圆锥曲线的极坐标方程及应用
高二数学选修4-4教案04圆锥曲线的统一极坐标方程
圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。
圆锥曲线焦点弦长公式(极坐标全参数方程)
圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。
由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。
本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。
圆锥曲线的极点与极线问题
圆锥曲线的极点与极线问题圆锥曲线的极点与极线问题导言圆锥曲线是数学中的一个重要分支,其所涵盖的概念和性质有着深远的研究价值。
其中,圆锥曲线的极点与极线问题是一个具有特殊意义的主题。
在本文中,我将以深度和广度的方式来探讨圆锥曲线的极点与极线,希望能够使读者对这一问题有全面、深刻和灵活的理解。
一、圆锥曲线的基本定义与性质1.1 什么是圆锥曲线圆锥曲线是由一个平面与一个平行于它的不相交的直线切割圆锥所得到的曲线。
根据切割的方式和角度不同,圆锥曲线可以分为椭圆、双曲线和抛物线三类。
1.2 圆锥曲线的焦点与离心率圆锥曲线的焦点是指在其上的特殊点,其具有特殊的几何性质。
离心率是一个衡量圆锥曲线形状的参数,也是圆锥曲线性质的重要指标。
二、极点与极线的基本概念2.1 极点的定义与性质在平面上给定一个圆锥曲线,其直角坐标系中的原点O被称为该圆锥曲线的极点。
极点在圆锥曲线的研究中具有重要的地位,它与曲线的各种性质密切相关。
2.2 极线的定义与性质对于圆锥曲线上的任意一点P,以极点为中心,作直线OP,称为圆锥曲线的极线。
极线是一个与极点相关的直线,它与曲线的位置和特性有着密切的联系。
三、不同类型曲线的极点与极线问题3.1 椭圆的极点与极线对于椭圆,其极点为原点O,极线为过原点O的直线。
椭圆的极点处于其主轴的中点位置,其极线是关于两个焦点的对称直线。
3.2 双曲线的极点与极线对于双曲线,其极点为原点O,极线为过原点O的渐近线。
双曲线的极点处于离心率之间的位置,其极线是关于两个焦点的渐近线。
3.3 抛物线的极点与极线对于抛物线,其极点为其焦点,极线为过焦点的直线。
抛物线的极点位于抛物线的顶点位置,其极线是关于焦点的直线。
四、个人观点与理解圆锥曲线的极点与极线问题是一个十分有趣且具有挑战性的数学问题。
通过研究圆锥曲线的极点与极线,我们能够更深入地理解曲线的性质和特性。
极点是曲线的重要几何特征,它能够从不同的角度揭示出曲线的各种性质。
圆锥曲线焦点弦长公式(极坐标参数方程)
锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高老命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有老察。
由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。
本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手! ?定理已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴), 焦点为F,设倾斜角为G的直线/经过F,且与圆锥曲线交于A、B两点,记圆锥曲线的离心率为e,通径长为H,则(1)当焦点在X轴上时,弦AB的长IABI= —;11 - COS^ a I(2)当焦点在丫轴上叭弦AB的长而推论:(I)B点在X轴上,当ASB在椭圆、抛物线或双曲线的一支上时,IABI= —上一十l-f COSJ a 当AX B不在双曲线的一支上时,IABI= — ;当圆锥曲线是抛物线时,<?" COS fc iZ-IHIABI=一 .SiIr a⑵焦点在y轴上,当入B在椭圆、抛物线或双曲线的一支上时9∖AB∖=一竺十1一0°sin" a当A、B不在双曲线的一支上时,IABI= — ;当圆锥曲线是抛物线时, L SHr α-lIABl=cos* a典题妙解F面以部分高老题为例说明上述结论在解题中的妙用.例1 (06文第21题)已知椭圆+ * = 抛物线。
-加)2=2Z (P >0), 旦G、G的公共弦AB过椭圆Cl的右焦点.(I)当AB丄X轴时,求p, m的值,并判断抛物线C?的焦点是否在亶线AB上;4(II)若P =-且抛物线G的焦点在直线AB上,求m的值及直线AB的方程・L V*例2 (07全国I文第22题)已知椭圆y + -= 1的左.右焦点分别为耳,过件的直线交椭圆于B. D两点,过耳的直线交椭圆于A・C两点,旦AC丄BD f垂足为P・■ ■⑴ 设P点的坐标为(心,儿),证明:牛+ *^v1.⑵求四边形ABCD的面积的最小值.例3 (08全国I理第21题文第22题)双曲线的中心为原点6 焦点在X上,两条渐近线厶于入B两点.已知IMI、分别为厶、I2,经过右焦点F垂直于片的直线分别交厶、IABk IoRl成等荃数列,且丽与臥同向.