八年级数学上册三角形单元检测题

合集下载

数学八年级上册《三角形》单元测试题含答案

数学八年级上册《三角形》单元测试题含答案

人教版数学八年级上学期《三角形》单元测试(时间:120分钟满分:150分)一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC 的大小是()学,科,网...A. 15°B. 20°C. 25°D. 30°2.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A. 38°B. 39°C. 42°D. 48°3.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACB的度数是()A. 80°B. 85°C. 100°D. 110°4.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A. 70°B. 44°C. 34°D. 24°5.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A. 40°B. 20°C. 55°D. 306.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A. 4个B. 3个C. 2个D. 1个7.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形,因此,n边形的内角和是(n-2)•180°;④六边形的对角线有7条,正确的个数有()A. 4个B. 3个C. 2个D. 1个8.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S 对两灯塔A,B的视角∠ASB必须()A. 大于60°B. 小于60°C. 大于30°D. 小于30°9.若一个三角形三个内角度数的比为2:3:4,则这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A. 60°B. 120°C. 60°或120°D. 60°或30°二、填空题(本大题共5小题,共15.0分)11.如图,已知∠1=75°,∠2=35°,∠3=40°,则直线a与b的位置关系是______.12.如图所示,请将∠A、∠1、∠2按从大到小的顺序排列______.13.如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC、∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC,其中正确的结论有______(填序号)14.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E 处,若DE∥AB,则∠ADC的度数为______.15.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.三、计算题(本大题共5小题,共30.0分)16.已知,如图,在△ABC,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠DAE的度数.17.如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.18.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.19.如图①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.(1)求∠DAE的度数;(2)如图②,若把”AE⊥BC”变成”点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;(3)如图③,若把”AE⊥BC”变成”AE平分∠BEC”,其它条件不变,∠DAE的大小是否变化,并请说明理由.20.如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.四、解答题(本大题共3小题,共24.0分)21.如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=75°,求∠DAC的度数?22.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.23.问题:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=______;若∠A=a°,则∠BEC=______.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC=______;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.参考答案一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC 的大小是()学。

八年级上册数学《三角形》单元综合检测(含答案)

八年级上册数学《三角形》单元综合检测(含答案)
24.在四边形A B C D中,∠A=∠C=90°,BE平分∠A B C,DF平分∠C D A.
(1)作出符合本题的几何图形;
(2)求证:BE∥DF.
参考答案
一、选择题(共24分)
1.以下列各组线段为边,能组成三角形的是().
A.2Cm,3Cm,5CmB.5Cm,6Cm,10Cm
C.1Cm,1Cm,3CmD.3Cm,4Cm,9Cm
[点睛]本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.
2.以长为13Cm、10Cm、5Cm、7Cm的四条线段中的三条线段为边,可以画出三角形的个数是( )
A.1个B.2个C.3个D.4个
[答案]C
[解析]
解:能够构成三角形三边的组合有13Cm、10Cm、5Cm和13Cm、10Cm、7Cm和10Cm、5Cm、7Cm共3种,故选C.
人教版八年级上册《三角形》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(共24分)
1.以下列各组线段为边,能组成三角形的是().
A.2Cm,3Cm,5CmB.5Cm,6Cm,10Cm
C.1Cm,1Cm,3CmD.3Cm,4Cm,9Cm
2.以长为13Cm、10Cm、5Cm、7Cm的四条线段中的三条线段为边,可以画出三角形的个数是( )
[答案]45
[解析]
试题解析:
是 的一个外角.
故答案
点睛:三角形的一个外角等于与它不相邻的两个内角的和.
14.如图,△A B C中,∠A= 40°,∠B= 72°,CE平分∠A C B,C D⊥A B于D,DF⊥CE,则∠C DF =_________度.
[答案]74°
[解析]

【精品】人教版数学八年级上册第十一章《三角形》单元检测试题【3套】试题

【精品】人教版数学八年级上册第十一章《三角形》单元检测试题【3套】试题

人教版数学八年级上册第十一章《三角形》单元检测试题一、选择题(每题3分,共30分) 1.三角形的角平分线是( )A.直线B.射线C.线段D.射线或线段 2.如图1能说明∠1>∠2的是( )3.若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.84.一个多边形每个顶点取一个外角,这些外角中钝角最多有( )A.1个B.2个C.3个D.4个5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是( )A .B .C .D .6.一根长为l 的绳子围成一个三边不相等的三角形,则三角形的最长边x 的取值范围为( ) A .31<x <21 B .31<x ≤21C .31≤x <21D .31≤x ≤217. 用一条长20cm 的细绳围成一个三角形,已知第一条边长为xcm ,第二条边长比第一条边长的2倍少4cm .若第一条边最短,则x 的取值范围是( ) A .2<x <8B .6314<<x C .0<x <10 D .7<x <88.如图2,在六边形ABCDEF 中,若∠A +∠B +∠C +∠D =500°,∠DEF 与∠AFE 的平分线交于点G ,则∠G 等于( ) A .55° B .65° C .70° D .80°9. 如图3所示,图中x 的值是( ) A .80° B .70° C .60° D .50°10.如图4,在四边形ABCD 中,∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上,则∠BEC =( )121221 D C B A 图1 图2 图3 图4A .∠A +∠D ﹣45°B .21(∠A +∠D )+45° C .180°﹣(∠A +∠D )D .21∠A +21∠D二、填空题(每题3分,共24分)11.如图5,在△ABC 中,BD =CD ,∠ABE =∠CBE ,则线段_______是△ABC 的中线,ED 是△_______的中线;△ABC 的角平分线是_______,BF 是△_______的角平分线.12.在Rt △ABC 中,若∠C 是直角,∠A =30°,那么∠B =_______.13.图6①、②、③中,具有稳定性的是图 14.如图7,∠A +∠B +∠C +∠D +∠E = 180° .15.△ABC 的三个内角满足5∠A >7∠B ,5∠C <2∠B ,则△ABC 是 三角形(填“锐角”、“直角”或“钝角”)16定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么这个“特征角”α的度数为 .17.如图8,已知AO =10,P 是射线ON 上一动点(即P 点可在射线ON 上运动),∠AON =60°.(1)OP = 时,△AOP 为直角三角形.(2)设OP =x ,则x 满足 时,△AOP 为钝角三角形.18.如图(1)),在△ABC 中,∠ABC ,∠ACB 的角平分线交于点O ,则∠BOC =90°+21∠A =21×180°+21∠A .如图9(2),在△ABC 中,∠ABC ,∠ACB 的两条三等分角线分别对应交于O 1,O 2,则∠BO 1C =32×180°+31∠A ,∠BO 2C =31×180°+32∠A .根据以上阅读理解,你能猜想∠BO 2018C = .D C B AEF 图5 图6图7 图8三、解答题19. 如图10,在五边形ABCDE 中满足AB ∥CD ,求图形中的x 的值.20. (1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数. (2)一个正多边形的内角和为1800°,求这个多边形的边数.21. 如图11,四边形ABCD 中,BE 、CF 分别是∠B 、∠D 的平分线.且∠A =∠C =90°,试猜想BE 与DF 有何位置关系?请说明理由.22. 已知:如图12,在△ABC 中,AB =3,AC =5. (1)直接写出BC 的取值范围是 .(2)若点D 是BC 边上的一点,∠BAC =85°,∠ADC =140°,∠BAD =∠B ,求∠C .23.如图13,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,若∠A =42°. (1)求∠BOC 的度数;(2)把(1)中∠A =42°这个条件去掉,试探索∠BOC 和∠A 之间有怎样的数量关系.图9(1)(2)(3)图10图11 图12 图1324. 如图14,AC 平分∠DCE ,且与BE 的延长线交于点A . (1)如果∠A =35°,∠B =30°,则∠BEC = .(直接在横线上填写度数)(2)小明经过改变∠A ,∠B 的度数进行多次探究,得出∠A 、∠B 、∠BEC 三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明. 解:(2)关系式为: 证明:25. 【探究发现】 如图15(1),在△ABC 中,点P 是内角∠ABC 和外角∠ACD 的角平分线的交点,试猜想∠P 与∠A 之间的数量关系,并证明你的猜想.【迁移拓展】 如图15(2),在△ABC 中,点P 是内角∠ABC 和外角∠ACD 的n 等分线的交点,即∠PBC =n 1∠ABC ,∠PCD =n1∠ACD , 试猜想∠P 与∠A 之间的数量关系,并证明你的猜想. 【应用创新】已知,如图15(3),AD 、BE 相交于点C ,∠ABC 、∠CDE 、∠ACE 的角平分线交于点P ,∠A =35°,∠E =25°,则∠BPD = .参考答案:一、1.C ;2.C ;3.B ;4.C ; 5. A 提示:B ,C ,D 都不是△ABC 的边BC 上的高,故选:A . 6. A 提示:设三角形的其他两边为:y ,z ,∵x +y +z =l ,y +z >x ∴可得x <21, 又因为x 为最长边大于31,∴31<x <21;故选:A . 7. B 提示:根据题意可得:第二条边长为(2x ﹣4)米,图14 图15 (1)) (2) (3)∴第三条边长为20﹣x ﹣(2x ﹣4)=(24﹣3x )米;由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧->-+->-+>->->4232432442324420x x x x x x x x x x x ,解得6314<<x .故选:B . 8. C 提示:六边形ABCDEF 的内角和是:(6﹣2)×180°=4×180°=720° ∵∠A +∠B +∠C +∠D =500°,∴∠DEF +∠AFE =720°﹣500°=220°, ∵GE 平分∠DEF ,GF 平分∠AFE , ∴∠GEF +∠GFE =21(∠DEF +∠AFE )=21×220°=110°, ∴∠G =180°﹣110°=70°.故选:C .9. C 提示:∵图形是五边形,∴120°+150°+2x °+x °+90°=(5﹣2)×180°, 解得:x =60°,故选:C .10. D 提示:∵四边形的内角和=360°,∴∠ABC +∠BCD =360°﹣(∠A +∠D ), ∵∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上, ∴2∠EBC =∠ABC ,2∠ECB =∠BCD ,∴∠EBC +∠ECB =)(21BCD ABC ∠+∠=[])(36021D A ∠+∠-︒⨯, ∴∠BEC =180°﹣(∠EBC +∠ECB )=180°﹣[])(36021D A ∠+∠-︒⨯=)(21D A ∠+∠,故选:D .二、11.AD 、BEC 、BE 、ABD ;12.60°;13. ①②提示:∵三角形具有稳定性,∴①②具有稳定性.14. 180°提示:利用三角形的外角的性质得:∠1=∠D +∠E ,∠2=∠A +∠B , 所以∠A +∠B +∠C +∠D +∠E =∠2+∠C +∠1=180°,15. 钝角提示:∵5∠A >7∠B ,2∠B >5∠C ,∴5∠A +2∠B >7∠B +5∠C , 即5∠A +>5∠B +5∠C ,∴∠A >∠B +∠C ,不等式两边加∠A ,可得2∠A >∠A +∠B +∠C ,而∠A +∠B +∠C =180°,∴2∠A >180°,即∠A >90°, ∴这个三角形是钝角三角形.16. 48°或96°或88°提示:当“特征角”为48°时,即α=48°;当β=48°,则“特征角”α=2×48°=96°; 当第三个角为48°时,α+21α+48°=180°,即得α=88°, 综上所述,这个“特征角”α的度数为48°或96°或88°. 17. (1)5或20(2)0<x <5或x >20 提示:(1)当∠APO =90°时,∠OAP =90°﹣∠AOP =30°, ∴OP =OA =5,当∠OAP =90°时,∠OPA =90°﹣∠AOP =30°, ∴OP =2OA =20,(2)当0<x <5或x >20时,△AOP 为钝角三角形,18. +∠A 提示:如图3,根据题中所给的信息,总结可得: ∠BO 1C =×180°+∠A ,∠BO n ﹣1C =×180°+∠A .∴当n ﹣1=2018时,n =2019,即∠BO 2018C =+∠A .三、解答题19. 解:∵AB ∥CD ,∠C =60°,∴∠B =180°﹣60°=120°, ∴(5﹣2)×180°=x +150°+125°+60°+120°,∴x =85°. 20. 解:(1)设此三角形三个内角的比为x ,2x ,3x , 则x +2x +3x =180,6x =180,x =30, 则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°. (2)设这个多边形的边数是n ,则(n ﹣2)•180°=1800°,解得n =12.故这个多边形的边数为12. 21. 解:BE ∥DF ,理由是:∵四边形内角和等于360°,∠A =∠C =90°,∴∠ABC +∠ADC =180°, ∵BE 、CF 分别是∠B 、∠D 的平分线,∴∠1=21∠ABC ,∠2=21∠ADC , ∴∠1+∠2=90°,∵在Rt △DCF 中,∠3+∠2=90°,∴∠1=∠3,∴BE ∥DF . 22. 解:(1)2<BC <8,故答案为:2<BC <8(2)∵∠ADC 是△ABD 的外角∴∠ADC =∠B +∠BAD =140° ∵∠B =∠BAD ∴∠B =︒=︒⨯7014021∵∠B +∠BAC +∠C =180° ∴∠C =180°﹣∠B ﹣∠BAC 即∠C =180°﹣70°﹣85°=25° 23. 解:(1)∵∠A =42°,∴∠ABC +∠ACB =180°﹣∠A =138°,∵BO 、CO 分别是△ABC 的角∠ABC 、∠ACB 的平分线,∴∠1=21∠ABC ,∠2=21∠ACB , ∴∠1+∠2=21(∠ABC +∠ACB )==69°,∴∠BOC =180°﹣(∠1+∠2)=180°﹣69°=111°;(2)∠BOC =90°+21∠A , ∵BO 、CO 分别是△ABC 的角∠ABC 、∠ACB 的平分线,∴∠1=21∠ABC ,∠2=∠ACB , ∴∠1+∠2=21(∠ABC +∠ACB )=21(180°﹣∠A ),∴∠BOC =180°﹣(∠1+∠2)=180-)180(21A ∠-︒=A ∠-︒2190.24. 解:(1)∵∠A =35°,∠B =30°,∴∠ACD =∠A +∠B =65°, 又∵AC 平分∠DCE ,∴∠ACE =∠ACD =65°,∴∠BEC =∠A +∠ACE =35°+65°=100°, (2)关系式为∠BEC =2∠A +∠B . 理由:∵AC 平分∠DCE , ∴∠ACD =∠ACE ,∵∠BEC =∠A +∠ACE =∠A +∠ACD , ∵∠ACD =∠A +∠B ,∴∠BEC =∠A +∠A +∠B =2∠A +∠B . 25. 解:(1)∠A =2∠P ,理由如下:∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线, ∴∠PBC =21∠ABC ,∠PCD =21∠ACD , ∵∠ACD 是△ABC 的外角,∠PCD 是△BPC 的外角,∴∠ACD =∠ABC +∠A ,∠PCD =∠PBC +∠P ,∴21∠ACD =21∠ABC +21∠A , ∴21∠ABC +21∠A =∠PBC +∠P , ∴∠A =2∠P ;(2)∠A =n ∠P ,理由如下:∵点P 是内角∠ABC 和外角∠ACD 的n 等分线的交点, ∴∠PBC =∠ABC ,∠PCD =∠ACE .∵∠ACD 是△ABC 的外角,∠PCD 是△BPC 的外角, ∴∠ACD =∠ABC +∠A ,∠PCD =∠PBC +∠P , ∴n 1∠ACD =n 1∠ABC +n1∠A ,∴n 1∠ABC +n1∠A =∠PBC +∠P , ∴∠A =n ∠P ;(3)∵∠ABC 、∠CDE 、∠ACE 的角平分线交于点P , ∴由(1)的结论知,∠BPC =21∠A =,∠CPD =21∠E =,∴∠BPD =∠BPC +∠DPC =30°,故答案为:30°.人教版八年级上册数学第十一章三角形单元达标测试题一、选择题1.将三角形面积平分的是三角形的( )A. 角平分线B. 高C. 中线D. 外角平分线2.已知一个三角形的两边长为3cm 和5cm,则此三角形的第三边长可能是( )A. 1cmB. 2cmC. 3cmD. 8cm3.如图,,分别是的中线和角平分线.若,,则的度数是()A. B. C. D.4.图中的三角形被木板遮住了一部分,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 以上都有可能5.根据下列已知条件,能唯一画出△ABC的是()A. AB=5,BC=3,AC=8B. AB=4,BC=3,∠A=30°C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°,AB=46.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为()A. 50°B. 60°C. 65°D. 75°7.如图,AC⊥BD,∠1=∠2,∠D=40°,则∠BAD的度数是()A. 85°B. 90°C. 95°D. 100°8.如图,在△ABC中,∠A=80°,∠C=60°,则外角∠ABD的度数是()A. 100°B. 120°C. 140°D. 160°9.一副三角板按如图所示方式叠放在一起,则图中∠α等于()A. B. C. D.10.如图,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°11.某多边形的每个内角均为135°,则此多边形的边数为( )A. 5B. 6C. 7D. 812.如图,五边形ABCDE的每一个内角都相等,则外角∠CBF等于( )A. 60°B. 72°C. 80°D. 108°二、填空题13.三角形两边长分别是2,4,第三边长为偶数,第三边长为________14.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=________.15.在长度为5cm,6cm,11cm,12cm的四条线段中选出三条构成一个三角形,这三条线段的长度分别是________.16.如图,AF,AD分别是△ABC的高和角平分线,且∠B=32°,∠C=78°,则∠DAF=________.17.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为6,则其顶角上的度数________.18.下列图形中的x=________.19.在△ABC中,若∠A=90°,∠B=50°,则∠C度数为________.20.三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为________;21.如图,AB∥CD,∠E=30°,∠C=20°,则∠A=________.22.已知多边形的内角和等于外角和的1.5倍,则这个多边形的边数为________。

