数值分析讲义第一章绪论

合集下载

数值分析第1章

数值分析第1章

4
误差来源
• • • • 模型误差 方法误差 观测误差 舍入误差
2014/11/24
© Wuhan University Confidential
5
来源一 : 模型误差
• 模型误差:在建立数学模型过程中,不可能将 所有因素均考虑,必然要进行必要的简化,这 就带来了与实际问题的误差。
2014/11/24
数值运算的误差估计
* * 四则运算,设x1, x2为准确值, x1 , x2为近似值,则误差限:
* * * ( x1* x2 ) ( x1 ) ( x2 ), * * * * * ( x1* x2 ) | x1 | ( x2 ) | x2 | ( x1 ), * * * * | x | ( x ) | x | ( x * * 1 2 2 1) ( x1 / x2 ) . * 2 | x2 |
3
• 方法可行性分析包含以下内容: 1.计算速度。 例 如,求解一个20 阶线性方 程组,用消元法需3000 次乘法运 算;而用克莱姆法则要进行20 10 7 . 9 ×次运算,如用每秒1 亿次乘法运 算的计算机要30 万年。 2.存储量。 大型问题有必要考虑。 3.精度。
2014/11/24
© Wuhan University Confidential
x x e 1 x ห้องสมุดไป่ตู้ 2! 3!
若将前若干项的部分和作为函数值的近似公式, 由于以后各项都舍弃了,自然产生了误差
2014/11/24 © Wuhan University Confidential 8
来源四: 舍入误差
• 计算机长有限 3.14159
• 注意:少量运算的舍入误差一般是微不足道的,但是 在计算 机上完成千白万次运算后 误差的积累很惊人.

数值分析第一张,引言

数值分析第一张,引言

模型(móxíng)设计
算法设计
上机计算
问题的解
共四十七页
结束(jiéshù)
其中算法设计是数值(shùzí)分析课程的主要内容.
数值分析课程(kèchéng)研究常见的基本数学问题的数值解法.包含了
数值代数(线性方程组的解法、非线性方程的解法、矩阵求逆、 矩阵特征值计算等)、数值逼近、数值微分与数值积分、常微分方程 及偏微分方程的数值解法等.它的基本理论和研究方法建立在数学 理论基础之上,研究对象是数学问题,因此它是数学的分支之 一.
3! 5! 7!
(2n 1)!
( 1.1)
这是一个无穷级数,我们只能(zhī nénɡ)在适当的地方“截断 ”,使计算量不太大,而精度又能满足要求.
如计算 sin 0.5,取n=3 sin 0.5 0.5 0.53 0.55 0.57 0.479625
3! 5! 7!
共四十七页
结束
据泰勒余项公式(gōngshì),它的误差应 为
• 1998年7月30-31日,美国DOE/FNS 共同联合组织召开了 关于“先进科学计算”的全国会议,会议强调科学模拟的重
要性,希望应用科学模拟来攻克复杂的科学与工程难题。
共四十七页
数值分析是计算数学的一个主要部分,方法解决科学研究或 工程技术问题,一般按如下途径进行:
实际 (shíjì)问

程序设计
R (1)9 9
9!
0,
4
R ( / 4)9 3.13 10 7
362880
( 1.2)
可见结果(jiē guǒ)是相当精确的.实际上结果(jiē guǒ)的六位数字都是 正确的.
2 算法常表现(biǎoxiàn)为一个连续过程的离 散化