(I )求双曲线的离心率;(II)设AB被双曲线所截得的线段的长为4,求双曲线的方程.金指点睛21.已知斜率为1的直线/过椭圆⅛+ A∙2 = 1的上焦点F交椭圆于A. B两点,则4IABl= ___________ .22・过双曲线X--—= 1的左焦点F作倾斜角为7的吉线/交双曲线于AX B两点,则30IABl= __________ .3.已知椭圆x1+2y2-2 = 0,过左焦点F作宜线/交A、B两点,O为坐标原点,求AAOB的最大面积.4.已知抛物线Γ=4∕ΛV (/; >0),弦AB过焦点F,设IABl=加,AAOB的面积为S,求证:存为定值•5. (05全国Il文第22题)F、Q、MX N四点都在椭圆,+冷=1上,F为椭圓在y轴正半轴上的焦点•已知丽与甩共线,丽与丽共线■且亦・MF = O四边形PQMN的面积的最大值和最小值.6. (07文第22题)如图,倾斜角为α的直线经过抛物线y2 = 8.v的焦点F,且与抛物线交于A、B两点.(I )求抛物线的焦点F的坐标及准线/的方程;(Il)若Q为锐角,作线段AB的垂直平分线m交.v轴于点P,证^lFPl-IFPICoS2σ 为定值,并求此定值.iVf ,.专业7•点M与点F(0,2)的距离比它到直线/: y + 3 = 0的距离小1.(1)求点M的轨迹方程;⑵ 经过点F且互相垂直的两条亶线与轨迹相交于Aj B; CX D.求四边形ACBD的最小面积・8.已知双曲线的左右焦点F I、F2与椭圆y+y2 =1的焦点相同,且以抛物线V2= -2Λ∙的准线为其中一条准线.(1)求双曲线的方程;(2)若经过焦点F2且互相垂直的两条直线与双曲线相交于A、B; C、D.求四边形ACBD 的面积的最小值•参考答案:Y e- Oik- C 证明:设双曲线方程为庐"。
附录圆锥曲线的极坐标方程
一、以焦点F为极点,以对称轴为极轴的极坐标系:
建立如图所示的极坐标系,
则圆锥曲线有统一的极坐标方程
M(ρ,θ)
ep 1ecos
F
x
注1:椭圆(双曲线)的焦参数 p b 2
c
注2:若AB为焦点弦,则
2ep
|AB|1e2co2s ;
1 1 2 | AF| |BF| ep
41 2co 2 s1 2si2n1
整理得
1
2 1
23sin2
42 2 c2 ( o 9 s0 ) 02 2 s2 i( n 90 ) 0 1
即
1
2 1
1
22
3
,故O到直线MN的距离为
1
22
13s
in2
3 |OM||ON| 12 1 1
| MN|
2 1
22
2 1
22
(7)(课本P:15 Ex6)已知椭圆的中心为O,长轴、短轴的
极坐标与直角坐标的互化
①互化的三个前提条件:
(1)极点与直角坐标系的原点重合 (2)极轴与直角坐标系的x轴的正半轴重合 (3)两种坐标系的单位长度相同 ②互化方法:
(1)形法: 类似于辅助角公式中,用形法求振幅及辅助角
(2)数法:
x2 y2 2
x cos
y
sin
sin
y
cos
x
tan
即普通方程与极坐标方程的互化
一、以焦点F为极点,以对称轴为极轴的极坐标系:
建立如图所示的极坐标系, 其中 l 是准线, FKP 由圆锥曲线的统一定义得
MF e
MA
A
M()
K
圆锥曲线方程知识点总结
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
极坐标方程在圆锥曲线中的应用
极坐标方程在圆锥曲线中的应用作者:周震来源:《中学生数理化·学习研究》2017年第08期在圆锥曲线问题中,常出现的长度问题主要有两大类:一是与焦点有关,主要体现在过焦点的弦长、直线的倾斜角、焦准距等相关的问题;二是与原点有关的长度和角度问题。
这两类问题利用圆锥曲线常规解法往往运算量较大,学生通常比较害怕。
如果我们转换思路,合理利用曲线的极坐标方程来解,可以将繁琐复杂的计算简单化,提高解题速度和正确率。
下面通过具体例题来阐述圆锥曲线的极坐标解法。
在极坐标系中,以圆锥曲线的焦点F(椭圆为左焦点,双曲线为右焦点)为极点,对称轴为极轴建立极坐标系,离心率为e,焦点到准线的距离为p。
则圆锥曲线的极坐标方程为ρ=ep1-ecosθ。
当以原点为极点,Ox轴为极轴时,椭圆x2a2+y2b2=1(a>b>0)的极坐标方程ρ2=a2b2b2cos2θ+a2sin2θ。
双曲线x2a2-y2b2=1的极坐标方程为ρ2=a2b2b2cos2θ-a2sin2θ。
抛物线y2=2px的极坐标方程为ρsin2θ=2pcosθ。
圆心为(a,0),半径为a的圆的极坐标方程为ρ=2acosθ。
一、与焦点有关的问题例1已知椭圆x2a2+y2b2=1(a>b>0)过椭圆的左焦点F作倾斜角为π3的直线交椭圆于A、B两点,且AF∶BF=2∶1,求椭圆的离心率。
分析:在极坐标系中,由于椭圆的极坐标方程是以左焦点为极点,x轴的正半轴为极轴建立的坐标系,极径的长即为椭圆上的点到焦点的距离,所以可以利用极坐标方程来解决。
解:以椭圆的左焦点F为极点,Fx轴为极轴建立极坐标系,则椭圆的极坐标方程为ρ=ep1-ecosθ。
