的关键.A 、把m =−3代入[2m,1−m,−1−m]求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、通过找到定点,即可解决问题;D 、首先求得对称轴,利用二次函数的性质解答即可. 【解答】解:因为函数y =ax 2+bx +c 的特征数为[2m,1−m,−1−m];A 、当m =−3时y =−6x 2+4x +2=−6(x −13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时令y =0,有2mx 2+(1−m)x +(−1−m)=0,解得:x 1=1,x 2=−12−12m|x 2−x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确;C 、当x =1时y =2mx 2+(1−m)x +(−1−m)=2m +(1−m)+(−1−m)=0函数图象都经过同一个点(1,0),故当m ≠0时,函数图象经过同一个定点此结论正确.D 、当m <0时,y =2mx 2+(1−m)x +(−1−m)是一个开口向下的抛物线,其对称轴是:直线x =m−14m 在对称轴的右边y 随x 的增大而减小.因为当m <0时,m−14m=14−14m >14即对称轴在x =14右边,因此函数在x =14右边先增大到对称轴位置,再减小,此结论错误; 故选:D .11.【答案】y =x 2(答案不唯一)【解析】解:∵图象的对称轴是y 轴 ∴函数表达式为y =x 2(答案不唯一) 故答案为y =x 2(答案不唯一).根据形如y =ax 2+c 的二次函数的性质直接写出即可. 本题考查了二次函数的性质.12.【答案】y =−x 2(答案不唯一)【解析】【分析】本题主要考查的是一次函数的性质,正比例函数的性质,反比例函数的性质,二次函数的性质的有关知识,直接根据函数的性质写出一个符合题意的解析式即可. 【解答】解:∵当x <0时,y 随x 的增大而增大 ∴这个函数的表达式可以为y =−x 2 故答案为y =−x 2(答案不唯一).13.【答案】169【解析】解:∵关于x 的方程x 2−2ax +a −2=0的一个实数根为x 1≥1,另一个实数根x 2≤−1∴{1+2a +a −2≤01−2a +a −2≤0解得:−1≤a ≤13.抛物线y =−x 2+2ax +2−a 的顶点坐标为(a,a 2−a +2)∵a 2−a +2=(a −12)2+74∴当a =13时a 2−a +2取最小值169. 故答案为:169.由一元二次方程根的范围结合图形,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由二次函数的性质可得出抛物线的顶点坐标,利用配方法即可求出抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值.本题考查了抛物线与x 轴的交点、二次函数的性质以及二次函数的最值,通过解一元一次不等式组求出a 的取值范围是解题的关键.14.【答案】−3【解析】【分析】本题主要考查了二次函数的性质,解答本题的关键是根据表格数据得到二次函数图象的对称轴,此题难度不大.根据表格可知,二次函数图象的对称轴为x =−3,进而求出横坐标为−1的点关于x =−3的对称点,进而得到答案. 【解答】解:∵x=−4,y=3;x=−2,y=3;∴二次函数图象的对称轴为直线x=−2−42=−3∵−1−52=−3∴横坐标为−1的点与横坐标为−5的点关于x=−3对称∴当x=−1时y=−3故答案为−3.15.【答案】x1=1,x2=−3【解析】解:观察图象可知,抛物线y=−x2+bx+c与x轴的一个交点为(1,0),对称轴为直线x=−1∴抛物线与x轴的另一交点坐标为(−3,0)∴一元二次方程−x2+bx+c=0的解为x1=1,x2=−3.故答案为x1=1,x2=−3.本题考查二次函数的性质,以及二次函数与一元二次方程.直接观察图象,抛物线与x轴的一个交点为(1,0),对称轴是直线x=−1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程−x2+bx+c=0的解.16.【答案】x<−1或x>4【解析】【分析】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<−1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方∴不等式mx+n>ax2+bx+c的解集为x<−1或x>4.故答案为x<−1或x>4.17.【答案】2√ 10【解析】【分析】本题考查了二次函数的性质、轴对称−最短路线问题以及勾股定理的应用,熟练掌握二次函数的性质、轴对称的性质是解题关键.作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D与x轴交于P点.分别求出C,C′,D,E坐标,可得DE 与C′E的长度,进而可求C′D,即可解答.【解答】解:如图,作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D交x轴于点P则C′D的长就是CP+DP的最小值.