数值分析(第一章)修正版描述

数值分析(第一章)修正版描述

2
例:为使 x 20 的近似值 x 的相对误差不超过 问查开方表时至少要取几位有效数字? * 解:设近似值 x 取n位有效数字可满足题设要求。 对于 x
1 103 2
*
20, 有x1 4
* r
1 1 1 n 1 n e 10 10 由定理,有 2 x1 8
1 1 1 n 3 10 10 令 8 解得 2
e* x* x * ,则称 * 为x* 近似x的一个绝对 差限,简称误差限。 误 . 实际计算中所要求的绝对误差,是指估计一个 尽可能小的绝对误差限。
*
2.相对误差及相对误差限
0) 的一个近似,称 定义 设 x 是准确值 x( *
*
为 x 近似x的一个绝对误差。在不引起混淆时,简称符 * * 号 er ( x )为 er * * * * 因 e e e x x
(1)有效数字
定义 :设x的近似值 x 有如下标准形式
*
x 10 0.x1x2 xn1 xp 9且x1 0, p n 其中m为整数, xi 0,1,2 ,
*
1 mn e x x 10 如果 2
* *
, * 则称 x 为的具有n位有效数字的近似数. 或称 x* 准确到 10m n 位,其中数字 x1 x2 xn ,分别 * x 被称为 的第一,第二,…第n个有效数字.
*
n
* i *
x * * f 'i ( x1 , x2 , i 1 y
n
* i *
x )er ( x )
* n
* i
绝对误差限和相对误差限满足传播不等式:
( y ) f 'i ( x , x ,

数值分析课件 第一章 绪论

数值分析课件 第一章 绪论

1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */

数值分析--绪论

数值分析--绪论
8
有效数字
定义:设数 a 是数 x 的近似值,如果 定义: 的近似值, (1)a 的绝对误差限是它的某一位的半个单位, ) 的绝对误差限是它的某一位的半个单位, a (2)从该位到它的第一位非零数字共有 位。 )从该位到它的第一位非零数字共有n 位有效数字。 则称用 a 近似 x 时有 n 位有效数字。 注:凡是由四舍五入得来的近似值,从最末位到第一位非零数字都是 凡是由四舍五入得来的近似值, 有效数字。 有效数字。
算法 算法——规定了怎样从输入数据计算出数值问 规定了怎样从输入数据计算出数值问 题解的一个有限的基本运算序列 衡量算法优劣的标准: 衡量算法优劣的标准:
1 可靠的理论基础,正确性,收敛性,数值稳定性以 可靠的理论基础,正确性,收敛性, 及可作误差分析。 及可作误差分析。 2.良好的计算复杂性,包括时间复杂性,空间复杂性 良好的计算复杂性,包括时间复杂性, 良好的计算复杂性
17
§1.3 向量范数与矩阵范数 1.3.1 向量范数 定义:Rn空间的实值函数 || || ,对任意 x, y ∈ Rn满足下列条件 对任意
(1)非负性 非负性
|| x || ≥ 0; || x || = 0 x = 0 (2)齐次性 || k x || =| k | || x || 对任意 k∈R 齐次性
13
设计算法时遵循的原则
1.减少运算次数. 1.减少运算次数. 减少运算次数
例 计算多项式的值
Pn ( x ) = a0 + a1 x + a2 x 2 + L + an x n .
乘法计算次数 1+2+…+n
算法一 算法一:
s0 = a0 sk = ak x k , k = 1, 2,L , n P ( x) = s + s + L + s 0 1 n n

数值分析讲义

数值分析讲义

由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论e In X* =In X * -Inx :丄e*X*进而有;(In X *):2. 设X 的相对误差为2% ,求X n 的相对误差。

解:设f(χZ ,则函数的条件数为Cp=l fX+n _1X nχ I Xn n又;r ((X*) n) C P 7(X *)且 e r (χ*)为 2.7((χ*)n) 0.02 n3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指* * * * *出它们是几位有效数字: X 1 =1.1021, χ2 =0.031, χ3 =385.6, χ4 = 56.430,x 5 = 7".0.. *解:X I -1.1021是五位有效数字;X 2 = 0.031是二位有效数字;X 3 =385.6是四位有效数字;X 4 =56.430是五位有效数字;X 5 =7 1.0.是二位有效数字。

4. 利用公式(2.3)求下列各近似值的误差限: (1) X 1 X 2 X 4,(2) X 1 X 2X 3 ,(3) X 2 /X 4 .其中χl ,x 2,x 3,X 4均为第3题所给的数。