(名师整理)数学八年级上册 《第11章 三角形》单元检测试题(含答案解析)

(名师整理)数学八年级上册 《第11章 三角形》单元检测试题(含答案解析)

第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.小明有两根3cm、7cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为()A. 3cmB. 4cmC. 9cmD. 10cm2.如图,点D在线段BC的延长线上,则△ABC的外角是()A.∠AB.∠BC.∠ACBD.∠ACD3.如图,以BC为边的三角形有()个.A. 3个B. 4个C. 5个D. 6个4.如图,已知点D是△ABC中BC边上的一点,线段BD将△ABC分为面积相等的两部分,则线段BD是△ABC的一条()A.角平分线B.中线C.高线D.边的垂直平分线5.在△ABC中,∠C是锐角,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图所示,△ABC中,∠B=∠C,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°7.在△ABC中,若∠A-∠B=∠C,则此三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.无法确定8.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD的度数是()A.80°B.85°C.100°D.110°9.下列角度中不是多边形内角和的只有()A.540°B.720°C.960°D.1080°10.锐角三角形中任意两个锐角的和必大于()A.120°B.110°C.100°D.90°11.从一个n边形中除去一个角后,其余(n-1)个内角和是2580°,则原多边形的边数是()A. 15B. 17C. 19D. 1312.在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.63°B.45°C.27°D.18°二、填空题13.下列图形中具有稳定性有(填序号)14.如图所示,则∠α= .15.若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.16.在△ABC中,∠BAC=90°,AD是BC边上的高,∠B=35°,则∠CAD=________°.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为 .三、解答题18.在直角三角形中,一个锐角比另一个锐角的3倍还多10°,求这两个锐角的度数.19.如图所示,已知∠A=20°,∠B=30°,AC⊥DE,求∠BED和∠D的度数.20.如图,已知在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC的长.21.如图,已知∠CDF=∠OEF=90°,CE与OA相交于点F,若∠C=20°,求∠O的大小.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:△EPF为直角三角形.23.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?答案解析1.【答案】C【解析】7﹣3=4,7+3=10,因而4<第三根木棒<10,只有C中的9满足.故选C.2.【答案】D【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中∠ACD符合三角形外角的定义,所以正确的选项是D.3.【答案】B【解析】以BC为边的三角形有△BCN,△BCO,△BMC,△ABC.4.【答案】B【解析】由题意知,当线段BD将△ABC分为面积相等的两部分,则线段BD是△ABC的一条中线.5.【答案】D【解析】三角形中最少有两个角是锐角,因此有一个角是锐角时,三角形的形状不能确定.在△ABC中,∠C是锐角,那么△ABC可能是直角三角形,也可能是锐角三角形或钝角三角形,故选D.6.【答案】C【解析】∵DE⊥AC,∠BDE=140°,∴∠A=50°,又∵∠B=∠C,∴∠C==65°,∵EF⊥BC,∴∠DEF=∠C=65°.故选C.7.【答案】B【解析】∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选B.8.【答案】C【解析】∵∠B=30°,∠DAE=55°,∴∠D=∠DAE-∠B=55°-30°=25°,∴∠ACD=180°-∠D-∠CAD=180°-25°-55°=100°.故选C.9.【答案】C【解析】A、540÷180=3,则是多边形的内角和;B、720÷180=4,则是多边形的内角和;C、960÷180=5,则不是多边形的内角和;D、1080÷180=6,则是多边形的内角和.故选C.10.【答案】D【解析】根据三角形的内角和是180度和锐角三角形的定义可知:锐角三角形中任意两个锐角的和必大于90°.11.【答案】B【解析】2580°÷180°=14…60°,∵除去了一个内角,∴边数是15+2=17.故选B.12.【答案】C【解析】∵∠CAB=90°,AD是∠CAB的角平分线,∴∠CAD=×90°=45°,∵CE⊥AD,∴∠ACE=90°-45°=45°,又∵∠CAB=90°,∠ABC=72°,∴∠ACB=90°-72°=18°,∴∠ECD=∠ACE-∠ACB=45°-18°=27°.故选C.13.【答案】(2),(4)【解析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性14.【答案】105°【解析】如图,∠1=70°,由三角形的外角性质得,∠α=35°+70°=105°.故答案为:105°.15.【答案】1<c<5【解析】由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.16.【答案】35【解析】∵AD是BC边上的高,∠B=35°,∴∠BAD=90°-∠B=90°-35°=55°,∵∠BAC=90°,∴∠CAD=90°-55°=35°.故答案为:35.17.【答案】120°【解析】∵α=20°,∴β=2α=40°,∴最大内角的度数=180°-20°-40°=120°.故答案为:120°.18.【答案】解:设另一个锐角为x°,则一个锐角为(3x+10)°,由题意得,x+(3x+10)=90,解得x=20,3x+10=3×20+10=70,所以,这两个锐角的度数分别为20°,70°.【解析】设另一个锐角为x°,表示出一个锐角,然后根据直角三角形两锐角互余列方程求解即可.19.【答案】解:∵AC⊥DE,∴∠APE=90°,∴∠BED=∠A+∠APE=20°+90°=110°;在△BDE 中,∠D=180°-∠B-∠BED=180°-20°-110°=50°.【解析】根据垂直的定义可得∠APE=90°,然后利用三角形的一个外角等于与它不相邻的两个内角的和可得∠BED=∠A+∠APE,然后利用三角形的内角和定理列式计算即可求出∠D. 20.【答案】解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,∴AB=2AF=2×3=6,AC=2A E=2×2=4,∵△ABC的周长为15,∴BC=15-6-4=5.【解析】根据三角形中线的定义求出AB、AC,再利用三角形的周长的定义列式计算可得. 21.【答案】解:∵∠CDF=∠OEF=90°,∴∠C+∠AFD=90°,∠O+∠OFE=90°,∵∠OFE=∠CFD (对顶角相等),∴∠O=∠C=20°.【解析】根据直角三角形两锐角互余列方程求出∠O=∠C,从而得解.22.【答案】证明:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°-(∠PEF+∠EFP)=180°-90°=90°,∴△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.23.【答案】解:(1)如图.(2)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD=S△ABC,S△BDE=S△ABD,∴S△BD E=×S△ABC=S△ABC,∵△ABC的面积为40,∴S△BDE=×40=10,∵BD=5,∴×5•EF=10,解得EF=4.【解析】(1)根据三角形高线的定义,过点E作BD边上的垂线段即可;(2)根据等底等高的三角形的面积相等可知三角形的中线把三角形分成两个面积相等的三角形,求出△BDE的面积为10,再根据三角形的面积公式列式计算即可得解.。