把x=0代入y=−12x2+2x+2,得y=2∴C(0,2)∴C′(0,−2).∵y=−12x2+2x+2=−12(x−2)2+4∴点D(2,4),E(0,4)∴DE=2,C′E=6.在Rt△C′DE中C′D=√ 22+62=2√ 10即CP+DP的最小值为2√ 10.18.【答案】2π【解析】解:∵12与−12互为相反数∴C1与C2的图象关于x轴对称∴x轴下方阴影部分的面积正好等于x轴上方空白部分的面积则阴影部分的面积S=12×π×22=2π.故答案为2π.根据二次函数的性质可知C1与C2的图象关于x轴对称,从而得到x轴下方阴影部分的面积正好等于x轴上方空白部分的面积,所以,阴影部分的面积等于⊙O的面积的一半,然后列式计算即可得解.本题考查了二次函数的性质,根据函数的对称性判断出阴影部分的面积等于⊙O的面积的一半是解题的关键,也是本题的难点.19.【答案】0【解析】【分析】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0)∴与x轴的另一个交点Q(−2,0)把(−2,0)代入解析式得:0=4a−2b+c∴4a−2b+c=0故答案为0.20.【答案】2或−1【解析】【分析】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2−2x+1=1解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1∴a=2或a+1=0∴a=2或a=−1故答案是2或−1.21.【答案】解:(1)由题意得:w=(x−200)y=(x−200)(−2x+1000)=−2x2+1400x−200000;(2)令w=−2x2+1400x−200000=40000解得:x=300或x=400故要使每月的利润为40000元,销售单价应定为300或400元;(3)y =−2x 2+1400x −200000=−2(x −350)2+45000当x =250时y =−2×2502+1400×250−200000=25000; 故最高利润为45000元,最低利润为25000元.【解析】(1)根据销售利润=每天的销售量×(销售单价−成本价),即可列出函数关系式; (2)令y =40000代入解析式,求出满足条件的x 的值即可; (3)根据(1)得到销售利润的关系式,利用配方法可求最大值.本题考查了二次函数的实际应用,难度适中,解答本题的关键是熟练掌握利用配方法求二次函数的最大值.22.【答案】解:(1)由二次函数y =x 2+px +q 的图象经过(−1,0)和(2,0)两点∴{1−p +q =04+2p +q =0,解得{p =−1q =−2 ∴此二次函数的表达式y =x 2−x −2; (2)∵抛物线开口向上 对称轴为直线x =−1+22=12∴在−2≤x ≤1范围内当x =−2时,函数有最大值为:y =4+2−2=4; 当x =12时函数有最小值:y =1412−2=−94∴最大值与最小值的差为:4−(−94)=254;(3)∵y =(2−m)x +2−m 与二次函数y =x 2−x −2图象交点的横坐标为a 和b ∴x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0 ∵a <3<b ∴a ≠b∴Δ=(m −3)2−4×(m −4)=(m −5)2>0 ∴m ≠5∵a <3<b当x =3时(2−m)x +2−m >x 2−x −2把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1∴m 的取值范围为m <1.【解析】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质,数形结合是解题的关键.(1)由二次函数的图象经过(−1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;(2)求得抛物线的对称轴,根据图象即可得出当x =−2时,函数有最大值4;当x =12时函数有最小值−94,进而求得它们的差;(3)由题意得x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0,因为a <3<b ,a ≠b ,Δ=(m −3)2−4×(m −4)=(m −5)2>0,把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1. 23.【答案】解:(1)把B(1,0)代入y =ax 2+4x −3,得0=a +4−3,解得a =−1∴y =−x 2+4x −3=−(x −2)2+1∴A(2,1)∵对称轴直线x =2,B ,C 两点关于x =2对称∴C(3,0)∴当y >0时1<x <3.(2)∵D(0,−3)∴点D 平移到A ,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y =−(x −4)2+5. 【解析】本题考查抛物线与x 轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)利用待定系数法求出a ,再求出点C 的坐标即可解决问题.