1设X 0, x 的相对误差为 解:近似值X*的相对误差为 、:,求InX 的误差。

e* X* -X而InX 的误差为 又 f '(χ) =nx n 」 C P解:* 1 4;(x 1) 102* 1 3 ;(x 2) 10 2* 1 1;(x 3) 10* 1 3;(x 4) 102* 1 1;(x 5) 102(1) ;(x ; x ; x *)* * *=;(%) ;(x 2) *x 4)1 A 12 1 j310 10 102 2 2 -1.05 10J 3* * *(2) S(X I X 2X 3)* * * * * * ** * =X1X 2 £(X 3)+ X 2X 3 ^(X J + X 1X 3 E (X 2):0.215 ⑶;(x 2/x ;)* Il * * I * X 2 E(X 4) + X 4 &(X 2)全 Γ"2X 41-3 1 30.031 10 56.430 10= ______________________ 256.430X56.430-10 54 3解:球体体积为V R3则何种函数的条件数为1.1021 0.031 11θ' 2 + 0.031X385.6 x 1><10* 2 +∣ 1.1021 X 385.6卜-×1^35计算球体积要使相对误差限为 1 ,问度量半径R 时允许的相对误差限是多少?C P 愕': C P “(R*) 9(R*)又γ(V*) -11故度量半径R 时允许的相对误差限为 ;r (R*) 1 : 0.3331 ____6.设 Y 0 =28,按递推公式 Yn =Ynd- ------- : 783 (n=1,2,…)100计算到Y oo 。

第1章数值分析-绪论

第1章数值分析-绪论

实际运算 Er (a) (x a) / a
r / a
例5 a=3.14是π的近似值。
E(a) 3.14 0.002
Er
(a)
0.002
0.002 3.14
6.36942104
三、有效数字 例如 3.14159265...
取3位,a=3.14,δ≤0.002 取5位,a=3.1416,δ≤0.000008
a 10m 0.a1a2...an
a1是1到9中的一个整数, a2,…,an为0到9中的任
意整数。m为整数,

E(a) x a 1 10mn 2
成立,
ห้องสมุดไป่ตู้
则称a近似 x 有n位有效数字。
【注】 近似数的有效数字不但给出了近似值的大小, 而且还指出了它的绝对误差限。
数值分析——绪论
例6 设 x 0.002567, a 0.00256 102 0.256 则 x a 0.00005 1 104
2
因为m=-2,所以n=2, 即a有2位有效数字。
若 a 0.00257 102 0.257

x a 0.000003 0.000005 1 105 2
因为m=-2,所以n=3, 即a有3位有效数字。
例7 设x =8.00001,则a=8.0000具有5位有效数字。
例如,用毫米刻度的米尺测量一长度 x , 读出和该长度接近的刻度 a, a 是 x
的近似值,它的误差限是0.5mm.如读出的长度 是765mm,则
x 765 0.5 764.5 x 765.5
数值分析——绪论
对于一般情形 x a 即
a x a ,有时记为 x=a
例4 绝对误差的局限性例子。

数值分析原理课件第一章

数值分析原理课件第一章

第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。

由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。

数值分析第1章绪论

数值分析第1章绪论

THANKS
感谢您的观看
算法创新
在数值分析中,创新算法的提出是推 动学科发展的重要动力。新的算法可 以解决传统算法难以处理的问题,提 高计算效率和精度。
Part
05
Байду номын сангаас
数值分析的展望与启示
数值分析与其他学科的交叉研究
数值分析与物理学的交叉
数值分析在解决物理问题中扮演着重要角色,如流体动力学、电磁学和量子力学等领域。 通过数值模拟和计算,可以更深入地理解物理现象和预测新现象。
Part
04
数值分析的挑战与未来发展
数值稳定性的挑战
数值稳定性问题
在数值分析中,算法的数值稳定性是一个重要的问题。不稳定的算法可能会导致计算结果的误差累积,从而影响 结果的精度。
解决方法
为了提高数值稳定性,可以采用多种方法,如改进算法、增加迭代次数、使用稳定的数据类型等。
高性能计算的需求
高性能计算的重要性
或最小化线性目标函数问 题,如单纯形法等。
微分法
数值微分
利用已知函数值估计函数在某点 的导数值。
偏微分方程数值解
通过有限差分法、有限元法等求 解偏微分方程的数值解。
数值积分
利用已知函数值计算函数在某个 区间的积分值。
常微分方程数值解
通过离散化方法求解常微分方程 的数值解,如欧拉法、龙格-库塔 法等。
逼近法
最佳平方逼近
利用已知的离散数据点构造一个多项式,使得该 多项式在最小二乘意义下逼近目标函数。
傅里叶逼近
利用傅里叶级数的性质进行逼近,适用于周期函 数的逼近。
ABCD
切比雪夫逼近
利用切比雪夫多项式的性质进行逼近,具有最佳 逼近和一致逼近的特点。