则AF=ep1-12e,BF=ep1+12e。
因为AF∶BF=2∶1,所以ep1-12e∶ep1+12e=2∶1。
化简得e=23。
故所求椭圆的离心率为e=23。
运用极坐标方程解决与焦点弦长有关的问题可以简化计算量,提高解题速度和效率。
(三)圆锥曲线的极坐标方程
直线方程的极坐标形式
( 0)表示极角为的一条射线。 = ( R)表示极角为的一条直线。
1、当直线l过极点,即0=0时,直线l的方程 是什么?
2、当直线l过点M(b, )且平行于极轴时,直线的极 2 坐标方程是什么? sin b
3、求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程。 ρcosθ=a
圆锥曲线的极坐标形式
则有 表示椭圆 表示抛物线 表示双曲线右支 (允许 表示整个双曲线)
y
F
x
再见
5 B 3、椭圆 的长轴长是____ 3 2 cos
A 3 B 6 C 9 D 12
另解:
O
x
极坐标小结
M ( , )
O
x
设M是平面内一点,极点O与点M的距离 OM 叫做点M的极径,记为;以极轴Ox 为始边,射线OM为终边的xOM叫做点 M的极角,记为。有序数对( , )叫做点 M的极坐标,记做M ( , )
三种圆锥曲线的统一定义为:
平面内,到一个定点(焦点F)和一条定直线 (准线L)的距离之比等于常数(离心率e)的点的轨迹。 若设定点F到定直线L的距离为p,则可求到定点F和定 直线L的距离之比为常数e的点的轨迹的极坐标方程。
三种圆锥曲线的统一的极坐标方程: 如图建立坐标系, 设圆锥曲线上任一点 , 由定义知
的值,使|MN|等于短轴长.
解:以F1为极点,F1F2为极轴建立极坐标系
椭圆的极坐标方程为 设M(ρ1,θ)、N(ρ2,θ+π),则
练习3
2 曲线 = 的一条准线方程是 cos 1, 3-2cos 其另一条准线方程是:
高中数学极点极线及高中圆锥曲线必备公式
极点极线定义已知圆锥曲线С: Ax +By +Cx+Dy+E=0与一点P(x0,y 0) [ 其中 A +B x0+x≠0,点.P.不.在.曲.线.中.心.和.渐.近.线.上.]. 则称点P 和直线L:A?x0x+B?y0y+C? 2 +D?y2+y+E=0是圆锥曲线С的一对极点和极线x0+x y0+y 即在圆锥曲线方程中, 以x0x 替换x ,以2替换x,以y0y 替换y , 以2替换y 则可得到极点P(x0,y 0) 的极线方程L.特别地:(1) 对于圆(x-a) +(y-b) =r , 与点P(x 0 ,y 0) 对应的极线方程为(x 0-a)(x-a)+(y 0-b)(y-b)=r ;x y x0x y0y(2) 对于椭圆+ =1,与点P(x0,y 0)对应的极线方程为0 + 0 =1 ;a b a bx y x 0x y 0y(3) 对于双曲线 a -b =1,与点 P(x 0,y 0)对应的极线方程为 a 0 -b 0 =1 ;(4) 对于抛物线 y =2px ,与点 P(x 0,y 0) 对应的极线方程为 y 0y=p(x 0+x) ; 性质 一般地,有如下性质 [焦.点.所.在.区.域.为.曲.线.内.部. ]: ① 若极点 P 在曲线С上,则极线 L 是曲线С在P 点的切线;② 若极点 P 在曲线С外,则极线 L 是过极点 P 作曲线С的两条切线的切点连线;③ 若极点 P 在曲线С内,则极线 L 在曲线С外且与以极点 P 为中点的弦平行 [仅是 斜率相 等 ]( 若是 圆 , 则此时中 点 弦的 方程 为(x 0-a)(x-a)+(y 0-b)(y-b)=x 0x y 0y x 0 y 0;若是椭圆,则此时中点弦的方程为 a x x +b y y =x a +y bx 0x y 0y x 0 y 0双曲线,则此时中点弦的方程为 a x0x -b y0y =x a 0 -y b 0 ;若是抛物线 ,则此时中点弦的 方程为 y 0y-p(x 0+x)=y 0 -2px 0) ;(x 0-a) +(y 0-b) 若是④当P(x0,y 0)为圆锥曲线的焦点F(c,0) 时,极线恰为该圆锥曲线的准线..;⑤极点极线的对偶性:Ⅰ.已知点P和直线L是关于曲线С的一对极点和极线,则L上任一点Pn对应的极线Ln必过点P,反之亦然,任意过点P的直线Ln对应的极点Pn必在直线L上[图.Ⅱ.过点P作曲线C的两条割线L1、L2,L1交曲线C于AB,L2交曲线C于MN,则直线AM、BN的交点T,直线AN、BM的交点S必都落在点P 关于曲线C的极线L 上[ 图.中.点.P.与.直.线.S..T是.一.对.极.点.极.线.;.点.T.与.直.线.S..P是.一.对.极.点.极.线.] ;即OP = OR OROQⅢ. 点 P 是曲线 C 的极点,它对应的极线为 L ,则有 :1)若C 为椭圆或双曲线,O 是C 的中心,直线 OP 交C 与R ,交L 于Q ,则OP?OQ=OR如图中学数学中极点与极线知识的现状与应用虽然中学数学中没有提到极点极线,但事实上,它的身影随处可见,只是没有点破而已.