八年级数学上册第十一章《三角形》单元测试题附答案

八年级数学上册第十一章《三角形》单元测试题附答案

八年级数学上册第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形2.如图,△ABC中,△ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若△A=24°,则△BDC等于()A. 42°B. 66°C. 69°D. 77°3.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A. 7B. 8C. 9D. 104.如图,在△BDF和△ABC中,它们相同的角是()A. △AB. △CC. △ABCD. △ACB5.如图,AB△CD,AD与BC相交于点O,已知角α、β,则用角α、β表示△AOC,则△AOC=()A.α+βB. 180°-α+βC. 2α-βD. 180°+α-β6.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 107.如图所示的图形中,属于多边形的有()个.A. 3个B. 4个C. 5个D. 6个8.如图,△ABC中,△1=△2,△3=△4,若△D=25°,则△A=()A. 25°B. 65°C. 50°D. 75°9.适合条件△A=△B=△C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形10.八边形的内角和是()A. 1440°B. 1080°C. 900°D. 720°11.如图,点D在BC的延长线上,连接AD,则△EAD是()的外角.A. △ABCB.△ACDC. △ABDD.以上都不对12.如图,在△ABC中,EF△AC,BD△AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高二、填空题13.一副三角板,如图所示叠放在一起,则图中△α的度数是.14.如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若△C=30°,则△AEC′=.15.如图,写出△ADE的外角.16.在图中过点P任意画一条直线,最多可以得到____________个三角形.17.如图,已知△A=30°,△B=40°,△C=50°,那么△AOB=度.三、解答题18.如图,点D是△ABC的边BC上的一点,△B=△BAD=△C,△ADC=72°.试求△DAC的度数.19.如图,已知AB△CD,EF与AB、CD分别相交于点E、F,△BEF与△EFD的平分线相交于点P,求证:△EPF为直角三角形.20.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)•180°.例如:如图四边形ABCD的内角和:N=△A+△B+△C+△D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.21.已知:在△ABC中,△BAC=90°,AD△BC于点D,△ABC的平分线BE交AD于F,试说明△AEF=△AFE.22.已知凸四边形ABCD中,△A=△C=90°.(1)如图1,若DE平分△ADC,BF平分△ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分△ABC、△ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】D【解析】A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选D.2.【答案】C【解析】在△ABC中,△ACB=90°,△A=24°,△△B=90°-△A=66°.由折叠的性质可得:△BCD=△ACB=45°,△△BDC=180°-△BC D-△B=69°.故选C.3.【答案】A【解析】设这个多边形的边数为n,根据题意得,(n-2)•180°=360°×2+180°,解得n=7.故选A.4.【答案】C【解析】△BDF的角有△D,△DBF,△DFB;△ABC的角有△A,△ACB,△ABC;它们相同的角是△ABC.5.【答案】A【解析】△AB△CD,△△ABO=β.在△AOB中,利用三角形的外角性质得到△AOC=△A+△ABO=α+β.故选A.6.【答案】B【解析】△4﹣3=1,4+3=7,△1<x<7,△x的值可能是6.故选B.7.【答案】A【解析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.故选A8.【答案】C【解析】△BD是△ABC的平分线,△△DBC=△ABC,△CD是△ABC的外角平分线,△△ACD=(△A+△ABC),△△D+△DBC+△ACB+△ACD=180°,即△ABC+△ACB+(△A+△ABC)=155°△,△A+△ABC+△ACB=180°△,△△ABC+△ACB=130°,△△A=50°.故选C.9.【答案】B【解析】设△A=x°,则△B=x°,△C=3x°.根据三角形的内角和定理,得x+x+3x=180,x=36.则△C=108°.则该三角形是钝角三角形.故选B.10.【答案】B【解析】由题意得:180°(8-2)=1080°,故选B.11.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中△EAD是△ABD的外角,所以正确的选项是C.12.【答案】D【解析】A.BD△AC,则BD是△BDC的高,故命题正确;B.CD△BD,则CD是△BCD的高,故命题正确;C.EG△BG,则EG是△BEF的高,故命题正确;D.错误;13.【答案】75°【解析】如图,△1=45°-30°=15°, △α=90°-△1=90°-15°=75°.故答案为:75°14.【答案】60°【解析】根据折叠可得:EC=EC′, △△EC′D=△C,△△C=30°, △△EC′D=30°,△△AEC′=30°+30°=60°,故答案为:60°.15.【答案】△BDF、△DEC和△AEF【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中符合条件的角是△BDF、△DEC和△AEF.16.【答案】6【解析】如图1,有2个三角形;如图2,有4个三角形;如图3,有4个三角形;如图4,有5个三角形;如图5,有6个三角形.综上所述,最多有6个三角形.17.【答案】120【解析】延长BO交AC于D, △△B=40°,△C=50°,△△ADO=40°+50°=90°,△△A=30°, △△AOB=30°+90°=120°,故答案为:120.18.【答案】解:△△ADC是△ABD的外角,△ADC=72°,△△ADC=△B+△BAD.又△△B=△BAD,△△B=△BAD=36°.△△B=△BAD=△C,△△C=36°.在△ADC中,△△DAC+△ADC+△C=180°△△DAC=180°-△ADC-△C=180°-72°-36°=72°.【解析】先根据三角形外角的性质得出△ADC=△B+△BAD,再由△B=△BAD可知△B=△BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.19.【答案】证明:△AB△CD, △△BEF+△EFD=180°,又EP、FP分别是△BEF、△EFD的平分线,△△PEF=△BEF,△EFP=△EFD,△△PEF+△EFP=(△BEF+△EFD)=90°,△△P=180°-(△PEF+△EFP)=180°-90°=90°,△△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证△PEF+△EFP=90°,由角平分线的性质和平行线的性质可知,△PEF+△EFP=(△BEF+△EFD)=90°.20.【答案】解:(1)N=(5-2)×180°=540°(2)根据题意得:(n-2)×180°=720°解得n=6.【解析】(1)将n=5代入公式,依据公式计算即可;(2)将N=720°代入公式,得到关于n的方程,然后求解即可.21.【答案】证明:△BE平分△ABC,△△CBE=△ABE,△△BAC=90°,△△ABE+△AEF=90°,△DA△BC,△△CBE+△BFD=90°,△△AEF=△BFD,△△BFD=△AFE(对顶角相等),△△AEF=△AFE【解析】根据角平分线的定义求出△ABE=△EBC,再利用△BAC=90°,AD△BC于点D推出△AEF=△AFE.22.【答案】解:(1)DE△BF,延长DE交BF于点G△△A+△ABC+△C+△ADC=360°又△△A=△C=90°,△△ABC+△ADC=180°△△ABC+△MBC=180°△△ADC=△MBC,△DE、BF分别平分△ADC、△MBC△△EDC=△ADC,△EBG=△MBC,△△EDC=△EBG,△△EDC+△DEC+△C=180°△EBG+△BEG+△EGB=180°又△△DEC=△BEG△△EGB=△C=90△DE△BF;(2)DE△BF,连接BD,△DE、BF分别平分△NDC、△MBC△△EDC=△NDC,△FBC=△MBC,△△ADC+△NDC=180°又△△ADC=△MBC△△MBC+△NDC=180°△△EDC+△FBC=90°,△△C=90°△△CDB+△CBD=90°△△EDC+△CDB+△FBC+△CBD=180°即△EDB+△FBD=180°,△DE△BF.【解析】(1)DE△BF,延长DE交BF于G.易证△ADC=△CBM.可得△CDE=△EBF.即可得△EGB=△C=90゜,则可证得DE△BF;(2)DE△BF,连接BD,易证△NDC+△MBC=180゜,则可得△EDC+△CBF=90゜,继而可证得△EDC+△CDB+△CBD+△FBC=180゜,则可得DE△BF.。

数学八年级上册《三角形》单元检测题(带答案)

数学八年级上册《三角形》单元检测题(带答案)