(2)由题意点D 平移的A ,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.24.【答案】解:(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1解得:{a =1b =−4;(2)由(1)得函数解析式为y =x 2−4x +1 把x =5代入y =x 2−4x +1得y 1=6∴y 2=12−y 1=6∵y 1=y 2,对称轴为x =2∴m +52=2∴m =−1.【解析】本题考查了二次函数图象上点的坐标特征和待定系数法求解析式,解方程组,正确理解题意是解题的关键.(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2−4x +1得到y 1=6,于是得到y 1=y 2,再根据对称轴x =2,即可得到结论.25.【答案】解:(1)抛物线解析式为y =a(x +1)(x −4)即y =ax 2−3ax −4a ,则−4a =2 解得a =−12所以抛物线解析式为y =−12x 2+32x +2;(2)①作PN ⊥x 轴于N ,交BC 于M ,如图BC =√ 22+42=2√ 5当x =0时y =−12x 2+32x +2=2,则C(0,2)设直线BC 的解析式为y =mx +n ,把C(0,2),B(4,0)得 {n =24m +n −0,解得{m =−12n =2∴直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2)则M(t,−12t +2)∴PM =−12t 2+32t +2−(−12t +2)=−12t 2+2t ∵∠NBM =∠NPQ∴△PQM∽△BOC∴PQ :OB =PM :BC 即PQ =2√ 5∴PQ =−√ 55t 2+√ 54t =−√ 55(t −2)2+4√ 55∴当t =2时,线段PQ 的最大值为4√ 55;②当∠PCQ =∠OBC 时△PCQ∽△CBO 此时PC//OB ,点P 和点C 关于直线x =32对称 ∴此时P 点坐标为(3,2);当∠CPQ =∠OBC 时△CPQ∽△CBO∵∠OBC =∠NPQ∴∠CPQ =∠MPQ ,而PQ ⊥CM ∴△PCM 为等腰三角形∴PC =PM∴t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2解得t =32,此时P 点坐标为(32,258)综上所述,满足条件的P 点坐标为(3,2)或(32,258). 【解析】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质和等腰三角形的性质;会利用待定系数法求一次函数和二次函数的解析式.能运用相似比计算线段的长或表示线段之间的关系;能利用分类讨论的思想解决数学问题.(1)设交点式y =a(x +1)(x −4),再展开可得到−4a =2,解得a =−12,然后写出抛物线解析式; (2)①作PN ⊥x 轴于N ,交BC 于M ,如图,先利用待定系数法求出直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2),则M(t,−12t +2),用t 表示出PM =−12t 2+2t ,再证明△PQM∽△BOC ,利用相似比得到PQ =−√ 55t 2+√ 54t ,然后利用二次函数的性质解决问题;②讨论:当∠PCQ =∠OBC 时△PCQ∽△CBO ,PC//x 轴,利用对称性可确定此时P 点坐标;当∠CPQ =∠OBC 时△CPQ∽△CBO ,则∠CPQ =∠MPQ ,所以△PCM 为等腰三角形,则PC =PM ,利用两点间的距离公式得到t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2,然后解方程求出t 得到此时P 点坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、若 A ⎛ 3 , y 1 ⎫ , B ⎛ - 5 , y 2 ⎫, C ⎛ 1 , y 3 ⎫ 为二次函数 y = x 2 + 4x - 5 的图象上的三点,则
3
B. y < y < y
3 C. y < y < y
2
D. y < y < y
(2)当- <x <2 时,y <0;
c
人教版上册第 22 章二次函数单元测试题
一、选择题:
1.抛物线 y = ( x - 1)2 + 2 的顶点坐标是( ).
A .
(1,2) B .
(1,-2) C .
(-1,2 ) D .
(-1,-2)
2. 把抛物线 y = x 2 +1 向右平移 3 个单位,再向下平移 2 个单位,得到抛物线(
).
A . y = (x + 3)2 - 1
B . y = (x + 3)2 + 3
C . y = (x - 3)2 - 1
D . y = (x - 3)2 + 3
3、抛物线 y=(x+1)2+2 的对称轴是( )
A .直线 x=-1
B .直线 x=1
C .直线 y=-1
D .直线 y=1
4、二次函数 y = x 2 - 2 x + 1与 x 轴的交点个数是( )
A .0
B .1
C .2
D .3
⎝ 4 ⎭ ⎝ 4