教材内改名换姓,“视”而不“见” .由④可知椭圆x a +y b =1的焦点的极a线方程为: x= . 焦点与准线是圆锥曲线一章中的核心内容, 它揭示了圆锥曲线c的统一定义, 更是高考的必考知识点. 正是因为它太常见了, 反而往往使我们“视”而不“见” .圆锥曲线基础必备1、长轴短轴与焦距,形似勾股弦定理长轴=2“,短轴= 2b,焦距= 2c.则:a2 =b2 -^c2 1、准线方程准焦距.〃方、"方涂以r..& 0・ 刁2sm —cos — sm 0_ 2 2 1 +cos0 2 cos 2—2 & 所以:椭圆的焦点三角形的面积为S 胚恶=b tail-.4.焦三角形计面积"半角正切進乘焦三角形:以椭圆的两个焦点巧・耳为顶点,另一个顶点」 在椭圆上的三角形称为焦三角形•半角是指—Z 与P 巧的一半. 则焦三角形的面积为: 证明:设阿| =小|昭| = S 由余弦定理:m 2 +n 2 - 2mn cos^= 4c 2=4a即:-2mn - = 2mn - 4b 2,故: Sgf =-m n sin0 =-』+ cos& l + cos0又:0 =tan —三、椭圆的相关公式 切线平分焦周角, 切点连线求方程, 弦与中线斜率积, 细看中点弦方程,称为弦切角定理① 极线屯理须牢记② 准线去除准焦距③ 恰似弦中点轨迹④艮卩:2D = (1+ cos0)mn .1、 切线平分焦周角,称为弦切角定理弦切角定理:切线平分椭圆焦周角的外角,平分双 曲线的焦周角.焦周角是焦点三角形中,焦距所对应的角.弦切角是指椭圆的弦与其切线相交于椭圆上时它 们的夹角,当弦为焦点弦时(过焦点的弦),那么切 线是两个焦点弦的角平 分线.第6页2. 切点连线求方程,圾线定理须牢记若旳(X05)在椭圆卡+$ = 1外,则过昨作椭圆的两 条切线,切点、为P 』,巧,则点耳和切点弦马•勺分别称 为椭圆的极点和极线.切点弦耳乃的直线方程即极线方程是笫?页3、弦与中线斜■率积.准线去涂准焦距|弦指椭圆内的一弦•中线指弦AB 的中点M 与 原点O 的连线,即2AB 得中线•这两条直线的斜率的VY - Q 2於乘积,等于准线距离去除准焦^p= — .其k k_ p 结杲是:0M = T =~V第8页(称为极线定理)4、细看中点弦方程,恰似弦中点、轨迹|中点、弦AB 的方程:在椭圆中,若弦的中点、为弦仙称为中点弦,则中点弦的方程就是弦中点M 的轨迹方程:在椭圆中,过椭圆内点 p 皿、m 的弦AB , 其中点、M 的方程就是 S . y o y … /( y 2. 一7*+矿二正+歹,仍为椭圆.这两个方程有些相似,要擦亮眼睛,千万不要搞 混了.第9页是直线方程.圆锥曲线必背口诀(红字为口诀)-双曲线一、双曲线定义双曲线有四定义.差比交线反比何1、定义1:(差)平面内,到两个定点唇码的距离之差的绝对值为定值2“(小于这两个定点间的距离冈砂)的点的轨迹称为双曲线。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。
它在数学、物理、工程和计算机图形等领域具有广泛的应用。
本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。
一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。
它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。
- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。
- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。
2. 方程形式:圆锥曲线可以以各种形式的方程表示。
常见的方程形式包括标准方程、参数方程和极坐标方程。
二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。
椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。
2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。
3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。
4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。
5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。
三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。
抛物线对称于准线,并且具有一个顶点。
2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。
3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。