人教版八年级上册《三角形》单元测试卷(考试时间:60分钟试卷满分:120分)一.选择题(每题3分,共计30分)1.已知一个三角形中一个角是锐角,那么这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能2.(2020•永城市期末)如图,已知B D =C D ,则A D 一定是△A B C 的()A .角平分线B .高线C .中线D .无法确定3.(2019•永城市期中)在三角形的①三条中线;②三条角平分线;③三条高中,一定相交于一点的是()A .①②③B .②C .①D .①②4.(2020•江岸区期末)下列各组线段,能构成三角形的是()A .1C m,3C m,5C mB .2C m,4C m,6C mC .4C m,4C m,1C mD .8C m,8C m,20C m5.(2020•河南二模)如图,直线A ∥B ,Rt△A B C 的直角顶点C 落在直线B 上,若∠A =50°,∠1=110°,则∠2的度数为()A .40°B .50°C .60°D .70°6.(2019•浉河区期末)如图所示,在△A B C 中,∠C =90°,EF∥A B ,∠B =39°,则∠1的度数为()A .38°B .39°C .51°D .52°7.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()8.(2020•郑州期末)如图,B P、C P是△A B C 的外角角平分线,若∠P=60°,则∠A 的大小为()A .30°B .60°C .90°D .120°9.(2019•路北区一模)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少()A .30°B .15°C .18°D .20°10.(2019•川汇区期中)长为9,7,5,3的四根水条,选其中三根组成三角形,有几种选法?()A .1种B.2种C.3种D.4种二.填空题(每题3分,共计15分)11.(2020•周口期中)如图,伸缩晾衣架利用的几何原理是四边形的.12.(2020•中原区期末)∠A C D 是△A B C 的外角,若∠A C D =125°,∠A =75°,则∠B =.13.(2019•金水区三模)如图,将三角尺A B C 和三角尺D FF(其中∠A =∠E=90°,∠C =60°,∠F=45°)摆放在一起,使得点A 、D 、B 、E在同一条直线上,B C 交D F于点M,那么∠C MF度数等于.14.(2020•交城县期末)有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A 点处行走的路程是.15.(2020•永城市期末)如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形A B C D E.在图2中,∠A C D 的度数为.三.解答题(共75分)16.(8分)(2020 •洛龙区月考)一个多边形除了一个内角外,其余内角的和为2680度,则这个内角是多少度?17.(9分)(2020•禹州市期中)如图,△A B C 中(A B >B C ),A B =2A C ,A C 边上中线B D 把△A B C 的周长分成30和20两部分,求A B 和B C 的长.18.(9分)(2020•滑县期末)如图,在△A B C 中,A B =A C ,D 、E分别在A C 、A B 边上,且B C =B D ,A D =D E=EB ,求∠A 的度数.19.(9分)如图所示,在四边形A B C D 中,∠A 与∠C 互补,B E平分∠A B C ,D F平分∠A D C ,若B E ∥D F,求证:△D C F为直角三角形.20.(9分)(2020•洛阳期末)如图,C E是△A B C 的外角∠A C D 的平分线,且C E交B A 的延长线于点E.(1)若∠B =35°,∠E=25°,求∠B A C 的度数;(2)请你写出∠B A C 、∠B 、∠E三个角之间存在的等量关系,并写出证明过程.21.(10分)(2020•襄城县期末)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠C A E的度数;(2)如图②,若∠A C E=2∠B C D ,请求出∠A C D 的度数.22.(10分) 2019 •辉县市期末)(1)如图①,在△A B C 中,∠C =90°,∠B A C 的平分线与外角∠C B E的平分线相交于点D ,求∠D 的度数.(2)如图②,将(1)中的条件“∠C =90°”改为∠C =α,其它条件不变,请直接写出∠D 与∠α的数量关系.23.(11分)(2020•瀍河区月考)在△A B C 中,A D 是角平分线,∠B <∠C ,(1)如图(1),A E是高,∠B =50°,∠C =70°,求∠D A E的度数;(2)如图(2),点E在A D 上.EF⊥B C 于F,试探究∠D EF与∠B 、∠C 的大小关系,并证明你的结论;(3)如图(3),点E在A D 的延长线上.EF⊥B C 于F,试探究∠D EF与∠B 、∠C 的大小关系是(直接写出结论,不需证明).参考答案一.选择题(每题3分,共计30分)1.已知一个三角形中一个角是锐角,那么这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能[答案]D[解析]在锐角三角形中,三个角都是锐角,在直角三角形中,两个角是锐角,在钝角三角形中,两个角是锐角,∴一个三角形中一个角是锐角,那么这个三角形是三种情况都有可能,故选:D .2.(2020•永城市期末)如图,已知B D =C D ,则A D 一定是△A B C 的()A .角平分线B .高线C .中线D .无法确定[答案]C[解析]由于B D =C D ,则点D 是边B C 的中点,所以A D 一定是△A B C 的一条中线.故选:C .3.(2019•永城市期中)在三角形的①三条中线;②三条角平分线;③三条高中,一定相交于一点的是()A .①②③B .②C .①D .①②[答案]D[解析]三角形的三条角平分线、三条中线分别交于一点是正确的;锐角三角形或直角三角形的三条高线交于一点,而钝角三角形的三条高所在的直线交于一点,高线指的是线段,故三角形的三条高,不一定相交于一点.故选:D .4.(2020•江岸区期末)下列各组线段,能构成三角形的是()A .1C m,3C m,5C mB .2C m,4C m,6C mC .4C m,4C m,1C mD .8C m,8C m,20C m[答案]C[解析]根据三角形的三边关系,得A 、1+3=4<5,不能组成三角形,故此选项错误;B 、2+4=6,不能组成三角形,故此选项错误;C 、1+4=5>4,能够组成三角形,故此选项正确;D 、8+8<20,不能组成三角形,故此选项错误.故选:C .5.(2020•河南二模)如图,直线A ∥B ,Rt△A B C 的直角顶点C 落在直线B 上,若∠A =50°,∠1=110°,则∠2的度数为()A .40°B .50°C .60°D .70°[答案]D[解析]∵∠A C B =90°,∠A =50°,∴∠B =90°﹣∠A =40°,∵直线A ∥B ,∴∠3=∠1=110°,∴∠2=∠4=∠3﹣∠B =70°,故选:D .6.(2019•浉河区期末)如图所示,在△A B C 中,∠C =90°,EF∥A B ,∠B =39°,则∠1的度数为()A .38°B .39°C .51°D .52°[答案]C[解析]∵在△A B C 中,∠C =90°,∠B =39°,∴∠A =51°,∵EF ∥A B ,∴∠1=∠A ,∴∠1=51°,故选:C .7.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是() A .6 B .7 C .8 D .9[答案]C[解析]多边形的外角和是360°,根据题意得:180°•(n ﹣2)=3×360°解得n =8.故选:C .8.(2020•郑州期末)如图,B P 、C P 是△A B C 的外角角平分线,若∠P =60°,则∠A 的大小为()A .30°B .60°C .90°D .120°[答案]B[解析]证明:∵B P 、C P 是△A B C 的外角的平分线,∴∠PC B =12∠EC B ,∠PB C =12∠D B C ,∵∠EC B =∠A +∠A B C ,∠D B C =∠A +∠A C B ,∴∠PC B +∠PB C =12(∠A +∠A B C +∠A +∠A C B )=12(180°+∠A )=90°+12∠A ,∴∠P =180°﹣(∠PC B +∠PB C )=180°﹣(90°+12∠A )=90°−12∠A =60°,∴∠A =60°,故选:B .9.(2019•路北区一模)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少( )A .30°B .15°C .18°D .20°[答案]C×(5﹣2)×180°=108°,正方形的内角是90°,[解析]∵正五边形的内角的度数是15∴∠1=108°﹣90°=18°.故选:C .10.(2019•川汇区期中)长为9,7,5,3的四根水条,选其中三根组成三角形,有几种选法?()A .1种B.2种C.3种D.4种[答案]C[解析]可以选:①9,7,5;②7,5,3;③9,7,3三种;故选:C .二.填空题(每题3分,共计15分)11.(2020•周口期中)如图,伸缩晾衣架利用的几何原理是四边形的.[答案]不稳定性[解析]伸缩晾衣架利用的几何原理是四边形的不稳定性,故答案为:不稳定性.12.(2020•中原区期末)∠A C D 是△A B C 的外角,若∠A C D =125°,∠A =75°,则∠B =.[答案]50°[解析]∵∠A C D =∠A +∠B ,∠A C D =125°,∠A =75°,∴∠B =125°﹣75°=50°,故答案为.50°13.(2019•金水区三模)如图,将三角尺A B C 和三角尺D FF(其中∠A =∠E=90°,∠C =60°,∠F=45°)摆放在一起,使得点A 、D 、B 、E在同一条直线上,B C 交D F于点M,那么∠C MF度数等于.[答案]105°[解析]∵直角△A B C 中,∠A B C =90°﹣∠C =90°﹣60°=30°,同理,∠FD E=90°﹣∠F=90°﹣45°=45°,∴∠D MB =180°﹣∠A B C ﹣∠FD E=180°﹣30°﹣45°=105°,∴∠C MF=∠D MB =105°.故答案为:105°.14.(2020•交城县期末)有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A 点处行走的路程是.[答案]30米[解析]2×(360°÷24°)=30米.故答案为:30米.15.(2020•永城市期末)如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形A B C D E.在图2中,∠A C D 的度数为.[答案]72°[解析]∵五边形A B C D E是正五边形,∴其每个内角为108°,且A B =B C ,∴△A B C 是等腰三角形,∴∠B C A =(180°﹣108°)÷2=36°,∴∠A C D =∠B C E﹣∠B C A =108°﹣36°=72°.故答案为:72°三.解答题(共75分)16.(8分)(2020 •洛龙区月考)一个多边形除了一个内角外,其余内角的和为2680度,则这个内角是多少度?[解析]设这个内角度数为x°,边数为n,则(n﹣2)×180﹣x=2680,180•n=3040+x,,∴n=3040+x180∵n为正整数,0°<x<180°,∴n=17,∴这个内角度数为180°×(17﹣2)﹣2680°=20°.故这个内角的度数是20°.17.(9分)(2020•禹州市期中)如图,△A B C 中(A B >B C ),A B =2A C ,A C 边上中线B D 把△A B C 的周长分成30和20两部分,求A B 和B C 的长.[解析]设A C =x,则A B =2x,∵B D 是中线,x,∴A D =D C =12x=30,由题意得,2x+12解得,x=12,则A C =12,A B =24,×12=14.B C =20−12答:A B =24,B C =14.18.(9分)(2020•滑县期末)如图,在△A B C 中,A B =A C ,D 、E分别在A C 、A B 边上,且B C =B D ,A D =D E=EB ,求∠A 的度数.[解析]∵D E=EB∴设∠B D E=∠A B D =x,∴∠A ED =∠B D E+∠A B D =2x,∵A D =D E,∴∠A ED =∠A =2x,∴∠B D C =∠A +∠A B D =3x,∵B D =B C ,∴∠C =∠B D C =3x,∵A B =A C ,∴∠A B C =∠C =3x,在△A B C 中,3x+3x+2x=180°,解得x=22.5°,∴∠A =2x=22.5°×2=45°.19.(9分)如图所示,在四边形A B C D 中,∠A 与∠C 互补,B E平分∠A B C ,D F平分∠A D C ,若B E ∥D F,求证:△D C F为直角三角形.[解析]∵在四边形A B C D 中,∠A 与∠C 互补,∴∠A B C +∠A D C =360°﹣180°=180°,∵B E平分∠A B C ,D F平分∠A D C ,∴∠C D F+∠EB F=90°,∵B E∥D F,∴∠EB F=∠C FD ,∴∠C D F+∠C FD =90°,故△D C F为直角三角形.20.(9分)(2020•洛阳期末)如图,C E是△A B C 的外角∠A C D 的平分线,且C E交B A 的延长线于点E.(1)若∠B =35°,∠E=25°,求∠B A C 的度数;(2)请你写出∠B A C 、∠B 、∠E三个角之间存在的等量关系,并写出证明过程.[解析](1)∵∠EC D =∠B +∠E,∠B =35°,∠E=25°,∴∠EC D =60°,∵EC 平分∠A C D ,∴∠A C E=∠EC D =60°,∴∠B A C =∠A C E+∠E=60°+25°=85°.(2)结论:∠B A C =∠B +2∠E.理由:∵∠B A C =∠A C E+∠E,∠EC D =∠A C E=∠B +∠E,∴∠B A C =∠B +∠E+∠E=∠B +2∠E.21.(10分)(2020•襄城县期末)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠C A E的度数;(2)如图②,若∠A C E=2∠B C D ,请求出∠A C D 的度数.[解析](1)∵∠B A C =90°∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠D A E=90°,∴∠1+∠C A E=∠2+∠1=90°,∴∠C A E=∠2=18°;(2)∵∠A C E+∠B C E=90°,∠B C D +∠B C E=60°,∴∠A C E﹣∠B C D =30°,又∠A C E=2∠B C D ,∴2∠B C D ﹣∠B C D =30°,∠B C D =30°,∴∠A C D =∠A C B +∠B C D =90°+30°=120°.22.(10分) 2019 •辉县市期末)(1)如图①,在△A B C 中,∠C =90°,∠B A C 的平分线与外角∠C B E的平分线相交于点D ,求∠D 的度数.(2)如图②,将(1)中的条件“∠C =90°”改为∠C =α,其它条件不变,请直接写出∠D 与∠α的数量关系.[解析](1)如图①,∵∠C B E是△A B C 的外角,∴∠C B E =∠C A B +∠C ,∴∠C =∠C B E ﹣∠C A B ,∵∠B A C 的平分线与外角∠C B E 的平分线相交于点D ,∴∠1=12∠C A B ,∠2=12∠C B E , ∵∠2是△A B D 的外角,∴∠2=∠1+∠D ,∴∠D =∠2﹣∠1=12(∠C B E ﹣∠C A B )=12∠C =12×90°=45°. (2)如图②,∵∠C B E 是△A B C 的外角,∴∠C B E =∠C A B +∠C ,∴∠C =∠C B E ﹣∠C A B ,∵∠B A C 的平分线与外角∠C B E 的平分线相交于点D ,∴∠1=12∠C A B ,∠2=12∠C B E , ∵∠2是△A B D 的外角,∴∠2=∠1+∠D ,∴∠D =∠2﹣∠1=12(∠C B E ﹣∠C A B )=12∠C =12α.23.(11分)(2020•瀍河区月考)在△A B C 中,A D 是角平分线,∠B <∠C ,(1)如图(1),A E 是高,∠B =50°,∠C =70°,求∠D A E 的度数;(2)如图(2),点E 在A D 上.EF ⊥B C 于F ,试探究∠D EF 与∠B 、∠C 的大小关系,并证明你的结论;(3)如图(3),点E 在A D 的延长线上.EF ⊥B C 于F ,试探究∠D EF 与∠B 、∠C 的大小关系是 (直接写出结论,不需证明).[解析](1)如图1,∵A D 平分∠B A C ,∴∠C A D =12∠B A C ,∵A E ⊥B C ,∴∠C A E =90°﹣∠C ,∴∠D A E =∠C A D ﹣∠C A E =12∠B A C ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣(90°﹣∠C )=12∠C −12∠B=12(∠C ﹣∠B ),∵∠B =50°,∠C =70°,∴∠D A E =12(70°﹣50°)=10°.(2)结论:∠D EF =12(∠C ﹣∠B ).理由:如图2,过A 作A G ⊥B C 于G ,∵EF ⊥B C ,∴A G ∥EF ,∴∠D A G =∠D EF ,由(1)可得,∠D A G =12(∠C ﹣∠B ),∴∠D EF =12(∠C ﹣∠B ).(3)仍成立.如图3,过A 作A G ⊥B C 于G ,∵EF⊥B C ,∴A G∥EF,∴∠D A G=∠D EF,(∠C ﹣∠B ), 由(1)可得,∠D A G=12∴∠D EF=1(∠C ﹣∠B ),2故答案为∠D EF=1(∠C ﹣∠B ).2。