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论1设x 0, x的相对误差为「.,求In x的误差。

* * e* x * _x解:近似值x*的相对误差为:.=e*x* x*1 而In x 的误差为e In x* =lnx*「lnx e*x*进而有;(ln x*)::.2•设x的相对误差为2%求x n的相对误差。

解:设f(x—,则函数的条件数为Cp^胡1n A.x nx .又7 f '(x)= nx n」C p|=nn又;;r((x*) n) : C p ;,x*)且e r (x*)为2.;r((x*)n) 0.02 n3 •下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0.解:x;=1.1021是五位有效数字;X2 =0.031是二位有效数字;X3 =385.6是四位有效数字;x4 = 56.430是五位有效数字;x5 -7 1.0.是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4.* * * *其中X1,X2,X3,x4均为第3题所给的数。

解:*1 4;(x-| ) 102* 1 3;(x 2) 102* 1 1;(x 3) 10 * 1 3;(x 4) 102* 1 1;(x 5) 102 (1);(为 X 2 X 4)=;(为)亠:(x 2)亠:(x 4)=1 10 4 110 J 丄 10^2 2 2= 1.05 10”* * * (2)(X 1X 2X 3)* * * ** * ** *X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2)1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10(3) XX 2/X 4)X 40.031 110” 56.430 丄 10’2 256.430 56.430=10°5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 43解:球体体积为V R 3则何种函数的条件数为=1.1021汉 0.031 汉 * 汉10」+0.215RV' R 4 - R2Ik -3;r(V*) : C pL;r(R*) =3;r(R*)1故度量半径R时允许的相对误差限为;r(R*) 1 :0.3336•设Y0=28,按递推公式丄J783 (n=1,2,…)100计算到Y oo。

数值分析-第一章ppt课件

数值分析-第一章ppt课件
3. 高效性: 它应该具有计算量小、占用存储单元 少、计算过程简单、规律性强等优点.
可编辑课件PPT
4
《数值分析》课程主要介绍几类数学问题的经典 算法. 在学习中既要重视实际应用, 又要重视有关理论, 必须注意理解算法的设计原理和处理技巧, 重视基本 概念和理论——误差分析, 收敛性与稳定性. 认真完成 习题中的理论证明和计算方面的相关问题, 手算与上 机计算相结合, 同时注意培养利用计算机进行科学计 算的能力.
似值 x*的绝对误差限, 简称为误差限. 在工程技术中常记作 x=x*±*。 例如, 电压V=100±2(V), V*=100(V)是V的一个近
似值, 2(V)是V*的一个误差限, 即
| V–V*| 2(V)
可编辑课件PPT
11
二、相对误差与相对误差限
对于两个数值
x1=100±2, x2=10±1
[4] Rainer Kress. Numerical Analysis. New York:
Springer-Verlag, 2003.
可编辑课件PPT
1
实际问题