4. 极坐标方程:抛物线没有显式的极坐标方程。
5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。
圆锥曲线的极坐标方程与参数方程解析
圆锥曲线的极坐标方程与参数方程解析极坐标方程与参数方程是圆锥曲线的两种常用表示形式。
在研究圆锥曲线时,利用这两种方程形式可以更加直观地描述曲线的特征与性质。
本文将详细介绍圆锥曲线的极坐标方程和参数方程的解析过程,并通过具体的例子来进一步说明。
一、圆锥曲线的极坐标方程圆锥曲线的极坐标方程可以用极坐标系中的极径r和极角θ来表示。
对于圆锥曲线而言,其极坐标方程的一般形式如下:r = f(θ)其中,函数f(θ)代表了曲线的性质与形状,具体形式根据不同的圆锥曲线类型而异。
以下是几种常见的圆锥曲线的极坐标方程及其解析过程:(一)圆的极坐标方程圆是一种特殊的圆锥曲线,其极坐标方程可以表示为:r = a其中,a代表圆的半径。
(二)椭圆的极坐标方程椭圆的极坐标方程形式如下:r = a(1 - ε²) / (1 - εcosθ)其中,a代表椭圆的半长轴长度,ε代表椭圆的离心率。
(三)双曲线的极坐标方程双曲线的极坐标方程可以写为:r = a(1 + εcosθ) / (1 - εcosθ)其中,a代表双曲线的焦距,ε代表双曲线的离心率。
(四)抛物线的极坐标方程抛物线的极坐标方程可以表示为:r = a / (1 + cosθ)其中,a代表抛物线的焦点到准线的距离。
通过以上例子可以看出,圆锥曲线的极坐标方程形式多样,每一种形式代表了不同的曲线类型和特征。
研究圆锥曲线时,可以根据需要选择不同的极坐标方程进行分析。
二、圆锥曲线的参数方程除了极坐标方程外,参数方程也是描述圆锥曲线常用的一种形式。
在参数方程中,圆锥曲线的坐标可以通过参数t的取值得到。
一般来说,圆锥曲线的参数方程具有以下形式:x = f(t)y = g(t)其中,函数f(t)和g(t)分别表示曲线的x坐标与y坐标,具体形式根据不同的圆锥曲线类型而定。
以下是几种常见圆锥曲线的参数方程及其解析过程:(一)圆的参数方程圆的参数方程可以表示为:x = acos(t)y = asin(t)其中,a代表圆的半径,t取值范围通常为0到2π。
圆锥曲线的极坐标方程 焦半径公式 焦点弦公式
椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌一、圆锥曲线的极坐标方程椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K,以FK 的 向延长线为极轴建立极坐标系.椭圆、 曲线、抛物线统一的极坐标方程为 θρcos 1e ep −=. 其中p 是定点F 到定直线的距离,p>0 .当0 e 1时,方程表示椭圆当e>1时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允许ρ 0,方程就表示整个 曲线当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线的右支、抛物线) 任一点,则 PQ e PF =, )cos (p PF e PF +=θ,其中FH p =,=θ x 轴,FP 焦半径θcos 1e ep PF −=. 当P 在 曲线的左支 时,θcos 1e ep PF +−=. 推论 若圆锥曲线的弦MN 过焦点F,则有epNF MF 211=+.、圆锥曲线的焦点弦长若圆锥曲线的弦MN 过焦点F, 1、椭圆中,cb c c a p 22=−=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−=. 2、 曲线中,若M、N 在 曲线同一支 ,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−= 若M、N 在 曲线 同支 ,2222cos 2cos 1cos 1a c ab e ep e ep MN −=−−+−=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =−−+−=. 四、直角坐标系中的焦半径公式设P x,y 是圆锥曲线 的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF −=22、若1F 、2F 分别是 曲线的左、右焦点,当点P 在 曲线右支 时,a ex PF +=1,a ex PF −=2 当点P 在 曲线左支 时,ex a PF −−=1,ex a PF −=23、若F 是抛物线的焦点,2p x PF +=.。
圆锥曲线的极坐标方程及其应用
分析 对于任意 X≥0,都有 f(x)≤0恒成立 兮 对于任
意 z≥0,都有 ln(1+z)一
点开 口向左 的抛物线 、极点在左焦点 的双 曲线:
则 k=( )
(3)P: _ !, 一 表示极点在下 焦点 的椭圆 、极点为焦
A . 1
B .