八年级数学上册 第1章 《三角形》 单元测试卷

八年级数学上册  第1章 《三角形》  单元测试卷

八年级数学上册第1章《三角形》单元测试卷一、选择题:1.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A.16 B.14 C.12 D.102.如图,AB=AC,点D,E分别在AB,AC上,补充下列一个条件后,不能判断△ABE≌△ACD 的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BE=CD第2题图第3题图第4题图第5题图3.某实验室有一块三角形玻璃,被摔成如图的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,他要带的玻璃编号是() A.①B.②C.③D.④4.如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=6 cm,OC=4 cm,则OB的长为() A.2 cm B.3 cm C.4 cm D.6 cm 5.如图,在四边形ABCD中,∠A=90°,AD=6,连结BD,BD⊥CD,∠ADB=∠C.若点P是BC边上一动点,则DP长的最小值为() A.4 B.6 C.3 D.12 6.如图,在△MPN中,点H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为() A.3 B.4 C.5 D.6第6题图第7题图7.如图,在△ABC中,∠1=∠2,点G为AD的中点,延长BG交AC于点E,点F为AB 上一点,CF⊥AD于点H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A.1个B.2个C.3个D.4个8.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,适当长为半径画弧,交AB于点M ,交AC 于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠BAC的内部交于点P ,连结AP 并延长,交BC 于点D ,有下列说法:①线段AD 是∠BAC 的平分线;②∠ADC =∠BAC ;③点D 到AB 边的距离与DC 的长相等;④△DAC 与△ABC 的面积之比是1∶4,其中结论正确的是( )A .①②B .③④C .①②③D .①③④第8题图 第9题图 第10题图9.如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过点C 作CF ⊥AE ,垂足为点F ,过点B 作BD ⊥BC 交CF 的延长线于点D .若BD =3cm ,则△ABC 的面积为( )A .36cm 2B .18cm 2C .6cm 2D .8cm 210.如图,已知AB =AC ,点D ,E 分别在AC ,AB 上且AE =AD ,连结EC ,BD ,EC 交BD 于点M ,连结AM ,过点A 分别作AF ⊥CE ,AG ⊥BD 垂足分别为点F ,G ,下列结论:①△EBM ≌△DCM ;②∠EMB =∠F AG ;③MA 平分∠EMD ;④若点E 是AB 的中点,则BM +AC >BD ,其中正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个二、填空题:11.如图,共有_______个三角形.第11题图 第13题图 第15题图12.把命题“三角形的内角和等于180°”改写成如果____________________________,那么______________________________.13.如图,已知AB =AD ,那么添加一个条件:_____________________,能判定△ABC ≌△ADC .14.在△ABC中,∠A=∠B=13∠C,则∠A=_______.15.如图,DF垂直平分AB,EG垂直平分AC,若∠BAC=110°,则∠DAE=_______. 16.如图,AB=AC,AD=AE,BE,CD交于点O,则图中的全等三角形共有_______对.第16题图第17题图第18题图17.一副三角板如图放置,若∠1=90°,则∠2的度数为________.18.如图,∠A=∠B=90°,AB=100,点E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2∶3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为________.19.如图,在△ABC中,BC=42,直线l经过边AB的中点D,与BC交于点M,分别过点A,C作直线l的垂线,垂足分别为点E,F,则AE+CF的最大值为________.第19题图第20题图第21题图20.如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为________.三、解答题:21.如图,在△ABC中,点D是AC上一点,AD=AB,过点D作DE∥AB,且DE=AC.(1)求证:△ABC≌△DAE;(2)若点D是AC的中点,△ABC的面积是20,求△AEC的面积.22.如图,点E是AC上一点,AB∥CD,∠B=∠CED,BC=ED.第22题图(1)求证:AB=CE;(2)若AB=5,AE=2,求CD的长度.23.如图,已知AD=AB,AC=AF,∠BAD=∠CAF.(1)求证:△ADC≌△ABF;(2)若∠CAD=130°,∠D=15°,求∠F的度数.第23题图24.如图,已知AD为△ABC的高,BE⊥AC,AD=BD.(1)求证:BF=AC;(2)若∠BAC是钝角,(1)中的结论仍成立吗?请说明理由.第24题图25.(1)发现:如图1,在△ABC中,AD是角平分线,DE⊥AB于点E,DF⊥AC于点F.填空:DE与DF的数量关系是,理由是.图1 图2 图3第25题图(2)应用:如图2,△ABC的两个外角∠CBD和∠BCE的平分线交于点P,BC=4cm,AB+AC=6.8cm2,求△ABC的面积.=8cm,S△PBC(3)拓展:如图3,四边形ABCD中,AC平分∠BAD,∠BAD+∠BCD=180°,求证:CB=CD.26.“一线三等角”模型是平面几何图形中的重要模型之一,“一线三等角”指的是图形中出现同一条直线上有3个相等角的情况,在学习过程中,我们发现“一线三等角”模型的出现,还经常会伴随着出现全等三角形.根据材料的理解解决以下问题:(1)如图1,∠ADC=∠CEB=∠ACB=90°,AC=BC,猜想DE,AD,BE之间的关系:.(2)如图2,将(1)中条件改为∠ADC=∠CEB=∠ACB=α(90°<α<180°),AC=BC,请问(1)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.(3)如图3,在△ABC中,点D为AB上一点,DE=DF,∠A=∠EDF=∠B,AE=3,BF=5,请直接写出AB的长.。

数学八年级上册《三角形》单元检测卷含答案

数学八年级上册《三角形》单元检测卷含答案
在△CDE中,∠D=180°-∠DCE-∠DEC=180°-72°-72°=36°.
故答案为36.
13.如图所示的图形中,x的值为______.
【答案】60度
【解析】
【分析】
根据由三角形外角和性质即可得出.
【详解】由三角形外角和得出:(x+70)°=x°+(x+10)°
解得x=60°
故答案为60度.
【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D= ∠A= ×30°=15°.
故选A.
【点睛】
点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.
【结束】
15.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.
【答案】15或16或17
【解析】
试题分析:根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为17,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或17.
16.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__°.
三、解答题(共52分)
17.如图,在△ABC中,∠ACB=90°,CD是高.
(1)图中有几个直角三角形?是哪几个?