⎝ 4

y 、y 、y 的大小关系是
( )
1
2
3
A. y < y < y
1
2
2 1
3 1 1 3 2
6、在同一直角坐标系中,一次函数 y=ax+c 和二次函数 y=ax 2+c 的图象大致为(

y
y
y
y
(A)
(B)
(C)
(D)
O
O
O
O
x
x
x
x
7.〈常州〉二次函数 y =ax 2+bx +c (a 、b 、c 为常数且 a ≠0)中的 x 与 y 的部分对 应值如下表:
x -3 -2 -1 0 1 2 3 4 5
y 12 5 0
-3 -4 -3 0 5 12 给出了结论:
(1)二次函数 y =ax 2+bx +c 有最小值,最小值为-3;
1
2
(3)二次函数 y =ax 2+bx +c 的图象与 x 轴有两个交点,且它们分别在 y 轴两侧. 则其中正确结论的个数是( ) A.3 B.2 C.1 D.0
8.已知二次函数 y =ax 2+bx +(a ≠0)的图象如图 3 所示,下列说法错误的是(
) A.图象关于直线 x =1 对称
B.函数 y =ax 2+bx +c (a ≠0)的最小值是-4
C.-1 和 3 是方程 ax 2+bx +c =0(a ≠0)的两个根
D.当 x <1 时,y 随 x 的增大而增大
+
9、二次函数与y=kx2-8x+8的图像与x轴有交点,则k的取值范围是()
A.k<2
B.k<2且k≠0
C.k≤2
D.k≤2且k≠0
10.如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,
MP2=y,则表示y与x的函数关系的图象大致为().
y y y y
A D7777
M
B P C
A4
x
B4
x C4x
D4
x
二、填空题:
11.已知函数y=(m-1)x m21+3x,当m=时,它是二次函数.
12、抛物线y=-4x2+8x-3的开口方向向,对称轴是,最高点的坐标是,函数值得最大值是。

13、如图,四个二次函数的图象中,分别对应的是:①y=ax2;②y=bx2;③y=cx2;
④y=dx
则a、b、c、d的大小关系为.
14、二次函数y=x2-3x+2错误!未找到引用源。

的图像与x轴的交点坐标
是,与y轴的交点坐标为
15、已知抛物线y=ax2-2ax+c与x轴一个交点的坐标为(-1,0),则一
元二次方程ax2-2ax+c=0的根为.
16、把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=x2-4x+5,则a+b+c=.
17、如图,用20m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最
19、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为 ,1⎪,下列大面积为______m2.
⎛1⎫
⎝2⎭
结论:①abc<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确的有____个。

三、解答题:
21、求出抛物线的开口方向、对称轴、顶点坐标。

(1)y=x2+2x-3(配方法)(2)y=
1
2
x2-x+3(公式法)
22、已知二次函数y=2x2-4x-6.
(1)用配方法将y=2x2-4x-6化成y=a(x-h)2+k的形式;并写出对称轴和顶点坐标。

(2)在平面直角坐标系中,画出这个二次函数的图
象;
(3)当x取何值时,y随x的增大而减少?
(4)当x取何值是,y=0,y0,y<0,
(5)当0 x 4时,求y的取值范围;
(6)求函数图像与两坐标轴交点所围成的三角形的
面积。

23.已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
24、(本题10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
26.如图,抛物线y=x2+b x+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足△S PAB=8,并求出此时P点的坐标.。

相关文档
最新文档