C.
D. 2
定 理 4 若 F (z)、F ( )、F ( )在 【0,+。。)都 有 意 恒成立,求 实数 的最小值 .
义,F(o)= 0,F x)≤ 0,则 对 于 任 意 ≥ 0,都 有
≤0恒成立 兮 对于任
意 ≥0,都有 (1+z)In(1+ )一z≤Ax。恒成立 .设 F(x)=
(1+ )ln(1+ )一x(x≥0),则 F(O)=0,F x)= ln(x+1),
( )
, )
< 0, (0)= 1,
F (0)= ,意识到先证 明:(1+ z)ln(1+z)一 ≤ , 自然想 到构造 函数 C(x)= (1+ )ln(1+ )一z一 。.
表 示 极 点 在 上 焦 点 的 椭 圆 、极 点 为 焦
常常是设 出直 线方程,然后 与 圆锥 曲线方 程联立,或解 方程 点开 口向下 的抛物线 、极点在下焦点的双曲线.
组 ,或用 韦达定理或用 弦长公式 ,都会 带来 繁琐 的运算,致使
注 e为圆锥曲线离心率,p为焦点到相应准线 的距 离,p
点开 口向右 的抛物线 、极点在右焦点的双 曲线;
圆锥曲线解题技巧应用极坐标方程解题
圆锥曲线解题技巧应用极坐标方程解题在数学中,圆锥曲线是与一个双曲线、抛物线或椭圆相关的二维曲线。
解决圆锥曲线问题通常需要熟悉各种曲线的性质和方程。
其中,极坐标方程是一种经常应用的解题技巧。
本文将介绍圆锥曲线解题时应用的极坐标方程以及相关技巧和例题。
一、极坐标方程的基本概念极坐标是一种描述平面上点的坐标系,其中每个点由极径和极角确定。
在极坐标系中,点的坐标表示为(r, θ),其中r 是点到原点的距离,θ 是点与极轴的夹角。
圆锥曲线的极坐标方程通常可以写成以下形式:1. 椭圆:r = a(1 - e*cosθ)2. 双曲线:r = a(1 + e*cosθ)3. 抛物线:r = a(1 - e*sinθ)其中 a 是焦点到准线的距离(也称为半焦距),e 是离心率。
二、极坐标方程解题技巧1. 确定曲线类型:首先通过曲线的方程判断是椭圆、双曲线还是抛物线。
根据方程中的参数,可以判断曲线的形状和特征。
2. 确定半焦距和离心率:通过方程中给出的参数,可以计算出椭圆、双曲线或抛物线的半焦距和离心率。
这些值将在后续的解题过程中提供重要的信息。
3. 根据极坐标方程绘制图形:利用计算机或手绘的方式,在极坐标系中绘制出曲线的形状。
这有助于直观地理解曲线的性质和特征,并准备后续解题的步骤。
4. 求解相关问题:根据具体的题目要求,利用极坐标方程和曲线性质进行解题。
可以通过求交点、切线、曲率等来解决各种问题。
三、应用实例例题一:求给定双曲线极坐标方程r = 2/(1 + 3cosθ) 的离心率和半焦距。
解析:根据双曲线的极坐标方程r = a(1 + e*cosθ) 可知,此题中的 a = 2,即半焦距为 2。
要求离心率 e,可以将方程转换为标准形式,得到2/(1 + 3cosθ) = a/(1 + e*cosθ)。
比较系数可知 e = 3。
例题二:给定椭圆极坐标方程 r = 4/(2 - cosθ),求椭圆的焦距。
解析:根据椭圆的极坐标方程 r = a(1 - e*cosθ) 可知,此题中的 a = 4。
圆锥曲线的极坐标方程大题题型归纳
圆锥曲线的极坐标方程大题题型归纳本文将对圆锥曲线的极坐标方程大题题型进行归纳总结。
圆锥曲线是平面上的一类重要曲线,在解题过程中掌握其极坐标方程的应用是非常有帮助的。
1. 圆锥曲线的定义圆锥曲线是指平面上满足特定条件的曲线,包括椭圆、双曲线和抛物线。
2. 极坐标方程的基本形式圆锥曲线的极坐标方程通常具有以下形式:- 椭圆的极坐标方程:$r = \frac{p}{1 - e \cdot \cos \theta}$,其中 $p$ 是焦点到准线的距离,$e$ 是离心率。