人教八年级上册第11章《三角形》单元检测及答案

人教八年级上册第11章《三角形》单元检测及答案

人教八年级上册第11章《三角形》单元检测及答案一. 选择题。

(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( ) A. n 个 B. (n-1)个 C. (n-2)个 D. (n-3)个4. n 边形所有对角线的条数有( ) A.()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( ) A. 1种 B. 2种 C. 3种 D. 4种 6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( )A. 2个B. 3个C. 4个D. 5个 二. 填空题。

(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8c m ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。

人教版八年级上册数学《三角形》单元测试题带答案

人教版八年级上册数学《三角形》单元测试题带答案

人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。

八年级上册数学《三角形》单元综合检测卷(附答案)

八年级上册数学《三角形》单元综合检测卷(附答案)
[答案]C
[解析]
试题分析:用多边形的外角和除以一个外角的度数可得多边形的,即多边形的边数为360°÷45°=8,再根据多边形的内角和公式可得多边形的内角和是(8-2)×180°=1080°.故答案选C.
考点:多边形的内外角和.
6.如图,△A B C中,∠A=50°,点D,E分别在A B,A C上,则∠1+∠2的大小为()
16.如图,这四边行A B C D中,点M、N分别 A B,C D边上,将四边形A B C D沿MN翻折,使点B、C分别在四边形外部点B1,C1处,则∠A+∠B1+∠C1+∠D=________.
17.如图①,点E、F分别为长方形纸带A B C D 边A D、B C上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF=__.
11.如图,已知△A B C中,A B=7,A C=5,B C=3,在△A B C所在平面内一条直线,将△A B C分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )
A.2条B.3条C.4条D.5条
[答案]C
[解析]
[分析]
根据等腰三角形的
8.如图,三角形A B C中,A B=A C,D,E分别为边A B,A C上的点,DM平分∠B DE,EN平分∠DEC,若∠DMN=110°,则∠DEA=( )
A. 40°B. 50°C. 60°D. 70°
9.如图,把一张长方形的纸按如图所示那样折叠,B、C两点分别落在B′,C′点处,若∠AOB′=70°,则∠B′OG的度数为( )
A.130°B.230°C.180°D.310°
[答案]B

数学八年级上册《三角形》单元检测(含答案)

数学八年级上册《三角形》单元检测(含答案)
【详解】当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.
当腰为6cm时,6−3<6<6+3,能构成三角形;
此时等腰三角形的周长为6+6+3=15cm.
故答案为15cm.
【点睛】此题考查等腰三角形的性质,三角形三边关系,解题关键在于利用三角形三边关系进行解答.
12.一个三角形的三边长分别为a、b、c,则 =________.
A. B. C. D.
6.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是()
A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形
7. 、等腰三角形的两条边长分别为3cm,7cm,则等腰三角形的周长为( )cm
A. 13或17B. 17C. 13D. 10
8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】
7.、等腰三角形的两条边长分别为3cm,7cm,则等腰三角形的周长为()cm
A. 13或17B. 17C. 13D. 10
【答案】B
【解析】
∵等腰三角形的两条边长分别为3cm,7cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为3,只能为7,
∴等腰三角形的周长=7+7+3=17cm.
故选B.
8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】
A. 125°B. 120°C. 140°D. 130°
【答案】D
【解析】
如图,∵EF∥GH,∴∠FCD=∠2.
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°.
∴∠2=∠FCD=130°.
故选D.
9.如图:在△ABC中,BC=BA,点D在AB上,AC=CD=DB,则∠B=( ).

人教版八年级上册数学第11章《三角形》单元检测卷(含答案)

人教版八年级上册数学第11章《三角形》单元检测卷(含答案)

人教版八年级上册数学第11章《三角形》单元检测卷(满分120分)班级:_________姓名:_________学号:_________成绩:_________一.选择题(共10小题,满分30分,每小题3分)1.三角形的三条中线、三条角平分线、三条高都是()A.直线B.射线C.线段D.射线或线段2.下列长度的3条线段,能构成三角形的是()A.1,2,3 B.2,3,4 C.4,4,8 D.5,6,123.如图,AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.∠BAD=∠CAD C.AB=AC D.BD=CD4.在△ABC中,∠C=90°,∠B=25°,则∠A的度数为()A.25°B.75°C.55°D.65°5.四边形的外角和为()A.180°B.360°C.540°D.720°6.如图所示,∠B的值为()A.85°B.95°C.105°D.115°7.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米A.95°B.100°C.105°D.110°9.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A =()A.60°B.80°C.70°D.50°10.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15 B.13或14 C.13或14或15 D.14或15或16二.填空题(共8小题,满分32分,每小题4分)11.如图,工程建筑中的屋顶钢架经常采用三角形的结构,其中的数学道理是.12.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是cm.13.△ABC三个内角的度数之比是1:1:2,那么△ABC是三角形.14.一个多边形的内角和为2700°,则这个多边形的边数是边.15.如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.16.在△ABC中,∠C=55°,按图中虚线将∠C剪去后,∠1+∠2等于°.17.如图,在△ABC中,两个内角∠BAC与∠BCA的角平分线交于点D,若∠B=70°,则∠D=度.18.如图,将正六边形ABCDEF绕点D逆时针旋转27°得正六边形A′B′C′DE′F′,则∠1=°.三.解答题(共6小题,满分58分)19.(8分)如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.20.(8分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.21.(8分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA的度数.22.(10分)已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=10,b=8,c=6,求这个式子.23.(12分)已知△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(3)如图3,若FE∥AD,求证:∠DFE=∠ABC+∠G.24.(12分)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(用(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A 的数量关系,并证明.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:三角形的三条中线、三条角平分线、三条高都是线段,故选:C.2.解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、2+3>4,能够组成三角形,符合题意;C、4+4=8,不能够组成三角形,不符合题意;D、5+6<12,不能够组成三角形,不符合题意.故选:B.∴BD=DC,故选:D.4.解:∵∠C=90°,∠B=25°,∴∠A=90°﹣∠B=65°,故选:D.5.解:∵多边形外角和=360°,∴四边形的外角和为360°.故选:B.6.解:∵五边形的内角和为:(5﹣2)×180°=540°,∴∠A+∠B+∠C+∠D+∠E=540°,∴∠B=540°﹣∠A﹣∠C﹣∠D﹣∠E=540°﹣125°﹣60°﹣150°﹣90°=115°.故选:D.7.解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64(米).故选:C.8.解:∵AD是△ABC的角平分线,∠BAC=70°,∴∠BAD=∠BAC=×70°=35°,∵∠B=60°,∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=60°+35°=95°.故选:A.9.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,故选:A.10.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,因此将一个多边形截去一个角后,变成十四边形,则原来的四边形为13或14或15,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.解:工程建筑中经常采用三角形的结构,其中的数学道理是三角形具有稳定性,故答案为:三角形具有稳定性.12.解:如图,∵AC⊥BC,∴BD边上的高为线段AC.又∵AC=4cm,∴BD边上的高是4cm.故答案是:4.13.解:设△ABC的三个内角的度数分别为k、k、2k,由题意得,k+k+2k=180°,解得k=45°,∴2k=2×45°=90°,∴△ABC是直角三角形.故答案为:直角.14.解:设这个多边形的边数为n,根据多边形内角和定理得,(n﹣2)×180°=2700°,解得n=17.故答案为:17.15.解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.16.解:∵∠C=55°,∴∠A+∠B=180°﹣55°=125°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=235°,故答案为235.17.解:∵AD、CD是∠BAC与∠BCA的平分线,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠BAC+∠BCA)=180°﹣(180°﹣∠B)=90°+∠B=125°,故答案为:125.18.解:根据题意得∠CDE=∠B=∠C=∠E′=∠F′==120°,∵∠1+∠B+∠C+∠CDE′+∠E′+∠F′=(6﹣2)×180°=720°,∴∠CDE′=120°﹣∠EDE′=93°,∴∠1=720°﹣120×4﹣93°=147°.故答案为:147.三.解答题(共6小题,满分58分)19.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴.∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°=54°,又∵∠AED=108°,∴∠1=∠2=54,∴EF平分∠AED.20.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.21.解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=50°,∴∠DAC=90°﹣50°=40°,∵在△ABC中,∠C=50°,∠BAC=60°,∴∠ABC=70°,∵在△ABC中,AE,BF是角平分线,∴∠EAC=∠BAC=30°,∠FBC=∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=50°+30°+35°=115°.22.解:(1)∵a,b,c是三角形的三边长,∴b+c>a,c+a>b,a+b>c,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|=b+c﹣a+c+a﹣b+a+b﹣c=a+b+c,(2)把a=10,b=8,c=6,代入a+b+c=10+8+6=24.23.解:(1)如图1,∵∠ACB=90°,∠A=50°,∴∠ABC=40°,∵BG平分∠ABC,∴∠CBG=20°,∴∠CDE=∠BCD=90°,∵DG平分∠ADE,∴∠CDF=45°,∴∠CFD=45°,∵∠CFD=∠FBG+∠G,∴∠G=45°﹣20°=25°;(2)如图2,∠A=2∠G,理由是:由(1)知:∠ABC=2∠FBG,∠CDF=∠CFD,∵BC∥DE,∴∠BCD=∠CDE,∵∠BCD=∠A+∠ABC=∠A+2∠FBG,∴2∠FBG+∠A=2∠CDF,∴∠A=2(∠CDF﹣∠FBG),∵∠CFD=∠FBG+∠G,∴∠G=∠CFD﹣∠FBG=∠CDF﹣∠FBG,∴∠A=2∠G;(3)如图3,∵EF∥AD,∴∠DFE=∠CDF,由(2)得:∠CFD=∠CDF,∴∠DFE=∠CFD=∠FBG+∠G=+∠G.24.解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+32°=122°,故答案为:122°;(2)∵CE和BE分别是∠ACB和∠ABD的角平分线,∴∠1=∠ACB,∠2=∠ABD,又∵∠ABD是△ABC的一外角,∴∠ABD=∠A+∠ACB,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A=;(3)∠QBC=(∠A+∠ACB),∠QCB=(∠A+∠ABC),∠BQC=180°﹣∠QBC﹣∠QCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BQC=90°﹣∠A.。