解释 实际问题

结束
抽象
建立数学模型
简化
类方 型法
结果分析 求解计算
应用于实践
可编辑课件PPT
2
数值分析研究的主要内容:是各类数学问题的近 似解法——数值方法, 是从数学模型(由实际问题产生 的一组解析表达式或原始数据)出发, 寻求在有限步内 可以获得数学问题满足一定精度近似解的运算规则, 这种规则称为算法, 它包括计算公式, 计算方案和整个 计算过程.
值x的比值为近似值x*的相对误差, 并记作er(x*),
可编辑课件PPT
12

数值分析 第1章

数值分析   第1章
13 14
3.计算复杂性尽可能小 从实际需要出发,我们还需要考虑计算量的大小, 即所谓计算复杂性问题。它由以下两个因素决定的: 使用中央处理器 CPU)的时间,主要由四则运算 使用中央处理器( 的时间 主要由四则运算 的次数决定; 占用内存储器的空间,主要由使用的数据量来决 定。
4.要有数值化结果 数值计算的许多方法是建立在离散化的基础上进 行的, 其解决问题的最终结果不是解析解而是数值近似 解。对于给定的数学模型,采用不同的离散手段可以导 致不同的数值方法,应该通过计算机进行数值试验,进 行分析、比较来选定算法。 对新提出的算法,有的在理论上虽然还未证明其 收敛性,但可以从具体试验中发现其规律,为理论证明 提供线索。
x2 =
−b − b 2 − 4ac 2c = 2a −b + b 2 − 4ac
9
来严重影响 应尽量避免 来严重影响,应尽量避免。 例3

在 4 位浮点十进制数下,用消去法解线性方程
⎧0.00003 x1 − 3 x 2 = 0.6 ⎨ x1 + 2 x 2 = 1 . ⎩

2 ×10 =1 . 109 + 109
§1.1
预备知识
一、集合
把一些确定的彼此不相同的事物汇集在一起成为一 个整体,称为集合。 表示方法:描述法;列举法。 分类:有限集;无限集(可列集,不可列集) 。
9
10
可列集(可数集) : 设 A 是无限集,若 A 中的一切元素可以用自然数 编号(即 A 与自然数集 N 一一对应) ,使 A 写成 A={ A { a1 , a2 , a3 ,L an ,L },则称 A 为可列集 (或可数集) 。 否则,称为不可列集。 如:有理数集是可列集,数列构成的集合是可列 集;无理数集、[0,1]中的全体实数构成的集合是不 可列集。

数值分析-1绪论

数值分析-1绪论

数值分析刘立新西安电子科技大学推荐教材及参考资料•李庆扬,王能超,易大义编,《数值分析》(第四版武汉华中科技大学出版社年四版),武汉:华中科技大学出版社,2006•沈剑华主编,《数值计算基础》(第二版),同济大学出版社,2004年济大学出版社其值教材•其他数值分析教材2课程要求先修课程和后续课程:修先修课程:高等数学,线性代数,计算机语言等。

后继课程:数值代数,数值逼近,最优化方法等。

课程评分方法:•平时成绩(20%)考•考试(80%)3建立各种数学问题的数值计算算法的方法和理论通俗地本课程的任务•建立各种数学问题的数值计算算法的方法和理论。

通俗地讲,就是为各种实际问题提供有效的数值近似解方法。

提供在的理论的计算•计算机上实际可行的、理论可靠的、计算复杂性好的各种常用算法。

学习的目的、要求•会套用、修改、创建公式•编制程序完成计算4课程内容•第一章绪论第章•第二章插值与逼近•第四章数值积分与数值微分•第五章常微分方程数值解法•第六章方程求根•第七章线性方程组的解法51第1 章绪论6本章内容111.1 光波的特性1.1 数值分析的对象与特点1.2 光波在介质界面上的反射和折射1.2 误差来源与误差分析的重要性1.3 误差的基本概念1.3 光波在金属表面上的反射和折射1.4数值运算中误差分析的方法与原则7本章要求•主要内容:算法的基本概念,误差的基本概念。

主容•基本要求–(1) 了解数值计算的研究对象与基本特点以及科学计算的重要性;的要性;–(2) 理解绝对误差、相对误差和有效数字的概念;(3)了解数值计算中应注意的些问题。