- 双曲线的极坐标方程:$r = \frac{p}{e \cdot \cos \theta - 1}$,其中 $p$ 是焦点到准线的距离,$e$ 是离心率。
- 抛物线的极坐标方程:$r = \frac{2p}{1 + \cos \theta}$,其中$p$ 是焦点到准线的距离。
3. 极坐标方程大题题型归纳根据圆锥曲线的不同类型,极坐标方程的大题题型也会有所不同。
以下是一些常见题型的归纳总结:3.1 椭圆的极坐标方程题型- 已知离心率和焦点到准线的距离,求椭圆的极坐标方程。
- 已知焦点和准线的坐标,求椭圆的极坐标方程。
3.2 双曲线的极坐标方程题型- 已知离心率和焦点到准线的距离,求双曲线的极坐标方程。
- 已知焦点和准线的坐标,求双曲线的极坐标方程。
3.3 抛物线的极坐标方程题型- 已知焦点和准线的坐标,求抛物线的极坐标方程。
4. 解题技巧和注意事项在解题过程中,可以采用以下技巧和注意事项:- 根据问题中给出的已知条件,逐步求解极坐标方程中的参数。
- 注意离心率、焦点和准线的坐标的关系,可以通过该关系求解未知参数。
- 验证求得的极坐标方程是否符合圆锥曲线的性质,如焦点到准线距离的关系等。
通过对圆锥曲线的极坐标方程大题题型进行归纳归纳,可以更好地掌握解题方法和技巧,提高解题效率和准确性。
以上就是对圆锥曲线的极坐标方程大题题型归纳的完整内容。
圆锥曲线的极坐标方程与直角坐标方程的应用场景对比
圆锥曲线的极坐标方程与直角坐标方程的应用场景对比圆锥曲线是数学中重要的概念之一,它包含了多种曲线,如椭圆、双曲线和抛物线。
在研究圆锥曲线时,常常会涉及到其极坐标方程和直角坐标方程。
本文将对这两种方程的应用场景进行对比。
一、极坐标方程的应用场景极坐标方程是表示曲线上点的位置所用的坐标系。
在极坐标系中,点的坐标由距离和角度两个值确定。
对于圆锥曲线而言,它们的极坐标方程的形式如下:1. 椭圆的极坐标方程:r = a(1 - e * cosθ)其中,a是半长轴的长度,e是离心率,θ是点在极坐标系中的角度。
椭圆的极坐标方程在许多实际问题中有广泛的应用,比如轨道、天体运动等。
例如,地球绕太阳的运动可以用椭圆的极坐标方程描述。
地球离太阳远近的变化可以通过调整离心率的大小来模拟。
2. 双曲线的极坐标方程:r = a(e * coshθ - 1)其中,a是双曲线的实轴长度,e是离心率,θ是点在极坐标系中的角度。
双曲线的极坐标方程在物理和工程学中经常出现。
比如,天线的辐射范围可以用双曲线的极坐标方程来描述。
双曲线的性质使得辐射范围在水平方向上具有无限大的延伸,因此适用于实现远距离通信。
3. 抛物线的极坐标方程:r = a / (1 + cosθ)其中,a是抛物线的参数,θ是点在极坐标系中的角度。
抛物线的极坐标方程在物体轨迹、天体运动和抛射物问题中有广泛应用。
例如,投掷物体的运动轨迹可以用抛物线的极坐标方程描述。
抛物线的特性使得物体在平面上的运动方向和轨迹更可靠和易于预测。
二、直角坐标方程的应用场景直角坐标方程是表示曲线上点的位置所用的坐标系。
在直角坐标系中,点的坐标由横坐标和纵坐标两个值确定。
对于圆锥曲线而言,它们的直角坐标方程的形式如下:1. 椭圆的直角坐标方程:(x² / a²) + (y² / b²) = 1其中,a和b分别是椭圆的半长轴和半短轴的长度。
椭圆的直角坐标方程常常出现在几何学和工程学中。
圆锥曲线与极坐标
圆锥曲线与极坐标极坐标在平⾯内取⼀个定点O,叫极点,引⼀条射线Ox,叫做极轴,再选定⼀个长度单位和⾓度的正⽅向(通常取逆时针⽅向)。
对于平⾯内任何⼀点M,⽤ρ表⽰线段OM的长度(有时也⽤r表⽰),θ表⽰从Ox到OM的⾓度,ρ叫做点M的极径,θ叫做点M的极⾓,有序数对 (ρ,θ) 就叫点M的极坐标,这样建⽴的坐标系叫做极坐标系。