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

第十一章《三角形》单元测试题(时间:120分钟 满分:150分)一、选择题(每小题4分,共40分)1.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形2.如图,能说明∠1>∠2的是( )3.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A B C D4.一个多边形的一个内角和是900°,则这个正多边形的边数为( )A .5B .6C .7D .85.下列条件中,能判定△ABC 为直角三角形的是( )A .∠A =2∠B =3∠C B .∠A +∠B =2∠CC .∠A =∠B =30°D .∠A =12∠B =13∠C6.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果∠A =50°,那么∠DCB =( )A .50°B .45°C .40°D .25°7.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条,能构成三角形的选法有( )A .1种B .2种C .3种D .4种8.如图,在△ABC 中,∠C =90°,D ,E 为AC 边上的两点,且AE =DE ,BD 平分∠EBC ,则下列说法不正确的是() A .BC 是△ABE 的高 B .BE 是△ABD 的中线C .BD 是△EBC 的角平分线 D .∠ABE =∠EBD =∠DBC第8题图第9题图第10题图9.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( ) A.1 080° B.720° C.540° D.360°10.如图,在5×4的方格纸中,每个小正方形边长为1个单位长度,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共30分)11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=____________.第11题图第15题图第16题图第17题图12.已知△ABC的两条边长分别为2和5,且第三边长为整数,则第三边的长可能为____________.(填一个符合题意的答案)13.已知在△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是____________三角形.14.一个正八边形每个内角的度数为____________.15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为点M.若∠1=58°,则∠2=____________.16.如果将一副三角板按如图方式叠放,那么∠1=____________.17.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD与△BCD的周长的差是____________.18.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数是____________.第18题图第19题图第20题图19.如图,△ABC中,D,E,F分别是BC,CA,AB的中点,作△DEF.若△ABC的面积是12,则△DEF的面积是____________.20.如图,已知在△OAB中,∠AOB=70°,∠OAB的平分线与△OBA的外角∠ABN的平分线所在的直线交于点D,则∠ADB的大小为____________.三、(本大题12分)21.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.四、(本大题12分)22.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?五、(本大题14分)23.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.六、(本大题14分)24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.七、(本大题12分)25.如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.八、(本大题16分)26.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数有____________个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案:第十一章《三角形》单元测试题1.A2.C3.A4.C5.D6.A7.B8.D9.B10.B11.70°12.答案不唯一,如:4或5或613.钝角14.13515.32°16.105°17.218.5°19.320.35°21.∵S∵ABC=2BC·AE=12cm2,AE=3cm,∵BC=8cm.∵AD是BC边上的中线,∵DC=BC=4cm22.在∵AOB中,∵QBO=180°∵A-∵O=180°-28°-100°=52°即∵QBO应等于52才能确保BQ与AP在同一条直线上23.设∵1=∵2=x,则∵3=∵4=2x.∵∵BAC=63°,∵∵2+∵4=117°, 即x+2x=117°∵x=39°∵∵3=∵4=78°∵∵DAC=180°-∵3∵4=24°24.(1)证明:由三角板的性质,可知∵D=30°,∵3=45°,∵DCE=90°∵CF平分∵DCE,∵∵1=∵2=∵DCE=45°∵∵1=∵3.∵CF∵AB.(2)由三角形内角和,可得∵DFC=180°-∵1-∵D=180°-45°-30°=105°.25.∵∵B=30°,∵ACB=110°,∵∵BAC=1830°—110°=40°∵AE平分∵BAC,∵∵BAE=∵BAC=×40°=20°∵∵B=30°,AD是BC边上高线,∵∵BAD=90°30°=60°∵∵DAE=∵BAD∵BAE=60°-20°=40°26.(1)∵A+∵D=∵B+∵C.(2)6.(3)∵∵D=40°,∵B=36°,∵∵OAD+40°=∵OCB+36°∵∵OCB-∵OAD=4°∵AP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=2∵OCB.∵∵DAM+∵D=∵PCM+∵P,∵∵P=∵DAM+∵D-∵PCM=2(∵OAD-∵OCB)+∵D=2X(-4)+40=38°.(4)根据“8字形”数量关系,得∵OAD+∵D=∵OCB+∵B ∵DAM+∵D=∵PCM+∵P,所以∵OCB=∵OAD=∵D=∵B, ∵PCM-∵DAM=∵D-∵PAP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=∵OCB∵2(∵D∵B)=∵D-∵P.整理,得2∵P=∵B+∵D。