–了解数值计算中应注意的一些问题•重点、难点–重点:数值计算方法的含义;重点数值计算方法的含义–难点:误差的理解。

81.1 数值分析的对象与特点11什么是数值分析?什么是数值分析•“数值分析”就是研究在计算机上解决数学问题的数值方法及其理论;数值算构计算公式算步•数值算法的构造:计算公式和算法步骤;算法的理论分析误差分析、收敛性、稳定性等•算法的理论分析:误差分析、收敛性、稳定性等。

《数值分析》第1章

《数值分析》第1章
T (h) = I + c1 h2 + c2 h4 + L,
b
上两式作用得到:
4T ( h) − T ( 2h) = 3 I + O (h4 )
忽略高阶项得, I ≈ T (h) + (T (h) − T (2h)) . 公式的精度为 O (h4 ) .
1 3

其中 c1 , c2 ,L与 h 无关,则有,
19
20
§3 误差来源与误差分析的重要性
误差来源(或分类)
(1) 模型误差:建立数学模型时忽略一些次要 因素而引起的与真实情况的误差.
(2) 测量误差:数学模型中的一些已知参数, 由于受到测量工具或其它主观因素的影 响所带来的误差.
21
(3) 截断误差:数学模型常难以求解,往往要 用近似、易于求解的问题代替,这种简化 引起的误差.
P ( x ) = a0 x n + L + an −1 x + an 已知,对输入
的x,要计算P(x)的值,采取方法
u0 = 0 ⎧ t 1 = 1, ⎪ ⎨ t k = xt k − 1 , k = 2 , L , n ⎪u = u k = 1, L , n k −1 + a n− k tk , ⎩ k
29 30
例 15. 为使 20 的相对误差小于 0.1% ,要取几 位有效数字.
例 16. 用 3. 1416 表示π 的近似值,求其相对误 差?
解:因为 a1 = 3, n = 5 ,所以
er ( x ) ≤
1 1 × 10−5 + 1 = × 10−4 2× 3 6
解: 由 er ≤ 只需
1 × 10− n + 1 且 a1 = 4 , 为使 er ≤ 0.1% , 2a1

数值分析--第1章绪论

数值分析--第1章绪论

第一章绪论上世纪中叶诞生的计算机给科学、工程技术和人类的社会生活带来一场新的革命。

它使科学计算平行于理论分析和实验研究,成为人类探索未知科学领域和进行大型工程设计的第三种方法和手段。

在独创性工作的先行性研究中,科学计算更有突出的作用。

在今天,熟练地运用电子计算机进行科学计算,已成为科学工作者的一项基本技能。

然而,科学计算并不是计算机本身的自然产物,而是数学与计算机结合的结果,它的核心内容是以现代化的计算机及数学软件为工具,以数学模型为基础进行模拟研究。

近年来,它同时也成为数学科学本身发展的源泉和途径之一。

1 数值分析的研究对象与特点数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

一般地说,用计算机解决科学计算问题,首先需要针对实际问题提炼出相应的数学模型,然后为解决数学模型设计出数值计算方法,经过程序设计之后上机计算,求出数值结果,再由实验来检验。

概括为由实际问题的提出到上机求得问题的解答的整个过程都可看作是应用数学的任务。

如果细分的话,由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的任务,而根据数学模型提出求解的数值计算方法直到编出程序上机计算出结果,这一过程则是计算数学的任务,即数值分析研究的对象。

因此,数值分析是寻求数学问题近似解的方法、过程及其理论的一个数学分支。

它以纯数学作为基础,但却不完全像纯数学那样只研究数学本身的理论,而是着重研究数学问题求解的数值方法及与此有关的理论,包括方法的收敛性,稳定性及误差分析;还要根据计算机的特点研究计算时间最省(或计算费用最省)的计算方法。

有的方法在理论上虽然还不够完善与严密,但通过对比分析,实际计算和实践检验等手段,被证明是行之有效的方法也可采用。

因此数值分析既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与使用计算机密切结合的实用性很强的数学课程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档