极坐标系⽤长度和⾓度取代了⼆维的坐标,相对于⼀般的直⾓坐标为下⾯的优点:便于处理⾓度的关系便于表⽰和计算长度设M为平⾯上的⼀点,它的直⾓坐标为 (x,y),极坐标为 (ρ,θ),易得互化公式:x=ρcosθy=ρsinθorρ2=x2+y2 tanθ=yx (x≠0)p,由圆锥曲线的统⼀定义知ρd=e,由图形可得d=p+ρcosθ,代⼊得ρ=ep1−e cosθ当e=0 时,轨迹为圆;0<e<1 时,轨迹为椭圆;e=1 时,轨迹为抛物线;e>1 时,轨迹为双曲线。
(2)以坐标原点为极点在这⾥只考虑椭圆与双曲线的情况,抛物线也可类⽐:椭圆或双曲线的标准⽅程(焦点在x轴上)为:x2a2±y2b2=1 {{Processing math: 100%代⼊x=ρcosθ,y=ρsinθ得:ρ2cos2θa2±ρ2sin2θb2=1,提取ρ2得:1ρ2=cos2θa2±sin2θb2,此⽅程表⽰椭圆或双曲线的轨迹。
取加号时,轨迹为椭圆;取减号时,轨迹为双曲线。
⼀些结论如图,F为圆锥曲线E的焦点,过F的直线交E与A,B两点,设直线AB的倾斜⾓为α,则|AF|=ep1−e cosα, |BF|=ep1+e cosα|AB|=ep1−e cosα+ep1+e cosα=2ep1−e2cos2α(看成以F为极点的极坐标系,由圆锥曲线⽅程ρ=ep1−e cosθ,令θ=α可得A点的ρ,即 |AF|;同理,令θ=α+π得到B的,再⽤诱导公式 cos(θ+π)=−cosθ)当椭圆与双曲线以标准⽅程表⽰时,焦准距p=b2c,离⼼率e=ca,那么|AF|=b2a−c cosα, |BF|=b2a+c cosα|AB|=2ab2a2−c2cos2α若|AF||BF|=λ,则1+e cosα1−e cosα=λ,解出e cosα=λ−1λ+1已知e,λ时,可⽤上式求倾斜⾓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的极坐标方程及应用圆锥曲线的统一极坐标./. Q SZQZSQ S ,,,,,SD ZZXZZ 方程
ρ=
ep
1-e cos θ
,(***)
其中p为焦点到相应准线的距离,称为焦准距.
当0<e<1时,方程ρ=ep
1-e cos θ
表示椭圆;
当e=1时,方程(***)为ρ=
p
1-cos θ
,表示抛物线;
当e>1时,方程ρ=ep
1-e cos θ
表示双曲线,其中ρ∈R.
已知A、B为椭圆x2
a2+
y2
b2=1(a>b>0)上两点,OA⊥OB(O为
原点).
求证:
1
OA2+
1
OB2为定值.
[再练一题]
1.本例条件不变,试求△AOB面积的最大值和最小值.
过双曲线x2
4-
y2
5=1的右焦点,引倾斜角为
π
3的直线,交双曲
线于A、B两点,求AB.
应用圆锥曲线的极坐标方程求过焦点(极点)的弦长非常方便.椭圆和抛物线中,该弦长都表示为ρ1+ρ2,而双曲线中,弦长的一般形式是|ρ1+ρ2|.
2.已知双曲线的极坐标方程是ρ=
9
4-5cos θ
,求双曲线的实轴长、虚轴长
和准线方程.
已知抛物线y2=4x的焦点为F.
(1)以F为极点,x轴正方向为极轴的正方向,写出此抛物线的极坐标方程;
(2)过F作直线l交抛物线于A,B两点,若AB=16,运用抛物线的极坐标方程,求直线l的倾斜角.
[再练一题]
3.平面直角坐标系中,有一定点F(2,0)和一条定直线l:x=-2.求与定点F
的距离和定直线l的距离的比等于常数1
2的点的轨迹的极坐标方程.
已知双曲线的极坐标方程为ρ=
3
1-2cos θ
,过极点作直线与它交于A,B
两点,且AB=6,求直线AB的极坐标方程.
1.抛物线ρ=
4
1-cos θ
(ρ>0)的准线方程为______.
2.设椭圆的极坐标方程是ρ=
4
2-λcos θ
,则λ的取值范围是________.
3.椭圆ρ=
4
2-cos θ
的焦距是________.
4.双曲线ρ=
4
2-3cos θ
的焦点到准线的距离为________.。