数学八年级上册《三角形》单元综合检测含答案

数学八年级上册《三角形》单元综合检测含答案
A.10元B.15元C.20元D.25元
【答案】C
【解析】
【分析】
根据三角形的三边关系可得5-3<x<5+3,解出不等式可得x的取值范围,进而得到选择的最短木棒长度,再根据木棒价格可直接选出答案.
【详解】设第三根木棒的长度为xm,
根据三角形的三边关系可得:5-3<x<5+3,
解得3<x<8,
根据木棒的价格可得选3m最省钱.
【详解】∵图中三角形有:△ECA,△EBD,△FBA,△FCD,△AFD,△ABD,△ACD,△AED,
∴共8个.
故选C.
【点睛】此题考查了学生对三角形的认识.注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.
3.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )
(2)图2中,作△ABC 外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?
24.已知:如图,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.
(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;
C、△ABC中,AD是BC边上的高,故C错误,与要求相符;
D、△GBC中,GC是BC边上的高,故D正确,与要求不符.
故选C.
【点睛】本题主要考查的是三角形的高线的定义,掌握高线的定义是解题的关键.
4.如图,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )
A. B. C. D.
A.118°B.119°C.120°D.121°
【答案】C
【解析】
由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上册第11章三角形单元检测(A)(满分:120分时间:120分钟)一、精心选一选(共2小题,每小题3分,共36分)1.请根据凸多边形的定义,判断下列选项中不是凸多边形的是()A B C D2.小华在计算四个多边形的内角和时,得到下列四个答案,则他计算不对的是()A.019001080C.01440D.0 720B.03.随着一个多边形的边数增加,它的外角和()A.随着增加B.随着减少C.保持不变D.无法确定4.过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则这个多边形的内角和等于()A.012601080D.0 720B.0900C.05.若四边形ABCD中,∠A:∠B:∠C:∠D=1:2:4:5,则∠A+∠D等于()A.0210 30B.0180D.075C.06.能进行镶嵌的正多边形组合是()A.正三角形和正八边形B.正五边形和正十边形C.正方形和正八边形D.正六边形和正八边形7.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=070,则∠AED的度数是()A.0100 110B.0108C.0105D.08.能构成如图所示的图案的基本图形是()9.若一个多边形的每个外角都是锐角,那么这个多边形的边数至少是()A .3B .4C .5D .610.鹿鸣社区里有一个五边形的小公园(如图所示),王老师每天晚饭后都要到公园里去散步,已知图中的∠1=095,王老师沿公园边由A 点经B →C →D →E一直到F 时,他在行程中共转过了()A .0265B .0275C .0360D .044511.一个多边形的每一个内角都是144,则它的内角和等于()A .01260B .01440C .01620D .0180012.四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的一个外角为0105,则∠C 的度数为()A .075B .090C .0105D .0120二、填空题(共10小题,每小题3分,共30分)13.正十边形的内角和等于度,每个内角等于度.A B C D第8题图ABC DE1 234第7题图1 ABCDE F第10题图14.如果正多边形的一个外角为072,那么它的边数是.15.如图是三个完全相同正多边形拼成的无缝隙,不重叠图形的一部分,这种正多边形是正边形.第11题图16.“三江”黄金广场用三种不同的正多边形地砖铺设(每种只选一块),其中已知选好了用正方形和正六边形这两种,还需再选用,使这三种组合在一起的广场铺满.17.多边形每一个内角都等于0140,则从此多边形一个顶点出发的对角线有条.18.若一个多边形的各边长相等,其周长为63厘米,且内角和为0900,那么它的边长为厘米.19.过a边形的一个顶点有7条对角线,正b边形的内角和与外角和相等,c边形没有对角线,d边形有d条对角线,则代数式a(= .bc)d20.小华骑自行车在一个正多边形广场上训练,在训练中小华发现,每5分钟就要转弯一次,当他汽车一圈回到出发点发现正好用了30分钟,则此多边形的内角和为.21.若一个多边形的每个外角都等于030,则这个多边形的对角线总条数为.22.一个多边形的每一个外角都相等,且比它的内角小0140,则这个多边形的边数是.三、解答题(共54分)23.(5分)小华想:2020年奥运会将在东京举办,设计一个内角和为20200的多边形图案多有意义,他的想法能实现吗?请说明理由.24.(6分) 小华画了一个八边形,请问:(1)从八边形的一个顶点出发,可以引几条对角线?它们将八边形分成几个三角形?(2)请你求出八边形的内角和是外角和的几倍?25.(5分)多边形除一个内角外,其余各内角和为1200.(1)求多边形的边数;(2)此多边形必有一外角为多少度?26.(6分)如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 、∠1及∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.27.(7分)如图,已知五边形ABCDE 中,AE ∥CD ,∠A=0130,∠C=0135,求∠B 的度数.ABCDE第27题图第26题图BCAED1228.(8分)小华从点A 出发向前走10m ,向右转036然后继续向前走10m ,再向右转036,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回点A 时共走多少米?若不能,写出理由.29.(8分)如图,求∠A+∠B+∠C+∠D+∠E+∠F +∠G 的度数.30.(9分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪.第30题图图1 图2 图3ABCD EFG第29题图QP(1)图1中草坪的周长为;(2)图2中草坪的周长为;(3)图3中草坪的周长为;(4)如果多边形边数为n,其余条件不变,那么,你认为草坪的周长为.人教版数学八年级上册第11章三角形单元检测(A )参考答案一、选择题1~4 ADCA 5~8 CCDD .9~12 CBBC二、填空题13.1440,45;14.5;15.六;16.正十二边形17.6 18.9 19.3 20.054021.6.54;22.18;三、解答题23.解:不能,理由如下.设存在n 边形的内角和为02012,有02012180)2(n,解得n ≈13.18.∵多边形的边数不能为小数,∴不存在内角和为02012的多边形.24.解:(1)从八边形的一个顶点出发,可以引5条对角线. 它们将八边形分成6个三角形.(2)2360180)28(0.故八边形的内角和是外角和的2倍.25.解:(1)设该多边形的一个内角为0x ,边数为n ,依题意,有01200180)2(x n .∵012061801200,∴01201806180)2(x n .又∵1800x ,∴180120x ,解60x.把60x代入原方程,得0601200180)2(n,解得9x.∴该多边形的边数为9.(2)∵该多边形有一角为060,∴此多边形必有一外角为0120.26.解:规律为∠1+∠2=2∠A .∵∠B+∠C=A 0180,∠ADE+∠AED=A 0180,又∠B+∠C+∠CDE+∠DEB=0360,即∠B+∠C+∠2+∠ADE+∠1+∠AED=0360.∴A 0180+∠1+∠2+A 0180=0360,整理,得∠1+∠2=2∠A .27.解:∵AE ∥CD ,∴∠D+∠E=0180.∵ABCDE 是五边形,∴∠A+∠B+∠C+∠D+∠E=0180)25(.即0130+∠B 0135+0180=0540,解得∠B=095.28.解:小华能回到A 点,当他回到A 点时共走了100m .29.解:∵∠QPE=∠D+∠G ,又∠QPE+∠E+∠F+∠FQP=0360,即∠D+∠G+∠E+∠F+∠FQP=0360.∴∠D+∠G+∠E+∠F=0360—∠FQP .∵∠A+∠B+∠C+∠AQC=0360,∴∵∠A+∠B+∠C=0360—∠AQC .故∠A+∠B+∠C+∠D+∠G+∠E+∠F=(0360—∠AQC)+(0360—∠FQP )=0720—(∠AQC+∠FQP )=0720—0180=0540.30.解:(1)R ;(2)R 2;(3)R 3;(4)R n)2(.人教版数学八年级上册第11章三角形单元检测(B)一.选择题(共10小题)1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.62.如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A.1个B.2个C.3个D.4个3.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部4.下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、105.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75°B.60°C.45°D.40°6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是()A.30°B.40°C.45°D.50°8.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形9.如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.910.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是.12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于度,若∠A=60°时,∠BOC又等于14.如图,∠1,∠2,∠3的大小关系是.15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.16.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为.17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为.18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=.三.解答题(共8小题)19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD =10°,求∠B的度数22.如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=°;(2)若∠A=40°,则∠P=°;(3)若∠A=100°,则∠P=°;(4)请你用数学表达式归纳∠A与∠P的关系.23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.25.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.人教版数学八年级上册第11章三角形单元检测(B)详解一.选择题(共10小题)1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.6【分析】根据三角形的个数解答即可.【解答】解:图中三角形的个数是5个,故选:C.【点评】此题考查三角形,关键是根据图中图形得出三角形个数.2.如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A.1个B.2个C.3个D.4个【分析】根据三角形的高的定义以及平行线的性质,即可解答.【解答】解:∵BD是△ABC的高,∴∠ADB=∠CDB=90°,∵EF∥AC,∴∠EGB=∠ADB=90°,∴BG是△EBF的高,①正确;∵∠CDB=90°,∴CD是△BGC的高,②正确;∵∠ADG=∠CDG=90°,∴DG是△AGC的高,③正确;∵∠ADB=90°,∴AD是△ABG的高,④正确.故选:D.【点评】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,理解定义是关键.也考查了平行线的性质.3.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部【分析】依据三角形角平分线、中线以及高线的概念,即可得到正确结论.【解答】解:A.三角形的三条中线交于一点,正确;B.锐角三角形的三条高都在三角形内部,错误;C.三角形一定具有稳定性,错误;D.三角形的角平分线一定在三角形的内部,错误;故选:A.【点评】本题主要考查了三角形角平分线、中线以及高线的概念,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.4.下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、10【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解:A、3+4<8,不能构成三角形,故此选项不合题意;B、3+2<6,不能构成三角形,故此选项不合题意;C、5+6=11,不能构成三角形,故此选项不合题意;D、5+6>10,能构成三角形,故此选项符合题意.故选:D.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.5.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75°B.60°C.45°D.40°【分析】根据三角形内角和定理即可解决问题;【解答】解:∵∠A+∠B+∠C=180°,∠A=60°,∠B=75°,∴∠C=45°,故选:C.【点评】本题考查三角形内角和定理,记住三角形内角和等于180°是解题的关键.6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是()A.30°B.40°C.45°D.50°【分析】根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故选:B.【点评】本题属于基础题,利用直角三角形两锐角互余的性质解决问题.8.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【解答】解:一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,故选:A.【点评】本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.9.如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°?(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可.【解答】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:A.【点评】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是7<a<12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【解答】解:根据三角形三边关系定理知:最长边a的取值范围是:7<a<(7+5),即7<a<12.故答案为:7<a<12.【点评】此题主要考查的是三角形的三边关系,即:两边之和大于第三边,两边之差小于第三边.12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是AE.【分析】直接利用三角形高线的定义得出答案.【解答】解:如图所示:∵H是△ABC三条高AD,BE,CF的交点,∴△BHA中边BH上的高是:AE.故答案为:AE.【点评】此题主要考查了三角形的高,正确钝角三角形高线的作法是解题关键.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于84度,若∠A=60°时,∠BOC又等于120°【分析】根据三角形内角和定理易得∠OBC+∠OCB=48°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,进而利用三角形内角和定理可得∠A度数;【解答】解:∵∠BOC=132°,∴∠OBC+∠OCB=48°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,∴∠A=180°﹣96°=84°;解:∵∠A=60°∴∠ABC+∠ACB=120°∴∠BOC=180°﹣(∠ABC+∠ACB)=120°.故答案为:84,120°.【点评】本题考查的是三角形内角和定理,角平分线的定义,熟知三角形内角和是180°是解答此题的关键.14.如图,∠1,∠2,∠3的大小关系是∠1<∠2<∠3.【分析】如图可知∠2是三角形的外角,∠3是三角形的外角,根据外角的性质可得到∠1,∠2,∠3的大小关系.【解答】解:∵∠2是外角,∠1是内角,∴∠1<∠2,∵∠3是外角,∠2是内角,∴∠2<∠3,∴∠1<∠2<∠3,故答案为:∠1<∠2<∠3.【点评】本题主要考查外角的性质,掌握外角大于不相邻的每一个内角是解题的关键.15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.【分析】根据题意,画出图象,由图可知∠6+∠7=∠8+∠9,因为五边形内角和为540°,从而得出答案.【解答】解:如图∵∠6+∠7=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠3+∠4+∠5+∠8+∠9,=五边形的内角和=540°,故答案为:540°.【点评】本题考查了五边形内角和,同时需要考生认真通过图形获取信息,通过连线构造五边形从而得出结论.16.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为9.【分析】一个多边形的每个内角都相等,每个内角与相邻外角的差为100°,又由于内角与外角的和是180度.设内角是x°,外角是y°,列方程组求解即可.【解答】解:设内角是x°,外角是y°,则得到一个方程组,解得.而任何多边形的外角和是360°,则多边形外角的个数是360÷40=9,则这个多边形的边数是九边形.故答案为:9【点评】本题考查多边形的内角与外角,根据多边形的内角与外角的关系转化为方程组的问题,并利用了多边形的外角和定理;已知外角求边数的这种方法是需要熟记的内容.17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为120°.【分析】由∠BDC是△ABD的外角,而∠BEC是△CDE的外角即可求解.【解答】解:∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=85°,同理:∠BEC=∠BDC+∠DCE=120°,故:答案是120°.【点评】本题主要考查的是三角形内角和定理和外角定理,是一道基本题.18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=50°.【分析】根据三角形的外角的性质得到∠C=∠ADE﹣∠DEC=50°,根据平角的定义计算.【解答】解:∵DE⊥BC,∴∠DEC=90°,由三角形的外角的性质可知,∠C=∠ADE﹣∠DEC=50°,∴∠B=∠C=50°,∵EF⊥AB,∴∠EFC=90°,∴∠FEB=90°﹣50°=40°,则∠FED=180°﹣40°﹣90°=50°,故答案为:50°.【点评】本题考查的是直角三角形的性质,三角形的外角的性质,掌握三角形内角和定理是解题的关键.三.解答题(共8小题)19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?【分析】根据三角形的三边关系即可得到结论.【解答】解:共有2、4、4;3,3,4;2种不同的折法,【点评】本题考查了三角形的三边关系,正确的理解题意是解题的关键.20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.【分析】分别根据角平分线、三角形高线作法以及垂直平分线的作法得出答案即可.【解答】解:由题意画图可得:【点评】此题主要考查了复杂作图中线段垂直平分线的作法以及角平分线作法等知识,熟练掌握作图方法是关键.21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数【分析】根据垂直的定义得到∠ADC=90°,根据角平分线的定义得到∠CAE=BAC=40°,根据三角形的内角和即可得到结论.【解答】解:∵AD是高,∴∠ADC=90°,∵AE是角平分线,∠BAC=80°,∴∠CAE=BAC=40°,∵∠EAD=10°,∴∠CAD=30°,∴∠C=60°,∴∠B=180°﹣∠BAC﹣∠C=40°.【点评】本题考查了三角形内角和定理和垂直定义、角平分线定义等知识点,能根据三角形内角和定理求出各个角的度数是解此题的关键.22.如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=,60°;(2)若∠A=40°,则∠P=90°;(3)若∠A=100°,则∠P=70°;(4)请你用数学表达式归纳∠A与∠P的关系90°﹣∠A.【分析】(1)若∠A=60°,则有∠ABC+∠ACB=120°,∠DBC+∠BCE=360°﹣120°=240°,根据角平分线的定义可以求得∠PBC+∠PCB的度数,再利用三角形的内角和定理即可求得∠P的度数.(2)(3)和(1)的解题步骤相似.(4)利用角平分线的性质和三角形的外角性质可求出∠BCP=(∠A+∠ABC),∠CBP=(∠A+∠ACB);再利用三角形内角和定理便可求出∠A与∠P的关系.【解答】解:(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∠DBC+∠BCE=360°﹣120°=240°,又∵∠CBD与∠BCE的平分线相交于点P,∴∠PBC=∠DBC,∠PCB=∠BCE,∴∠PBC+∠PCB=(∠DBC+∠ECB)=120°,∴∠P=60°.同理得:(2)90°;(3)70°(4)∠P=90°﹣∠A.理由如下:∵BP平分∠DBC,CP平分∠BCE,∴∠DBC=2∠CBP,∠BCE=2∠BCP又∵∠DBC=∠A+∠ACB∠BCE=∠A+∠ABC,∴2∠CBP=∠A+∠ACB,2∠BCP=∠A+∠ABC,∴2∠CBP+2∠BCP=∠A+∠ACB+∠A+∠ABC=180°+∠A,∴∠CBP+∠BCP=90°+∠A又∵∠CBP+∠BCP+∠P=180°,∴∠P=90°﹣∠A.故答案为:60,90,70,90°﹣∠A.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质以及角平分线的定义,熟练掌握性质和定义是解题的关键.23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36度.【解答】证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.【点评】本题主要考查了正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108度.24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【分析】已知关系为:一个外角=一个内角×,隐含关系为:一个外角+一个内角=180°,由此即可解决问题.【解答】解:设这个多边形的每一个内角为x°,那么180﹣x=x,解得x=140,那么边数为360÷(180﹣140)=9.答:这个多边形的每一个内角的度数为140°,它的边数为9.【点评】本题考查了多边形内角与外角的关系,用到的知识点为:各个内角相等的多边形的边数可利用外角来求,边数=360÷一个外角的度数.25.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.【分析】(1)多边形的外角和是360°,内角和是它的外角和的3倍,则内角和是3×360=1080度.n边形的内角和可以表示成(n﹣2)?180°,设这个多边形的边数是n,就得到方程,从而求出边数.(2)在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中,根据内角与外角的性质求∠ACF的度数即可.【解答】解:(1)设这个多边形的边数为n,∵n边形的内角和为(n﹣2)?180°,多边形的外角和为360°,∴(n﹣2)?180°=360°×3,解得n=8.∴这个多边形的边数为8.(2)在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.同时考查了三角形的内角和定理,以及三角形的外角等于不相邻的两个内角的和.26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=120°,∠B=100°代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【解答】(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.【点评】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.。

相关文档
最新文档